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Abstract

Fairlearn is an open source project to help practitioners assess and improve fairness of
artificial intelligence (AI) systems. The associated Python library, also named fairlearn,
supports evaluation of a model’s output across affected populations and includes several
algorithms for mitigating fairness issues. Grounded in the understanding that fairness is a
sociotechnical challenge, the project integrates learning resources that aid practitioners in
considering a system’s broader societal context.
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1. Introduction

As artificial intelligence (AI) impacts more of our everyday lives, there is a growing need
to ensure that algorithmic systems do not disproportionately harm minorities, historically
disadvantaged populations, and other groups considered sensitive from an ethical or legal
perspective (Crawford, 2013; O’Neil, 2016; Broussard, 2018; Noble, 2018; Benjamin, 2019).
Fairness of AI systems is a topic of multiple academic venues,1 a priority for regulators (EC,
2021; OSTP, 2022), and a focus of several open source projects (Lee and Singh, 2021).

In this paper, we describe Fairlearn, an open source project that seeks to help data
science practitioners with assessing and improving fairness of AI systems. The project
consists of a Python library, called fairlearn, accompanied with various learning resources.
Both the library and the learning resources are licensed under MIT license and available
online.2 The library aims to provide an easy-to-use API that blends well with popular
libraries of the Python ecosystem, including scikit-learn (Pedregosa et al., 2011), pandas
(McKinney, 2010), matplotlib (Hunter, 2007), TensorFlow (Abadi et al., 2015), and PyTorch
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(Paszke et al., 2019). Through our learning resources, we hope to provide practitioners with
the knowledge and skills to effectively assess and mitigate unfairness.

Fairlearn is a community-driven project with independent governance,3 following a code
of conduct adapted from the Contributor Covenant.4 The project is under active develop-
ment and welcomes community contributions to the source code and the learning resources.

Fairlearn Perspective on AI Fairness. In Fairlearn, we consider AI fairness through
the lens of fairness-related harms (Crawford, 2017), by which we mean negative impacts for
groups of people, such as those defined in terms of race, gender, age or disability status.

Development of Fairlearn is firmly grounded in the understanding that fairness of AI sys-
tems is a sociotechnical challenge (cf. Green, 2021). Because there are many complex sources
of unfairness—some societal and some technical—it is not possible to fully “de-bias” a sys-
tem or to guarantee fairness (e.g., Blodgett et al., 2020). Instead, our goal is to help prac-
titioners assess fairness-related harms, review the impacts of different mitigation strategies,
and make trade-offs appropriate to their scenario. This may sometimes mean advocating for
not deploying the system at all (Baumer and Silberman, 2011). AI fairness is related to, but
distinct from anti-discrimination laws (Xiang and Raji, 2019), so our documentation avoids
(mis)use of legal terminology (Watkins et al., 2022) and encourages users to understand
what fairness means for their sociotechnical context before applying or adapting Fairlearn.

Fairlearn largely focuses on two types of fairness-related harms: allocation harms and
quality-of-service harms. Allocation harms occur when AI systems are used to allocate op-
portunities or resources in ways that can have significant negative impacts on people’s lives,
for example, when an AI system for recommending patients into high-risk care management
programs is less likely to select Black patients than white patients of similar health (Ober-
meyer et al., 2019). Quality-of-service harms occur when a system does not work as well
for members of one group as it does for members of another group, for example, when a
computer vision system has higher error rates for images of women with darker skin than
for images of men with lighter skin (Buolamwini and Gebru, 2018).

2. Fairness Assessment

One of the key goals of the fairlearn library is to support fairness assessment. The goal of
fairness assessment is to answer the question: Which groups of people may be disproportion-
ately negatively impacted by an AI system and in what ways? In the context of allocation
and quality-of-service harms, this means to evaluate how well the system performs for dif-
ferent population groups by calculating some performance metric, like an error rate, on
different slices of data. This is called disaggregated evaluation (Barocas et al., 2021).

MetricFrame class. The primary tool for disaggregated evaluation in the fairlearn library
is the MetricFrame class in the fairlearn.metrics module. Its API combines scikit-learn
and pandas conventions. In its simplest form, MetricFrame is initialized by providing
one or more metric functions together with input arrays y_true, y_pred, and sensitive_

3. The project started in May 2018 as a Microsoft open source project and its initial scope was outlined in
a Microsoft technical report (Bird et al., 2020), but it transitioned to independent governance in 2021:
https://github.com/fairlearn/governance/blob/main/ORG-GOVERNANCE.md
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features. The first two arrays serve as inputs to metric functions, whereas the sensitive_
features array is used to split the data into slices for disaggregated evaluation. Once a
MetricFrame is constructed, the disaggregated metrics can be accessed as a pandas Series

(for a single metric) or a pandas DataFrame (if multiple metrics are provided). MetricFrame
also enables a comparison of metric values across groups, for example, in terms of differences
or ratios. Plotting of results is supported via existing integration of pandas with matplotlib.

Fairness Metrics. The module fairlearn.metrics also provides metric functions that
return scalars much like typical scikit-learn metrics. For example, functions demographic_
parity_difference and equalized_odds_difference quantify how much the predictions
of a given classifier depart from the fairness criteria known as demographic parity and equal-
ized odds (see, e.g., Hardt et al., 2016). These two metrics are derived from a MetricFrame

with a specific choice of input arguments. New fairness metrics can be obtained by using
the make_derived_metric function, which wraps some of the MetricFrame functionality.

Comparison of Multiple Models. In addition to assessing fairness of a single model,
fairlearn.metrics also enables a comparison of multiple models. For example, the func-
tion plot_model_comparison can be used to create a scatter plot, where each model is rep-
resented as a point with one coordinate equal to a metric quantifying overall performance
and the other to a metric quantifying fairness, like the metrics from the fairlearn.metrics
module.

3. Algorithmic Mitigation of Fairness-related Harms

The fairlearn library includes several methods for mitigating fairness-related harms. Many
of the included methods are meta-algorithms in the sense that they act as wrappers around
any standard (i.e., fairness-unaware) machine learning algorithms. This makes them quite
versatile in practice. All of the implementations follow the API conventions of scikit-learn.

Following Barocas et al. (2019), fairlearn mitigation algorithms can be divided into
three groups according to when they are applied relative to model training:

Pre-processing. Algorithms in this group mitigate unfairness by transforming input data
before it is passed to a standard training algorithm. For example, CorrelationRemover in
the module fairlearn.preprocessing applies a linear transformation to input features in
order to remove any correlation with sensitive features. It follows the API of a scikit-learn
transformer and therefore can be incorporated in a scikit-learn pipeline.

In-training.5 Algorithms in this group directly train a model to satisfy fairness con-
straints. For example, the meta-algorithm ExponentiatedGradient in the module fairlearn.
reductions implements the reduction approach of Agarwal et al. (2018, 2019). This meta-
algorithm supports a wide range of fairness constraints and wraps any standard classifica-
tion or regression algorithm, such as LogisticRegression from sklearn.linear_model or
XGBRegressor from xgboost. An input to a reduction algorithm is an object that supports
training on any provided (weighted) data set as well as a data set that includes sensitive fea-
tures. The goal is to optimize a performance metric (such as classification accuracy) subject
to fairness constraints (such as an upper bound on a difference between false negative rates).

5. Also called in-processing by some authors (Kamiran et al., 2013).
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As another example, AdversarialClassifier and AdversarialRegressor in the mod-
ule fairlearn.adversarial implement the adversarial mitigation approach of Zhang et al.
(2018). These algorithms simultaneously train two neural network models, a predictor
model and an adversarial model. The predictor model seeks to minimize the prediction loss
function while also ensuring that the adversary model cannot infer sensitive features from
the predictor outputs. The predictor and adversary neural nets can be defined either as
PyTorch modules or TensorFlow models.

Post-processing. Algorithms in this group transform the output of a trained model. For
example, ThresholdOptimizer in the module fairlearn.postprocessing implements the
approach of Hardt et al. (2016), which takes in an existing (possibly pre-fit) machine learning
model, uses its predictions as a scoring function, and identifies a separate threshold for each
group defined by a sensitive feature in order to optimize some specified objective (such as
balanced accuracy) subject to specified fairness constraints (such as false negative rate par-
ity). The resulting classifier is a thresholded version of the provided machine learning model.

4. Learning Resources

Tackling fairness-related harms requires more than technical tools alone (Holstein et al.,
2019). In a community-based effort, we have developed a comprehensive set of learning
objectives that highlight what practitioners should know or be able to do when assessing and
improving fairness of AI systems. These objectives are the basis for our learning resources.

To avoid divorcing technical and social aspects of AI fairness, our learning resources are
integrated in the API reference and user guide of the fairlearn library. Besides coding exam-
ples and explanations, our user guide covers important concepts central to understanding
machine learning models as part of a sociotechnical system, such as construct validity (Ja-
cobs and Wallach, 2021) and the risks of abstracting away social context (Selbst et al., 2019).

Examples are crucial when learning to view fairness from a sociotechnical perspective.
We provide tutorials (e.g., Gandhi et al., 2021) and example notebooks downloadable in
the Jupyter format (Kluyver et al., 2016). We try to ensure that each notebook describes a
real-world or realistic deployment context, focuses on real harms to real people, and avoids
abstraction traps (Selbst et al., 2019).

The data sets provided in the module fairlearn.datasets also serve an educational
role, as we use them to highlight sociotechnical aspects of fairness, with sections of the user
guide highlighting fairness-related issues with several popular benchmark data sets.

5. Conclusions

Fairlearn is built and maintained by contributors with a variety of backgrounds and exper-
tise. We believe that meaningful progress toward fairer AI systems requires input from a
breadth of perspectives. We therefore encourage researchers, practitioners, and other stake-
holders to contribute to Fairlearn as we experiment, learn, and evolve the project together.
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