
Journal of Machine Learning Research 25 (2024) 1-29 Submitted 12/20; Revised 7/22; Published 4/24

Stable Implementation of Probabilistic ODE Solvers

Nicholas Krämer∗ nicholas.kraemer@uni-tuebingen.de
Tübingen AI Center, University of Tübingen
Maria-von-Linden-Straße 6, Tübingen, Germany

Philipp Hennig philipp.hennig@uni-tuebingen.de

Tübingen AI Center, University of Tübingen

Maria-von-Linden-Straße 6, Tübingen, Germany

Editor: Pradeep Ravikumar

Abstract

Probabilistic solvers for ordinary differential equations (ODEs) provide efficient quantifica-
tion of numerical uncertainty associated with the simulation of dynamical systems. Their
convergence rates have been established by a growing body of theoretical analysis. How-
ever, these algorithms suffer from numerical instability when run at high order or with
small step sizes—that is, exactly in the regime in which they achieve the highest accu-
racy. The present work proposes and examines a solution to this problem. It involves
three components: accurate initialisation, a coordinate change preconditioner that makes
numerical stability concerns step-size-independent, and square-root implementation. Using
all three techniques enables numerical computation of probabilistic solutions of ODEs with
algorithms of order up to 11, as demonstrated on a set of challenging test problems. The
resulting rapid convergence is shown to be competitive with high-order, state-of-the-art,
classical methods. As a consequence, a barrier between analysing probabilistic ODE solvers
and applying them to interesting machine learning problems is effectively removed.

Keywords: Probabilistic numerics, dynamical systems, ordinary differential equations,
Gauss-Markov processes, state estimation

1. Introduction

Ordinary differential equations (ODEs) are a core concept of mechanistic modelling. Effi-
ciently computing ODE solutions is thus important in a wide range of applications in the
natural sciences. Recently, probabilistic solvers for ODEs have emerged (see the paper by
Schober et al. (2014) and the references therein). These methods can not only return a single
point estimate that represents an approximation of an ODE solution, but they also pro-
vide uncertainty quantification calibrated to be representative of the global error (Schober
et al., 2019; Bosch et al., 2021). Like classical methods, they have linear complexity in the
number of grid points, and they enjoy similar convergence properties: a solver that models
the ODE solution as well as its first ν derivatives (ν ∈ N) can converge as fast as hν for
step-size h (Kersting et al., 2020b; Tronarp et al., 2021). However, high-order algorithms
in conjunction with small step-sizes suffer from numerical instabilities (see Table 1). Below
in Section 3, we show why.

∗. Now at the Technical University of Denmark. E-mail: pekra@dtu.dk. Work performed while in
Tübingen.

c©2024 Nicholas Krämer and Philipp Hennig.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/20-1423.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/20-1423.html

Krämer and Hennig

EK0 (traditional) EK1 (traditional) EK0 (stable) EK1 (stable)

2 X X X X
3 X X X X
4 X X X X
5 × X X X
6 × × X X
7 × × X X
8 × × X X
9 × × X X
10 × × X X
11 × × X X

Table 1: Successful approximation of an ODE solution. A probabilistic numerical
approximation of the solution of the logistic ODE ẋ(t) = 4x(t)(1 − x(t)), x(0) =
0.15, t ∈ [0., 2.], is computed with two solver variants (EK0 and EK1; explanations
below), in the traditional and the stabilised version, for increasing regularity ν
of the prior. A “X” indicates that the solver successfully computed an adaptive
solution with an error smaller than the prescribed tolerance 10−5. A “×” indicates
that numerical instability leads to failure. Only in the proposed implementation,
the probabilistic solvers reliably compute approximate solutions.

Probabilistic ODE solvers cast the task of solving an ODE as a Gauss-Markov process
regression problem with a non-linear observation model. This class of algorithms, at the
core of probabilistic numerical methods (Hennig et al., 2015; Cockayne et al., 2019; Oates
and Sullivan, 2019), builds on the large body of theory on Gaussian processes, stochas-
tic differential equations, Bayesian filtering and smoothing as well as numerical analysis.
This blend of ideas shows in the present work: the solution to the problem of numerically
stable implementation draws on concepts related to Taylor-mode automatic differentiation,
Nordsieck methods, and square-root Kalman filter implementations. It solves a problem in
Gauss-Markov process regression and as such, has an impact on (probabilistic) numerics
and possibly every chain of computation that benefits from cheap yet effective uncertainty
quantification of numerical simulation of a dynamical system. In recent years, this has
turned out to be an important challenge in machine learning.

Section 2 recalls the construction of probabilistic ODE solvers in the formulation as a
problem of Bayesian state estimation (alternatives are provided by Chkrebtii et al. (2016),
Conrad et al. (2017), or Abdulle and Garegnani (2020)). Section 3 explains and examines
the tricks that are necessary to implement a high-order method. Therein, specific parts
of the algorithm are isolated. A detailed, step-by-step guide is contained in Appendix
A. Section 4 benchmarks the probabilistic ODE solver in the suggested implementation
against high-order Runge-Kutta methods. The test environments that are used throughout
the paper are the logistic equation, Lotka-Volterra, the restricted three-body problem, the
SIR model, the Pleiades problem, and a stiff version of the van der Pol system.

Matrices are capitalised (A ∈ Rd×d), scalars are lower-case (a ∈ R) and matrices with
a Kronecker structure are capitalised and bold-faced (A = A ⊗ I3 ∈ R3d×3d). Vectors

2

Stable Implementation of Probabilistic ODE Solvers

that are stacks of vectors are bold-faced (x = (x, y, z)> ∈ R3d); generic vectors are not
(x ∈ Rd). Stochastic processes, e.g. the Wiener process (w(t)), are, with slight abuse of
notation, written as functions (x(t)). We use zero-indexing when describing a matrix with
its elements (A = (aij)i,j=0,...,N). Condition numbers of matrices are computed with respect
to the `2-norm.

2. Probabilistic ODE Solvers

The present work is concerned with numerically solving the d-dimensional, autonomous,
first-order ordinary differential equation (ODE) initial value problem,{

ẋ(t) = f(x(t)), for 0 ≤ t ≤ T <∞,
x(0) = x0.

This is no loss of generality: most ODEs are autonomous, but even non-autonomous or
higher-order ODEs can be translated into autonomous, first-order ODEs. This would be
done by writing the non-autonomous ODE as an autonomous ODE over the augmented
state x̃ = (x(t), t)>. The restriction to autonomous ODEs simplifies the notation with
respect to Jacobians of f , which will be required frequently throughout the subsequent
exposition; especially in Section 3.1.

In the machine learning literature, the scenario in which the ODE vector field is a
neural network with weights θ, f = NNθ(x), has gained traction in recent years (Chen
et al., 2018; Rackauckas et al., 2020). Numerically solving the initial value problem, in this
case, corresponds to evaluating the neural network, in which the number of hidden layers
corresponds to the number of evaluations that the solver takes. Probabilistic solvers have
not yet been applied to neural ODEs. As shown in the present work (and in the related study
by Bosch et al. (2021)), being able to faithfully integrate dynamical systems with algorithms
of order ν = 5 and larger implies that the approximation quality and convergence speed
will not be a hindering factor for this endeavour any longer.

Other applications of ODE solvers consist of identifying mechanistic models from data.
In the presence of a data set that is based on a dynamical system, the determination of
such a system yields not only an understanding of the generative process responsible for
the observations but also a compact representation of these dynamics as an ODE. Kersting
et al. (2020a) show how probabilistic ODE solvers give rise to efficient algorithms that deal
with this inverse problem.

Yet another application of computational ODE solutions lies within manifold learning:
straight lines on manifolds, so-called geodesics, are computed by numerically solving a set
of Euler-Lagrange ordinary differential equations. Geodesics are important for statistical
analysis on manifolds because, among other things, they give rise to distance functions.
Hennig and Hauberg (2014) and Arvanitidis et al. (2019) study the positive impact that a
probabilistic ODE solver has on manifold learning.

Probabilistic ODE solvers are Gauss-Markov process regressors based on a non-linear
observation model. Thus, Section 2.1 defines a prior distribution, Section 2.2 describes
the observation model and Section 2.3 outlines common inference strategies. Section 2.4
discusses calibration and adaptive step-size selection.

3

Krämer and Hennig

2.1 Prior Distribution

This work considers Gauss-Markov priors x = x(t) that are defined as solutions of linear,
time-invariant stochastic differential equations (SDE) with Gaussian initial conditions,{

dx(t) = F x(t) dt+ L dw(t), for t ≥ 0,

x(0) ∼ N (m0,C0).

The vector x(t) = (x(t), ẋ(t), ..., x(ν)(t))> ∈ Rd(ν+1) models a stack of the ODE solution
x(t) ∈ Rd and its derivatives up to order ν ∈ N. The dispersion matrix L is, in the
cases that are of interest to us, always L = eν+1 ⊗ Id ∈ Rd(ν+1)×d. w is a d-dimensional
Wiener process with constant diffusion Γ > 0. Choices of F, m0 and C0 determine whether
x(t) is, for instance, a ν-times integrated Wiener process (IWP(ν)), a ν-times integrated
Ornstein-Uhlenbeck process, or a Matérn process of order ν + 1/2.

Let T = {t0, ..., tN} be a grid on [0, T]. Without loss of generality assume t0 = 0 and tN =
T . Define the step-size hn = tn+1 − tn. Restricted to T, there is an alternative, discretised
description of the prior process such that the distribution of the continuous process x = x(t)
restricted to T coincides with the distribution of the discrete process (Grewal and Andrews,
2014). Abbreviate xn := x(tn); then (xn)n=0,...,N follows the distribution{

xn+1 | xn ∼ N (Anxn,Qn), for n = 0, ..., N,

x0 ∼ N (m0,C0),

with matrices An ∈ Rd(ν+1)×d(ν+1) and Qn ∈ Rd(ν+1)×d(ν+1) given by (Särkkä and Solin,
2019, Section 6.1)

An := exp(Fhn), (3)

Qn :=

∫ hn

0
exp(F(hn − τ))LL> exp(F>(hn − τ)) dτ. (4)

In the following, we will sometimes refer to Qn as “process noise covariance”. Both An

and Qn can be computed efficiently with matrix fraction decomposition (Särkkä and Solin,
2019, Section 6.3). For the integrated Wiener process, there exist closed form solutions to
Equations (3) and (4); we refer to Section 3.

2.2 Observation Model

Recall the abbreviation xn := x(tn). Define the projection matrix E>i = e>i ⊗Id ∈ Rd×d(ν+1),
where ei is the ith canonical basis vector in Rν+1, i = 0, ..., ν. Loosely speaking, E>i extracts
the ith derivative from the stack of derivatives in xn. A probabilistic ODE solver computes
a posterior distribution over x(t),

p
(
x(t)

∣∣∣ E>1 xn − f(E>0 xn) = 0
)
, n = 0, ..., N,

based on the prior distribution from Section 2.1, likelihood function

`(xn) := δ
[
E>1 xn − f(E>0 xn)

]
, n = 0, ..., N, (5)

4

Stable Implementation of Probabilistic ODE Solvers

and (artificial) observations at each grid point, which are all equal to zero. This is a non-
linear regression problem if f is non-linear (which it usually is). The data likelihood is
a Dirac distribution composed with a non-linear function, and inference in this model is
generally intractable. If x is assumed to be Gaussian, approximate Gaussian filtering and
smoothing yields a tractable approximation of this likelihood and hence of the posterior
distribution.

2.3 Approximate Gaussian Inference

The non-linear regression problem can be solved approximately by linearising f and ap-
plying Gaussian filtering and smoothing. Common choices are the extended Kalman filter,
which linearises f with a Taylor approximation, and the unscented Kalman filter, which ap-
proximates the behaviour of f , as it acts on Gaussian random variables, with the unscented
transform (Särkkä, 2013).

The following describes the extended Kalman filter as applied to the ODE problem
(Tronarp et al., 2019). Let xn ∼ N (mn,Cn). The linearised observation model is

`(xn) ≈ δ [H xn − b] .

H and b are derived using either a zeroth order Taylor approximation of f(E>0 ◦) at mn

(EK0),

H = E>1 , b = f(E>0 mn), (6)

or a first order Taylor approximation of f(E>0 ◦) at mn (EK1),

H = E>1 −∇f(E>0 mn)E>0 , b = f(E>0 mn)−∇f(E>0 mn)E>0 mn. (7)

∇f is the Jacobian of f . If the ODE is not autonomous, the Jacobian of f with respect to x
is used. Both choices, EK0 and EK1, enable Gaussian filtering and smoothing algorithms;
see the implementation guide in Appendix A.

This work, like Bosch et al. (2021), only considers the extended Kalman filter. Every-
thing explained herein applies to the unscented Kalman filter as well, but we do not use it
for reasons of computational efficiency: Linearisation of the non-linear observation model
(Equation (5)) with the unscented transform requires d(ν+1) evaluations of the ODE vector
field f for a single ODE solver step—one evaluation for each of the so-called sigma-points
that are used for the unscented transform. The costs of these evaluations should be judged
in comparison to the costs of evaluating the Jacobian ∇f to form H in EK1. In EK0,
neither is required.

The template for computing the step from grid-point tn to tn+1 with the probabilistic
ODE solver in its traditional implementation is in Algorithm 1. After initialising the itera-
tion by setting the first component of mn to x0, and by setting the respective elements in
Cn to zero, the ODE solver step in Algorithm 1 is repeated until the terminal point tN = T
is reached. The output of a probabilistic ODE solver, including the posterior mean, confi-
dence intervals, and samples is shown in Figure 1. Section 3 discusses which components
need to be replaced with a more specialised implementation to gain improved numerical
stability. Appendix A summarises the results that follow in Section 3 in an implementation
guide, which will supersede Algorithm 1.

5

Krämer and Hennig

Algorithm 1 Template for a probabilistic ODE solver step from tn to tn+1.

Require: xn ∼ N (mn,Cn)
Predict mean m−n+1 := Anmn . Equation (2)
Predict covariance C−n+1 = AnCnA

>
n + Qn . Equation (2)

Linearise `(x) ≈ δ[Hx− b] at m−n+1 . Equation (6) or Equation (7)
Compute observation mean z = Hm−n+1 − b . (Tronarp et al., 2019, Eq. (12c))
Compute observation covariance S = HC−n+1H

> . (Tronarp et al., 2019, Eq. (12a))
Compute Kalman gain K = C−n+1H

>S−1 . (Tronarp et al., 2019, Eq. (12b))
Update mean mn+1 = m−n+1 −Kz . (Tronarp et al., 2019, Eq. (12d))
Update covariance Cn+1 = C−n+1 −KSK> . (Tronarp et al., 2019, Eq. (12e))

The solution to the continuous-discrete state estimation problem posed by the proba-
bilistic ODE solver is a posterior distribution over the continuous process x(t). It can be
evaluated at any time t, that is, in between the grid points that were used by the ODE
solver to approximate the solution to the initial value problem. In numerical analysis, this
is called dense output (Hairer et al., 1993, Chapter II.6). In our setting, computing the
dense output is realised by carrying out an additional, measurement-free smoothing step—
and thus does not evaluate the ODE vector field f . We refer to the discussion surrounding
Algorithm 10.27 in the book by Särkkä and Solin (2019).

2.4 Calibration and Step-Size Adaptation

Efficient ODE solvers use local error control and step-size adaptation. In probabilistic
ODE solvers, the posterior covariance, which quantifies numerical uncertainty over the
approximate ODE solution, benefits from the post-hoc calibration of the diffusion Γ of the
driving Wiener process. Both tasks have recently been studied by Bosch et al. (2021).
The authors present strategies for the calibration of Γ as a local quasi-maximum likelihood
estimate. They extend the calibration techniques presented by Schober et al. (2019) and
Tronarp et al. (2019) by evaluating the effect of time-varying diffusion (Schober et al., 2019)
versus time-constant diffusion (Tronarp et al., 2019) on different variants of ODE solvers.

Uncertainty calibration can be combined efficiently with error control. Calibrated uncer-
tainty estimates make error estimates more meaningful and improve the adaptive step-size
selection (Bosch et al., 2021). In this work, we use the time-varying diffusion model together
with on-the-fly calibration and the corresponding error estimate (Schober et al., 2019; Bosch
et al., 2021).

At this point, we would like to emphasise that herein, uncertainty estimates are mostly
ignored and only used to the extent that is required for error control. We benchmark the
probabilistic ODE solver as if it was a classical, deterministic method. Compared to related
work on probabilistic numerics, this is a rather drastic point of view and taken in order to
demonstrate numerical stability and approximation quality of the algorithm. Both will be
shown to be on the same level as well-established, high-order, classical numerical methods.

On top of these qualities, a probabilistic ODE solver provides uncertainty quantification
in form of posterior covariances without additional costs. All of the run time comparisons

6

Stable Implementation of Probabilistic ODE Solvers

0 5 10 15
Time t

5

10

15

20

25

Po
pu

la
tio

ns

Prey
Predators

Lotka-Volterraa

Mean
99.7% Conf. Int.
Sample

0 20 40 60
Time t

0

200

400

600

800

1000

Po
pu

la
tio

ns

Susceptible

Infected

Recovered

SIR Modelb

Mean
99.7% Conf. Int.
Sample

Figure 1: Exemplary output of a probabilistic ODE solver. Simulation of the Lotka–
Volterra model (a) and the SIR model (b), in the parametrisations that are also
used in the experiments in Section 4 below. Both problems use an EK1 based on
a once-integrated Wiener process prior, a time-varying diffusion model, and fixed
steps of size h = 0.3 (Lotka–Volterra), respectively h = 3.5 (SIR).

below already include the computation of posterior covariances. Readers interested in un-
certainty calibration are referred to Bosch et al. (2021).

The EK1-solver is A-stable (Tronarp et al., 2019, Corollary 1); a definition of A-stability
is provided by Dahlquist (1963). We demonstrate this stability together with the validity
of the local error control scheme in Figure 2, by solving the van der Pol system of ordinary
differential equations (Guckenheimer, 1980),

ẍ = µ((1− x2)ẋ− x) (8)

from t = 0 to t = 6.3 with initial values x(0) = 2, and ẋ(0) = 0. We solve the ODE in Equa-
tion (8) after transforming it into a first-order problem. We replicate the parameterisation
chosen by Bosch et al. (2021) and set µ = 106. With such a µ, Equation (8) is a stiff ordi-
nary differential equation. We solve this problem using EK1 with relative tolerance 10−6,
absolute tolerance 10−3, order ν = 7, adaptive step-selection with a PI-controller (Gustafs-
son et al., 1988), and the time-varying diffusion model originally proposed by Schober et al.
(2019) and extended to EK1 by Bosch et al. (2021). We only rely on standard, 64-bit
floating point arithmetic.

Without either of the implementation tricks presented below, computing the solution
was impossible. The simulation took ≈ 3.5 seconds; a reference solution with a fifth-order
Radau IIA solver, implemented in SciPy (Virtanen et al., 2020), on the same problem and
with the same tolerance took ≈ 5 seconds. The van der Pol system with parameter µ = 103

cannot be solved with EK0, likely because it does not possess the stability properties of EK1;
the analysis by Tronarp et al. (2019) only applies to EK1 (and the unscented Kalman filter).

7

Krämer and Hennig

0.00 3.15 6.30
Time t

5.0

2.5

0.0

2.5

5.0

So
lu

tio
n

a

x
x

0.00 3.15 6.30
Time t

10 8

10 6

10 4

10 2

St
ep

-s
iz

es

b

Figure 2: Stiff van der Pol system. The derivative of the solution of Eq. (8) exhibits
extreme spikes (a). The y-axis is cropped at (−6, 6), but ẋ takes values much
larger in magnitude. The adaptive error control selects extremely small step sizes
(b), which shows both, the stiffness of the problem as well as the ability of the
algorithm to detect and cope with it. The first step is immediately scaled down
to ≈ 10−12 by the step-size controller.

From Figure 2 it is evident how small the step sizes must be in order for the integration to
be successful.

3. Improved Numerical Stability

Exactly three components are important for the successful implementation of probabilistic
ODE solvers: accurate initialisation (Section 3.1), a coordinate change in the state-space
model that removes instabilities for small step-sizes or high orders (Section 3.2), and square-
root implementation of the ODE solver (Section 3.3). Their implications on the overall
computational complexity are discussed in Section 3.4.

3.1 Accurate Initialisation

It is important to initialise m0 and C0 as accurately as possible, for reasons of stability and
approximation quality: if the initialisation is inaccurate, we report that in the best case,
convergence rates do not hold and in the worst case, numerical over-/underflows happen
after a few steps. (This was displayed in Table 1.)

Recall that x is a stack of the ODE solution x and its first ν derivatives. Ideally, the
parameters of the initial distribution, m0 and C0, are chosen as

m0 =

x(0)
ẋ(0)

...

x(ν)(0)

 , C0 =

0 · · · 0
...

...
0 · · · 0

 .

8

Stable Implementation of Probabilistic ODE Solvers

It is non-trivial to compute those values efficiently—in the sequel we outline one option for
doing this. Alternatives are discussed in Section 3.2 in the paper by Schober et al. (2019).

Applying Faà di Bruno’s formula (Roman, 1980) to y(t) := f(x(t)) and substituting
ẋ(t) = f(x(t)), computes higher order derivatives of x at 0. Let 0 ≤ q < ν. The (q + 1)th
derivative of x, evaluated at t = 0 is obtained by following the recursion

F0(x) := f(x), Fi+1(x) := [∇Fi](x)f(x), i = 0, ..., q − 1,

and evaluating at zero, x(q+1)(0) = Fq(x0). This approach can be implemented with auto-
matic differentiation (AD). Care has to be taken with the choice of AD algorithm because if
the recursive nature of the higher-order derivatives is not taken into account, the complexity
of AD grows exponentially with respect to q (Kelly et al., 2020).

Taylor-mode automatic differentiation is an efficient way of computing higher order
derivatives of a function. Loosely speaking, instead of tracking how to propagate directional
derivatives (Jacobians), Taylor-mode AD tracks how to propagate truncated Taylor series.
Let x̂ be a νth order truncated Taylor series approximation of x at t = 0, and ŷ and f̂ be
(ν − 1)th order truncated Taylor series approximations of y(t) := f(x(t)) and f , at t = 0
and x = x0 respectively,

x̂(t) =
ν∑
q=0

x(q)(0)tq/(q!), ŷ(t) =
ν−1∑
q=0

y(q)(0)tq/(q!), f̂(x) =
ν−1∑
|ρ|=0

f (ρ)(x0)(x− ξ)ρ/(ρ!).

ρ = (ρ1, ..., ρd) is a multi-index, that is, f (ρ) means f (ρ)(x0) =

[
∂ρ1

∂x
ρ1
1

· · · ∂ρd
∂x
ρd
d

f

]
(x0). Multi-

index notation is necessary because the domain of f is multi-dimensional. The derivative
coefficients y(0), ..., y(ν) of ŷ are computed by propagating x̂ through f̂ .

Since x solves the ODE, ẋ = y holds and higher-order Taylor coefficient terms of x̂
can be computed from lower-order terms of ŷ, which themselves are computed from lower
order derivatives of x̂. More formally, the coefficients of x̂ satisfy the recurrence relation
x(q+1)(0) = y(q)(0)/(q + 1). The first ν derivatives of x can be read off exactly from the
coefficients of x̂, by definition of Taylor-series.

The computational complexity of this strategy grows quadratically, sometimes only al-
most linearly, in the order of the approximation (Griewank and Walther, 2008, Chapter 13).
This is contrasted by the exponential growth in complexity in the order of the approximation
of forward-mode AD. In our Python code, we use a Taylor-mode AD implementation in JAX
(Bradbury et al., 2020; Bettencourt et al., 2019). Computing the νth coefficient of x̂, which
gives the value of the νth derivative at zero, requires a νth order Taylor approximation of
f (everything else is computed with the iteration x(q+1)(0) = y(q)(0)/(q+ 1). Computation
of an nth order Taylor approximation of f : Rd → Rd requires storage

(
n+d
d

)
≈ nd/d! and

propagation costs
(
2n+d
d

)
(Griewank and Walther, 2008). The complexity with Taylor-mode

AD is thus significantly lower than with forward-mode AD, even though both yield the
exact same solution. Figure 3 displays how such a lower complexity makes the initialisation
of the probabilistic solver feasible for large ν.

9

Krämer and Hennig

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of derivatives

10 5

10 3

10 1

Ru
n

tim
e

[s
]

Execution timea

Forward-mode (JVP)
Taylor-mode
Forward-mode
Reverse-mode

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of derivatives

100

101

102

Compile timeb

Forward-mode (JVP)
Taylor-mode
Forward-mode
Reverse-mode

Figure 3: Complexity of initialisation via automatic differentiation. Execution time
(a) and compile time (b) of automatic-differentiation-based initialisation strate-
gies on the Pleiades problem (Hairer et al., 1993), a system of 28 first-order ODEs.
Conventional forward- and reverse mode are too expensive for all ν. Jacobian-
vector-product-based forward-mode differentiation (which avoids assembling full
Jacobian matrices) is as efficient as Taylor-mode differentiation for ν < 5, but
becomes infeasible for ν > 5. (Mind the different scales of the y-axes.) Only
Taylor-mode differentiation remains efficient for all ν.

3.2 Rescaled Coordinates

The presentation in this section is restricted to the integrated Wiener process as a prior
model. This seems to be a common choice, not only due to the intimate connection between
integrated Wiener processes and polynomial splines (Wahba, 1978), but also because in the
whole literature on probabilistic ODE solvers, only Magnani et al. (2017) and Kersting and
Mahsereci (2020) have carried out experiments with a different prior. It is not clear whether
the following coordinate change is optimal for prior models other than integrated Wiener
processes.

This section deals with ill-conditioned matrices occurring in the filtering and smoothing
iterations. Let xFn ∼ N (mF

n ,C
F
n) be the filter output at the nth step, which can be

computed with Algorithm 1, and let xSn+1 ∼ N (mS
n+1,C

S
n+1) be the smoothing output at

the (n + 1)th step, that is, one step in the future. The smoothing distribution at the nth
step, xSn ∼ N (mS

n ,C
S
n), is computed from these quantities as

m−n+1 = Anm
F
n

C−n+1 = AnC
F
nA>n + Qn (9)

Gn = CF
nA>n (C−n+1)

−1

mS
n = mF

n −Gn

[
mS
n+1 −m−n+1

]
CS
n = CF

n −Gn

[
CS
n+1 −C−n+1

]
G>n ,

10

Stable Implementation of Probabilistic ODE Solvers

=3, h = 0.01a =3, h = 0.0001b =6, h = 0.01c =6, h = 0.0001d

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

Figure 4: The elements in Qn decay rapidly from the bottom right to the top left
element. The figure displays the logarithm of the entries in Q, [log qij]i,j=0,...,ν ,
where the qij are the elements in Qn (Equation 3.2), for different ν and h.

and thus depends on (C−n+1)
−1. By going from n = N − 1 to n = 0 backwards in time, the

smoothing distributions can be computed sequentially and in complexity O(N).

AnC
F
nA>n is symmetric and positive semidefinite—after all, we want CF

n to be zero, since
we want the solution to be exact. The matrix Qn is positive definite, but ill-conditioned;
its representation for the IWP(ν) is

Qn = Qn ⊗ Γ, Qn =

[
h2ν+1−i−j
n

(2ν + 1− i− j)(ν − i)!(ν − j)!

]
i,j=0,...,ν

,

and therefore, Qn is a Hankel matrix whose entries decay rapidly from the bottom right
element (≈ hn) to the top left element (≈ h2ν+1

n) (see Figure 4). This means that the
system responds in a highly anisotropic way to step-size h: the covariance increase for x(ν)

at each step is much larger than for, e.g., x(0), which is a problem for numerically stable
computation of smoothing iterations. An example with precise values of the condition
numbers of Q and C−n+1 follows in the context of Table 2 and Figure 5 below.

In the following, we explain how to milden this ill-conditioning by a coordinate change
in the state-space model (which we equivalently refer to as a preconditioner). Let T ∈
Rd(ν+1)×d(ν+1) be an invertible transformation matrix. The SDE for xnew := T−1x is{

dxnew(t) = T−1F T xnew(t) dt+ T−1L dw(t), for t ≥ 0,

xnew(0) ∼ N (T−1m0,T
−1C0T

−>).
(10)

The optimal choice of T will depend on step-size hn. Therefore we write Tn := T(hn)
and use a different coordinate change at each filtering/smoothing step. The equivalent
discretisation of the continuous model in Eq. (10) is{

xnew
n+1 | xnew

n ∼ N (T−1n AnTnxn,T
−1
n QnT

−>
n), for n = 0, ..., N,

xnew
0 ∼ N (T−10 m0,T

−1
0 C0T

−>
0).

(11)

11

Krämer and Hennig

The measurement model changes as well. It now reads

`(xnew
n) ≈ δ

[
H Tn xnew

n − b
]
, (12)

which assumes that the state xnew
n “lives in the preconditioned space”. H and b are derived

by linearising f(E>0 Tn◦) with a zeroth or first order Taylor approximation at mn (recall
Equations (6) and (7)). The filtering and smoothing iterations are changed accordingly. A
detailed implementation guide is in Appendix A.

Next, we propose such a coordinate change. For ν-times integrated Wiener processes,
the transition matrix An has a closed-form representation (Schober et al., 2019),

An = An ⊗ Id, An =

[
Ii≤j

hj−i

(j − i)!

]
i,j=0,...,ν

where Ii≤j = 1 if i ≤ j and Ii≤j = 0 otherwise. If in Equations (11) and (12), Tn is chosen
as

Tn := Tn ⊗ Id, Tn :=
√
hn diag

(
hνn
ν!
,
hν−1n

(ν − 1)!
, ..., hn, 1

)
, (13)

the dependency of An and Qn on hn is removed, because those two matrices can be fac-
torised as

An = TnAT
−1
n ⊗ Id, Qn = TnQT

>
n ⊗ Γ. (14)

Applying the coordinate change to An and Qn leaves only A = A ⊗ Id and Q = Q ⊗ Γ,
because T−1n and Tn cancel each other out (compare Eq. (11) to Eq. (14)). The upper
triangular matrix A as well as the Hankel matrix Q are available in closed form. They are

A :=

[(
ν − i
ν − j

)]
i,j=0,...,ν

and Q :=

[
1

2ν + 1− i− j

]
i,j=0,...,ν

,

where the elements of A are binomial coefficients. Removing the hn-dependency from the
discretisation is crucial, because (i) the elements—and hence, the condition number—of the
process noise covariance are independent of the step-size and (ii) this transformation can
be computed in closed form and applied to an d(ν + 1) × d(ν + 1) matrix in complexity
O(d2(ν+ 1)2), which is neglibile if viewed in the context of the matrix-matrix operations in
each ODE solver step. The cheap application of the preconditioner is of utmost importance
because ODE solver implementations need to be fast. We refer to Section 3.4 for a more
thorough complexity analysis.

This transformation implies that, although we store the values (x, ẋ, ..., x(ν)), we work
in the rescaled coordinates (h−νx ν!, ..., x(ν)). Even though the coordinate systems are
different, this is conceptually related to and, in fact, inspired by the Nordsieck representation
of a vector (x, ..., hνx(ν)/ν!) (Nordsieck, 1962). Such a representation, which we refer to as
Nordsieck coordinates, was used by Schober et al. (2019) to show that the zeroth-order
linearisation filter (EK0) is a multi-step method with time-varying weights. It has therefore
been proven useful to analyse the probabilistic ODE solver. The evaluation below will show
that a variant of this change additionally solves problems of numerical stability.

12

Stable Implementation of Probabilistic ODE Solvers

Order, ν
log10[cond(Q)] log10[ρ] log10[min(λi(Q))]

Prop. Nord. None Prop. Nord. None Prop. Nord. None

1 1.3 1.3 9.1 0.5 0.5 8.5 -1.2 -5.2 -13.1
3 4.2 4.3 28.9 0.8 1.3 26.4 -4.0 -9.1 E
5 7.2 7.6 43.7 1.0 2.3 45.2 -7.0 -14.1 E
7 10.2 11.0 57.3 1.2 3.4 64.6 -10.0 -19.8 E
9 13.2 14.5 68.5 1.3 4.5 84.4 -13.0 -25.9 E
11 16.2 17.4 79.9 1.4 5.6 104.6 -16.0 E E

Table 2: Conditioning of the preconditioned process noise covariance. Evalua-
tion of the condition number of the process noise covariance Qh after precon-
ditioning (left column), the ratio of largest element and the smallest element
ρ = maxij(Qh)ij/minij(Qh)ij of this matrix (middle column; all elements are
positive), and the smallest eigenvalue (right column). Evaluated are the proposed
coordinated change (“Prop.”), Nordsieck coordinates (“Nord.”) and no precondi-
tioning (“None”). The latter two are computed with h = 10−4, which we argue to
be a realistic scenario for an ODE solver; the former is step-size independent. Val-
ues are displayed in log10 basis and rounded to a single decimal. The “best” values
(i.e. smallest in magnitude) are bold-faced—they all use the proposed coordinate
change. NaN’s are marked with a lightning (E), which occurs if the logarithm
of a negative number is taken—numerically, the matrix is not positive definite
anymore.

The proposed change improves the condition number of the process noise covariance Qn

and the predictive covariance C−n+1 more than Nordsieck coordinates do; see Table 2 (and
Figure 5; more on this below). Without preconditioning, numerical instability is severe for
ν > 1; the competition between Nordsieck coordinates and the proposed change is close.

An evaluation of the effect of different coordinate changes on the condition numbers of
the predictive covariances (C−n+1)n=0,...,N is displayed in Figure 5. From this experiment, two
conclusions are evident: (i) non-preconditioned systems have large condition numbers; (ii)
Nordsieck coordinates and the proposed preconditioner both remedy this problem, though
Nordsieck coordinates perform worse than the transformation from Equation (13). This is
aligned with the information in Table 2.

In summary: the ratio of the elements and eigenvalues in the preconditioned process
noise covariance, as well as the condition number of the predictive covariance, speak in
favour of using the proposed transformation Tn over Nordsieck coordinates, though both
are better than no preconditioning. The condition numbers of the preconditioned process
noise covariance matrix Q and predicted covariance matrix C−n are still large. But in
practice, especially in combination with the square-root implementation that is detailed in
the next section, the linear systems involving C−n are sufficiently well-conditioned such that
the implementation scheme in Appendix A reliably computes approximate ODE solutions.

13

Krämer and Hennig

0 2500
Step index, n

100

1025

1050

Co
nd

iti
on

 n
um

be
r

Order 2a

None
Nordsieck
Proposed

0 275
Step index, n

Order 6b

0 275
Step index, n

Order 10c

Figure 5: Conditioning of the Cholesky factors of the predictive covariances on
a test-problem. Condition numbers of the Cholesky factors of the predictive
covariances “as seen by the solver”; that is, an ODE solution is computed with
adaptive step-sizes and tolerance 10−4 using the proposed coordinate change and
at each step, the condition number of “what would have been predicted in Nord-
sieck/original coordinates” is computed. Evaluated for orders ν = 2 (a), ν = 6
(b), and ν = 10 (c). Comparison of no preconditioning (red plus), Nordsieck
coordinates (yellow cross) and the proposed change (blue star). The maximum
condition number on this interval decides whether the smoothing iteration fails
or succeeds. The discrepancy between the maximal condition numbers is shaded
in red (None vs. Nordsieck), and yellow (Nordsieck vs. Proposed). The range
between 0 and the maximum condition number of the proposed change is shaded
blue. The underlying ODE is the Lotka-Volterra model in the parameterisation
from the experiments below.

14

Stable Implementation of Probabilistic ODE Solvers

3.3 Square-Root Kalman Filter

Even with good initialisation and rescaled coordinates, numerical instability affects the
implementation negatively. The reason is that the covariance matrices may have some neg-
ative eigenvalues due to round-off errors and finite precision arithmetic. Classical ODE
solvers do not have this problem, because they do not provide the same uncertainty quan-
tification. Probabilistic ODE solvers propagate uncertainty estimates in the form of covari-
ance matrices C0, ..., CN , which need to be statistically valid, i.e. symmetric and positive
(semi-)definite, even for small steps and high orders.

Symmetric, positive definite matrices allow Cholesky factorisations. Symmetric, pos-
itive semidefinite matrices do not allow Cholesky factorisations but matrix square-roots
(e.g. computed with an LDL decomposition, a close relative of a Cholesky decomposition).
Matrices that need to be inverted will be guaranteed to be positive definite (see Appendix
A); for intermediate calculations, any matrix square root is sufficient.

If the filtering algorithm tracks matrix square-roots instead of full covariance matrices
and applies all subsequent linear algebra operations to these square-roots only, positive
(semi-)definiteness and symmetry are preserved throughout the entire iteration. This is the
square-root Kalman filter. According to Grewal and Andrews (2014, p. 18), it dates back
to Potter and Stern (1963), and is known to solve numerical instability issues (Grewal and
Andrews, 2014, Chapter 7).

Let Cn = LCL>C be any matrix square-root factorisation of the covariance Cn. The
subscript n is omitted in LC for readability reasons. Similarly, let Qn = LQL>Q. Then, the
right-hand side of Equation (9), which computes the predicted covariance, is the product
of two d(ν + 1)× 2d(ν + 1) matrices

C−n+1 =
(
AnLC LQ

)(L>CA>n
L>Q

)
.

The QR decomposition factorises (AnLC ,LQ)> as(
L>CA>n

L>Q

)
= X

(
R
0

)
,

for an orthogonal matrix X ∈ Rd(ν+1)×d(ν+1) (the variable name “Q” is already assigned to
the process noise covariance) and an upper triangular matrix that stacks an upper triangular
matrix R on top of zeros. R> is the Cholesky factor of C−n+1,

C−n+1 =
(
AnLC LQ

)(L>CA>n
L>Q

)
=
(
R> 0

)
X>X

(
R
0

)
= R>R.

The matrix R is unique up to multiplication with the matrix diag(±1, ...,±1). Multiplying
such a matrix to R from the left and to X from the right ensures that the diagonal of
R is always positive, which makes it a valid Cholesky factor, while preserving a valid QR
decomposition, because the orthogonal matrix remains orthogonal.

The same trick can be applied to computing the Cholesky factor of the product of
matrices HLL>H> where H ∈ Rd(ν+1) is not quadratic. This is important for the update
step of the EK0 or EK1. We refer to Appendix A below.

15

Krämer and Hennig

3.4 Computational Complexity

Assembly of An and Qn at each step is replaced with pre-computation of A and Q, which
saves valuable computing time. Tn is diagonal and therefore, applying (and undoing) the
preconditioner is cheap.

Inversion of covariance matrices, which is required for assembly of Kalman- and smoothing-
gain, respectively, is expedited because of the readily computed Cholesky decomposition.
The complexity of computing a QR decomposition of a matrix M ∈ Rm×n, m ≥ n, is
O(mn2) (Higham, 2008, Table C.2), and thus in the same class as matrix-matrix multipli-
cation. The latter is a prominent operation in the Kalman filter, so the asymptotical com-
plexity of a single step of the ODE solver remains unaffected by the choice of square-root
implementation over the “classical” implementation. In practice, the QR decomposition
slightly increases the run time of the algorithm. Future work may consider implementing
an efficient QR decomposition that exploits the sparsity pattern in e.g. (ALn,LQ)>, where
the bottom half is triangular. In light of gaining numerical stability to the point where pre-
viously unfeasible algorithms can be implemented robustly, a small increase in computing
time seems affordable.

3.5 Summary

This concludes the list of implementation tricks that are necessary to implement high-order
probabilistic ODE solvers. Section 3.1 introduced accurate initialisation with Taylor-mode
automatic differentiation, which is an automatic differentiation framework “tailored” to
the propagation of truncated Taylor series; Section 3.2 explained that with a small twist
on classical Nordsieck vector coordinate systems, numerical stability concerns in an ODE
solver are step-size independent; Section 3.3 explained how to change the implementation
of the filter step in order to track only the matrix square-roots of covariance matrices,
which ensures positive semidefiniteness and symmetry throughout the iteration. A detailed,
step-by-step implementation guide using all three proposed modifications is contained in
Appendix A. Next, in Section 4, the effectiveness of the new scheme will be demonstrated.

4. Results

This section investigates how the proposed changes affect the computation of ODE solutions
with high-order probabilistic solvers. At first, we show work-precision diagrams for the
Lotka-Volterra system. This is a simple ODE problem, which can be computed to high
precision with most ODE solvers. We hope to see rapid convergence for high-order methods,
for both EK0 and EK1. We compare the probabilistic EK1 solver to SciPy implementations
of Runge-Kutta methods. Afterwards, we repeat the same benchmarks on the three-body
problem, which is a tougher ODE to solve than Lotka-Volterra, the SIR model, which is a
non-periodic problem, and a stiff version of the van-der-Pol system. For all simulations, all
three improvements from Section 3 were required for the solvers to compute the solutions
reliably (recall Table 1).

We evaluate the final time error, which measures the discrepancy between the approxi-
mate ODE solution and a reference ODE solution at the final time point t = T . The final
time error is the same error measure for both filtering and smoothing implementations;

16

Stable Implementation of Probabilistic ODE Solvers

thus, by considering this error we can relate to the convergence rates by Kersting et al.
(2020b) who consider only filtering algorithms. We also approximate the root-mean-square
error (RMSE) over time on an equidistant grid. This grid is different to the grid that is used
for the computation of the solution (which uses adaptive step-size selection). The RMSE
is an approximation of the L2 distance and is chosen to show off the numerical stability
of the smoothing steps. If both smoothing and dense output are numerically stable and
convergence rates of roughly hν are matched, the implementation is sufficiently stable.

We compute reference solutions with LSODA (Hindmarsh and Petzold, 2005), and tol-
erance εabs = 10−14 = εrel = 10−14. LSODA is chosen, because (i) it has automatic stiffness
detection and switching, which copes well with the wide range of problems considered in
the experiments, and (ii) because it is neither RK45 nor DOP853 and thus does not bias
the work-precision diagrams.

4.1 Lotka-Volterra

We begin the experiments by numerically integrating the Lotka-Volterra predator-prey
model (Lotka, 1978),

ẋ1(t) = 0.5x1(t)− 0.05x1(t)x2(t)

ẋ2(t) = −0.05x2(t) + 0.5x1(t)x2(t),

from t0 = 0 to T = 20, initialised at x1(0) = x2(0) = 20. x1 is the number of prey and x2
is the number of predators. The coefficients describe the interaction of the two species.

Convergence rates for EK0 and EK1 are shown in Figure 6, where the RMSE is plotted
against the largest step, also known as fill distance. High-order convergence rates are visible
for both EK0 and EK1 and all depicted orders—even for ν = 10.

Strictly speaking, this demonstration of EK0 convergence does not fall into the setting
of the convergence rates analysed by Kersting et al. (2020b), because we use a time-varying
diffusion model. Nevertheless, the visible convergence rates of at least hν in Figure 6 confirm
the numerical stability of the implementations and strengthen the conjecture by Kersting
et al. (2020b) about the generalisability of their convergence rates from ν = 1 to ν � 1.
EK1 is neither part of the analysis by Kersting et al. (2020b), which describes zeroth-order
linearisation (EK0), nor part of the theory by Tronarp et al. (2021), which is concerned with
the maximum-a-posteriori estimate (which can be computed by iterated extended Kalman
smoothing). Though, arguably, one might speculate that similar convergence rates hold for
EK1.

Next, we evaluate the performance of EK1 against Runge-Kutta implementations in
SciPy. The results are depicted in Figure 7 and confirm the efficiency of the scheme. The
probabilistic solver, based on EK1, exhibits a convergence rate of order 11 for ν = 10—
the work-precision curve of ν = 10 in Figure 7 is almost vertical—which is beyond the
capabilities of SciPy’s ODE solver suite. The probabilistic solver by a factor ∼ 10 faster
than SciPy’s Runge–Kutta methods of comparable orders, which can be attributed to just-
in-time compilation.

17

Krämer and Hennig

10 2 10 1 100

Largest step

10 11

10 9

10 7

10 5

10 3

RM
SE

With Jacobians (EK1)a

EK1 (= 5)

EK1 (= 10)
h6

h11

10 2 10 1 100

Largest step

Without Jacobians (EK0)b

EK0 (= 4)

EK0 (= 8)
h5

h9

Figure 6: EK0 and EK1 on Lotka-Volterra. Convergence rates for the probabilistic
ODE solver using EK1 and orders ν = 5, 11 (a); and using EK0 and orders
ν = 5, 8. Convergence rates of at least hν hold, even for ν = 11.

4.2 Three-Body

In the second example, we try the numerical solution of the restricted three-body problem
as described by Hairer et al. (1993). It models the trajectory of a body in the gravitational
system between the moon and earth. Let µ1 = 0.012277471 be the standardised moon-mass
and µ2 := 1− µ1. The solution of the ODE

ẍ1(t) = x1(t) + 2ẋ2(t)− µ2
x1(t) + µ1
D1(t)

− µ1
x1(t)− µ2
D2(t)

ẍ2(t) = x2 − 2ẋ1(t)− µ2
x2(t)

D1(t)
− µ1

x2(t)

D2(t)

D1(t) = ((x1(t) + µ1)
2 + x2(t)

2)3/2

D2(t) = ((x1(t)− µ2)2 + x2(t)
2)3/2

is periodic on t ∈ [t0, T] = [0, 17.0652165601579625588917206249], if initialised with x1(0) =
0.994, x2(0) = 0, ẋ1(0) = 0, and ẋ2(0) = −2.00158510637908252240537862224. Every
decimal in ẋ2(0) and µ1 respectively matters—if ignored, the solution is not periodic. This
problem, although classified by Hairer et al. (1993) as non-stiff, is a much more challenging
simulation than Lotka-Volterra. f has two singularities (at (x1, x2) = (−µ1, 0) and at
(x1, x2) = (µ2, 0) respectively), and close to those singularities, much smaller steps are
required to achieve given accuracy, than far away from the singularities.

Even on this comparably tough problem, high polynomial convergence rates seem to
hold; see Figure 8. EK1 exhibits stable hν convergence even for ν = 11. For EK0, the same

18

Stable Implementation of Probabilistic ODE Solvers

0 15 30

Predators, x1

0

15

30
Pr

ey
, x

2
a

10 8 10 5 10 2

SciPy

10 11

10 9

10 7

10 5

10 3

Pr
ob

ab
ili

st
ic

 s
ol

ve
r

RMSE (EK1)b

Order 5
Order 8

10 8 10 5 10 2

SciPy

10 11

10 9

10 7

10 5

10 3

Pr
ob

ab
ili

st
ic

 s
ol

ve
r

RMSE (EK0)c

Order 5
Order 8

10 14 10 10 10 6 10 2

Tolerance (rel.)

10 13

10 10

10 7

10 4

10 1

RM
SE

d
EK1 (= 4)
EK1 (= 7)
EK1 (= 10)
RK45
DOP853

101 102 103 104

Function evaluations

10 13

10 10

10 7

10 4

10 1

RM
SE

e
EK1 (= 4)
EK1 (= 7)
EK1 (= 10)
RK45
DOP853

10 3 10 2 10 1 100 101

Run time [s]

10 13

10 10

10 7

10 4

10 1

RM
SE

f
EK1 (= 4)
EK1 (= 7)
EK1 (= 10)
RK45
DOP853

Figure 7: Detailed results on Lotka-Volterra. The reference solution is periodic (a).
Both the EK0- and the EK1-solver converge to the reference solution as fast as
SciPy’s Runge-Kutta methods (b, c) The error responds well to a user-specified
tolerance (d). In terms of function evaluations and time, the solver converges
fast, especially for high orders (e, f).

rates are visible for ν = 4, 5. Higher orders of EK0 still converged, but adaptive step-size
selection was less efficient than for ν = 5. For both solvers, we see faster convergence than
hν ; like in Figure 6 (Lotka-Volterra), we observe rate hν+1. We do not investigate this
faster-than-expected convergence further in this work.

Order ν = 11 is the maximum order that was feasible in all the experiments, because
the preconditioned process noise covariance matrix Q cannot be Cholesky-decomposed in
standard double-precision due to ill-conditioning.

More detailed simulation results are depicted in Figure 9. We compare the runtime and
accuracy of the probabilistic EK1-solver against reference Runge-Kutta implementations in
SciPy. The performance of probabilistic solvers seems to be comparable to well-established,
non-probabilistic solvers.

19

Krämer and Hennig

10 2 10 1 100

Largest step

10 9

10 7

10 5

10 3

10 1

101
Fi

na
l t

im
e

er
ro

r
With Jacobians (EK1)a

EK1 (= 8)
EK1 (= 11)

h9

h12

10 2 10 1 100

Largest step

Without Jacobians (EK0)b

EK0 (= 4)
EK0 (= 5)

h5

h6

Figure 8: EK0 and EK1 on the three-body problem. Convergence rates for the
probabilistic ODE solver using EK1 and orders ν = 8, 11 (a); and using EK0
and orders ν = 4, 5 (b). Again, convergence rates of at least hν hold, even for
ν = 11. This time, we evaluate the error at the final time point t = T . Both
solvers exhibit reliable, fast convergence for all depicted orders.

4.3 SIR model

So far, we only considered systems of differential equations with periodic solutions. As a
next example problem, we compute approximate solutions of the SIR model (Kermack and
McKendrick, 1927),

Ṡ(t) = −βS(t)I(t)/N, İ(t) = βS(t)I(t)/N − γI(t), Ṙ(t) = γI(t),

for contact rate β, and incubation rate γ. The SIR model describes evolution of the number
of susceptible, infected, and recovered people in a population of constant size N = S(t) +
I(t)+R(t) during an epidemic. In our experiments, we choose β = 0.3, γ = 0.1, S(0) = 998,
I(0) = 1, and R(0) = 1, which implies N = 1000. We simulate from time 0 to time 200.
The results are in Figure 10. Like on the previous two problems, high-order probabilistic
solvers converge rapidly on the SIR model, even for a prior with ν = 11 derivatives.

4.4 Stiff van der Pol

Finally, we return to the van-der-Pol problem from Equation (8), in order to benchmark the
solver on a stiff ODE. Stiff ODEs are challenging problems and require stable ODE solvers.
We choose µ = 105, and leave the remaining parameters equal to those that lead to Figure
2. The results are in Figure 11. Altogether, the results confirm that the findings from the

20

Stable Implementation of Probabilistic ODE Solvers

1 0 1

x1

1.0

0.5

0.0

0.5

1.0

x 2
a

10 5 10 2

SciPy

10 8

10 6

10 4

10 2

100

Pr
ob

ab
ili

st
ic

 s
ol

ve
r

Final time error (EK1)b

Order 5
Order 8

10 5 10 2

SciPy

10 8

10 6

10 4

10 2

100

Pr
ob

ab
ili

st
ic

 s
ol

ve
r

Final time error (EK0)c

Order 5
Order 8

10 14 10 9 10 4 101

Tolerance (rel.)

10 11

10 8

10 5

10 2

101

Fi
na

l t
im

e
er

ro
r

d

EK1 (= 4)
EK1 (= 7)
EK1 (= 11)
RK45
DOP853

101 103 105

Function evaluations

10 11

10 8

10 5

10 2

101
Fi

na
l t

im
e

er
ro

r
e

EK1 (= 4)
EK1 (= 7)
EK1 (= 11)
RK45
DOP853

10 2 10 1 100 101

Run time [s]

10 11

10 8

10 5

10 2

101

Fi
na

l t
im

e
er

ro
r

f
EK1 (= 4)
EK1 (= 7)
EK1 (= 11)
RK45
DOP853

Figure 9: Detailed results on the three-body problem. A successful solution is pe-
riodic (a). The probabilistic EK1-solvers of orders ν = 5 and ν = 8 match the
performance of SciPy implementations of Runge-Kutta methods of equal order
exactly (RK45, DOP853; b, c), which is both measured in the root-mean-square
error (RMSE; b) and in the error at final time t = T (c). The RMSE improves
proportionally to the user-specified tolerance (d), though it appears to lack be-
hind with factor ∼ 10. The same applies to Runge-Kutta solvers, whose lines
are hardly visible in (d) because they have so much overlap with the markers of
the probabilistic solvers. Solvers of order ν = 5, 8, 11 converge fast (e, f). The
runtime is proportional to the SciPy implementations of Runge-Kutta methods,
up to factor ∼ 10 (f).

previous experiments also hold for challenging, stiff problems. The EK0 cannot be used on
this problem, likely because it does not possess the A-stability of the EK1.

4.5 Summary of the Experiments

Implementation was numerically stable for both EK0 and EK1 and all depicted orders
1 ≤ ν ≤ 11 in a way that (i) convergence rates are visible in work-precision diagrams even
for orders up to ν = 11 on the three-body problem and on a stiff version of the van-der-Pol

21

Krämer and Hennig

0 100 200

Time t

0

200

400

600

800

1000

Po
pu

la
tio

n

a

S
I
R

10 1 100

Largest step

10 10

10 7

10 4

10 1

Fi
na

l t
im

e
er

ro
r

b
EK1 (= 4)
EK1 (= 7)
EK1 (= 11)

h5

h8

h12

10 2 100

Run time [s]

10 10

10 7

10 4

10 1

c
EK1 (= 4)
EK1 (= 7)
EK1 (= 11)
RK45
DOP853

Figure 10: Results on the SIR model. Solution of the SIR model (a). High-order
convergence rates are attained for solvers with order ν ∈ {4, 7, 11} (b), and the
solver converges at least as fast as SciPy’s solvers in terms of run time (wall-time;
c).

2 0 2

x1

100000

50000

0

50000

100000

x 2

a

10 3 10 2

Largest step

10 10

10 7

10 4

10 1

Fi
na

l t
im

e
er

ro
r

b
EK1 (= 4)
EK1 (= 7)
EK1 (= 10)

h5

h8

h11

10 2 100

Run time [s]

10 10

10 7

10 4

10 1

c

EK1 (= 4)
EK1 (= 7)
EK1 (= 10)
Radau
BDF
LSODA

Figure 11: Results on stiff van-der-Pol. In the chosen parametrisation, van-der-Pol is
stiff and has a periodic solution (a). But despite the stiffness, high convergence
rates are attained (b), and the solver converges fast, especially compared to
SciPy’s implicit solvers (Radau, BDF; c).

22

Stable Implementation of Probabilistic ODE Solvers

system, and (ii) convergence is at least as fast as for Runge-Kutta methods of comparable
order.

It is difficult to recommend an optimal choice of ν because this decision will likely be
problem-specific. The following is based on the results in Section 4. In all scenarios, ν ≥ 4
was feasible. Since higher orders converge faster than lower orders, ν ≥ 4 seems to be an
appropriate choice. The EK0 performed best with ν ≤ 9, so a good range for EK0 appears
to be 4 ≤ ν ≤ 8. For a more involved problem, like the simulation of the three-body
dynamics, 4 ≤ ν ≤ 5 was most efficient. EK1 showed rapid convergence on both non-stiff
test problems for orders up to 11. Since the dimension of the state space is d(ν+1), choosing
a high order comes at the price of computational complexity. This might explain why in
the run-time benchmarks, orders ν = 5 and ν = 8 required less time to complete than
order ν = 11, even though the convergence rate is slower. It seems that high orders go well
with low tolerances, i.e. high accuracy, but this conjecture requires further research. We
summarise these findings in Table 3.

Stiff Non-Stiff

EK0 Do not use it. 4 ≤ ν ≤ 8
EK1 4 ≤ ν ≤ 11 4 ≤ ν ≤ 11

Table 3: Which orders ν can be recom-
mended based on the present
experiments?

While the sole focus of the present investi-
gation was showing that even if benchmarked
“as a classical method” the probabilistic ODE
solver is competitive with high-order Runge-
Kutta methods, at this point we would like to
recall that with the probabilistic algorithm, un-
certainty quantification in the form of a posterior
covariance comes for free—that is, computation
of this quantity is already contained in the run-
time analysis detailed above. The value of this
uncertainty quantification for solving inverse problems has been demonstrated by Kersting
et al. (2020a).

5. Discussion

The presented transformations evidently allow computation of ODE solutions with a proba-
bilistic ODE filter/smoother and orders ν � 1, which to the best of the authors’ knowledge
has not been possible before. Limits are given only by numerical (i.e. asymptotic, that is,
A-, B- or L-) stability of the algorithm and computational efficiency for high-dimensional or
stiff problems. These are questions that are not only important for the probabilistic solver
but need theoretical analysis for many other methods, too. The presented guide enables
empirical research on answering these questions.

The experiments show that Taylor-mode AD, a coordinate change in the state space,
and square-root implementation of the filter are an improved implementation in terms of
numerical stability, even over the Nordsieck-transformation that is mentioned by Schober
et al. (2019), a variant of which has been used in ProbNum, a collection of probabilistic
numerical algorithms in Python. The implementation tricks have been made available in
ProbNum (Wenger et al., 2021) and have been adopted by related software implementations
of probabilistic ODE solvers since.1

1. https://github.com/pnkraemer/tornadox, https://github.com/nathanaelbosch/ProbNumDiffEq.jl

23

https://github.com/pnkraemer/tornadox
https://github.com/nathanaelbosch/ProbNumDiffEq.jl

Krämer and Hennig

In summary: the presented tricks effectively remove a barrier in computing probabilistic
ODE solutions when it comes to high-order algorithms and small steps. This allows using
probabilistic ODE solvers as a drop-in replacement for other, high-order, rapidly converging,
classical algorithms, thereby enriching chains of statistical computation that involve numer-
ical simulation of dynamical systems with cheap yet effective uncertainty quantification—all
of which is now possible without losing out on speed or reliability of the simulation.

Acknowledgments

The authors gratefully acknowledge financial support by the European Research Council
through ERC CoG Action 101123955 ANUBIS ; the DFG Cluster of Excellence “Machine
Learning - New Perspectives for Science”, EXC 2064/1, project number 390727645; the
German Federal Ministry of Education and Research (BMBF) through the Tübingen AI
Center (FKZ: 01IS18039A); the DFG SPP 2298 (Project HE 7114/5-1), and the Carl Zeiss
Foundation, (project ”Certification and Foundations of Safe Machine Learning Systems in
Healthcare”), as well as funds from the Ministry of Science, Research and Arts of the State
of Baden-Württemberg. The authors thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting N. Krämer.

They are grateful to Nathanael Bosch and Filip Tronarp for many valuable discussions.
They further thank Hans Kersting, Jonathan Schmidt, Marius Hobbhahn, and Elizabeth
Baker for helpful feedback on the manuscript.

Appendix A. Implementation Guide

The following explains detailed iteration schemes of the probabilistic ODE solver, including
initialisation (A.1), prediction (A.2), update (A.3), and smoothing (A.4).

A.1 Initialisation

Choose an order ν (recommendations were made in the discussion in Section 5). Initialise
the ODE solver with Taylor-mode automatic differentiation. The covariance has zeros,
respectively. Before the first step, assemble A and decompose Q into its Cholesky factors,
Q = LQL>Q. For high orders, this remains a numerical bottleneck, because even Q is ill-
conditioned for large ν; recall Table 2. If not all derivatives are initialised accurately, set
the respective entries of the initial covariance C0 to a non-zero value and decompose it into
its Cholesky factors, C0 = L0L

>
0 (using the LDL decomposition if necessary).

A.2 Prediction

Mean and covariance are stored in the original, non-transformed coordinates. Therefore,
the update step consists of (i) applying the transformation

mn = T−1n mn, Ln = T−1n Ln

24

Stable Implementation of Probabilistic ODE Solvers

and (ii) computing the prediction in the changed coordinate system,

m−n+1 = A mn,(
A Ln,LQ

)>
= X Rn+1 (17)

L−n+1 = (Rn+1)
>
0:d(ν+1)

where Equation (17) is a QR decomposition. X is discarded. The notation (Rn+1)
>
0:d(ν+1)

implies that the top d(ν + 1)× d(ν + 1) block of Rn+1 is extracted and transposed.

A.3 Update

The predicted mean and covariance “live in the preconditioned space”. The update con-
sists of a measurement step and a conditioning step. The measurement step starts with
assembling either H = E>1 Tn (EK0) or H = E>1 Tn − ∇f(E>0 Tnm

−
n+1)E

>
0 Tn (EK1), and

continues with computing

zn+1 = E>1 Tnm
−
n+1 − f(E>0 Tnm

−
n+1)

(HL−n+1)
> = X RS

n+1

LS = (RS
n+1)

>
0:d(ν+1)

Ccross = L−n+1(L
−
n+1)

>H>.

Other than in Equation (11), Tn is part of H now. The conditioning step is

Kn+1 = CcrossL
−>
S L−1S

mn+1 = m−n+1 −Kn+1zn+1

Ln+1 = (I−Kn+1H)L−n+1.

Since each of H, Tn and L−n+1 are of full rank, LS is invertible. Inversion of LSL>S leverages

the readily computed Cholesky-decomposition. After the respective update, mn+1 and Ln+1

still “live in the preconditioned space”. Therefore, they need to be transformed back to the
original coordinates

mn+1 = Tnmn+1, Ln+1 = TnLn+1,

before storing them. Ln+1 is not necessarily triangular or positive definite, but since it is
a matrix square-root of Cn+1, the posterior covariance is guaranteed to be symmetric and
positive semidefinite.

A.4 Smoothing

First, all states are fetched into the “preconditioned coordinate system”,

mF
n = T−1n mF

n , L
F
n = T−1n LFn ,

mS
n+1 = T−1n mS

n+1, L
S
n+1 = T−1n LSn+1,

25

Krämer and Hennig

after which the prediction step is repeated (it has to be repeated only on paper, implemen-
tations can reuse predictions from the filtering recursion),

m−n+1 = A mF
n(

A L
F
n ,LQ

)>
= X Rn+1 (21)

L−n+1 = (Rn+1)
>
0:d(ν+1),

and again, Equation (21) is a QR decomposition. A has full rank, L
F
n is positive semidefinite,

and LQ is positive definite, therefore L−n+1 is invertible. Second, the update is computed as

Gn+1 = L
F
n

(
A L

F
n

)> (
L−n+1

)−> (
L−n+1

)−1
mS
n = mF

n −Gn+1

[
mS
n+1 −m−n+1

]
(
(I−GA) Ln,GLQ,GLSn+1

)>
= X Rn+1

L
S
n = (Rn+1)

>
0:d(ν+1)

where the penultimate line is a QR decomposition that computes a Joseph-style update for
the smoothing iteration; this is a counterpart to Equation (4.23) in the book by Grewal
and Andrews (2014), applied to the smoothing step. Finally, before storing the values, the
results are pushed back to the original coordinate system,

mS
n = Tnm

S
n , LSn = TnL

S
n .

This concludes the smoothing step.
We emphasise that at least on paper, the outcome of these steps is identical to the

outcome of ODE filters and smoothers in the standard implementation. In practice, the
results may differ, though, because of the accumulation of round-off errors in the “classical”
implementation.

References

Assyr Abdulle and Giacomo Garegnani. Random time step probabilistic methods for un-
certainty quantification in chaotic and geometric numerical integration. Statistics and
Computing, 2020.

Georgios Arvanitidis, Soren Hauberg, Philipp Hennig, and Michael Schober. Fast and robust
shortest paths on manifolds learned from data. In Proceedings of Machine Learning
Research, pages 1506–1515. PMLR, 2019.

Jesse Bettencourt, Matthew J Johnson, and David Duvenaud. Taylor-mode automatic
differentiation for higher-order derivatives in JAX. 2019.

Nathanael Bosch, Philipp Hennig, and Filip Tronarp. Calibrated adaptive probabilistic
ODE solvers. In International Conference on Artificial Intelligence and Statistics, pages
3466–3474. PMLR, 2021.

26

Stable Implementation of Probabilistic ODE Solvers

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python +
NumPy programs, 2018. URL http://github. com/google/jax, page 18, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. In Advances in Neural Information Processing Systems,
pages 6571–6583, 2018.

Oksana A Chkrebtii, David A Campbell, Ben Calderhead, and Mark A Girolami. Bayesian
solution uncertainty quantification for differential equations. Bayesian Analysis, 11:1239–
1267, 2016.

Jon Cockayne, Chris J Oates, TJ Sullivan, and Mark Girolami. Bayesian probabilistic
numerical methods. SIAM Review, 61(4):756–789, 2019.

Patrick R Conrad, Mark Girolami, Simo Särkkä, Andrew Stuart, and Konstantinos Zy-
galakis. Statistical analysis of differential equations: introducing probability measures on
numerical solutions. Statistics and Computing, 27:1065–1082, 2017.

Germund G Dahlquist. A special stability problem for linear multistep methods. BIT
Numerical Mathematics, 3(1):27–43, 1963.

Mohinder S Grewal and Angus P Andrews. Kalman filtering: Theory and Practice with
MATLAB. John Wiley & Sons, 2014.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. SIAM, 2008.

John Guckenheimer. Dynamics of the van der Pol equation. IEEE Transactions on Circuits
and Systems, 27(11):983–989, 1980.

Kjell Gustafsson, Michael Lundh, and Gustaf Söderlind. A PI stepsize control for the
numerical solution of ordinary differential equations. BIT Numerical Mathematics, 28(2):
270–287, 1988.

Ernst Hairer, Syvert P Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equa-
tions I – Nonstiff Problems. Springer, 1993.

Philipp Hennig and Søren Hauberg. Probabilistic solutions to differential equations and
their application to Riemannian statistics. In Artificial Intelligence and Statistics, pages
347–355, 2014.

Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic numerics and un-
certainty in computations. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 471(2179):20150142, 2015.

Nicholas J Higham. Functions of Matrices: Theory and Computation. SIAM, 2008.

AC Hindmarsh and LR Petzold. LSODA: Ordinary differential equation solver for stiff or
non-stiff system. 2005.

27

Krämer and Hennig

Jacob Kelly, Jesse Bettencourt, Matthew James Johnson, and David Duvenaud. Learning
differential equations that are easy to solve. In Advances in Neural Information Processing
Systems 33 Pre-Proceedings, 2020.

William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, 115(772):700–721, 1927.

Hans Kersting and Maren Mahsereci. A Fourier state space model for Bayesian ODE
filters. Second workshop on Invertible Neural Networks, Normalizing Flows, and Explicit
Likelihood Models (ICML 2020), Virtual Conference, 2020.

Hans Kersting, Nicholas Krämer, Martin Schiegg, Christian Daniel, Michael Tiemann, and
Philipp Hennig. Differentiable likelihoods for fast inversion of ’likelihood-free’ dynamical
systems. Proceedings of the 37th International Conference on Machine Learning, Online,
PMLR 119, 2020a.

Hans Kersting, Tim J Sullivan, and Philipp Hennig. Convergence rates of Gaussian ODE
filters. Statistics and Computing, 30(6):1791–1816, 2020b.

Alfred J Lotka. The growth of mixed populations: two species competing for a common food
supply. In The Golden Age of Theoretical Ecology: 1923–1940, pages 274–286. Springer,
1978.

Emilia Magnani, Hans Kersting, Michael Schober, and Philipp Hennig. Bayesian filtering
for ODEs with bounded derivatives. arXiv:1709.08471, 2017.

Arnold Nordsieck. On numerical integration of ordinary differential equations. Mathematics
of Computation, 16(77):22–49, 1962.

Chris J Oates and Tim J Sullivan. A modern retrospective on probabilistic numerics.
Statistics and Computing, 29:1335–1351, 2019.

James Potter and Robert Stern. Statistical filtering of space navigation measurements. In
Guidance and Control Conference, page 333, 1963.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Ro-
hit Supekar, Dominic Skinner, and Ali Ramadhan. Universal differential equations for
scientific machine learning. arXiv:2001.04385, 2020.

Steven Roman. The formula of Faa di Bruno. The American Mathematical Monthly, 87
(10):805–809, 1980.

Simo Särkkä. Bayesian Filtering and Smoothing, volume 3. Cambridge University Press,
2013.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations, volume 10. Cam-
bridge University Press, 2019.

28

Stable Implementation of Probabilistic ODE Solvers

Michael Schober, David Duvenaud, and Philipp Hennig. Probabilistic ODE solvers with
Runge-Kutta means. In Advances in Neural Information Processing Systems 27, pages
739–747, 2014.

Michael Schober, Simo Särkkä, and Philipp Hennig. A probabilistic model for the numerical
solution of initial value problems. Statistics and Computing, 29:99–122, 2019.

Filip Tronarp, Hans Kersting, Simo Särkkä, and Philipp Hennig. Probabilistic solutions
to ordinary differential equations as non-linear Bayesian filtering: A new perspective.
Statistics and Computing, 29, 2019.

Filip Tronarp, Simo Särkkä, and Philipp Hennig. Bayesian ODE solvers: the maximum a
posteriori estimate. Statistics and Computing, 31(3):1–18, 2021.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al.
Scipy 1.0: fundamental algorithms for scientific computing in python. Nature methods,
17(3):261–272, 2020.

Grace Wahba. Improper priors, spline smoothing and the problem of guarding against model
errors in regression. Journal of the Royal Statistical Society: Series B (Methodological),
40(3):364–372, 1978.

Jonathan Wenger, Nicholas Krämer, Marvin Pförtner, Jonathan Schmidt, Nathanael Bosch,
Nina Effenberger, Johannes Zenn, Alexandra Gessner, Toni Karvonen, François-Xavier
Briol, et al. ProbNum: Probabilistic numerics in python. arXiv:2112.02100, 2021.

29

	Introduction
	Probabilistic ODE Solvers
	Prior Distribution
	Observation Model
	Approximate Gaussian Inference
	Calibration and Step-Size Adaptation

	Improved Numerical Stability
	Accurate Initialisation
	Rescaled Coordinates
	Square-Root Kalman Filter
	Computational Complexity
	Summary

	Results
	Lotka-Volterra
	Three-Body
	SIR model
	Stiff van der Pol
	Summary of the Experiments

	Discussion
	Implementation Guide
	Initialisation
	Prediction
	Update
	Smoothing

