
Journal of Machine Learning Research 24 (2023) 1-23 Submitted 3/23; Revised 7/23; Published 8/23

MARLlib: A Scalable and Efficient Library For Multi-agent
Reinforcement Learning

Siyi Hu1 siyi.hu@student.uts.edu.au
Yifan Zhong2 zhongyifan@stu.pku.edu.cn
Minquan Gao2 minchiuan.gao@gmail.com
Weixun Wang3 wangweixun@corp.netease.com
Hao Dong2 hao.dong@pku.edu.cn
Xiaodan Liang4,6 xiaodan.liang@sysu.edu.cn
Zhihui Li5 zhihuilics@gmail.com
Xiaojun Chang1,4† xiaojun.chang@uts.edu.au
Yaodong Yang2† yaodong.yang@pku.edu.cn
1 ReLER, AAII, University of Technology Sydney
2 Institute for Artificial Intelligence, Peking University
3 NetEase Fuxi AI Lab 4 MBZUAI
5 Shandong Artificial Intelligence Institute, Qilu University of Technology
6 School of Intelligent Systems Engineering, Sun Yat-sen University
† corresponding authors

Editor: Zeyi Wen

Abstract
A significant challenge facing researchers in the area of multi-agent reinforcement learning
(MARL) pertains to the identification of a library that can offer fast and compatible
development for multi-agent tasks and algorithm combinations, while obviating the need
to consider compatibility issues. In this paper, we present MARLlib, a library designed to
address the aforementioned challenge by leveraging three key mechanisms: 1) a standardized
multi-agent environment wrapper, 2) an agent-level algorithm implementation, and 3) a
flexible policy mapping strategy. By utilizing these mechanisms, MARLlib can effectively
disentangle the intertwined nature of the multi-agent task and the learning process of the
algorithm, with the ability to automatically alter the training strategy based on the current
task’s attributes. The MARLlib library’s source code is publicly accessible on GitHub:
https://github.com/Replicable-MARL/MARLlib.
Keywords: Multi-agent Reinforcement Learning, Software, Open-Source, Ray, RLlib

1. Introduction
The field of Multi-Agent Reinforcement Learning (MARL) has garnered significant attention
for its real-world applications and potential in enhancing collective intelligence (Busoniu
et al., 2008; Yang and Wang, 2020; Zhang et al., 2021). Earlier works have shown that agents
can acquire strategies that surpass the capabilities of human experts and facilitate human
decision-making in a retrograde fashion (Vinyals et al., 2019; Baker et al., 2020).

While notable advancements have been made in single-agent reinforcement learning
(Dhariwal et al., 2017; Liang et al., 2018; Weng et al., 2022), the development of a comprehen-
sive and high-quality MARL library presents distinct challenges. One major challenge arises

©2023 Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Zhihui Li, Xiaodan Liang, Xiaojun Chang
and Yaodong Yang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v24/23-0378.html.

https://github.com/Replicable-MARL/MARLlib
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/23-0378.html

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

Table 1: A comparison between current MARL libraries and our MARLlib.

Library Supported
Env

Algorithm Parameter
Sharing

Agent
Architecture Framework

PyMARL 1
cooperative 5 share GRU PyMARL

PyMARL2 2
cooperative 11 share MLP+GRU PyMARL

MARL-
Algorithms

1
cooperative 9 share MLP+GRU MARL-Algorithms

EPyMARL 4
cooperative 9 share + separate GRU PyMARL

MAlib
4

self-play 9 share+group+separate MLP+LSTM MAlib

MAPPO
4

cooperative 1 share + separate MLP+GRU+CNN pytorch-a2c-ppo-acktr
-gail (Kostrikovk, 2018)

MARLlib
15+

no restriction 18 share+group+ separate
customizable

MLP+LSTM+GRU
+CNN

Ray (Moritz et al., 2018)
RLlib (Liang et al., 2018)

from the absence of a standard dataset for evaluating new ideas, unlike domains such as image
classification that utilize representative datasets like ImageNet (Deng et al., 2009). MARL
datasets encompass customizable scenarios with varying agent numbers, map sizes, reward
functions, and unit statuses, making it difficult to establish a research starting point. Efforts
have been made to create unified and scalable testing suites for the MARL community, such
as PettingZoo (Terry et al., 2021) and Melting Pot (Leibo et al., 2021). However, practical
challenges persist, including variations in lower-level data structures, requiring adjustments
to the learning pipeline which impacts algorithm performance and reliability.

Another significant challenge stems from the inherent incompatibility between multi-agent
environments and algorithms. For instance, the coexistence of cooperative and competitive
learning targets within a single environment hinders the direct application of algorithms
designed solely for cooperative use. Additionally, specific algorithms may require additional
task information, such as global state, rendering them incompatible with environments lacking
such data. Because of these, existing libraries (Papoudakis et al., 2021; Hu et al., 2023; Yu
et al., 2022) suffer from limited task coverage and lack algorithm unification, resulting in
poor extensibility and a bloated code structure (see Table 1).

Therefore, the development of a universal learning framework that effectively disentangles
the environment and the algorithm, ensures compatibility, and provides a standard testing
suite for MARL is crucial. In this paper, we introduce MARLlib, a new library that combines
the core advantages of Ray (Moritz et al., 2018) and RLlib (Liang et al., 2018), while
incorporating novel features. These features include a standardized multi-agent environment
wrapper, agent-level algorithm implementation, and a flexible policy mapping strategy.
MARLlib serves as a scalable and efficient framework for the MARL research community,
enabling the construction, training, and evaluation of MARL algorithms across diverse
multi-agent environments.

2. Design of MARLlib

MARLlib’s architecture is comprised of three key components: 1) a standardized wrapper
which is utilized to unify the multi-agent environment; 2) the algorithm implemented at the

2

https://github.com/oxwhirl/pymarl
https://github.com/hijkzzz/pymarl2
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/uoe-agents/epymarl
https://github.com/sjtu-marl/malib
https://github.com/marlbenchmark/on-policy
https://github.com/Replicable-MARL/MARLlib

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

Environment Wrapper

MARLlib API

algorithm

hyperparametr

Independent

Learning

Value

Decomposition

Centralized

Critic

IQL IPG

IA2C IDDPG

ITRPO IPPO

MAA2C COMAMADDPG

MATRPO MAPPO

HATRPO HAPPO

VDN QMIX

FACMAC

VDA2C VDPPO

postprocessing

(data sharing)

Agent-Level Dataflow

model architecture training settingstask/scenario parameterMARLlib Configurator

Ray[tune]

Algorithms

RLlib API

Policy Sharing

agent-based

data provision

(data collection)

policy optimization

(training)

reward

agent i

agent j

agent k

……

MARL Env

action i
action j
action k

agent i

agent j

agent k

……

agent I

agent k

……

agent j

Transition Data:

{Group}_{Agent}: Sampled data

done

infoobs

observation action_mask global_state

agent a

agent n

MARLlib Compatibility Test

Agent Architecture

Figure 1: Overview of MARLlib, a framework that integrates algorithms and tasks into a
unified framework.
agent-level dataflow; 3) a flexible policy mapping strategy to address compatibility issues
that may arise between tasks and the multi-agent learning process.

Multi-agent environment wrapper. A standardized agent-environment interaction
style, such as Gym (Brockman et al., 2016), can effectively separate the environment from the
algorithm, thereby allowing the learning process to remain agnostic to the tasks. However,
extending this approach to multi-agent settings is not straightforward. Specifically, there are
two primary issues that must be addressed. Firstly, the structure of the data returned by
multi-agent environments can vary significantly, posing a challenge for the algorithm-side
learning pipeline’s design. Secondly, given the need for agents to act simultaneously or
asynchronously, a flexible data collection process is essential. In light of this, the development
of a new environment wrapper for multi-agent environment is deemed a pressing matter.

To tackle the first issue, it is necessary to consider the common data provision in multi-
agent tasks. Upon examining their data structure, we identify the following significant
differences: 1) the provision of data, where information that is not universally required may
be missed (such as global state and action mask), 2) the format in which rewards are provided,
either as a scalar (e.g., team reward) or a set (with each agent receiving its own reward),
and 3) whether each agent’s data is labeled with an agent ID or centrally collected without
labeling. In order to reconcile these differences, we propose a general environment wrapper
that can effectively mitigate discrepancies between multi-agent tasks and align them with a
similar data provision style. This entails three crucial steps: 1) the inclusion of non-universal
data, such as global state, into the observation, 2) the duplication and allocation of rewards
to each agent to ensure equity, and 3) the labeling of all collected data with the agent ID,
enabling each agent to manage its own data and uphold parity with other agents.

Towards the second issue, we leverage the advanced data collection mechanism provided
by RLlib. In this approach, each agent collects data independently and maintains the
sampled data in its individual buffer. Agents are not required to complete the data sampling
process at the same time stamp. One episode sampling process is ended when the done
signal transitions to True, indicating the completion of the sampling process of all agents.
By addressing these two issues, MARLlib’s task-side has been purposefully crafted to enable

3

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

flexible but standardized data collection, thereby providing the algorithm-side with a clear
and consistent source data style. By integrating this approach, MARLlib empowers the
corresponding algorithm-side to effectively leverage the benefits offered by the task-side,
thereby enabling scalable multi-agent learning.

Agent-level dataflow. The new environment wrapper unifies data provision style at
the agent level, and it would be convenient if the algorithm side could also be implemented
in this way to allow for seamless data flow. The key question is whether MARL algorithms
can be transformed into an agent-level learning process. In MARLlib, we primarily focus on
decentralized partially observable Markov decision process (Dec-POMDP) settings (Oliehoek
and Amato, 2016) and three typical learning styles: independent learning (IL), centralized
critic (CC), and value decomposition (VD). Other algorithms can be extended from these
to fulfill various training requirements. Figure 3 provides an illustration of the agent-level
perspective of the MARL process. For IL, the learning process can be naturally decomposed
into agent-level dataflow, as one agent treats other agents as part of the environment and
thus maintains its independency. For CC, sharing information in the post-processing phase to
form the centralized input can transform the CC pipeline into agent-level dataflow. For VD,
exchanging predicted Q/critic value before entering the training stage enables mixed value
functions to work with a single agent, thereby transforming the VD pipeline into agent-level
dataflow. More detailed discussion of the equivalence between central and agent-level dataflow
can be found in Appendix. H.4.

Policy mapping strategy. Upon establishing both the agent-based data provision
on the environment side and the agent-level dataflow on the algorithm side, it becomes
imperative to devise a mechanism for managing the dataflows between them that ensures
the appropriate allocation of agents to their respective learning targets. In this regard, we
leverage RLlib’s policy mapping API, enrich it, and standardize strategy construction into
three steps: (i) provision of a policy mapping dictionary by the environment side to describe
task abstraction, agent group, and restrictions on parameter sharing; (ii) selection of a
suitable strategy from default settings, including full-sharing, non-sharing, and group-sharing,
or customization of one by users; and (iii) verification by the algorithm side of the legality of
the chosen policy mapping strategy.

Other noteworthy attributes encompass automatic model construction, a thoroughly
decoupled configuration framework, conveniently accessible plug-in/out strategies, and an
automated compatibility assessment. Notably, MARLlib is accompanied by a comprehensive
documentation that encompasses four distinct segments: the MARLlib handbook, guidance
tailored for newcomers to the MARL domain, algorithmic documentation, and an extensive
survey of MARL methodologies. Moreover, a diverse spectrum of experimental endeavors
has been undertaken employing MARLlib.

3. Conclusion
In this paper, we present MARLlib, a unified library suite that encompasses a vast array of
algorithms and tasks in the MARL domain. This comprehensive library suite is designed
to provide a dependable and comprehensive toolset for training, evaluating, and comparing
MARL algorithms. The MARL community can take advantage of MARLlib to build a
diverse range of multi-agent applications. Furthermore, MARLlib can serve as an educational
platform for new researchers and contribute to the growth of the MARL research field.

4

https://marllib.readthedocs.io/
https://github.com/Replicable-MARL/MARLlib/tree/master/results

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

Acknowledgement

This work is sponsored by National Key R&D Program of China (2022ZD0114900), Beijing
Municipal Science & Technology Commission (Z221100003422004), Young Elite Scientists
Sponsorship Program by CAST (2022QNRC002), Outstanding Youth Fund of Shandong
Province (ZR2021YQ44), and “Taishan Scholars Youth Expert Program” of Shandong
Province.

Appendices

Appendix A. Installation

The installation of MARLlib has two parts: common installation and external environment
installation. We have tested the installation on Python 3.8 with both Ubuntu 18.04 and
Ubuntu 20.04.

A.1 Install dependencies (basic)

We strongly recommend using conda to manage your dependencies and avoid version conflicts.
Here’s an example of building a Python 3.8 based conda environment.

$ conda create -n marllib python=3.8
$ conda activate marllib
$ git clone https://github.com/Replicable-MARL/MARLlib.git
$ cd MARLlib
$ pip install --upgrade pip
$ pip install -r requirements.txt

recommend always keeping the gym version at 0.21.0.
$ pip install gym==0.21.0

add patch files to MARLlib
$ python patch/add_patch.py -y

A.2 Install environments (optional)

External environments are not auto-integrated. However, you can install them by following
this link. We recommend always keeping the gym version at 0.21.0, which is the compatible
version for all integrated tasks.

Appendix B. Library usage

from marllib import marl

prepare env
env = marl.make_env(environment_name="mpe", map_name="simple_spread")
initialize algorithm with appointed hyper-parameters
mappo = marl.algos.mappo(hyperparam_source="mpe")
build agent model based on env + algorithms + user preference
model = marl.build_model(env, mappo, {"core_arch": "mlp", "encode_layer": "128-256"})
start training
mappo.fit(

5

https://marllib.readthedocs.io/en/latest/handbook/env.html

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

env, model,
stop={"timesteps_total": 1000000},
checkpoint_freq=100,
share_policy="group"

)
rendering
mappo.render(

env, model,
local_mode=True,
restore_path={'params_path': "checkpoint_000010/params.json",

'model_path': "checkpoint_000010/checkpoint-10"}
)

MARLlib offers an API that provides a user-friendly programming interface, simplifying the
utilization of the library, while still maintaining a high degree of extensibility to facilitate
user customization. This allows researchers to concentrate on their specific research goals
without being bogged down by implementation details.

Appendix C. Training Efficiency

We conducted experiments to demonstrate the efficiency of MARLlib compared to EPyMARL
and the on-policy baseline (official MAPPO (Yu et al., 2022)). The experiments were
performed on a local server with an NVIDIA RTX A6000 GPU and an AMD Ryzen
Threadripper PRO 5945WX 12-Cores CPU. The testing scenario is MMM2 from SMAC
(Samvelyan et al., 2019), and the testing algorithm is MAPPO. The total consumed timesteps
are 106.

From Table. 2, it is evident that MARLlib is significantly more efficient than the other
frameworks in terms of clock time. However, the increased training speed comes with
relatively higher memory usage and GPU memory usage. This is partly due to Ray/RLlib’s
scheduling mechanism, where data is cached on the GPU as long as there is still available
memory. Additionally, since each agent is asked to maintain its own data buffer in MARLlib
(which is a prerequisite for tackling task modes such as competitive and mixed), the memory
usage is higher than in the other two frameworks.

Table 2: Efficency and hardware usage comparison between EPyMARL, MAPPO, and
MARLlib

Framework Clocktime (min:sec) Memory (GB) GPU Memory (MB)

EPyMARL(thread=5/10/15) 5:29/3:14/2:24 8.4/12.3/15.8 2245/2309/2329
MAPPO(thread=5/10/15) 5:12/3:13/2:42 8.9/12.3/16.3 2157/2277/2389
MARLlib(worker=5/10/15) 3:29/2:16/1:24 11.2/15.4/20.4 5025/5327/5351

Appendix D. Parameter

In MARLLib, there are three types of hyperparameters to choose from when initializing
algorithms: common, finetuned, and test. The common hyperparameters are suitable for
normal training on new tasks where the optimal hyperparameters are unknown. For a fair

6

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

comparison with other algorithms on commonly used MARL tasks like MPE and SMAC, we
recommend using the finetuned hyperparameters. The test hyperparameters are intended
for developing and testing new algorithms or incorporating new multi-agent environments.
You can find all the available parameters by visiting this link.

Appendix E. Connection to RLlib

MARLlib and RLlib are closely related, with MARLlib building upon the foundation provided
by RLlib. MARLlib extends and enhances RLlib’s capabilities specifically in the domain of
multi-agent reinforcement learning (MARL). It leverages RLlib’s infrastructure, including its
multi-agent task interface, to create a unified and compatible agent-environment interface
for MARL experiments. This relationship allows researchers and developers to benefit from
both the versatility and functionality of RLlib while harnessing the specialized features and
optimizations provided by MARLlib for MARL tasks.

In the following section, we will discuss the challenges of multi-agent learning in RLlib and
the major improvements proposed by MARLlib that make it stand out as a comprehensive
library, not limited to being just a "plug and play" extension for RLlib.

E.1 Challenges of RLlib’s Multi-Agent Case

While RLlib provides a robust infrastructure for reinforcement learning, the multi-agent case
within RLlib poses certain challenges that can make it difficult to use effectively. These
challenges stem from:

• Lack of a Standardized and Unified Agent-Environment Interface for Multi-
Agent Tasks: Multi-agent reinforcement learning involves multiple agents interacting
with an environment, which introduces complexity in designing the agent-environment
interface. However, RLlib’s multi-agent case suffers from the lack of a standardized
and unified interface. The absence of clear conventions for representing and exchang-
ing information between agents and the environment hinders the development and
comparison of different MARL algorithms.

• Complexity and Accessibility for Newcomers: The multi-agent case1 in RLlib
often requires deep knowledge of the underlying RLlib framework, making it less
accessible to newcomers in the field of multi-agent reinforcement learning. Effectively
utilizing RLlib’s multi-agent functionality necessitates prior understanding of advanced
RL concepts, which can act as a barrier for researchers and practitioners who are new
to multi-agent RL.

• Lack of a Focused Point for Integrating Different Algorithms: RLlib’s multi-
agent case is built without a focused point of integration for different algorithms. This
lack of a unifying framework makes it challenging to compare and combine different
MARL algorithms within RLlib effectively. Researchers and practitioners may find it
difficult to implement and evaluate their own algorithms in a standardized manner,
hindering the progress and collaboration in the field.

1. An example can be found in this link: https://github.com/ray-project/ray/blob/master/rllib/
examples/multi_agent_custom_policy.py

7

https://github.com/Replicable-MARL/MARLlib/tree/master/marllib/marl/algos/hyperparams
https://github.com/ray-project/ray/blob/master/rllib/examples/multi_agent_custom_policy.py
https://github.com/ray-project/ray/blob/master/rllib/examples/multi_agent_custom_policy.py

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

Addressing these challenges is crucial for advancing multi-agent reinforcement learning
research. Efforts to simplify and improve the usability of RLlib’s multi-agent case to provide
researchers and developers with a more accessible and efficient framework for conducting
multi-agent experiments need to be made.

E.2 MARLlib vs RLlib

MARLlib builds upon RLlib’s foundation and addresses the shortcomings of RLlib’s multi-
agent case, offering significant improvements in the field of multi-agent reinforcement learning.

Table 3: Comparison of MARLlib and RLlib on multi-agent case

Features MARLlib RLlib

Task Interface & Transition Data Structured Vague & Flexible
Multi-agent Algorithm Support Standard CTDE Simple Extension on RL
Policy Mapping & Sharing Auto Manual
Scalability and Interoperability Inherited X
Accessibility for newcomers Easy Hard
Auto Adaption & Compatibility Test X ×
Experimentation & Benchmarking X Limited
Documentation and tutorials Comprehensive Limited

The connection between MARLlib and RLlib mirrors the integration and functionality
similarity observed in TensorFlow (Abadi et al., 2016) and Keras (Chollet et al., 2015).
While Keras serves as a high-level neural networks API with TensorFlow as its efficient
backend for execution and optimization, MARLlib leverages RLlib’s reinforcement learning
infrastructure for effective development of multi-agent systems through its user-friendly
API. These connections facilitate streamlined development, abstracting complexities while
benefiting from powerful machine learning and reinforcement learning capabilities.

MARLlib’s primary contribution to RLlib is providing a unified and compatible agent-
environment interface, simplifying data consumption for multi-agent algorithms across a
wide range of tasks. This improvement promotes efficiency and ease of implementation in
multi-agent reinforcement learning research.

Secondly, MARLlib leverages RLlib’s agent-side abstraction and categorization to address
the complexities inherent in diverse multi-agent tasks. By renovating the information sharing
stage, MARLlib ensures effective sharing and compatibility across algorithms, aiming to
unify algorithms under one framework. It builds upon RLlib’s reliable implementation of
single-agent reinforcement learning, requiring only necessary adjustments for multi-agent
scenarios.

MARLlib’s third contribution to RLlib lies in its user-friendly approach, simplifying
the learning and exploration of multi-agent reinforcement learning for newcomers. With a
simplified API, MARLlib handles the compatibility between diverse multi-agent tasks and
algorithms, allowing users to focus on core components, such as the selection of algorithms,
tasks, and models. However, this ease of use does not limit the extension or modification

8

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

of MARLlib’s learning pipeline. Users can introduce new environments 2, customize policy
sharing 3, and modify the information sharing stage to define different aspects of observation
sharing. These features empower users to tailor their own experiments based on the flexibility
provided by MARLlib.

In addition, MARLlib offers users novel features, including pipeline auto-adaptation and
training compatibility testing, complemented by comprehensive documentation on multi-agent
reinforcement learning.

Appendix F. Related Work

In the realm of machine learning, it is widely acknowledged that evaluating a novel idea
necessitates the use of an appropriate dataset. The prevailing approach entails employing a
representative or widely accepted dataset, adhering to its established evaluation pipeline,
and comparing the performance of the new idea against existing algorithms. A prominent
example is the ImageNet dataset (Deng et al., 2009), which has served as the benchmark for
image classification, a fundamental task in computer vision, for nearly a decade since the
advent of deep learning.

However, this paradigm does not readily apply to Multi-Agent Reinforcement Learning
(MARL). In the context of MARL, a dataset corresponds to a collection of scenarios that
constitute a multi-agent task. Multi-agent tasks exhibit a high degree of customization,
encompassing various aspects such as the number of agents, map size, reward function, and
unit status. The range of possible adjustments to multi-agent tasks or environments is vast,
with new tasks and environments constantly emerging. Consequently, for newcomers in
the field, selecting an appropriate starting point for MARL research assumes paramount
importance: one must first identify a set of widely used multi-agent datasets and then strive
to make improvements upon existing ones. This approach has become prevalent in recent
MARL publications, employing standardized benchmarking processes and testing suites such
as MPE, SMAC, and MAMuJoCo.

However, it is important to note that the superiority of an algorithm should not solely
be measured by its performance in specific tasks. In reality, there exists an ongoing debate
regarding whether MARL algorithms should focus on excelling in a single task or aim for
strong performance across multiple tasks, presenting a dilemma commonly known as the
"algorithm-first or task-first" conundrum. MARLlib leans towards the "algorithm-first"
perspective, as we believe that it is relatively easier for other users to reproduce and compare
algorithms in this manner, fostering a trustworthy solution that propels the advancement of
the field.

Following the "algorithm-first" principle, there is an urgent need to construct a compre-
hensive collection of standardized multi-agent tasks, accompanied by a unified algorithmic
learning pipeline. Here, we delve into the contributions made by the MARL community from
two perspectives: the task side and the algorithm side.

On the task side, several notable endeavors, such as PettingZoo (Terry et al., 2021) and
Melting Pot (Leibo et al., 2021), have aimed to create a unified and scalable testing suite for

2. https://github.com/Replicable-MARL/MARLlib/blob/master/examples/add_new_env.py
3. https://github.com/Replicable-MARL/MARLlib/blob/master/examples/customize_policy_sharing.

py

9

https://github.com/Replicable-MARL/MARLlib/blob/master/examples/add_new_env.py
https://github.com/Replicable-MARL/MARLlib/blob/master/examples/customize_policy_sharing.py
https://github.com/Replicable-MARL/MARLlib/blob/master/examples/customize_policy_sharing.py

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

the MARL community. However, practical challenges persist. For instance, in PettingZoo,
the interface appears to be unified at a high level (agent-env interface), but exhibits variations
at a lower level (inside data structure). Consequently, directly feeding the returned data into
the learning pipeline is not suitable. Adjustments must be made to the learning pipeline to
accommodate the unique characteristics of each task. The manner in which these adjustments
are implemented plays a pivotal role in the performance of the algorithm, thus significantly
impacting the reliability of the algorithm’s learning curve. Another significant challenge
arises from the incompatibility between interfaces like PettingZoo and popular MARL tasks
such as SMAC (Samvelyan et al., 2019), a lighter version of the full game StarCraft II
(Silver et al., 2018). This incompatibility poses difficulties when evaluating algorithms across
different testing suite.

Nevertheless, there are existing libraries that support multiple tasks, often by forgoing
the unification of task-side interfaces. For instance, the official MAPPO implementation
creates a separate runner for each distinct task. As of now, the MAPPO benchmark supports
four environments and has accordingly prepared more than six runner files including shared
and non-shared styles 4. However, this approach is not without limitations, as new tasks
continually emerge, making the maintenance of a large number of runners impractical.

After the discussion on the current progress on the task side, we will now shift our focus
to the algorithm side. Instead of conducting an algorithm-level comparison to determine
which algorithm is better, our aim is to explore previous efforts in incorporating as many
algorithms as possible into a single framework. We present a comparison table that showcases
some of these frameworks in Table 1. Here, we provide a brief introduction to each of them:

• PyMARL (Samvelyan et al., 2019) is the first and most well-known MARL library.
All algorithms in PyMARL are built for SMAC (Samvelyan et al., 2019), where agents
learn to cooperate for a higher team reward. However, PyMARL has not been updated
for a long time and can not catch up with the recent progress. To address this, the
extension versions of PyMARL are presented including PyMARL2 (Hu et al., 2023)
and EPyMARL (Papoudakis et al., 2021).

• PyMARL2 (Hu et al., 2023) is an extension of PyMARL and still focuses on credit
assignment mechanism. It provides a finetuned QMIX (Rashid et al., 2018) with
state-of-art-performance on SMAC. The number of available algorithms increases to
ten, with more code-level tricks incorporated.

• MARL-Algorithms (MARL-Algorithms, 2019) is a library that covers broader topics
compared to PyMARL including learning better credit assignment, communication-
based learning, graph-based learning, and multi-task curriculum learning. Each topic
has at least one algorithm, with nine implemented algorithms in total. The testing bed
is limited to SMAC, a cooperative mult-agent benchmark.

• EPyMARL (Papoudakis et al., 2021) is another extension for PyMARL that aims
to present a comprehensive view on how to unify cooperative MARL algorithms.
It first proposed independent learning, value decomposition, and centralized critic
categorization but is restricted to cooperative settings. Nine algorithms are implemented

4. https://github.com/marlbenchmark/on-policy/tree/main/onpolicy/runner

10

https://github.com/oxwhirl/pymarl
https://github.com/hijkzzz/pymarl2
https://github.com/starry-sky6688/MARL-Algorithms
https://github.com/uoe-agents/epymarl
https://github.com/marlbenchmark/on-policy/tree/main/onpolicy/runner

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

in EPyMARL. Three more cooperative environments LBF (Christianos et al., 2020),
RWARE (Christianos et al., 2020), and MPE (Lowe et al., 2017) are incorporated to
evaluate the algorithms on cooperative MARL.

• MAPPO benchmark (Yu et al., 2022) is the official code base of MAPPO (Yu et al.,
2022). It focuses on cooperative MARL and covers four environments including SMAC,
MPE, Hanabi (Bard et al., 2020), and Google Research Football (Kurach et al., 2020).
It aims at building a strong baseline and only contains MAPPO.

• MAlib (Zhou et al., 2023) is a recent library for population-based MARL which
combines game-theory and MARL to solve multi-agent tasks in the scope of meta-
game.

Existing libraries and benchmarks provide good platforms for developing and comparing
MARL algorithms in different environments. However, there are essential limitations to the
current work. Firstly, these works are limited in task coverage due to the lack of a unified
agent-env interface, as mentioned earlier. Moreover, existing work pays little attention to
how algorithms are organized, focusing primarily on implementing existing algorithms. This
results in poor extensibility and a bloated code structure in the algorithm-side learning
pipeline.

Appendix G. MARLlib’s Solution on Task Side Unification

A crucial lesson learned from the community is that unification must be based on establishing
a standardized task suite interface that standardizes the sampling stage while ensuring
compatibility with the underlying nature of different tasks and their corresponding data
structures.

MARLlib’s agent-env interface, as highlighted in the main paper, has successfully enabled
seamless integration of diverse multi-agent tasks and types of MARL algorithms. In the
subsequent sections, we present an in-depth exploration of MARLlib’s interface capabilities,
showcasing its ability to handle the intricate demands of different tasks and data formats
while ensuring data coherence.

G.1 Support for Task Characteristics

MARLlib’s interface accommodates a wide range of task characteristics, including various
learning modes (cooperative, collaborative, competitive, mixed), observability levels (full,
partial), action spaces (discrete, continuous, multi-discrete), observation space dimensions
(1D, 2D), action masking, the presence of a global state, and different types of rewards (dense,
sparse). By encompassing these diverse characteristics, MARLlib provides a flexible framework
for conducting experiments on a broad spectrum of multi-agent tasks. Importantly, the task
characteristics are automatically detected by the algorithm learning pipeline, eliminating the
need for manual attention to compatibility. After a successful training launch, errors are
triggered if there is an incompatible combination, such as using VDA2C (Su et al., 2021)
(cooperative only) with the simple_adversary scenario in MAgent, based on MARLlib’s
compatibility test.

11

https://github.com/marlbenchmark/on-policy
https://github.com/sjtu-marl/malib

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

Learning Mode Cooperative + Collaborative + Competitive + Mixed
Observability Full + Partial
Action Space Discrete + Continuous + MultiDiscrete
Observation Space Dim 1D - 3D
Action Mask Yes
Global State Yes
Reward Dense + Sparse
Agent-Env Interact Mode Simultaneous + Asynchronous

G.2 Data Inner Alignment

The data sampling process is standardized in existing multi-agent task suites such as
PettingZoo, but only on the code level. By saying "code level," we mean that under
the multi-agent setting, the data returned by the agent-environment interface may not
actually match what the variable name suggests. For example, observations containing global
information should never be fed directly into actor networks of algorithms like MAPPO
or VDA2C, as this would violate the principles of centralized training and decentralized
execution (CDTE) settings.

To address this challenge, MARLlib ensures strict data alignment in all incorporated
environments. This alignment guarantees that the data returned from the environment can
be properly utilized by the algorithms on the algorithm side. For instance, in many tasks,
a natural global state may not be readily available. However, the global information can
be extracted from raw observations (e.g., MAgent) or by concatenating the observations
of all agents into a single global observation (e.g., MPE). This adoption is automatically
accomplished by MARLlib.

Appendix H. MARLlib’s Solution on Algorithm Side Unification

MARLlib effectively solves the dilemma by providing better algorithm unification and
categorization, implementing more algorithms both in quantity and diversity, with no task
mode restriction, supporting 15 environment suites, and allowing flexible parameter sharing.
The core idea of all these features is agent-level dataflow, which is discussed in the main
paper. There are two more main features that need to be clarified:

The first feature is how MARLlib manages to decompose the complexity of MARL
algorithms and step forward to an all-task-mode framework that no existing MARL library
can achieve. From the existing libraries listed in the previous section, a major challenge
arises in breaking the restriction on applicable task modes. Most libraries initially focus on
cooperative tasks, making it technically impossible to incorporate new task modes such as
competitive tasks (e.g., Pommerman (Resnick et al., 2018)) and mixed tasks (e.g., MAgent
(Zheng et al., 2018)). In MARLlib, the agent-level dataflow addresses this challenge by
treating each agent’s learning process separately from others. This means that the learning
target can be decomposed to the individual level, enabling agents to learn in any task mode
and style (collectively, in groups, or individually). However, this is not the ultimate solution,
as the nature of different algorithm types limits their application. Several commonly observed
cases are discussed below:

12

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

• Value Decomposition (VD) algorithms can only be applied to cooperative tasks.

• Multi-agent Trust Region Learning (HATRPO & HAPPO (Kuba et al., 2022)) can
only be applied to cooperative tasks with shared critic models but seperately used
actor models.

• COMA (Foerster et al., 2018) can only be applied to tasks with discrete action spaces.

• MADDPG (Lowe et al., 2017), and FACMAC (Peng et al., 2021) can only be applied
to tasks with continuous action spaces.

There are additional cases that deviate from the goal of having a "one learning pipeline
for all tasks." In other words, while the agent-level dataflow provides a tool for unifying
algorithms in MARLlib, there is a lack of guidance on how to use this tool effectively. To
address this, we introduce the compatibility test and auto-adaptation mechanism as an
essential component of MARLlib, which aims to achieve the final unification of algorithms.

H.1 Auto Adaption

MARLlib’s Auto Adaptation mechanism is a versatile feature that facilitates the selection
of the optimal module based on the user’s chosen algorithm and specific environments or
tasks. This mechanism intelligently analyzes the algorithm’s characteristics and the given
environment, dynamically determining the most suitable module for the learning pipeline. By
leveraging this adaptive capability, MARLlib ensures efficient and effective performance by
utilizing the module that aligns with the algorithm’s requirements and the intricacies of the
task. This flexibility empowers users to seamlessly integrate diverse algorithms and tackle
various tasks with enhanced adaptability, ultimately augmenting the overall effectiveness of
MARLlib’s learning pipeline.

MAgent

MPE

SMAC

Task Nature
…

Env Engine

Battle

Spread

MMM2

…

Algorithm

QMIX

VDA2C

MAPPO

…

Core

JointQ

LSTM

GRU

MLP

CC

VD

Encoder

Transformer

CNN

FF

Wrapper
… … …

… … …

… … …

User Choice MARLlib Adaption

Figure 2: The data flow begins with the user selecting a task and an algorithm to run
against it. MARLlib then automatically adapts the module needed in the rest of the learning
pipeline. Notably, the modularization aspect of MARLlib enables the automatic selection
and combination of smaller module components, contributing to the overall adaptability and
efficiency of the learning pipeline.

13

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

H.2 Compatiabilty Test

The compatibility test function interface incorporates configuration aspects from four key
components: 1) Training information, 2) Environment instance, 3) Model information, and
4) Stop condition. These four parts collectively initiate a MARL process. Compatibility
assessment begins by retrieving environment features such as agent number, agent name, and
policy sharing restrictions. It then verifies the legality of user-defined policy sharing settings
with respect to the given task. For example, the default option disables policy sharing for
tasks with a large number of agents to conserve memory usage. Attempting to switch to a
no-sharing policy strategy would trigger an error.

In addition to evaluating policy sharing compatibility on the task side, the algorithm side
is also examined to ensure its suitability for the current tasks. For instance, if an algorithm
is designed for discrete action spaces, tasks built for continuous control will be filtered out.
If an algorithm requires training under a specific parameter sharing style, an error will be
triggered if parameter sharing across agents is mandatory for the given task.

It is important to note that MARLlib categorizes different types of algorithms into
distinct compatibility test suites. There are three compatibility tests in MARLlib, namely:
independent learning (run_il), centralized critic (run_cc), and value decomposition (run_vd).
This organization allows algorithms within the same group to share more similarities, thereby
reducing the complexity of assessing whether specific training requirements can be met based
on the provided task/algorithm combination.

H.3 Pipeline Unification on Agent-level Dataflow

target agent

observed data predicted data

collect/predictsampling

share

other agents self data others data

postprocessingon-policy off-policy

MARLlib interface

Agent

(a) Independent Learning (b) Centralized Critic (c) Value Decomposition

Agent
Agent

critic

actor

Agent
Agent

Agent
actor

Agent
Agent

Agent
critic

Agent
Agent

Agentactor

critic

Agent
Agent

Agent
mixer

Agent
Agent

Agent
Q

Agent
Agent

Agent
Q

Agent
Agent

Agent
Q

Agent-Level Optimization Agent-Level Optimization Agent-Level Optimization

Figure 3: The agent-level dataflow of MARLlib. The collection and sharing of observed and
predicted data are in three distinct learning styles: independent learning, centralized critic,
and value decomposition.

MARLlib follows the Centralized Training Decentralized Execution (CTDE) framework
to address multi-agent problems. In this framework, agents maintain their own policies for

14

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

independent execution and optimization, while centralized information can be utilized to
coordinate agents’ update directions during the training phase.

Existing libraries typically split the whole learning pipeline into two stages: data sampling
and model optimization. In the model optimization stage, all data sampled in the data
sampling stage are available to make the training centralized. However, this approach couples
the selection of proper data and the use of that data to optimize the model in the same stage.
As a result, extending an algorithm to fit other task modes, such as both cooperative and
competitive scenarios, becomes challenging and may require redesigning the entire learning
pipeline.

To address this issue, MARLlib decomposes the original grouped dataflow into an agent-
level distributed dataflow. Each agent in multi-agent training is treated as an independent
unit during sample collection and optimization, but centralized information is shared among
agents during the postprocessing phase to ensure equivalence. In this phase, agents share
observed data (data sampled from the environment) and predicted data (actions taken
by their policies or Q values) with others. All agents maintain individual data buffers
to store their experiences and necessary information shared by other agents. Once the
learning stage begins, no further information sharing is required among agents, and they
can optimize themselves independently. This distribution of the dataflow to agents and
complete decoupling of data sharing and optimization allows the same implementation to
handle multiple task modes.

Furthermore, while all CTDE-based algorithms share a similar agent-level dataflow in
general, they still have unique data processing logic. Inspired by EPyMARL (Papoudakis
et al., 2021), the algorithms are further classified into independent learning, centralized critic,
and value decomposition categories to enable module sharing and extensibility. Independent
learning algorithms let agents learn independently; centralized critic algorithms optimize the
critic with shared information, which then guides the optimization of decentralized actors;
value decomposition algorithms learn a joint value function as well as its decomposition
into individual value functions, which agents then employ to select actions during execution.
Depending on their algorithmic properties, suitable data sharing strategies are implemented
in the postprocessing phase, as illustrated in Figure 3.

In summary, the agent-level distributed dataflow in MARLlib unifies diverse learning
paradigms while preserving the unique properties of all algorithms. This implementation
approach allows a single pipeline to handle all task modes and remains equivalent to the
original implementation.

H.4 Dataflow equivalance

In this section, we aim to substantiate the assertion that all multi-agent learning paradigms
can be seamlessly transformed into amalgamated single-agent learning processes. Our goal is
to demonstrate that the data used for optimizing the target entity remains unequivocally
identical. To achieve this, we will utilize the well-established PyMALR and EPyMARL’s
learning framework, known for its efficacy. This framework comprises three essential compo-
nents: sampling, centralized data collection, and one-step training. We will compare this
approach with the distinct method employed by MARLlib, which is characterized by its

15

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

sampling technique, sharing mechanism (post-processing), and agent-level training. The three
different learning styles will be carefully examined and analyzed in the following discussion.

Independent learning: The left parts of Fig. 4 and Fig. 5 highlight the differences
between (E)PyMARL’s and MARLlib’s independent learning pipelines. Before training,
agents sampled data in group and put all data into one centralized data buffer. During
the training stage, (E)PyMARL agents select the data from the centralized buffer, while
MARLlib agents do not need to select since each agent maintains its individual buffer. In
the end, same data is used to optimize the current agent’s policy. As a result, two learning
pipelines are equivalent.

Independent Learning Centralized Critic Value Decomposition

Figure 4: Learning pipelines of (E)PyMARL on independent learning, centralized critic, and
value decomposition. Please note that for better illustration, only one agent is depicted in
the training stage, which is not the real case for (E)PyMARL since all the agents should be
trained simultaneously.

Centralized Critic: The middle parts of Fig. 4 and Fig. 5 illustrate the discrepancies
between the centralized critic learning pipelines of (E)PyMARL and MARLlib. Simliar
to independent learning, (E)PyMARL’s pipeline involves feeding all collected data to the
agent during the training stage. The agent then filters out unnecessary data to optimize
the relevant parts, such as the critic/Q function that must ignore self-predicted actions. To
the opposite, MARLlib’s agent-level pipeline prepares all the required data for optimizing
different model parts through postprocessing before the training stage. This makes the
optimization process much easier to conduct and is independent of any specific learning style
(e.g., same objective function for independent PPO and MAPPO). In the end, as shown
in the training part, same data is used to optimize each agent, thus ensuring equivalence
between (E)PyMARL’s and MARLlib’s learning pipeline.

Value Decomposition: The differences between PyMARL’s and MARLlib’s value
decomposition learning pipelines are illustrated in the right parts of Fig. 4 and Fig. 5. Much
similiar to centralized critic, in (E)PyMARL’s learning pipeline, agents are fed with all data
collected, pick the data they needed, and optimize different parts of their model. While in
MARLlib’s learning pipeline, all necessary data, including the Q/critic value are shared in

16

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

Independent Learning Centralized Critic Value Decomposition

Figure 5: Learning pipelines of MARLlib on independent learning, centralized critic, and
value decomposition.

the postprocessing stage. One agent can again simply optimize itself using all the data it
maintains without considering other agents. We can also find that two learning pipelines
use same data to update the policy. Therefore, the equivalence on the value decomposition
learning style is established.

Appendix I. Extensibility

The extensibility of MARLlib is guaranteed by its highly abstracted architecture, which
consists of five major parts: configuration, training script, algorithm, model, and environments.
Each part has corresponding APIs, methods, or instructions explained in the documentation,
allowing for easy customization and extension. Here, we provide a brief description of how
MARLlib’s extensibility can be utilized in different aspects of MARL research:

• To extend one algorithm to tackle more task modes, such as transitioning from
cooperative-only to mixed scenarios, one can focus on the script part provided under
the marl/algo/scripts directory. For example, enabling an algorithm to handle
additional task modes may involve reorganizing the policy mapping function in the
script.

• To enable one algorithm to handle complex task data structures or partial observable
settings, one can focus on the marl/models directory. For instance, for a well-known
large-scale multi-agent task like Neural-MMO (Suarez et al., 2021), which returns an
observation containing both 3D observation and 1D state, adjustments can be made in
this directory.

• To develop a completely new algorithm, one should focus on the algorithm part and
build new functions based on existing basic algorithm implementations found under
the marl/algos/core directory and marl/utils directory. For example, customizing

17

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

the representation of global information for a new information-sharing mechanism can
be done in marl/algos/utils/centralized_critic.py.

• To quickly build a baseline for newly proposed multi-agent tasks that are not already
included, attention should be given to the envs directory. By following the MARLlib
agent-environment interface introduced in Section 2 and Appendix G, a new task can
be easily incorporated, and all algorithms available in MARLLib can be evaluated on
this new task.

In conclusion, MARLlib’s extensibility covers all aspects of conducting diverse MARL
experiments, making it a powerful tool for MARL research. Additional examples can be
found in the examples directory in the MARLlib repository.

Appendix J. Benchmarking

In this section, we conducted a comprehensive evaluation of 17 algorithms on 23 tasks from
five widely-used MARL testing environments, namely SMAC (Samvelyan et al., 2019), MPE
(Lowe et al., 2017), GRF (Kurach et al., 2020), MAMuJoCo (Peng et al., 2021), and MAgent
(Zheng et al., 2018). We selected these environments for their popularity in MARL research
and their diversity in task modes, observation shapes, additional information, action spaces,
sparse or dense rewards, and homogeneous or heterogeneous agent types.

The evaluation involved running each algorithm on each task with four different random
seeds, resulting in over one thousand experiments in total. We measured the mean return
achieved by each algorithm across these experiments. The results of our experiments are
presented in Table 4 and Figure 6. Based on these results, we were able to substantiate the
quality of our implementation and provide insightful analysis.

To demonstrate the correctness of MARLlib, we conducted a comparison of its imple-
mentation on the SMAC environment with the performances reported by EPyMARL, while
keeping the important hyper-parameters the same. The results obtained by EPyMARL
involved 40 million steps for on-policy algorithms and four million steps for off-policy algo-
rithms. In contrast, MARLlib consumed only half of these steps for training as we found it
sufficient for convergence. Despite using fewer training steps, MARLlib matched most of the
performances reported by EPyMARL, as depicted in Table 4.

When comparing the performance pairs available, MARLlib achieved similar results on
63% of them (where the total reward difference is less than 1.0). Additionally, it outperformed
EPyMARL on 25% of the comparisons, and appeared slightly inferior on the remaining
12%. Since each algorithm exhibited expected performances without relying on task-specific
tricks, our implementation demonstrated generality and stability. These experimental results
effectively substantiate the correctness of the MARLlib implementation.

Furthermore, the table also presents, for the first time, the performances of five algorithms
on SMAC and MPE, twelve algorithms on GRF, and ten algorithms on MAMuJoCo, providing
valuable reference points for the community.

18

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

f) simple_tage) simple_crypto g) simple_adversary h) simple_push

a) battlefield b) battle c) adversarial_pursuit d) tiger_deer

Figure 6: The figure displays the return curves for eight mixed scenarios where agents compete
in groups, four from the MAgent environment (a-d) and four from the MPE environment
(e-h). Each curve corresponds to a different agent group. The return curves of competing
groups demonstrate a dynamic balance during the learning procedure, with the balance point
varying based on both algorithms and tasks. For better visualization, the figure is zoomed in
to highlight the details of the learning process.

Table 4: The table presents the algorithm performances (measured in return) for cooperative
tasks, covering both discrete control tasks (MPE, SMAC, GRF) and continuous control
tasks (MAMuJoCo). The evaluation includes four environment suites, with SMAC having
two rows for each scenario. The first row (in italics) displays the performances reported by
EPyMARL, while the second row shows the performances achieved using MARLlib. For
the other environments, only MARLlib performances are included. Cells with a ’-’ indicate
that no data was reported for that particular scenario. Dark cells highlight the top two
performances in each scenario.

Env Scenario Independent Learning Centralized Critic Value Decomposition
IQL IPG IA2C ITRPO IPPO MAA2C COMA MATRPO MAPPO VDN QMIX VDA2C VDPPO

SM
A

C

2s_vs_1sc 16.72 - 20.24 - 20.24 20.20 11.04 - 20.25 18.04 19.01 - -
16.09 20.07 20.07 20.16 20.18 20.09 10.32 20.23 20.21 16.3 17.25 15.61 20.24

3s5z 16.44 - 18.56 - 13.36 19.95 18.90 - 19.91 19.57 19.66 - -
16.73 10.78 13.49 10.04 14.3 15.21 9.78 12.1 19.52 19.38 19.32 8.58 13.15

MMM2 13.69 - 10.70 - 11.37 10.37 6.95 - 17.78 18.49 18.40 - -
12.08 9.21 10.17 8.04 10.37 16.08 6.7 7.62 16.86 19.31 18.34 2.72 9.31

3s_vs_5z 21.15 - 4.42 - 19.36 6.68 3.23 - 18.17 19.03 16.04 - -
16.78 5.6 10.79 3.39 7.95 12.14 4.79 13.32 17.24 18.55 19.84 9.6 14.61

M
P

E simple_spread -197.61 -63.83 -63.16 -78.16 -65.74 -63.37 -71.64 -77.63 -66.26 -190.5 -189.27 -190.66 -213.99
simple_speaker_listener -44.07 -261.65 -29.06 -50.17 -38.29 -27.76 -67.6 -44.01 -34.41 -35.26 -25.68 -54.37 -64.61

simple_reference -75.36 -36.3 -35.95 -57.79 -50.92 -35.05 -56.5 -47.71 -37.89 -70.56 -31.53 -69.35 -73.82

G
R

F pass_and_shoot -0.17 0.6 -0.03 0.6 0.5 -0.02 -0.01 0.48 0.74 -0.06 -0.24 0.05 0.01
run_pass_and_shoot -0.15 0.07 -0.07 -0.05 -0.07 -0.05 -0.03 -0.02 -0.03 -0.24 -0.11 -0.09 -0.13
3_vs_1_with_keeper 0.02 0.33 0.01 0.37 0.05 0 0.03 0.13 0.45 -0.08 -0.06 0 0

IPG IA2C IDDPG ITRPO IPPO MAA2C MADDPG MAPPO HAPPO FACMAC VDA2C VDPPO

M
A

M
uJ

oC
o 2AgentAnt 143.22 -268.02 44.60 527.10 -153.46 730.8 18.53 -57.02 330.12 -1224.6 449.19 -98.74

2AgentHalfCheetah -133.06 -457.11 -197.85 1652.49 -644.89 -493.3 -313.95 -357.78 153.2 -433.61 -423 -644.53
2AgentWalker 50.67 114.1 95.76 272.41 8.71 103.65 153.93 -4.12 164.45 -7.88 125.49 -3.76

4AgentAnt 584.75 49.36 -971.28 750.96 -127.43 -1005.30 -419.93 149.1 151.85 -457.68 -338.21 -164.72
6AgentHalfCheetah -140.96 -302.99 -196.46 1492.24 -653.78 -257.76 -207.49 -529.43 442.48 -151.95 -588.66 -544.29

19

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

Appendix K. Future Development: Towards Real Application

The potential for real-world applications of MARLlib in multi-agent reinforcement learning
has garnered significant attention from researchers and practitioners. To further advance its
utility and practicality, several key areas of future development warrant exploration.

• Scalability and Efficiency: As MARLlib is extended to larger-scale scenarios, addressing
scalability and efficiency becomes paramount. Future efforts should focus on optimizing
algorithms and data structures within MARLlib to accommodate a higher number of
agents, larger state and action spaces, and complex interactions. This will empower
MARLlib to effectively address real-world challenges such as traffic management, swarm
robotics, and large-scale industrial systems.

• Explainability and Interpretability: Enhancing the explainability and interpretability
of MARLlib’s decision-making processes is essential for its integration into real-world
applications. Future endeavors should focus on developing techniques that enable
visualizations of agent behaviors, insights into learned policies, and explanations of
the underlying reasoning behind agent actions. These advancements will improve the
transparency and understanding of MARLlib, particularly in domains that require
interpretability, such as healthcare, finance, and autonomous systems.

• Robustness and Safety: Ensuring the robustness and safety of MARLlib in real-world
applications is paramount. Addressing uncertainties and adversarial environments is
crucial for its practical deployment. Future developments should concentrate on de-
signing mechanisms that can handle partial observability, non-stationary environments,
and communication failures among agents. By fortifying MARLlib’s resilience, it can
exhibit reliable and dependable behavior in real-world scenarios.

In conclusion, future development of MARLlib should prioritize scalability, explainability,
and robustness regarding the integration with real-world systems. By focusing on these
areas, MARLlib can transition from a research tool to a practical framework, enabling its
application in diverse domains and propelling advancements in multi-agent reinforcement
learning.

References

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI,
2016.

B. Baker, I. Kanitscheider, T. M. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch.
Emergent tool use from multi-agent autocurricula. In ICLR, 2020.

N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto,
V. Dumoulin, S. Moitra, E. Hughes, et al. The hanabi challenge: A new frontier for ai
research. Artificial Intelligence, 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

20

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent
reinforcement learning. IEEE TSMC, 2008.

F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

F. Christianos, L. Schäfer, and S. Albrecht. Shared experience actor-critic for multi-agent
reinforcement learning. In NIPS, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines, 2017.

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual
multi-agent policy gradients. In AAAI, 2018.

J. Hu, S. Wang, S. Jiang, and W. Wang. Rethinking the implementation tricks and
monotonicity constraint in cooperative multi-agent reinforcement learning. In ICLR
Blogposts, 2023.

I. Kostrikovk. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang. Trust region policy
optimisation in multi-agent reinforcement learning. In ICLR, 2022.

K. Kurach, A. Raichuk, P. Stanczyk, M. Zajac, O. Bachem, L. Espeholt, C. Riquelme,
D. Vincent, M. Michalski, O. Bousquet, and S. Gelly. Google research football: A novel
reinforcement learning environment. In AAAI, 2020.

J. Z. Leibo, E. D. nez Guzmán, A. S. Vezhnevets, J. P. Agapiou, P. Sunehag, R. Koster,
J. Matyas, C. Beattie, I. Mordatch, and T. Graepel. Scalable evaluation of multi-agent
reinforcement learning with melting pot. PMLR, 2021.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,
and I. Stoica. Rllib: Abstractions for distributed reinforcement learning. In ICML, 2018.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In NIPS, 2017.

MARL-Algorithms. https://github.com/starry-sky6688/MARL-Algorithms, 2019.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan, et al. Ray: A distributed framework for emerging {AI} applications.
In OSDI, 2018.

F. A. Oliehoek and C. Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht. Benchmarking multi-agent
deep reinforcement learning algorithms in cooperative tasks. In NIPS Track on Datasets
and Benchmarks, 2021.

21

https://github.com/fchollet/keras
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/starry-sky6688/MARL-Algorithms

Hu, Zhong, Gao, Wang, Dong, Li, Liang, Chang and Yang

B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr, W. Böhmer, and
S. Whiteson. Facmac: Factored multi-agent centralised policy gradients. NIPS, 2021.

T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. N. Foerster, and S. Whiteson.
QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning.
In ICML, 2018.

C. Resnick, W. Eldridge, D. Ha, D. Britz, J. N. Foerster, J. Togelius, K. Cho, and J. Bruna.
Pommerman: A multi-agent playground. In J. Zhu, editor, AAAI, 2018.

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C. Hung,
P. H. S. Torr, J. N. Foerster, and S. Whiteson. The starcraft multi-agent challenge. In
AAMAS, 2019.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general rein-
forcement learning algorithm that masters chess, shogi, and go through self-play. Science,
2018.

J. Su, S. Adams, and P. A. Beling. Value-decomposition multi-agent actor-critics. In AAAI,
2021.

J. Suarez, Y. Du, C. Zhu, I. Mordatch, and P. Isola. The neural MMO platform for massively
multiagent research. NIPS, 2021.

J. K. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos,
C. Dieffendahl, C. Horsch, R. Perez-Vicente, N. L. Williams, Y. Lokesh, and P. Ravi.
Pettingzoo: Gym for multi-agent reinforcement learning. In M. Ranzato, A. Beygelzimer,
Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors, NIPS, 2021.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 2019.

J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H. Su, and J. Zhu.
Tianshou: A highly modularized deep reinforcement learning library. JMLR, 2022.

Y. Yang and J. Wang. An overview of multi-agent reinforcement learning from game
theoretical perspective. CoRR, abs/2011.00583, 2020.

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising
effectiveness of PPO in cooperative multi-agent games. In NIPS Datasets and Benchmarks
Track, 2022.

K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective overview
of theories and algorithms. Handbook of Reinforcement Learning and Control, 2021.

L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu. Magent: A many-agent
reinforcement learning platform for artificial collective intelligence. In AAAI, 2018.

22

MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning Library

M. Zhou, Z. Wan, H. Wang, M. Wen, R. Wu, Y. Wen, Y. Yang, Y. Yu, J. Wang, and
W. Zhang. Malib: A parallel framework for population-based multi-agent reinforcement
learning. JMLR, 2023.

23

	Introduction
	Design of MARLlib
	Conclusion
	Installation
	Install dependencies (basic)
	Install environments (optional)

	Library usage
	Training Efficiency
	Parameter
	Connection to RLlib
	Challenges of RLlib's Multi-Agent Case
	MARLlib vs RLlib

	Related Work
	MARLlib's Solution on Task Side Unification
	Support for Task Characteristics
	Data Inner Alignment

	MARLlib's Solution on Algorithm Side Unification
	Auto Adaption
	Compatiabilty Test
	Pipeline Unification on Agent-level Dataflow
	Dataflow equivalance

	Extensibility
	Benchmarking
	Future Development: Towards Real Application

