
Journal of Machine Learning Research 24 (2023) 1-6 Submitted 7/22; Revised 3/23; Published 6/23

Merlion: End-to-End Machine Learning for Time Series

Aadyot Bhatnagar*, Paul Kassianik*, Chenghao Liu*, Tian Lan*, Wenzhuo
Yang*, Rowan Cassius†, Doyen Sahoo*, Devansh Arpit*, Sri Subramanian†, Ger-
ald Woo*, Amrita Saha*, Arun Kumar Jagota†, Gokulakrishnan Gopalakrishnan‡,
Manpreet Singh‡, K C Krithika‡, Sukumar Maddineni†, Daeki Cho§, Bo Zong§,
Yingbo Zhou*, Caiming Xiong*, Silvio Savarese*, Steven Hoi*, Huan Wang*

Editor: Antti Honkela

Abstract
We introduce Merlion, an open-source machine learning library for time series. It features a
unified interface for many commonly used models and datasets for forecasting and anomaly
detection on both univariate and multivariate time series, along with standard pre/post-
processing layers. It has several modules to improve ease-of-use, including a no-code visual
dashboard, anomaly score calibration to improve interpetability, AutoML for hyperparameter
tuning and model selection, and model ensembling. Merlion also provides an evaluation
framework that simulates the live deployment of a model in production, and a distributed
computing backend to run time series models at industrial scale. This library aims to
provide engineers and researchers a one-stop solution to rapidly develop models for their
specific time series needs and benchmark them across multiple datasets.
Keywords: time series, forecasting, anomaly detection, machine learning, autoML,
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1. Introduction

Time series are ubiquitous in monitoring the behavior of complex systems in real-world
applications, such as IT operations management, manufacturing, and cybersecurity (Hundman
et al., 2018; Mathur and Tippenhauer, 2016; Audibert et al., 2020). Across all these
applications, it is important to accurately forecast the trends and values of key metrics and
to rapidly and accurately detect anomalies in those metrics.

This work introduces Merlion1, a Python library for time series intelligence. It provides
an end-to-end machine learning framework that includes loading and transforming data,
building and training models, post-processing model outputs, evaluating model performance,
scalable deployment using a distributed back-end, and a clickable visual dashboard for
code-free experimentation. It supports unified APIs for a diverse set of machine learning
models for forecasting, anomaly detection, and change point detection on both univariate
and multivariate time series. Supported models range from classical models like ARIMA to
Bayesian methods to deep learning models.

*. AI Research, Salesforce. Corresponding Authors: {shoi,huan.wang}@salesforce.com
†. Monitoring Cloud, Salesforce
‡. Warden AIOps, Salesforce
§. Service Protection, Salesforce
1. Code: https://github.com/salesforce/Merlion. Long paper: https://arxiv.org/abs/2109.09265.

c©2023 Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius, Doyen Sahoo,
Devansh Arpit, Sri Subramanian, Gerald Woo, Amrita Saha, Arun Kumar Jagota, Gokulakrishnan Gopalakrishnan,
Manpreet Singh, K C Krithika, Sukumar Maddineni, Daeki Cho, Bo Zong, Yingbo Zhou, Caiming Xiong, Silvio
Savarese, Steven Hoi, Huan Wang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/22-0809.html.

mailto:<shoi@salesforce.com>?Subject=Merlion
mailto:<huan.wang@salesforce.com>?Subject=Merlion
https://github.com/salesforce/Merlion
https://arxiv.org/abs/2109.09265
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0809.html


Bhatnagar et al.

Several other time series libraries support similar models (Seabold and Perktold, 2010;
Taylor and Letham, 2017; Van Looveren et al., 2019; Alexandrov et al., 2020; Jiang, 2021;
Hosseini et al., 2021; Herzen et al., 2022). However, Merlion offers the most complete end-
to-end solution. In particular, Merlion has the best support for ensembling heterogeneous
models, post-processing model outputs, visualizing model performance, and deploying scalable
applications using distributed computing.2

2. Design Principles and Key Components

Merlion’s key design principles are modularity, extensibility3, and ease of use. Merlion
is divided into five modules that can easily be composed with each other: data, models,
post-processing, ensembles & model selection, and evaluation. The codebase is heavily
object-oriented, and it leverages powerful base classes to minimize the amount of code needed
to extend the library with custom datasets, models, pre/post-processing, or evaluation
metrics. These base classes also provide many convenience features including visualization
and serialization. Finally, we provide a clickable visual dashboard that enables code-free
experimentation, as well as a distributed back-end that uses pySpark (Zaharia et al., 2016)
and Kubernetes to deploy time series application at industrial scale.

Data Merlion’s TimeSeries data structure represents a d-dimensional time series T as a
collection of univariates U (1), . . . , U (d), where U (k) = (t
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the reality that individual univariates may be sampled at different rates, or contain missing
data at different timestamps. Users can create TimeSeries objects directly from files on disk,
pandas dataframes, or Spark distributed datasets. We also provide standardized loaders for
a wide range of datasets in the ts_datasets package.

After the data is loaded, the merlion.transform module lets users pre-process their data
in various ways that can make it easier to model. These include resampling, normalization,
moving averages, temporal differencing, and many others. Users may also extend this module
with other data processing tools (Christ et al., 2018; Law, 2019). Multiple transforms can be
composed with each other (e.g. resampling followed by a moving average), and transforms
can be inverted (e.g. the normalization f(x) = (x− µ)/σ is inverted as f−1(y) = σy + µ).
All models have a model.transform which is automatically applied to any input data.

Models Merlion provides unified APIs for a wide array of forecasting and anomaly detection
models. These include statistical methods, tree-based models, deep learning approaches, and
others. We also provide easy-to-use autoML for automatic hyperparameter selection.

All models are initialized with a config object that contains implementation-specific
hyperparameters, and support a model.train(time_series) method. Given a general multi-
variate time series T = (U (1), . . . , U (d)), forecasters predict the values of a single target univari-
ate U (k). One can obtain a model’s forecast of U (k) by calling model.forecast(time_stamps).
Analogously, one can obtain an anomaly detector’s sequence of anomaly scores by calling
model.get_anomaly_score(time_series). Forecasters can be used for anomaly detection
by treating the residual between the true and predicted value of a target U (k) as an anomaly
score. We implement change point detection as a specific instance of anomaly detection.

2. See Merlion’s README file for a more detailed comparison.
3. See Merlion’s contributing guidelines for detailed information about extending Merlion.
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All models can also condition their predictions on historical data without having to be
re-trained from scratch, by calling model.forecast(time_stamps, time_series_prev) or
model.get_anomaly_score(time_series, time_series_prev). Finally, many forecasters
support exogenous regressors, variables whose future values are known a priori, by calling
model.forecast(time_stamps, exog_data=exog_data).

Post-Processing All anomaly detectors have a post_rule which applies calibration and
thresholding to their outputs. Calibration, a feature unique to Merlion, uses optimal transport
to ensure that the anomaly scores follow a standard normal distribution, ensuring that they
are both interpretable and consistent across different models. Intelligent thresholding rules
reduce a model’s false positive rate suppressing redundant alerts. A user can obtain post-
processed anomaly scores from a model by calling model.get_anomaly_label(time_series).
We refer an interested reader to Bhatnagar et al. (2021, Section 4.2) for more details.

Ensembles and Model Selection Ensembles are structured as a model that represents a
combination of multiple underlying models. For this purpose we have a base EnsembleBase
class that abstracts the process of obtaining predictions Y1, . . . , Ym from m underlying models
on a single time series T , and a Combiner class that then combines results Y1, . . . , Ym into
the output of the ensemble. These combinations include traditional mean ensembles, as
well as model selection based on evaluation metrics like sMAPE. Subclasses implement the
forecast or get_anomaly_score methods, and their train method automatically handles
dividing the data into training and validation splits if performing model selection.

Since most anomaly detectors return vastly different scores, Merlion uses calibration to
transform these scores into standard normal random variables. These calibrated scores can
then be combined with a simple mean. Merlion is thus the only library to support ensembles
of heterogeneous anomaly detectors. See Bhatnagar et al. (2021, Section 4.3) for more details.

Evaluation When a time series model is deployed live in production, training and inference
are rarely performed in batch on a full time series. Rather, the model is re-trained at a
regular cadence, and where possible, inference is performed in a streaming mode. Merlion’s
evaluation framework simulates this workflow to obtain predictions from a model that more
closely mirror real-world scenarios. We also implement a wide range of evaluation metrics for
both forecasting or anomaly detection which conform to a unified interface, and we provide
scripts which allow users to easily evaluate model performance on any dataset included in
the ts_datasets module, as well as custom datasets provided by the user.

Additional Interfaces To ease initial experimentation, Merlion provides a unique no-code
visual dashboard which allows users to try different models on custom datasets, and view
both quantitative and qualitative evaluations in a single window. Merlion also provides a
distributed computing backend using PySpark, which makes it easy to deploy any Merlion
model at industrial scale. Only one other library has a distributed backend, and its scope is
limited to just a few forecasting models (Garza, 2021).

3. Experiments

In this section, we use Merlion to benchmark the performance of various models on both
forecasting (Table 1) and anomaly detection (Table 2). The purpose of this section is not
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m4-hour m4-day m4-week m4-month m4-quarter m4-year internal1 internal2 internal3
MSES 32.45 5.87 16.53 25.40 19.03 21.63 33.50 32.30 3.882

ARIMA 33.54 3.23 9.29 17.66 13.37 16.37 24.00 25.89 5.94
Prophet 18.08 11.67 19.98 20.64 24.53 30.23 56.07 30.93 72.55

ETS 42.95 3.04 9.00 14.32 11.08 16.43 17.02 25.10 3.55

AutoSARIMA 13.61 3.29 8.30 14.26 10.51 17.16 15.98 17.45 3.42
AutoProphet 16.49 11.67 20.01 20.43 24.62 30.23 56.43 26.35 69.32

AutoETS 19.23 3.07 9.32 13.73 10.33 15.96 21.65 19.41 3.15

Table 1: Mean sMAPE achieved by univariate forecasting models on M4 (Makridakis et al., 2018) and 3
internal datasets. We compare ARIMA, Prophet (Taylor and Letham, 2017), ETS, and MSES (Cassius et al.,
2021), and our own AutoML variants of ARIMA, Prophet, and ETS. Best results are in bold.

internal NAB AIOps UCR ∆ F1 (vs. best)
Lavin and Ahmad (2015) aio (2018) Dau et al. (2018)

ARIMA 0.531 0.395 0.227 0.313 0.148 ± 0.099
AutoETS 0.296 0.350 0.097 0.334 0.245 ± 0.042

AutoProphet 0.343 0.323 0.310 0.418 0.166 ± 0.062

Isolation Forest (Liu et al., 2008) 0.436 0.244 0.347 0.461 0.142 ± 0.111
RRCF (Guha et al., 2016) 0.248 0.337 0.314 0.568 0.148 ± 0.132

Spectral Residual (Ren et al., 2019) 0.340 0.153 0.338 0.469 0.189 ± 0.150
WindStats (ours, baseline) 0.225 0.247 0.324 0.306 0.239 ± 0.114

ZMS (ours, baseline) 0.486 0.290 0.340 0.427 0.129 ± 0.094

Ensemble (ours) 0.500 0.548 0.396 0.476 0.034 ± 0.044

Table 2: F1 scores achieved by univariate anomaly detection models. The ensemble takes the mean calibrated
anomaly scores of AutoETS, RRCF, and ZMS. We also report the average gap (over datasets) in F1 between
each model and the best model. Best results are in bold.

to obtain state-of-the-art results. Rather, we highlight the wide range of strong baselines
from the literature that Merlion supports. To avoid the possible risk of label leaking through
manual hyperparameter tuning, for all experiments, we evaluate all models with a single
choice of sensible default hyperparameters and data pre-processing, regardless of dataset.

For each task, we first train an initial model on the training split of a time series, and
then re-train the model unsupervised either daily or hourly on the full data until that point
(without adjusting the calibrator or threshold). We then incrementally obtain predictions for
the full time series, in a way that simulates a live deployment scenario. Table 1 shows that
Merlion’s AutoML module is effective at improving the performance of multiple different
forecasting models; Table 2 shows that our proposed ensemble method (a unique offering from
Merlion) robustly achieves strong anomaly detection performance. We refer an interested
reader to Bhatnagar et al. (2021, Section 5) for additional experiments and more details.

4. Conclusion

We introduce Merlion, an open-source machine learning library for time series, which
is designed to address many of the pain points in today’s industry workflows for time
series anomaly detection and forecasting. It provides unified, easily extensible interfaces
and implementations for a wide range of models and datasets, an autoML module that
consistently improves the performance of multiple forecasting models, post-processing rules
for anomaly detectors that improve interpretability and reduce the false positive rate, and
transparent support for ensembles that robustly achieve good performance on multiple
benchmark datasets. These features are tied together in a flexible pipeline that quantitatively
evaluates the performance of a model, and a visualization module for qualitative analysis.
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