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Abstract
In the graph matching problem we observe two graphs G,H and the goal is to find an
assignment (or matching) between their vertices such that some measure of edge agreement
is maximized. We assume in this work that the observed pair G,H has been drawn from
the Correlated Gaussian Wigner (CGW) model – a popular model for correlated weighted
graphs – where the entries of the adjacency matrices of G and H are independent Gaussians
and each edge of G is correlated with one edge of H (determined by the unknown matching)
with the edge correlation described by a parameter σ ∈ [0, 1). In this paper, we analyse the
performance of the projected power method (PPM) as a seeded graph matching algorithm
where we are given an initial partially correct matching (called the seed) as side information.
We prove that if the seed is close enough to the ground-truth matching, then with high
probability, PPM iteratively improves the seed and recovers the ground-truth matching
(either partially or exactly) in O(log n) iterations. Our results prove that PPM works even
in regimes of constant σ, thus extending the analysis in (Mao et al., 2023) for the sparse
Correlated Erdős-Renyi (CER) model to the (dense) CGW model. As a byproduct of our
analysis, we see that the PPM framework generalizes some of the state-of-art algorithms
for seeded graph matching. We support and complement our theoretical findings with
numerical experiments on synthetic data.
Keywords: graph matching, correlated Wigner model, projected power method.

1. Introduction

In the graph matching problem we are given as input two graphs G and H with an equal
number of vertices, and the objective is to find a bijective function, or matching, between the
vertices of G and H such that the alignment between the edges of G and H is maximized.
This problem appears in many applications such as computer vision (Sun et al., 2020),
network de-anonymization (Narayanan and Shmatikov, 2009), pattern recognition (Conte
et al., 2004; Emmert-Streib et al., 2016), protein-protein interactions and computational
biology (Zaslavskiy et al., 2009b; Singh et al., 2009). In computer vision, for example, it is
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used as a method of comparing two objects (or images) encoded as graph structures or to
identify the correspondence between the points of two discretized images of the same object
at different times. In network de-anonymization, the goal is to learn information about
an anonymized (unlabeled) graph using a related labeled graph as a reference, exploiting
their structural similarities. In (Narayanan and Shmatikov, 2006) for example, the authors
show that it was possible to effectively de-anonymize the Netflix database using the IMDb
(Internet Movie Database) as the “reference” network.

The graph matching problem is well defined for any pair of graphs (weighted or un-
weighted) and it can be framed as an instance of the NP-hard quadratic assignment problem
(QAP) (Makarychev et al., 2014). It also contains the ubiquitous graph isomorphism (with
unknown complexity) as a special case. However, in the average case situation, many poly-
nomial time algorithms have recently been shown to recover, either perfectly or partially,
the ground-truth vertex matching with high probability. It is thus customary to assume
that the observed graphs G,H are generated by a model for correlated random graphs,
where the problem can be efficiently solved. The two most popular models are the corre-
lated Correlated Erdős-Rényi (CER) model (Pedarsani and Grossglauser, 2011), where two
graphs are independently sampled from an Erdős-Rényi mother graph, and the Correlated
Gaussian Wigner (CGW) model (Ding et al., 2021; Fan et al., 2023), which considers that
G,H are complete weighted graphs with independent Gaussian entries on each edge; see
Section 1.3 for a precise description. Recently, other models of correlation have been pro-
posed for random graphs with a latent geometric structure (Kunisky and Niles-Weed, 2022;
Wang et al., 2022a), community structure (Rácz and Sridhar, 2021) and with power law
degree profile (Yu et al., 2021a).

In this work, we will focus on the seeded version of the problem, where side information
about the matching is provided (together with the two graphs G and H) by a partially
correct bijective map from the vertices of G to the vertices of H referred to as the seed.
The quality of the seed can be measured by its overlap with the ground-truth matching.
This definition of a seed is more general than what is often considered in the literature
(Mossel and Xu, 2019), including the notion of a partially correct (or noisy) seed (Lubars
and Srikant, 2018; Yu et al., 2021b). The seeded version of the problem is motivated by
the fact that in many applications, a set of correctly matched vertices is usually available
– either as prior information, or it can be constructed by hand (or via an algorithm).
From a computational point of view, seeded algorithms are also more efficient than seedless
algorithms (see the related work section). Several algorithms, based on different techniques,
have been proposed for seeded graph matching. In (Pedarsani and Grossglauser, 2011;
Yartseva and Grossglauser, 2013), the authors use a percolation-based method to “grow”
the seed to recover (at least partially) the ground-truth matching. Other algorithms (Lubars
and Srikant, 2018; Yu et al., 2021b) construct a similarity matrix between the vertices of
both graphs and then solve the maximum linear assignment problem (either optimally or
by a greedy approach) using the similarity matrix as the cost matrix. The latter strategy
has also been successfully applied in the case described below when no side information
is provided. Mao et al. (2023) also analyzed an iterative refinement algorithm to achieve
exact recovery under the CER model with a constant level of correlation. However, all of
the previously mentioned work focuses on binary (and often sparse) graphs while in a lot of
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applications, for example, protein-to-protein interaction networks or image matching, the
graphs of interest are weighted and sometimes dense.

Contributions. The main contributions of this paper are summarized below. To our
knowledge, these are the first theoretical results for seeded weighted graph matching.

• We analyze a variant of the projected power method (PPM) for the seeded graph
matching problem in the context of the CGW model. We provide (see Theorems 5,
8) exact and partial recovery guarantees under the CGW model when the PPM is
initialized with a given data-independent seed, and only one iteration of the PPM
algorithm is performed. For this result to hold, it suffices that the overlap of the seed
with the ground-truth permutation is Ω(

√
n log n).

• We prove (see Theorem 9) that when multiple iterations are allowed, then PPM
converges to the ground-truth matching in O(log n) iterations provided that it is
initialized with a seed with overlap Ω

(
(1− κ)n

)
, for a constant κ small enough, even

if the initialization is data-dependent (i.e. a function of the graphs to be matched) or
adversarial. This extends the results in (Mao et al., 2023) from the sparse Erdős-Rényi
setting, to the dense Gaussian Wigner case.

• We complement our theoretical results with experiments on synthetic data, show-
ing that PPM can help to significantly improve the accuracy of the matching (for
the Correlated Gaussian Wigner model) compared to that obtained by a standalone
application of existing seedless methods.

1.1 Notation
We denote Pn to be the set of permutation matrices of size n× n and Sn the set of permu-
tation maps on the set [n] = {1, · · · , n}. To each element X ∈ Pn (we reserve capital letters
for its matrix form), there corresponds one and only one element x ∈ Sn (we use lowercase
letters when referring to functions). We denote Id (resp. id) the identity matrix (resp.
identity permutation), where the size will be clear from the context. For X ∈ Pn(x ∈ Sn),
we define SX = {i ∈ [n] : Xii = 1} to be the set of fixed points of X, and sx = |SX |/n its
fraction of fixed points. The symbols ⟨·, ·⟩F , and ∥ · ∥F denote the Frobenius inner product
and its induced matrix norm, respectively. For any matrix X ∈ Rn×n, let [X] ∈ Rn2 denote
its vectorization obtained by stacking its columns one on top of another. For two random
variables X,Y we write X d

= Y when they are equal in law. For a matrix A ∈ Rn×n, Ai:
(resp. A:i) will denote its i-th row (resp. column).

1.2 Mathematical description
Let A,B be the adjacency matrices of the graphs G,H each with n vertices. In the graph
matching problem, the goal is to find the solution of the following optimization problem

max
x∈Sn

∑
i,j

AijBx(i)x(j) (P1)

which is equivalent to solving
max
X∈Pn

⟨A,XBX⊤⟩F . (P1’)
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Observe that (P1) is a well-defined problem – not only for adjacency matrices – but for any
pair of matrices of the same size. In particular, it is well-defined when A,B are adjacency
matrices of weighted graphs, which is the main setting of this paper. Moreover, this is an
instance of the well-known quadratic assignment problem, which is a combinatorial opti-
mization problem known to be NP-hard in the worst case (Burkard et al., 1998). Another
equivalent formulation of (P1) is given by the following “lifted” (or vector) version of the
problem

max
[X]∈[Pn]

[X]⊤(B ⊗A)[X] (P1”)

where [Pn] is the set of permutation matrices in vector form. This form has been already
considered in the literature, notably in the family of spectral methods (Onaran and Villar,
2017; Feizi et al., 2020).

1.3 Statistical models for correlated random graphs

Most of the theoretical statistical analysis for the graph matching problem has been per-
formed so far under two random graph models: the Correlated Erdős-Rényi and the Cor-
related Gaussian Wigner models. In these models the dependence between the two graphs
A and B is explicitly described by the inclusion of a “noise” parameter which captures the
degree of correlation between A and B.

Correlated Gaussian Wigner (CGW) model W (n, σ, x∗). The problem (P1) is well-
defined for matrices that are not necessarily 0/1 graph adjacencies, so a natural extension is
to consider two complete weighted graphs. The following Gaussian model has been proposed
in (Ding et al., 2021)

Aij ∼

{
N (0, 1n) if i < j,

N (0, 2n) if i = j,

Aij = Aji for all i, j ∈ [n], and Bx∗(i)x∗(j) =
√
1− σ2Aij + σZij , where Z d

= A. Both A and
B are distributed as the GOE (Gaussian orthogonal ensemble). Here the parameter σ > 0
should be interpreted as the noise parameter and in that sense, B can be regarded as a
“noisy perturbation” of A. Moreover, x∗ ∈ Sn is the ground-truth (or latent) permutation
that we seek to recover. It is not difficult to verify that the problem (P1) is in fact the
maximum likelihood estimator (MLE) of x∗ under the CGW model.

Correlated Erdős-Rényi (CER) model G(n, q, s, x∗) . For q, s ∈ [0, 1], the correlated
Erdős-Rényi model with latent permutation x∗ ∈ Sn can be described in two steps.

1. A is generated according to the Erdős-Rényi model G(n, q), i.e. for all i < j, Aij is
sampled from independent Bernoulli’s r.v. with parameter q, Aji = Aij and Aii = 0.

2. Conditionally on A, the entries of B are i.i.d according to the law

Bx∗(i),x∗(j) ∼

{
Bern(s) if Aij = 1,

Bern
( q
1−q (1− s)

)
if Aij = 0.

(1)
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There is another equivalent description of this model in the literature, where to obtain CER
graphs, we first sample an Erdős-Rényi “mother” graph and then define A,B as independent
subsamples with certain density parameter. We refer to (Pedarsani and Grossglauser, 2011)
for details.

1.4 Related work
Information-theoretic limits of graph matching. The necessary and sufficient con-
ditions for correctly estimating the matching between two graphs when they are generated
from the CGW or the CER model have been investigated in (Cullina and Kiyavash, 2017;
Hall and Massoulié, 2022; Wu et al., 2021). In particular, for the CGW model, it has been
shown in (Wu et al., 2021, Thm.1) that the ground truth permutation x∗ can be exactly
recovered w.h.p. only when σ2 ≤ 1− (4+ϵ) logn

n . When σ2 ≥ 1− (4−ϵ) logn
n no algorithm can

even partially recover x∗. However, it is not known if there is a polynomial time algorithm
that can reach this threshold.

Efficient algorithms

• Seedless algorithms. Several polynomial time algorithms have been proposed re-
lying on spectral methods (Umeyama, 1988; Fan et al., 2023; Ganassali et al., 2022;
Feizi et al., 2020; Cour et al., 2006), degree profiles (Ding et al., 2021; Dai et al., 2019),
other vertex signatures (Mao et al., 2023), random walk based approaches (Singh et al.,
2008; Kazemi and Grossglauser, 2016; Gori et al., 2004), convex and concave relax-
ations (Aflalo et al., 2015; Lyzinski et al., 2016; Zaslavskiy et al., 2009a), and other
non-convex methods (Yu et al., 2018; Xu et al., 2019; Onaran and Villar, 2017). Most
of the previous algorithms have theoretical guarantees only in the low noise regime.
For instance, the Grampa algorithm proposed in (Fan et al., 2023) provably exactly
recovers the ground truth permutation for the CGW model when σ = O( 1

logn), and in
(Ding et al., 2021) it is required for the CER (resp. CGW) model that the two graphs
differ by at most 1 − s = O( 1

log2 n
) fraction of edges (resp. σ = O( 1

logn)). There are
only two exceptions for the CER model where the noise level is constant: the work of
(Ganassali and Massoulié, 2020) and (Mao et al., 2023). But these algorithms exploit
the sparsity of the graph in a fundamental manner and cannot be extended to dense
graphs.

• Seeded algorithms. In the seeded case, different kinds of consistency guarantees
have been proposed: consistency after one refinement step (Yu et al., 2021b; Lubars
and Srikant, 2018), consistency after several refinement steps uniformly over the seed
(Mao et al., 2023). For the dense CER (p of constant order), one needs to have an
initial seed with Ω(

√
n log n) overlap in order to have consistency after one step for a

given seed (Yu et al., 2021b). But if we want to have a uniform result, one needs to
have a seed that overlaps the ground-truth permutation in O(n) points (Mao et al.,
2023). Our results for the CGW model are similar in that respect. Besides, contrary
to seedless algorithms, our algorithm works even if the the noise level σ is constant.

Projected power method (PPM). PPM, which is also often referred to as a general-
ized power method (GPM) in the literature is a family of iterative algorithms for solving
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constrained optimization problems. It has been used with success for various tasks in-
cluding clustering SBM (Wang et al., 2021), group synchronization (Boumal, 2016; Gao
and Zhang, 2023), joint alignment from pairwise difference (Chen and Candès, 2016), low
rank-matrix recovery (Chi et al., 2019) and the generalized orthogonal Procrustes problem
(Ling, 2021). It is a useful iterative strategy for solving non-convex optimization problems,
and usually requires a good enough initial estimate. In general, we start with an initial
candidate satisfying a set of constraints and at each iteration we perform

1. a power step, which typically consists in multiplying our initial candidate with one or
more data dependent matrices, and

2. a projection step where the result of the power step is projected onto the set of con-
straints of the optimization problem.

These two operations are iteratively repeated and often convergence to the “ground-truth
signal” can be ensured in O(log n) iterations, provided that a reasonably good initialization
is provided.

The projected power method (PPM) has also been used to solve the graph matching
problem, and its variants, by several authors. In some works, it has been explicitly men-
tioned (Onaran and Villar, 2017; Bernard et al., 2019), while in others (Mao et al., 2023;
Yu et al., 2021b; Lubars and Srikant, 2018) very similar algorithms have been proposed
without acknowledging the relation with PPM (which we explain in more detail below).
All the works that study PPM explicitly do not report statistical guarantees and, to the
best of our knowledge, theoretical guarantees have been obtained only in the case of sparse
Erdős-Rényi graphs, such as in (Mao et al., 2023, Thm.B) in the case of multiple iterations,
and (Yu et al., 2021b; Lubars and Srikant, 2018) in the case of one iteration. Interestingly,
the connection with the PPM is not explicitly stated in any of these works.

2. Algorithm
2.1 Projected power method for Graph matching
We start by defining the projection operator onto Pn for a matrix C ∈ Rn×n. We will use the
greedy maximum weight matching (GMWM) algorithm introduced in (Lubars and Srikant,
2018), for the problem of graph matching with partially correct seeds, and subsequently
used in (Yu et al., 2021b). The steps are outlined in Algorithm 1. Notice that the original
version of GMWM works by erasing the row and column of the largest entry of the matrix
C(k) at each step k. We change this to assign −∞ to each element of the row and column
of the largest entry (which is equivalent), mainly to maintain the original indexing. The
output of Algorithm 1 is clearly a permutation matrix, hence we define

τ(C) := Output of GMWM with input C (2)

which can be considered a projection since τ(τ(C)) = τ(C) for all C ∈ Rn×n. Notice that, in
general, the output of GMWM will be different from solving the linear assignment problem

τ̃(C) := argmin{∥C −X∥F | X ∈ Pn} = argmax
Π∈Pn

⟨Π, C⟩F
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Algorithm 1 GMWM (Greedy maximum weight matching)
Input: A cost matrix C ∈ Rn×n.
Output: A permutation matrix X.

1: Select (i1, j1) such that Ci1,j1 is the largest entry in C (break ties arbitrarily). Define
C(1) ∈ Rn×n: C(1)

ij = Cij1i ̸=i1,j ̸=j1 −∞ · 1i=i1or j=j1 .
2: for k = 2 to n do
3: Select (ik, jk) such that C(k−1)

ik,jk
is the largest entry in C(k−1).

4: Define C(k) ∈ Rn×n: C(k)
ij = C

(k−1)
ij 1i ̸=ik,j ̸=jk −∞ · 1i=ikor j=jk .

5: end for
6: Define X ∈ {0, 1}n×n: Xij =

∑n
k=1 1i=ik,j=jk .

7: return X

Algorithm 2 PPMGM (PPM for graph matching)
Input: Matrices A,B, an initial point X(0) and N the maximum number of iterations.
Output: A permutation matrix X.

1: for k = 0 to N − 1 do
2: X(k+1) ← τ(AX(k)B).
3: end for
4: return X = X(N)

which provides an orthogonal projection, while τ corresponds to an oblique projection in
general.

The PPM is outlined in Algorithm 2. Given the estimate of the permutation X(k)

from step k, the power step corresponds to the operation AX(k)B while the projection
step is given by the application of the projection τ on AX(k)B. The similarity matrix
C(k+1) := AX(k)B is the matrix form of the left multiplication of [X(k)] by the matrix B⊗A.
Indeed, given that A and B are symmetric matrices, we have [AX(k)B] = (B⊗A)[X(k)], by
(Schäcke, 2004, eqs. 6 and 10). All previous works related to the PPM for graph matching
(Onaran and Villar, 2017), and its variants (Bernard et al., 2019), use (B⊗A)[X(k)] in the
power step which is highly inconvenient in practice. This is because the matrix B ⊗ A is
expensive to store and do computations with if we follow the naive approach, consisting of
computing and storing B⊗A, and using it in the power step (we expand on this in Remark
3 below). Also, a power step of the form AX(k)B connects the PPM with the seeded graph
matching methods proposed for the CER model (Lubars and Srikant, 2018; Yu et al., 2021b;
Mao et al., 2023) where related similarity matrices are used, thus providing a more general
framework. Indeed, in those works, the justification for the use of the matrix AX(k)B is
related to the notion of witnesses (common neighbors between two vertices), which is an
information that can be read in the entries of AX(k)B. In our case, the similarity matrix
AX(k)B appears naturally as the gradient of the objective function of (P1’) and does not
require the notion of witnesses (which does not extend automatically to the case of weighted
matrices with possibly negative weights). In addition, the set of elements correctly matched
by the initial permutation x(0) ∈ Sn will be defined here as the seed of the problem, i.e., we
take the set of seeds S := {(i, i′) : x(0)(i) = i′}. Thus, the number of correct seeds will be
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the number of elements i ∈ [n] such that x(0)(i) = x∗(i). Observe that the definition of the
seed as a permutation contains less information than the definition of a seed as a set S of
bijectively (and correctly) pre-matched vertices, because S can be augmented (arbitrarily)
to a permutation and, in addition, by knowing S we have information on which vertices
are correctly matched. We mention this as there is a commonly used definition of seed in
the literature (see for example (Yartseva and Grossglauser, 2013)) which considers that the
set S contains only correctly matched vertices, thus giving more information than what is
necessary for our algorithm to work1. The notion of permutation as a partially correct seed
that we are using here has been used, for example, in (Yu et al., 2021b).

Initialization. We prove in Section 3 that Algorithm 2 recovers the ground truth permu-
tation x∗ provided that the initialization x(0) is sufficiently close to x∗. The initialization
assumption will be written in the form

∥X(0) −X∗∥F ≤ θ
√
n (3)

for some θ ∈ [0,
√
2). Here, the value of θ measures how good X(0) is as a seed. Indeed, (3)

can be equivalently stated as: the number of correct seeds is larger than n
2 (2 − θ

2). The
question of finding a good initialization method can be seen as a seedless graph matching
problem, where only partial recovery guarantees are necessary. In practice, we can use
existing seedless algorithms such as those in (Umeyama, 1988; Fan et al., 2023; Feizi et al.,
2020) to initialize Algorithm 2. We compare different initialization methods numerically, in
Section 5.

Remark 1 (PPM as a gradient method) The projected power method can be seen as
a projected gradient ascent method for solving the MLE formulation in (P1’). From the
formulation (P1”) it is clear that the gradient of the likelihood evaluated on X ∈ Pn is
2(B ⊗A)[X] or, equivalently, 2AXB in matrix form. This interpretation of PPM has been
acknowledged in the context of other statistical problems (Journée et al., 2010; Chen and
Candès, 2016).

Remark 2 (Optimality) Algorithms based on PPM or GPM have been shown to attain
optimal, or near-optimal, statistical guarantees for several problems in statistics, including
community detection (Wang et al., 2021, 2022b), group syncronization (Boumal, 2016; Gao
and Zhang, 2022) and generalized orthogonal procrustes problem (Ling, 2021).

Remark 3 (Complexity) The computational time complexity of Algorithm 2 isO(nω log n+
n2 log2 n), where O(nω) is the matrix multiplication complexity and O(n2 log n) is the com-
plexity of Algorithm 1 (Yu et al., 2021b). In (Le Gall, 2014), the authors establish the bound
ω ≤ 2.373. Notice that, in comparison to our algorithm, any algorithm using B ⊗ A in a
naive way that involves first computing and storing B ⊗ A and then doing multiplications
with it, has a time complexity at least n4 (the cost of computing B⊗A when A,B are dense
matrices)

1. In other words, our algorithm does not need to know which are the correct seeds, but only that there is
a sufficiently large number of them in the initial permutation.

8



Seeded graph matching for correlated Wigner

3. Main results
Our goal in this section is to prove recovery guarantees for Algorithm 2 when the input
matrices A,B are realizations of the correlated Wigner model, described earlier in Section
1.3. In what follows, we will assume without loss of generality that X∗ = Id. Indeed, this
can be seen by noting that for any permutation matrix X, and C ∈ Rn×n, it holds that
τ(CX) = τ(C)X. This means that if we permute the rows and columns of B by X (by
replacing B with XBX⊤), and replace X(0) by X(0)X⊤, then the output of Algorithm 2
will be given by the iterates (X(k)X⊤)k=1.

3.1 Exact recovery in one iteration

For any given seed x(0) that is close enough to x∗, the main result of this section states
that x∗ is recovered exactly in one iteration of Algorithm 2 with high probability. Let us
first introduce the following definition: we say that a matrix M is diagonally dominant2 if
for all i, j with i ̸= j we have Mii > Mij . This notion will be used in conjunction with the
following lemma, its proof is in Appendix C.

Lemma 4 If a matrix C satisfies the diagonal dominance property, then the greedy algo-
rithm GMWM with input C will return the identical permutation. Consequently, if A,B ∼
W (n, σ, id), then for C = AXB and Π = τ(C), we have

P(Π ̸= Id) ≤ P(C is not diag. dominant) (4)

The next theorem allow us to control the probability that C is not diagonally dominant
and, in turn, proves that Algorithm 2 recovers the ground truth permutation with high
probability. The proof of Theorem 5 is outlined in in Section 4.1.

Theorem 5 Let A,B ∼ W (n, σ, id) and X ∈ Pn with ∥X − Id ∥F ≤ θ
√
n, with 0 ≤ θ ≤√

2(1− 10
n ) and n ≥ 10. Then the following holds.

(i) For C = AXB we have

P(C is not diag. dominant ) ≤ 5n2e−c(σ)
(
1− θ2

2

)2
n

where c(σ) = 1
384

(
1−σ2

1+2σ
√
1−σ2

)
.

(ii) Denote Π as the output of Algorithm 2 with input (A,B,X(0) = X,N = 1), then

P(Π = Id) ≥ 1− 5n2e−c(σ)
(
1− θ2

2

)2
n.

In particular, if ∥X − Id ∥2F ≤ 2
(
n−

√
1

c(σ)n log (5n
3)
)

then

P(Π = Id) ≥ 1− n−1.

2. This is weaker than the usual notion of diagonal dominance, where for all i ∈ [n], |Mii| ≥
∑

j ̸=i |Mij |.
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Remark 6 The assumption ∥X−Id ∥2F ≤ 2(n−
√

1
c(σ)n log (5n

3)) can be restated as |SX | ≥√
1

c(σ)n log 5n
3, where SX is the set of fixed points of X. That is, for this assumption to

hold, we need that X has a number of fixed points of order Ωσ(
√
n log n). Also note that

c(σ) is decreasing with σ, which is consistent with the intuition that larger levels of noise
make it more difficult to recover the ground truth permutation. We include a plot of c(σ)
(rescaled) in Figure 1.
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Figure 1: The constant c(σ) (re-scaled multiplying by 384) appearing in Theorem 5.

Discussion. Given an initial seed X(0) ∈ Pn, the case N = 1 in Algorithm 2 can be
alternatively interpreted as the following two step process: first, compute a similarity matrix
AX(0)B and then round the similarity matrix to an actual permutation matrix. This
strategy has been frequently applied in graph matching algorithms in both the seeded
and seedless case (Umeyama, 1988; Fan et al., 2023; Lubars and Srikant, 2018; Yu et al.,
2021b). In terms of the quality of the seed, Theorem 5 gives the same guarantees obtained
by (Yu et al., 2021b, Thm.1) which requires Ω(

√
n log n) vertices in the seed to be correctly

matched. However the results of (Yu et al., 2021b) are specifically for the correlated Erdös-
Renyi model.

3.2 Partial recovery in one iteration

In the partial recovery setting, we are interested in the fraction of nodes that are correctly
matched. To this end let us define the following measure of performance

overlap(ν, ν ′) :=
1

n
|{i ∈ [n] : ν(i) = ν ′(i)}| (5)

for any pair ν, ν ′ ∈ Sn. Recall that we assume that the ground truth permutation is
x∗ = id and π is the output of Algorithm 2 with input (A,B,X(0) = X,N = 1) where
Π = GMWM(AXB). Observe that overlap(π, x∗ = id) = sπ is the fraction of fixed points
of the permutation π. It will be useful to consider the following definition. We say that
Cij is row-column dominant if Cij > Ci′j for all i′ ̸= i and Cij > Cij′ , for all j′ ̸= j. The
following lemma relates the overlap of the output of GMWM with the property that a subset
of the entries of C is row-column dominant, its proof is outlined in Appendix C.
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Lemma 7 Let C be a n×n matrix with the property that there exists a set {i1, · · · , ir}, with
1 ≤ r ≤ n such that Cik,ik is row-column dominant for k ∈ [r]. Let π ∈ Sn be permutation
corresponding to GMWM(C) ∈ Pn. Then it holds that π(ik) = ik for k ∈ [r] and, in
consequence, the following event inclusion holds

{overlap(π, id) < r/n} ⊂
⋂

Ir⊂[n]
|Ir|=r

⋃
i∈Ir

{Cii is not row-column dominant }. (6)

Equipped with this lemma, we can prove the following generalization of Theorem 5, its
proof is detailed in Section 4.2.

Theorem 8 Let A,B ∼ W (n, σ, id) and X ∈ Pn with ∥X − Id ∥F ≤ θ
√
n, where 0 ≤ θ ≤√

2(1− 10
n ) and n ≥ 10. Let π ∈ Sn be the output of Algorithm 2 with input (A,B,X(0) =

X,N = 1). Then, for r ∈ [n]

P(overlap(π, id) > r/n) ≥ 1− 16rne−c(σ)
(
1− θ2

2

)2
n.

In particular, if x ∈ Sn is the map corresponding to X and |SX | ≥
√

1
c(σ)n log (16rn

2), then

P(overlap(π, id) > r/n) ≥ 1− n−1.

3.3 Exact recovery after multiple iterations, uniformly in the seed
The results in Sections 3.1 and 3.2 hold for any given seed X(0), and it is crucial that the
seed does not depend on the graphs A,B. In this section, we provide uniform convergence
guarantees for PPMGM which hold uniformly over all choices of the seed in a neighborhood
around x∗.

Theorem 9 Let σ ∈ [0, 1), A,B ∼ W (n, σ, id) and define κ :=
(

9
410

)2
(1 − σ2). For any

X(0) ∈ Pn, denote X(N) the output of PPMGM with input (H(A),H(B), X(0), N = 2 log n),
where H(M) corresponds to the matrix M with the diagonal removed. Then, there exists
constants C ′, c > 0 such that, for all n ≥ C′

κ log n, it holds

P
(
∀X(0) ∈ Pn such that |SX(0) | ≥ (1− κ)n,X(N) = Id

)
≥ 1− e−cκn − 3n−2.

The diagonal of the adjacency matrices A and B in Algorithm 2 was removed in the above
theorem only for ease of analysis. Its proof is detailed in Section 4.3. A direct consequence
of Theorem 9 is when the seed X(0) is data dependent, i.e., depends on A,B. In this case,
denoting E0 = {|SX(0) | ≥ (1 − κ)n} to be the event that X(0) satisfies the requirement of
Theorem 9, and Eunif to be the “uniform” event in Theorem 9, we clearly have by a union
bound that

P(X(N) = Id) ≥ P(E0)− P(Ecunif ) ≥ P(E0)− e−cκn − 3n−2.

Hence if E0 holds with high probability, then exact recovery of X∗ = Id is guaranteed with
high probability as well.

11
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Remark 10 Contrary to our previous theorems, here the strong consistency of the estimator
holds uniformly over all possible seeds that satisfy the condition |SX(0) | ≥ (1 − κ)n. For
this reason, we need a stronger condition than |SX(0) | = Ω(

√
n log n) as was the case in

Theorem 5. Our result is non trivial and cannot be obtained from Theorem 5 by taking a
union bound. The proof relies on a decoupling technique adapted from (Mao et al., 2023)
that used a similar refinement method for CER graphs.

Remark 11 Contrary to the results obtained in the seedless case that require σ = o(1) for
exact recovery (Fan et al., 2023), we can allow σ to be of constant order. The condition the
fraction of fixed points in the seed be at least 1 − κ = 1 −

(
9

410

)2
(1 − σ2) seems to be far

from optimal as shown in the experiments in Section 5, see Fig. 2. But interestingly, this
condition shows that when the noise σ increases, PPMGM needs a more accurate initialization
to recover the latent permutation. This is confirmed by our experiments.

4. Proof outline
4.1 Proof of Theorem 5
For A,B ∼W (n, σ, id), the proof of Theorem 5 relies heavily on the concentration properties
of the entries of the matrix C = AXB, which is the matrix that is projected by our proposed
algorithm. In particular, we use the fact that C is diagonally dominant with high probability,
under the assumptions of Theorem 5, which is given by the following result. Its proof is
delayed to Appendix A.

Proposition 12 (Diagonal dominance property for the matrix C = AXB) Let A,B ∼
W (n, σ, id) with correlation parameter σ ∈ [0, 1) and let X ∈ Pn with SX the set of its fixed
points and sx := |SX |/n. Assume that sx ≥ 10/n and that n ≥ 10. Then the following is
true.

(i) Noiseless case. For a fixed i ∈ [n] it holds that

P
(
∃j ̸= i : (AXA)ij > (AXA)ii

)
≤ 4ne−

s2x
96
n.

(ii) For C = AXB and i ∈ [n] it holds

P(∃j ̸= i : Cij > Cii) ≤ 5ne−c(σ)s
2
xn

where c(σ) = 1
384(

1−σ2

1+2σ
√
1−σ2

).

With this we can proceed with the proof of Theorem 5.
Proof [Proof of Theorem 5] To prove part (i) of the theorem it suffices to notice that in
Proposition 12 part (ii) we upper bound the probability that C = AXB is not diagonally
dominant for each fixed row. Using the union bound, summing over the n rows, we obtain
the desired upper bound on the probability that C is not diagonally dominant. We now
prove part (ii). Notice that the assumption ∥X− Id ∥F ≤ θ

√
n for θ <

√
2 implies that sx is

strictly positive. Moreover, from this assumption and the fact that ∥X−Id ∥2F = 2(n−|SX |)
we deduce that

sx ≥
(
1− θ2

2

)
. (7)

12
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On the other hand, we have

P(Π ̸= Id) ≤ P(C is not diag.dom)

= P(∃i, j ∈ [n], i ̸= j : Cii < Cij)

≤ 5n2e−c(σ)s
2
xn

≤ 5n2e−c(σ)
(
1− θ2

2

)2
n

where we used Lemma 4 in the first inequality, Proposition 12 in the penultimate step and,
(7) in the last inequality.

4.1.1 Proof of Proposition 12

In Proposition 12 part (i) we assume that σ = 0. The following are the main steps of the
proof.

1. We first prove that for all X ∈ Pn such that sx = |SX |/n and for i ̸= j ∈ [n] the gap
Cii − Cij is of order sx in expectation.

2. We prove that Cii and Cij are sufficiently concentrated around its mean. In particular,
the probability that Cii is smaller than sx/2 is exponentially small. The same is true
for the probability that Cij is larger than sx/2.

3. We use the fact P(Cii ≤ Cij) < P(Cii ≤ sx/2) + P(Cij ≥ sx/2) to control the proba-
bility that C is not diagonally dominant.

The proof is mainly based upon the following two lemmas.

Lemma 13 For the matrix C = AXA and with sx = |SX |/n we have

E[Cij ] =

{
sx +

1
n1i∈SX

for i = j,
1
n1x(j)=i for i ̸= j,

and from this we deduce that for i, j ∈ [n] with i ̸= j

sx −
1

n
≤ E[Cii]− E[Cij ] ≤ sx +

1

n
.

Lemma 14 Assume that sx ∈ (10/n, 1] and n ≥ 10. Then for i, j ∈ [n] with i ̸= j we have

P(Cii ≤ sx/2) ≤ 4e−
s2x
48
n, (8)

P(Cij ≥ sx/2) ≤ 3e−
s2x
96
n. (9)

With this we can prove Proposition 12 part (i).

13
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Proof [Proof of Prop. 12 (i)] Define the event Ej = {Cii < sx
2 } ∪ {Cij >

sx
2 } and note that

for j ̸= i, we have {Cij > Cii} ⊂ Ej . With this and the bounds (8) and (9) we have

P
(
∃j ̸= i : Cij > Cii

)
= P(∪j ̸=i{Cij > Cii})
≤ P(∪j ̸=iEj)

≤ P(Cii ≤
sx
2
) +

∑
j ̸=i

P(Cij ≥
sx
2
)

≤ 4e−
s2x
96
n + 3(n− 1)e−

s2x
96
n

≤ 4ne−
s2x
96
n.

The proof of Lemma 13 is short and we include it in the main body of the paper. On
the other hand, the proof of Lemma 14 mainly uses concentration inequalities for Gaussian
quadratic forms, but the details are quite technical. Hence we delay its proof to Appendix
A.1. Before proceeding with the proof of Lemma 13, observe that the following decompo-
sition holds for the matrix C.

Cij =
∑
k,k′

AikXk,k′Ak′i =

{∑
k∈SX

A2
ik +

∑
k/∈SX

AikAix(k) for i = j,∑n
k=1AikAx(k)j for i ̸= j.

(10)

Proof [Proof of Lemma 13] From (10) we have that

E[Cii] =
∑
k∈SX

E[A2
ik] +

∑
k/∈SX

E[A2
ik] =

|SX |
n

+
1i∈SX

n
.

Similarly, for j ̸= i it holds

E[Cij ] =
n∑
k=1

E[AikAx(k)j ] =
1

n
1i,j /∈SX ,x(j)=i =

1x(j)=i

n

from which the results follows easily.

The proof of Proposition 12 part (ii) which corresponds to the case σ ̸= 0 uses similar
ideas and the details can be found Appendix A.2.

4.2 Proof of Theorem 8

The proof of Theorem 8 will be based on the following lemma, which extends Proposition
12.

Lemma 15 For a fixed i ∈ [n], we have

P(Cii is not row-column dominant) ≤ 16ne−c(σ)s
2
xn.

14
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The proof of Lemma 15 is included in Appendix B. We now prove Theorem 8. The main
idea is that for a fixed i ∈ [n], with high probability the term Cii will be the largest term
in the i-th row and the i-th column, and so GMWM will assign π(i) = i. We will also use the
following event inclusion, which is direct from (6) in Lemma 7.

{overlap(π, id) < r/n} ⊂
r⋃
i=1

{Cii is not row-column dominant }. (11)

Proof [Proof of Theorem 8 ] Fix i ∈ [n]. By (11) we have that

P(overlap(π, id) ≤ r/n) ≤
r∑
i=1

P(Cii is not row-column dominant)

≤
r∑
i=1

P(∃j ̸= i, s.t Cij ∨ Cji > Cii)

≤ 16rne−c(σ)s
2
xn

where we used Lemma 15 in the last inequality.

Remark 16 Notice that the RHS of (11) is a superset of the RHS of (6). To improve this,
it is necessary to include dependency information. In other words, we need to ‘beat Hölder’s
inequality’. To see this, define

Ei := 1Cii is not row-column dominant , εI := 1
∑

i∈I Ei>0, for I ⊂ [n];

then εI′, for I ′ = [r], is the indicator of the event in the RHS of (11). On other hand, the
indicator of the event in the RHS of (6) is

∏
I⊂[n],|I|=r

εI . If E
[
εI
]

is equal for all I, then

Hölder inequality gives
E
[ ∏
I⊂[n],|I|=r

εI

]
≤ E[εI′ ]

which does not help in quantifying the difference between (6) and (11). This is not surprising
as we are not taking into account the dependency between the events εI for the different sets
I ⊂ [n], |I| = r.

4.3 Proof of Theorem 9
The general proof idea is based on the decoupling strategy used by (Mao et al., 2023) for
Erdős-Rényi graphs. To extend their result from binary graphs to weighted graphs, we need
to use an appropriate measure of similarity. For i, i′ ∈ [n],W ⊂ [n] and g ∈ Sn, let us define

⟨Ai:, Bi′:⟩g,W :=
∑
j∈W

Aig(j)Bi′j

to be the similarity between i and i′ restricted to W and measured with a scalar product
depending on g (the permutation used to align A and B). When g = id or W = [n] we will

15
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drop the corresponding subscript(s). If A and B were binary matrices, we would have the
following correspondence

⟨Ai:, Bi′:⟩g,W = |g(NA(i) ∩W ) ∩NB(i′)|.

This last quantity plays an essential role in Proposition 7.5 of (Mao et al., 2023). Here
g(S) denotes the image of a set S ⊆ [n] under permutation g, and NA(i) represents the
set of neighboring vertices of i in the graph A. This new measure of similarity has two
main implications on the proof techniques, marking a departure from the work in Mao
et al. (2023). Firstly, one can no longer rely on the fact that ⟨Ai:, Bi′:⟩g,W is non-negative.
Secondly, we will need different concentration inequalities to handle these quantities.

Step 1. The algorithm design relies on the fact that if the matrices A and B were correctly
aligned then the correlation between Ai: and Bi: should be large and the correlation between
Ai: and Bi′: should be small for all i ̸= i′. The following two lemmas precisely quantify these
correlations when the two matrices are well aligned.

Lemma 17 (Correlation between corresponding nodes) Let (A,B) ∼ W (n, σ, x∗ =
id) and assume that the diagonals of A and B have been removed. Then for n large enough
(larger than a constant), we have with probability at least 1− n−2 that

⟨Ai:, Bi:⟩ ≥
√

1− σ2(1− ϵ1)− σϵ2 for all i ∈ [n],

where 0 < ϵ1, ϵ2 ≤ C
√

logn
n for a constant C > 0.

Lemma 18 (Correlation between different nodes) Let (A,B) ∼ W (n, σ, id) and as-
sume that the diagonals of A and B have been removed. Then for n large enough (larger
than a constant), we have with probability at least 1− n−2 that

|⟨Ai:, Bi′:⟩| ≤
√

1− σ2ϵ3 + σϵ4 for all i, i′ ∈ [n] such that i′ ̸= i,

where 0 < ϵ3, ϵ4 ≤ C
√

logn
n for a constant C > 0.

The proofs of Lemma’s 17 and 18 can be found in Appendix D.2.

Step 2. Since the ground truth alignment between A and B is unknown, we need to use
an approximate alignment (provided by X(0)). It will suffice that X(0) is close enough to
the ground truth permutation. This is linked to the fact that if |SX(0) | is large enough then
the number of nodes for which there is a substantial amount of information contained in
Sc
X(0) is small. This is shown in the following lemma.

Lemma 19 (Growing a subset of vertices) Let G a graph generated from the Gaussian
Wigner model with self-loops removed, associated with an adjacency matrix A. For any
I ⊆ [n] and κ ∈ (0, 12), define the random set

Ĩ = {i ∈ [n] : ∥Ai:∥2Ic < 8κ}.
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Then for n ≥ C′

κ log n where C ′ > 0 is a large enough constant, we have

P
(
∀I ⊆ [n] with |I| ≥ (1− κ)n, it holds |Ĩc| ≤ 1

4
|Ic|
)
≥ 1− e−c′κn

for some constant c′ > 0.

In order to prove this lemma we will need the following decoupling lemma.

Lemma 20 (An elementary decoupling) Let M > 0 be a parameter and G be a weighted
graph on [n], with weights of magnitude bounded by 1 and without self loops, represented
by an adjacency matrix A ∈ [−1, 1]n×n. Assume that there are two subsets of vertices
Q,W ⊂ [n] such that

∥Ai:∥2W ≥M for all i ∈ Q.

Then there are subsets Q′ ⊆ Q and W ′ ⊆W such that Q′ ∩W ′ = ∅, |Q′| ≥ |Q|/5 and

∥Ai:∥2W ′ ≥M/2 for all i ∈ Q′.

Proof If |Q \W | ≥ |Q|/5 then one can take Q′ = Q \W and W ′ =W . So we can assume
that |Q ∩ W | ≥ 4|Q|/5. Let W̃ := W \ Q and Q̂ be a random subset of Q ∩ W where
each element j ∈ Q ∩W is selected independently with probability 1/2 in Q̂. Consider the
random disjoint sets Q̂ and W ′ := W̃ ∪ ((Q ∩W ) \ Q̂). First, we will show the following
claim.

Claim 1 For every i ∈ Q ∩W , we have P(∥Ai:∥2W ′ ≥M/2|i ∈ Q̂) ≥ 1/2.

Indeed, we have by definition

∥Ai:∥2W ′ =
∑
j∈W ′

A2
ij =

∑
j∈W∩Q

A2
ij1j ̸∈Q̂ +

∑
j∈W̃

A2
ij .

By taking the expectation conditional on i ∈ Q̂, we obtain

E
(
∥Ai:∥2W ′

∣∣∣i ∈ Q̂) =
∑

j∈W∩Q

A2
ij

2
+
∑
j∈W̃

A2
ij ≥

1

2

∑
j∈W

A2
ij ≥

M

2
.

But since
∑

j∈W∩QA
2
ij(1j ̸∈Q̂ −

1
2) is a symmetric random variable we have that

P
(
∥Ai:∥2W ′ ≥ E(∥Ai:∥2W ′)

∣∣∣i ∈ Q̂) = 1/2

and hence
P
(
∥Ai:∥2W ′ ≥

M

2

∣∣∣∣i ∈ Q̂) ≥ 1/2.

Consequently, we have

E

 ∑
i∈Q∩W

1{∥Ai:∥2W ′≥M/2}1i∈Q̂

 =
∑

i∈Q∩W
P(i ∈ Q̂)E

(
1{∥Ai:∥2W ′≥M/2}

∣∣∣i ∈ Q̂) ≥ |Q ∩W |
4

≥ |Q|
5
.
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Therefore, there is a realization Q′ of Q̂ such that Q′ and W ′ satisfy the required conditions.

Proof [Proof of Lemma 19] Let us define δ := 8κ, which will be used throughtout this
proof. By considering sets W = Ic and Q ⊆ Ĩc we obtain the following inclusion

{∃I ⊆ [n] with |I| ≥ (1− κ)n, such that |Ĩc| > 1

4
|Ic|} ⊂

E := {∃Q,W ⊆ [n] : |W | ≤ κn, |Q| ≥ |W |/4 ̸= 0, ∥Ai:∥2W ≥ δ for all i ∈ Q}.

According to Lemma 20, E is contained in

E ′ := {∃Q′,W ′ ⊆ [n] : |W ′| ≤ κn, |Q′| ≥ |W |/20 ̸= 0, Q′∩W ′ = ∅, ∥Ai:∥2W ′ ≥ δ/2 for all i ∈ Q′}.

For given subsets Q′ and W ′, the random variables (∥Ai:∥2W ′)i∈Q′ are independent. So, by
a union bound argument we get

P
(
∃I ⊆ [n] with |I| ≥ (1− κ)n, such that |Ĩc| > 1

4
|Ic|
)
≤

⌈κn⌉∑
w=1

∑
|W ′|=w

n∑
k=⌈w/20⌉

(
n

k

)
P
(
∥Ai:∥2W ′ ≥ δ/2

)k
.

According to Lemma 24, for the choice t = κn we have for all W ′

P
(
∥Ai:∥2W ′ ≥ δ/2

)
≤ P

(
n ∥Ai:∥2W ′ ≥ |W |+

√
|W |t+ 2t

)
≤ e−κn.

Consequently, for n large enough, we have

P
(
∃I ⊆ [n] with |I| ≥ (1− κ)n, such that |Ĩc| > 1

4
|Ic|
)
≤

⌈κn⌉∑
w=1

n∑
k=⌈w/20⌉

(en
w

)w (en
k

)k
e−kκn < e−cκn,

for a constant c > 0. Indeed, since
en

keκn
< 1

because by assumption n ≥ C′

κ log n , we obtain
n∑

k=⌈w/20⌉

(en
k

)k
e−kκn ≤ C

( en
eκn

)⌈w/20⌉
by the property of geometric series, where C > 0 is a constant. But by the same argument

⌈κn⌉∑
w=1

(en
w

)w((en)1/20

eκn/20

)w
≤ (en)1/20

eκn/20
≤ e−cκn

where c > 0 is a constant.
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Step 3. We are now in position to show that at each step the set of fixed points of the
permutation obtained with PPMGM increases.

Lemma 21 (Improving a partial matching) Let (A,B) ∼ W (n, σ, id) with σ ∈ [0, 1),
and define

κ :=

(
9

410

)2

(1− σ2).

For any g ∈ Sn, let us denote g̃ as the output of one iteration of PPMGM with g as an input.
Then, there exist constants C ′, c > 0, such that the following is true. If n

logn ≥
C′

κ , then
with probability at least 1− e−cκn − 3n−2, it holds for all g ∈ Sn satisfying |i ∈ [n] : g(i) =
i| ≥ (1− κ)n that

|{i ∈ [n] : g̃(i) = i}| ≥ n

2
+
|{i ∈ [n] : g(i) = i}|

2
.

Proof For any I ⊆ [n] such that |I| ≥ (1− κ)n, define

Ĩ :={i ∈ [n] : ∥Ai:∥2Ic < 8κ},
Ĩ ′ :={i ∈ [n] : ∥Bi:∥2Ic < 8κ}.

Consider the events

E ′1 := {∀I ⊆ [n] s.t. |I| ≥ (1− κ)n, it holds that |Ĩc| ∨ |(Ĩ ′)c| ≤ 1

4
|Ic|},

E ′2 := {∀i ∈ [n] : ⟨Ai:, Bi:⟩ ≥ 0.9
√

1− σ2},

E ′3 := {∀i ̸= i′ ∈ [n] : |⟨Ai:, Bi′:⟩| < C
√
log n/n},

E ′4 := {∀i ∈ [n] : ∥Ai:∥ , ∥Bi:∥ < 2},

where C is the constant appearing in Lemmas 17 and 18. Define E ′ = ∩4i=1E ′i. By Lem-
mas 19, 17, 18 and 24 we have

P(E ′) ≥ 1− e−cκn − 3n−2.

Now condition on E ′ and take any g ∈ Sn such that |{i ∈ [n] : g(i) = i}| ≥ (1−κ)n. Define
I as the set of fixed points of g. For all i ∈ Ĩ ∩ Ĩ ′ the following holds.

1. We have

⟨Ai:, Bi:⟩g ≥ ⟨Ai:, Bi:⟩ − |⟨Ai:, Bi:⟩g,Ic | − |⟨Ai:, Bi:⟩Ic |

≥ 0.9
√
1− σ2 − 2 ∥Ai:∥Ic ∥Bi′:∥Ic

(by E ′3, Cauchy-Schwartz and the fact that g(Ic) = Ic)

≥ 0.9
√

1− σ2 − 16κ
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2. For all i′ ̸= i

⟨Ai:, Bi′:⟩g ≤ |⟨Ai:, Bi′:⟩|+ |⟨Ai:, Bi′:⟩Ic |+ |⟨Ai:, Bi′:⟩g,Ic |

≤ C
√

log n

n
+ 2 ∥Ai:∥Ic ∥Bi′:∥Ic

(by E ′3, Cauchy-Schwartz and the fact that g(Ic) = Ic)

≤ C
√

log n

n
+ 12

√
κ

since i ∈ Ĩ ∩ Ĩ ′ and ∥Bi′:∥Ic ≤ ∥Bi′:∥ ≤ 2 on the event E ′4.

3. Arguing in the same way, we have for all i′ ̸= i

⟨Ai′:, Bi:⟩g ≤ C
√

log n

n
+ 12
√
κ.

Since the condition on n implies C
√

logn
n ≤ 12

√
κ, and κ ∈ (0, 1), it follows that for all

i ∈ Ĩ ∩ Ĩ ′ and i′ ̸= i

⟨Ai:, Bi:⟩g ≥ 0.9
√

1− σ2 − 16
√
κ,

⟨Ai:, Bi′:⟩g ∨ ⟨Ai′:, Bi:⟩g ≤ 25
√
κ.

Thus, from the stated choice of κ, we have for all i ∈ Ĩ ∩ Ĩ ′ and i′ ̸= i that

⟨Ai:, Bi:⟩g ≥ ⟨Ai:, Bi′:⟩g ∨ ⟨Ai′:, Bi:⟩g.

In particular, this implies that for all i ∈ Ĩ ∩ Ĩ ′, (AGB)ii is row-column dominant, where
G ∈ Pn corresponds to g ∈ Sn. Hence, g̃ (the output of PPMGM) will correctly match i with
itself. Then clearly g̃ will be such that

|{i ∈ [n] : g̃(i) = i}| ≥ |Ĩ ∩ Ĩ ′| (by inclusion)
≥ n− |Ĩc| − |(Ĩ ′)c| (by union bound)

≥ n

2
+
|{i ∈ [n] : g(i) = i}|

2
. (by E ′1)

Conclusion. By Lemma 21, if the initial number of fixed points is (1−κ)n then after one
iteration step the size of the set of fixed points of the new iteration is at least (1−κ/2)n with
probability greater than 1− e−cκn − 3n−2. So after 2 log n iterations the set of fixed points
has size at least (1 − κ/22 logn)n > n − 1 with probability greater than 1 − e−cκn − 3n−2.
Note that the high probability comes from conditioning on the event E ′ so it is not necessary
to take a union bound for each iteration.
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5. Numerical experiments

In this section, we present numerical experiments to assess the performance of the PPMGM
algorithm and compare it to the state-of-art algorithms for graph matching, under the
CGW model3. We divide this section in two parts. In Section 5.1 we generate CGW
graphs A,B ∼ W (n, σ, x∗) for a uniformly random permutation x∗, and apply to A,B the
spectral algorithms Grampa (Fan et al., 2023), the classic Umeyama (Umeyama, 1988), and
the convex relaxation algorithm QPADMM4, which first solves the following convex quadratic
programming problem

max
X∈Bn

∥AX −XB∥2F , (12)

where Bn is the Birkhoff polytope of doubly stochastic matrices, and then rounds the
solution using the greedy method GMWM. All of the previous algorithms work in the seedless
case. As a second step, we apply algorithm PPMGM with the initialization given by the
output of Grampa, Umeyama and QPADMM. We show experimentally that by applying PPMGM
the solution obtained in both cases improves, when measured as the overlap (defined in
(5)) of the output with the ground truth. We also run experiments by initializing PPMGM
with X(0) randomly chosen at a certain distance of the ground truth permutation X∗.
Specifically, we select X(0) uniformly at random from the set of permutation matrices that
satisfy ∥X(0) −X∗∥F = θ′

√
n, and vary the value of θ′ ∈ [0,

√
2).

In Section 5.2 we run algorithm PPMGM with different pairs of input matrices. We con-
sider the Wigner correlated matrices A,B and also the pairs of matrices (Aspar1 , Bspar1),
(Aspar2 , Bspar2) and (Aspar3 , Bspar3), which are produced from A,B by means of a sparsi-
fication procedure (detailed in Section 5.2). The main idea behind this setting is that, to
the best of our knowledge, the best theoretical guarantees for exact graph matching have
been obtained in (Mao et al., 2023) for relatively sparse Erdős-Rényi graphs. The algorithm
proposed in (Mao et al., 2023) has two steps, the first of which is a seedless type algorithm
which produces a partially correct matching, that is later refined with a second algorithm
(Mao et al., 2023, Alg.4). Their proposed algorithm RefinedMatching shares similarities
with PPMGM and with algorithms 1-hop (Lubars and Srikant, 2018; Yu et al., 2021b) and
2-hop (Yu et al., 2021b). Formulated as it is, RefinedMatching (Mao et al., 2023) (and the
same is true for 2-hop for that matter) only accepts binary edge graphs as input and also
uses a threshold-based rounding approach instead of Algorithm 1, which might be difficult
to calibrate in practice. With this we address experimentally the fact that the analysis (and
algorithms) in (Mao et al., 2023) does not extend automatically to a simple ‘binarization’
of the (dense) Wigner matrices, and that specially in high noise regimes, the sparsification
strategies do not perform very well.

5.1 Performance of PPMGM

In Figure 2a we plot the recovery fraction, which is defined as the overlap (see (5)) be-
tween the ground truth permutation and the output of five algorithms: Grampa, Umeyama,

3. All the experiments were conducted using MATLAB R2021a (MathWorks Inc., Natick, MA). The code
is available at https://github.com/ErnestoArayaV/Graph-matching-PPMGM.

4. This algorithm is refered to as QP-DS in (Fan et al., 2023). Since algorithm ADMM is used to obtain a
solution, we opt to use the name QPADMM.

21

https://github.com/ErnestoArayaV/Graph-matching-PPMGM


Araya, Braun and Tyagi

Grampa+PPMGM, Umeyama+PPMGM and PPMGM. The algorithms Grampa+PPMGM and Umeyama+PPMGM
use the output of Grampa and Umeyama as seeds for PPMGM, which is performed with N = 5.
In the algorithm PPMGM, we use an initial permutation x(0) ∈ Sn chosen uniformly at ran-
dom in the set of permutations such that overlap (x(0), x∗) = 0.1; this is referred to as
‘PPMGM rand.init’. We take n = 800 and plot the average overlap over 25 Monte Carlo
runs. The area comprises 90% of the Monte Carlo runs (leaving out the 5% smaller and
the 5% larger). As we can see from this figure, the performance of PPMGM initialized with
a permutation with 0.1 overlap with the ground truth outperforms Grampa and Umeyama
(and also their refined versions, where PPMGM is used as a post-processing step). Over-
all, the PPMGM improves the performance of those algorithms, provided that their out-
put has a reasonably good recovery. From Fig.2a, we see that Grampa and Umeyama fail
to provide a permutation with good overlap with the ground truth for larger values of
σ (for example, at σ = 0.5 both algorithms have a recovery fraction smaller than 0.1).
In Figure 2b we plot the performance of the PPMGM algorithm for randomly chosen seeds
and with different number of correctly pre-matched vertices. More specifically, we con-
sider an initial permutation x

(0)
j ∈ Sn (corresponding to initializations X(0)

j ∈ Pn) for
j = 1, · · · , 6 with overlap(x

(0)
1 , x∗) = 0.04, overlap(x

(0)
2 , x∗) = 0.0425, overlap(x

(0)
3 , x∗) =

0.045, overlap(x
(0)
4 , x∗) = 0.05, overlap(x

(0)
5 , x∗) = 0.06 and overlap(x

(0)
6 , x∗) = 0.1. We

call these instances in.1,in.2, . . . , in.6 respectively. Equivalently, these initializations sat-
isfy ∥X(0)

j −X∗∥F = θ′j
√
n, where θ′j =

√
2
(
1− overlap(x

(0)
j , x∗)

)
. Each permutation x

(0)
j

is chosen uniformly at random in the subset of permutations that satisfy each overlap con-
dition. We observe that initializing the algorithm with an overlap of 0.1 with the ground
truth permutation already produces perfect recovery in one iteration for levels of noise as
high as σ = 0.8. Interestingly, the variance over the Monte Carlo runs diminishes as the
overlap with the ground truth increases. In Fig.2b the shaded area contains 90% of the
Monte Carlo runs, only for in.4, in.5 and in.6 (given the very high variance of the rest, we
opt not to share their 90% area for readability purposes).

In Figure 3 we illustrate the performance of PPMGM (with N = 5), when is used as a
refinement of the seedless algorithm QPADMM, which solves (12) via the alternating direction
method of multipliers (ADMM). This setting has also been considered in the numerical
experiments in (Ding et al., 2021; Fan et al., 2023). We plot the average performance over
25 Monte Carlo runs of the methods QPADMM and QPADMM+PPMGM (its refinement), and we
include the performance of Grampa and Grampa+PPMGM for comparison. As before, the shaded
area contains 90% of the Monte Carlo runs. It is clear that QPADMM+PPMGM outperforms the
rest which is a consequence of the good quality of the seed of QPADMM. The caveat is that
QPADMM takes much longer to run than Grampa. In our experiments, for n = 200, it is 2.5
times slower on average, although in (Fan et al., 2023) a larger gap is reported for n = 1000.
This shows the scalability issues of QPADMM which is not surprising considering that general
purpose convex solvers are usually much slower than first order methods.

Varying the number of iterations N . We experimentally evaluate the performance of
PPMGM when varying the number of iterations N in Algorithm 2. In Figure 4 we plot the
recovery rate of PPMGM, initialized with x(0), with an overlap of 0.1 with the ground truth.
In Fig. 4a we see that adding more iterations increases the performance of the algorithm
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(a) Performance of PPMGM as a refinement of
Grampa and Umeyama algorithms, compared
with PPM with a random initialization x(0),
such that overlap(x(0), x∗) = 0.1. The lines rep-
resent the average fraction of recovery over 25
Monte Carlo runs. The shaded area contains
90% of the Monte Carlo runs.

(b) Performance of PPMGM with different ini-
tializations. Here in.1, in.2, in.3, in.4, in.5, in.6
correspond to respective overlaps of
0.04, 0.0425, 0.045, 0.05, 0.06,0.1 of x(0) with
the ground truth. We shade the area with 90%
of Monte Carlo runs for in.4, in.5 and in.6 (for
the rest, the variance is too high).

Figure 2: We plot the performance of PPMGM (with N = 5) as a refinement (post-processing)
method of seedless graph matching algorithms, and with random initializations (uniform
on different Frobenius spheres ).

Figure 3: Performance of PPMGM (with N = 5) used as a refinement (post-processing) of
QPADMM for n = 200 and 25 Monte Carlo runs. We include the results of Grampa and its
refinement for comparison purposes.

for n = 500; however the improvement is less pronounced in the higher noise regime. In
other words, the number of iterations cannot make up for the fact that the initial seed is of
poor quality (relative to the noise level). We use N = 1, 2, 4, 8, 30 iterations and we observe
a moderate gain between N = 8 and N = 30. In Fig. 4b we use a matrix of size n = 1000
and we see that the difference between using N = 1 and N > 1 is even less pronounced (we
omit the case of 30 iterations for readability purposes, as it is very similar to N = 8). This
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(a) PPMGM with an initialization such
that overlap(x(0), x∗) = 0.1. Here
it.1, it.2, it.3, it.4, it.5 corresponds to 1, 2, 4, 8
and 30 iterations respectively.

(b) Here it.1, it.2, it.3, it.4 corresponds to 1, 2, 4
and 8 iterations respectively.

Figure 4: Comparison of the performance of PPMGM with different values of N (number of
iterations).

is in concordance with our main results, as the main quantities used by our algorithm are
getting more concentrated as n grows. In the case of one iteration, Proposition 12 says that
the probability that the diagonal elements of the gradient term AXB are the largest in their
corresponding row is increasing with n (we recall that we can assume that the ground truth
is the identity w.l.o.g), which means that the probability of obtaining exact recovery, after
the GMWM rounding, is increasing with n. This is verified experimentally here (comparing the
blue curve in Fig. 4a and Fig. 4b). An analogous reasoning follows from Lemmas 17 and 18
in the case of multiple iterations. Ultimately, when n increases, the relative performance of
PPMGM with N = 1 increases and there is less room for improvement using more iterations
(altough the improvement is still significant).

5.2 Sparsification strategies
Here we run PPMGM using different input matrices which are all transformations of the Wigner
correlated matrices A,B. Specifically, we compare PPMGM (with N = 5) with A,B as input
with the application of PPMGM to three different pairs of input matrices (Aspar1 , Bspar1),
(Aspar2 , Bspar2) and (Aspar3 , Bspar3) that are defined as follows.

A
spar1
ij = 1|Aij |<τ ; B

spar1
ij = 1|Bij |<τ ,

A
spar2
ij = Aij1|Aij |<τ ; B

spar2
ij = Bij1|Bij |<τ ,

A
spar3
ij = Aij1|Aij |∈topk(Ai:); B

spar2
ij = Bij1|Bij |∈topk(Bi:),

where τ > 0 and for k ∈ N and a n × n matrix M , topk(Mi:) is the set of the k largest
elements (breaking ties arbitrarily) of Mi: (the i-th row of M). The choice of the parameter
τ is mainly determined by the sparsity assumptions in (Mao et al., 2023, Thm.B), i.e., if
G,H are two CER graphs to be matched with connection probability p (which is equal to
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qs in the definition (1)), then the assumption is that

(1 + ϵ)
log n

n
≤ p ≤ n

1
R log log n

−1 (13)

where ϵ > 0 is arbitrary and R is an absolute constant. We refer the reader to (Mao et al.,
2023) for details. For each p in the range defined by (13) we solve the equation

P(|Aij | ≤ τp) = 2Φ(−τp
√
n) = p (14)

where Φ is the standard Gaussian cdf (which is bijective so τp is well defined). In our
experiments, we solve (14) numerically. Notice that Aspar1 and Bspar1 are sparse CER
graphs with a correlation that depends on σ. For the value of k that defines Aspar3 , Bspar3

we choose k = Ω(log n) or k = Ω(no(1)), to maintain the sparsity degree in (13). In Figure
5 we plot the performance comparison between the PPMGM without sparsification, and the
different sparsification strategies. We see in Figs. 5a and 5b (initialized with overlap 0.5
and 0.1) that the use of the full information A,B outperforms the sparser versions in the
higher noise regimes and for when the overlap of the initial permutation is small. On the
other hand, the performance tends to be more similar for low levels of noise and moderately
large number of correct initial seeds. In theory, sparsification strategies have a moderate
denoising effect (and might considerably speed up computations), but this process seems to
destroy important correlation information.

(a) Initial overlap is equal to 0.5 (b) Initial overlap is equal to 0.1

Figure 5: Comparison between PPMGM (with N = 5) with and without sparsification. Here
thr.1 corresponds to the pair of matrices (Aspar1 , Bspar1), thr.2 corresponds to the pair
(Aspar2 , Bspar2) and top k corresponds to (Aspar3 , Bspar3)

5.2.1 Choice of the sparsification parameter τ

Solving (14) for p in the range (13) we obtain a range of possible values for the sparsification
parameter τ . To choose between them, we use a simple grid search where we evaluate the
recovery rate for each sparsification parameter on graphs of size n = 1000, and take the
mean over 25 independent Monte Carlo runs. In Fig. 6, we plot a heatmap with the results.
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We see that the best performing parameter in this experiment was for τ5 corresponding to
a probability p5 = 51× 10−3, although there is a moderate change between all the choices
for p.

Figure 6: Heatmap for the recovery rate of PPMGM algorithm with input (Aspar1 , Bspar1) for
different threshold values τi(y axis); i = 1, · · · , 6, and different values of σ (x axis). Here
τi corresponds to the solution of (14) with n = 1000 and pi for i = 1, 2 · · · , 6 in a uniform
grid between p1 = 42× 10−3 and p6 = 54× 10−3.

5.3 Real data
We evaluate the performance of PPMGM for the task of matching 3D deformable objects,
which is fundamental in the field of computer vision. We use the SHREC’16 dataset (Lähner
et al., 2016) which contains 25 shapes of kids (that can be regarded as perturbations of a
single reference shape) in both high and low-resolution, together with the ground truth
assignment between different pairs of shapes. Each image is represented by a triangulation
(a triangulated mesh graph) which is converted to a weighted graph by standard image
processing methods (Peyré, 2008). More specifically, each vertex corresponds to a point in
the image (its triangulation) and the edge weights are given by the distance between the
vertices. We use the low-resolution dataset in which each image is codified by a graph whose
size varies from 8608 to 11413 vertices and where the average number of edges is around
0.05% (high degree of sparsity). The main objective in this section is to show experimental
evidence that PPMGM improves the quality of a matching given by a seedless algorithm, and
for that, the pipeline is as follows.

1. We first make the input graphs of the same size by erasing, uniformly at random, the
vertices of the larger graph.

2. We run Grampa algorithm to obtain a matching.

3. We use the output of Grampa as the initial point for PPMGM.

We present an example of the results in Figure 7 where we choose two images and find
a matching between them following the above steps. We choose these two images based on
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the fact that the sizes of the graphs that represent them are the most similar in the whole
dataset (11265 and 11267 vertices). We can see visually that the final matching obtained
by PPMGM maps mostly similar parts of the body in the two shapes.

(a) (b) (c)

Figure 7: Visual representation of the performance of PPMGM (with 100 iterations), improving
the results of Grampa algorithm. Fig. 7a is the reference shape (graph A) where different
colours are assigned to different parts of the body. Fig. 7b is the second shape (graph B)
where the colours are assigned according to the matching given by Grampa algorithm; the
accuracy is around 27%. Fig. 7c shows the results of PPMGM, taking as the initial point the
output of Grampa in Fig. 7b. The accuracy is improved to around 57%.

Following the experimental setting in (Yu et al., 2021b), we evaluate the performance
of PPMGM using the Princeton benchmark protocol (Kim et al., 2011). Here we take all
the pairs of shapes in the SHREC’16 dataset and apply the steps 1 to 3, of the pipeline
described above, to them. Given graphs A and B (corresponding to two different shapes)
we compute the normalized geodesic error as follows. For each node i in the shape A, we
compute dB(π̂ppm(i), π∗(i)), where π̂ is the output of PPMGM, π∗ is the ground truth matching
between A and B and dB is the geodesic distance on B (computed as the weighted shortest
path distance using the triangulation representation of the image (Peyré, 2008)). We then
define the normalized error as εppm(i) := dB(π̂ppm(i), π

∗(i))/
√

Area(B), where Area(B) is
the surface area of B (again computed using the triangulation representation). Then the
cumulative distribution function (CDF) is defined as follows.

CDFppm(ϵ) =

nA∑
i=1

1εppm(i)≤ϵ,

where nA is the number of nodes of A.
In Figure 8 we compare CDFppm with CDFgrampa, which is defined in an analogous

way by using εgrampa(i) := dB(π̂grampa(i), π
∗(i))/

√
Area(B) instead of εppm (here π̂grampa is

output of Grampa). We observe that the performance increases overall for all the values of
ϵ ∈ [0, 1]. In particular, the average percentage of nodes correctly matched (corresponding
to ϵ = 0) increases from less than 15% in the Grampa baseline to more than 50% with PPMGM.
Compared to the results in (Yu et al., 2021b), the performance of PPMGM is similar to their
1-hop algorithm (although here we used the weighted adjacency matrix). The performance
of PPMGM is slightly worse than what they reported for the 2-hop algorithm. Regarding the
latter, it is worth noting that, although the iterated application of their 2-hop algorithm
performs well in their experiments, no theoretical guarantees are provided beyond the case
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Figure 8: Average performance of PPMGM algorithm, with N = 30 and N = 100 iterations,
when used to boost the performance of Grampa algorithm. The average is over all pairs of
graphs (shapes) of the SHREC’16 database.

of one iteration. It is possible that our analysis can be extended to the case of multiple
iterations of the 2−hop algorithm, but this is beyond the scope of the present paper.

6. Concluding remarks

In this work, we analysed the performance of the projected power method (proposed in
(Onaran and Villar, 2017)) as a seeded graph matching algorithm, in the correlated Wigner
model. We proved that for a non-data dependent seed with O(

√
n log n) correctly pre-

assigned vertices, the PPM exactly recovers the ground truth matching in one iteration.
This is analogous to the state-of-the-art results for algorithms in the case of relatively
sparse correlated Erdős-Rényi graphs. We additionally proved that the PPM can exactly
recover the optimal matching in O(log n) iterations for a seed that contains Ω

(
(1 − κ)n

)
correctly matched vertices, for a constant κ ∈ (0, 1), even if the seed can potentially be
dependent on the data. For the latter result, we extended the arguments of (Mao et al.,
2023) from the (sparse) CER model to the (dense) CGW case, providing a uniform control
on the error when the seed contains Ω

(
(1 − κ)n

)
fixed points. This provides theoretical

guarantees for the use of PPM as a refinement algorithm (or a post-processing step) for
other seedless graph matching methods.

An open question is to find an efficient initialization method which outputs a permu-
tation with order (1 − κ)n correctly matched vertices in regimes with higher σ (say for
σ > 1/2). For those noise levels, spectral methods do not seem to perform well (at least
in the experiments). An idea could be to adapt the results (Mao et al., 2023) from the
sparse CER case to the CGW case. In that paper, the authors construct for each vertex a
signature containing the neighborhood information of that vertex and which is encoded as
tree. Then a matching is constructed by matching those trees. It is however unclear how
to adapt those results (which heavily rely on the sparsity) to the CGW setting.
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Appendix A. Proof of Proposition 12
We divide the proof into two subsections. In Appendix A.1 we prove Lemma 14 and in
Appendix A.2 we prove part (ii) of Proposition 12. Before proceeding, let us introduce and
recall some notation. Define C ′ := AXA and C ′′ := AXZ, then C = AXB =

√
1− σ2C ′ +

σC ′′. Recall that for a permutation x, SX will denote the set of fixed points of x (the
set of non-zero diagonal terms of its matrix representation X) and we will often write
sx = |SX |/n = Tr(X)/n. We will say that a real random variable Y ∼ χ2

K if it follows a
central Chi-squared distribution with K degrees of freedom.

A.1 Proof of Lemma 14
The proof of Lemma 14 mainly revolves around the use of concentration inequalities for
quadratic forms of Gaussian random vectors. For that, it will be useful to use the following
representation of the entries of C.

Cij = ⟨A:i, XA:j⟩ (15)

where we recall that A:k represents the k-th column of the matrix A.
Proof [Proof of Lemma 14]

High probability bound for Cii. Define ãi to be a vector in Rn such that

ãi(k) =

{
Aki, for k /∈ i, x−1(i),
1√
2
Aii, for k ∈ i, x−1(i).

Using representation (15) we have

Cii = ⟨ãi, Xãi⟩+ Zi

where
Zi :=

1

2
Aii
(
Ax(i)i) +Ax−1(i)i

)
.

It is easy to see that
√
nãi is a standard Gaussian vector. Using Lemma 26 we obtain

n⟨ãi, Xãi⟩
d
=

n1∑
i=1

µig
2
i −

n2∑
i=1

νig
′2
i

where (µi)
n1
i=1, (−νi)

n2
i=1, (with µi ≥ 0, νi ≥ 0 and n1+n2 = n) is the sequence of eigenvalues

of 1
2(X + XT ) and g = (g1, · · · , gn1), g′ = (g′1, · · · , g′n2

) are two independent sets of i.i.d
standard Gaussians. Lemma 26 tell us in addition that ∥µ∥1 − ∥ν∥1 = sxn, ∥µ∥2 + ∥ν∥2 ≤√
2n and ∥µ∥∞, ∥ν∥∞ ≤ 1. Using Corollary 25 (25), we obtain

P(n⟨ãi, Xãi⟩ ≤ sxn− 2
√
2nt− 2t) ≤ e−t (16)
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for all t ≥ 0. To obtain a concentration bound for Zi we will distinguish two cases.
(a)Case i ∈ SX . In this case, we have Zi = a2i (i), which implies that Cii ≥ ⟨ãi, Xãi⟩. Hence

P(nCii ≤ sxn− 2
√
2nt− 2t) ≤ 2e−t.

Replacing t = t := n
2 (
√
1 + sx

2 −1)
2 in the previous expression, one can verify5 that t ≥ n

48s
2
x,

for sx ∈ (0, 1], hence
P(Cii ≤ sx/2) ≤ 2e−

s2x
48
n

which proves (8) in this case.
(b) Case i /∈ SX . Notice that in this case, ai(i) is independent from (ai(x(i)) + ai(x

−1(i)),
hence nZi

d
= g1g2, where g1, g2 are independent standard Gaussians. Using the polarization

identity g1g2 = 1
4(g1 + g2)

2 − 1
4(g1 − g2)

2, we obtain

nZi
d
=

1

2
(g̃21 − g̃22)

where g̃1, g̃2 are independent standard Gaussians. By Corollary 25 we have

P
(
2nZi ≤ −4

√
t− 2t

)
≤ 2e−t. (17)

Using (16) and (17), we get

P(nCii ≤ sxn− 2(
√
2n+ 1)

√
t− 3t) ≤ 4e−t

or, equivalently

P

(
Cii ≤ sx − 2(

√
2 + 1/

√
n)

√
t

n
− 3

t

n

)
≤ 4e−t. (18)

Replacing t = t := n
36

(√
d2 + 6sx−d

)2, where d = 2(
√
2+1/

√
n), in the previous expression

and noticing that t ≥ 1
6s

2
xn, we obtain the bound

P(Cii ≤ sx/2) ≤ 4e−
s2x
6
n.

High probability bound for Cij, i ̸= j. Let us first define the vectors ãi, ãj ∈ Rn as

ãi(k) :=

{
Aki, for k /∈ {j, x−1(i)},
0, for k ∈ {j, x−1(i)},

and

ãj(k) :=

{
Akj , for k /∈ {j, x−1(i)},
0, for k ∈ {j, x−1(i)}.

Contrary to ai and aj which share a coordinate, the vectors ãi and ãj are independent.
With this notation, we have the following decomposition

Cij = ⟨ãi, Xãj⟩+Aji

(
Ax(j)j +Ax−1(i)i

)
.

5. Indeed, the inequality (
√
1 + x−1)2 ≥ 1

6
x2, follows from the inequality x2+(2

√
6−6)x ≤ 0, which holds

for 0 < x ≤ 1.
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For the first term, we will use the following polarization identity

⟨ãi, Xãj⟩ = ∥
1

2
(ãi +Xãj)∥2 − ∥

1

2
(ãi −Xãj)∥2. (19)

By the independence of ãi and ãj , it is easy to see that ãi + Xãj and ãi − Xãj are
independent Gaussian vectors and E[⟨ãi, Xãj⟩] = 0. Using (19) and defining Zij :=

Aji

(
Ax(j)j +Ax−1(i)i

)
n, it is easy to see that

nCij
d
=

n−1∑
i=1

µig
2
i −

n−1∑
i=1

νig
′2
i + Zij (20)

where g1, · · · , gn−1 and g′1, · · · , g′n−1 are two sets of independent standard Gaussian variables
and µi, νi ∈ {12 ,

3
4 , 1}, for i ∈ [n − 1]. The sequences (µi)

n−1
i=1 , (νi)

n−1
i=1 will be characterised

below, when we divide the analysis into two cases x(j) = i and x(j) ̸= i. We first state the
following claim about Zij .

Claim 2 For i ̸= j, we have

Zij
d
=

{
qij(ζ1 − ζ2) if x(j) ̸= i,

2ζ3 if x(j) = i,

where ζ1, ζ2 and ζ3 are independent Chi-squared random variables with one degree of freedom
and

qij =


√

3
2 if i ∈ SX , j /∈ SX or i /∈ SX , j ∈ SX ,√
2 if i, j ∈ SX ,

1√
2

if i, j /∈ SX .

We delay the proof of this claim until the end of this section. From the expression (20), we
deduce that the vectors g = (g1, · · · , gn−1), g′ = (g′1, · · · , g′n−1) and Zij are independent.
Hence, by Claim 2 the following decomposition holds

nCij
d
=

n∑
i=1

µig
2
i −

n∑
i=1

νig
′2
i

where

µn =

{
qij if x(j) ̸= i,

2 if x(j) = i,
and νn =

{
qij if x(j) ̸= i,

0 if x(j) = i.

Let us define µ := (µ1, · · · , µn) and ν := (ν1, · · · , νn). We will now distinguish two cases.
(a) Case x(j) ̸= i. In this case, we can verify that one of the µ1, · · · , µn−1 is equal to 0
(and the same is true for the values ν1, · · · , νn−1). Assume without loss of generality that
µ1 = ν1 = 0. Also, one of the following situations must happen for the sequence µ2, · · · , µn−1

(resp. ν2, · · · , νn−1): either n− 3 of the elements of the sequence are equal to 1
2 and one is
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equal 1 or n − 4 are equal to 1
2 and two are equal to 3

4 or n − 3 are equal to 1
2 and one is

equal to 3
4 . In either of those cases, the following is verified

∥µ∥1 − ∥ν∥1 = 0,

∥µ∥2 + ∥ν∥2 ≤
√
2n,

∥µ∥∞, ∥ν∥∞ ≤
√
2,

where the first equality comes from Lemma 13, the inequality on the norm ∥ ·∥2 comes from
the fact that in the worst case ∥µ∥2 = ∥ν∥2 ≤

√
n+1
4 . The statement about the norm ∥ · ∥∞

can be easily seen by the definition of µ and ν. Using (24), we obtain

P(nCij ≥ 4
√
nt+ 4t) ≤ 2e−t.

Replacing t = t := n
4 (
√
1 + sx

2 − 1)2 in the previous expression and noticing that t ≥ 1
96s

2
xn

for sx ∈ (0, 1] leads to the bound

P(Cij ≥ sx/2) ≤ 2e−
s2x
96
n.

(b) Case x(j) = i. In this case, we have that for the sequence µ1, · · · , µn−1 (resp. ν1, · · · , νn−1):
either n− 2 of the elements of the sequence are equal to 1

2 and one is equal 1 or n− 3 are
equal to 1

2 and two are equal to 3
4 . In either case, the following holds

∥µ∥1 − ∥ν∥1 = 2,

∥µ∥2 + ∥ν∥2 ≤ 2
√
n,

∥µ∥∞, ∥ν∥∞ ≤ 2.

Here, the inequalities for the norms ∥ · ∥1, ∥ · ∥∞ follow directly from the definition of µ and
ν, and the inequality for ∥ · ∥2 follows by the fact that, in the worst case, ∥µ∥2 + ∥ν∥2 =√

n+6
4 +

√
n+2
4 . Using (24), we get

P(nCij ≥ 2 + 4
√
nt+ 4t) ≤ 2e−t.

Replacing t = t := n
4 (
√
1 + sx

2 −
2
n − 1)2 in the previous expression and noticing that

t ≥ 1
20s

2
xn for sx ∈ (10/n, 1] we get

P(Cij ≥ sx/2) ≤ 2e−
s2x
20

+4/n ≤ 3e−
s2x
20 ,

where we used that n ≥ 10.

Proof [Proof of Claim 2] Observe that when x(j) = i (or equivalently x−1(i) = j) we have
Zij = 2nA2

ij . Given that i ̸= j by assumption, it holds A2
ij ∼ N (0, 1n), which implies that

Zij
d
= 2ζ3 for ζ3 ∼ χ2

1. In the case x(j) ̸= i, let us define

ψ1 :=
√
nAij , ψ2 :=

√
nAjx(j), ψ3 :=

√
nAix−1(i),
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which are all independent Gaussians random variables. Moreover, ψ1 ∼ N (0, 1) and

ψ2 + ψ3 ∼


N (0, 2) if i, j /∈ SX ,
N (0, 3) if i ∈ SX , j /∈ SX or i /∈ SX , j ∈ SX ,
N (0, 4) if i, j ∈ SX .

Consider the case i, j /∈ SX . In this case, it holds

Zij =
√
2ψ1

(ψ2 + ψ3√
2

)
=

1√
2

( ψ1√
2
+
ψ2 + ψ3

2

)2
− 1√

2

( ψ1√
2
− ψ2 + ψ3

2

)2
.

Notice that ψ1√
2
+ ψ2+ψ3

2 and ψ1√
2
− ψ2+ψ3

2 are independent standard normal random variables,

hence Zij
d
= 1√

2
(ζ1 − ζ2), where ζ1 and ζ2 are independent χ2

1 random variables. The proof
for the other cases is analogous.

A.2 Proof of Proposition 12 part (ii)

Now we consider the case where σ ̸= 0. It is easy to see that here the analysis of the
noiseless case still applies (up to re-scaling by

√
1− σ2) for the matrix C ′ = AXA. We can

proceed in an analogous way for the matrix C ′′ = AXZ which will complete the analysis
(recalling that C =

√
1− σ2C ′ + σC ′′).

Before we proceed with the proof, we explain how the tail analysis of entries of C ′ in
Prop.12 part (i) helps us with the tail analysis of C ′′. Observe that for each i, j ∈ [n] we
have

C ′′
ij =

∑
k,k′

AikXk,k′Zk′,j =
n∑
k=1

AikZx(k)j = ⟨A:i, XZ:j⟩.

The term C ′′
ij , for all i, j ∈ [n], can be controlled similarly to the term C ′

i′j′ (when i′ ̸= j′).
Indeed, we have the following

Lemma 22 For t ≥ 0 we have

P(C ′′
ij ≤ −4

√
nt− 2t

)
= P(C ′′

ij ≥ 4
√
nt+ 2t

)
≤ 2e−t.

Consequently,
P(C ′′

ij ≥ sx/2) ≤ 2e−
s2x
96
n.

Proof We define h1 := 1
2(A:i +XZ:j) and h2 := 1

2(A:i −XZ:j). It is easy to see that h1
and h2 are two i.i.d Gaussian vectors of dimension n. By the polarization identity, we have

n⟨A:i, XZ:j⟩ = n(∥h1∥2 − ∥h2∥2)
d
=

n∑
i=1

µig
2
i −

n∑
i=1

νig
′2
i

where g = (g1, · · · , gn) and g′ = (g′1, · · · , g′n) are independent standard Gaussian vectors
and the vectors µ = (µ1, · · · , µn), ν = (ν1, · · · , νn) have positive entries that satisfy, for all
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i ∈ [n], µi, νi ∈ { 1√
2
,
√

3
4 , 1}. For µi (and the same is true for νi) the following two cases can

happen: either n − 1 of its entries are 1/
√
2 and one entry takes the value 1 (when i = j)

or n− 2 of its entries are 1/
√
2 and two entries take the value

√
3/4 (when i ̸= j). In any

of those cases, one can readily see that

∥µ∥1 = ∥ν∥1, ∥µ∥2 + ∥ν∥2 ≤
√
n, ∥µ∥∞, ∥ν∥∞ ≤ 1.

Using Corollary 25 we obtain

P
(
n(∥h1∥2 − ∥h2∥2) ≥ 4

√
nt+ 2t

)
≤ 2e−t,

P
(
n(∥h1∥2 − ∥h2∥2) ≤ −4

√
nt− 2t

)
≤ 2e−t.

Arguing as in the proof of Proposition 12 part (i) we obtain the bound

P(C ′′
ij ≥ sx/2) ≤ 2e−

s2x
96
n.

Now we introduce some definitions that will be used in the proof. We define sσ,x :=
1
2

√
1− σ2sx, and for δ > 0, i, j ∈ [n], we define the following events

E iδ := {
√

1− σ2C ′
ii ≤ sσ,x + δ} ∪ {σC ′′

ii ≤ −δ},

E ij := {
√

1− σ2C ′
ij ≥ sσ,x/2} ∪ {σC ′′

ij ≥ sσ,x/2} , for i ̸= j.

One can easily verify that {Cii ≤ sσ,x} ⊂ E iδ, hence it suffices to control the probability of
E iδ. For that we use the union bound and the already established bounds in Lemmas 14 and
22. To attack the off-diagonal case, we observe that the following holds {Cij ≥ sσ,x} ⊂ E ij .
The following lemma allows us to bound the probability of the events E iδ and E ij .

Lemma 23 Let δ be such that 0 ≤ δ ≤ sx
2

√
1− σ2. Then for i, j ∈ [n] with i ̸= j have the

following bounds

P(E iδ) ≤ 4e
− 1

96
( sx

2
− δ√

1−σ2
)2n

+ 2e−
1
96

( δ
σ
)2n (21)

P(E ij) ≤ 4e−
1

384
s2x(

1−σ2

σ2 ∧1)n. (22)

In particular, we have

P(E iδσ,x) ≤ 6e
− 1

384
s2x(

1−σ2

1+2σ
√

1−σ2
)n

(23)

where δσ,x = σ
√
1−σ2

σ+
√
1−σ2

sx
2 .

Proof Using (18), we have that

P
(√

1− σ2Cii ≤
√

1− σ2
(
sx − 2(

√
2 + 1/

√
n)

√
t

n
− 3

t

n

))
≤ 4e−t.
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Replacing t = t := n
36

(√
d2 + 6sx − 12δ√

1−σ2
− d

)2 in the previous expression, where d =

2(
√
2+1/

√
n), and observing that t ≥ 1

6(
sx
2 −

δ√
1−σ2

)2, which is valid for 0 ≤ δ ≤ sx
2

√
1− σ2,

we obtain
P
(√

1− σ2C ′
ii ≤ sσ,x + δ

)
≤ 4e

− 1
6
( sx

2
− δ√

1−σ2
)2n
.

Using this and Lemma 22 we have

P(E iδ) ≤ P(
√

1− σ2C ′
ii ≤ sσ,x + δ) + P(σC ′′

ii ≤ −δ)

≤ 4e
− 1

6
( sx

2
− δ√

1−σ2
)2n

+ 2e−
1
96

( δ
σ
)2n.

Similarly, to prove (22) we verify that

P(E ij) ≤ P(C ′
ij ≥

sx
4
) + P(C ′′

ij ≥
√
1− σ2
σ

sx
4
)

≤ 2e−
1

384
s2xn + 2e−

1
384

s2x(
1−σ2

σ2 )n

≤ 4e−
1

384
s2x(

1−σ2

σ2 ∧1)n.

To prove (23) it suffices to use (21) with the choice of δ = δσ,x = σ
√
1−σ2

σ+
√
1−σ2

sx
2 .

With this we prove the diagonal dominance for each fixed row of C.
Proof [Proof of Prop. 12 part (ii)] Define Ẽj := {Cii ≤ sσ,x} ∪ {Cij ≥ sσ,x}, which clearly
satisfies {Cii ≤ Cij} ⊂ Ẽj . Then by the union bound,

P(∪j ̸=iẼj) ≤ P(Cii ≤ sσ,x) +
∑
j ̸=i

P(Cij ≥ sσ,x)

≤ P(E iδσ,x) +
∑
j ̸=i

P(E ij)

≤ 6e
− 1

384
s2x(

1−σ2

1+2σ
√

1−σ2
)n

+ 4(n− 1)e−
1

384
s2x(

1−σ2

σ2 ∧1)n

≤ 5ne
− 1

384
s2x(

1−σ2

1+2σ
√

1−σ2
)n

where in the third inequality we used Lemma 23, and in the last inequality we used the fact
that 1−σ2

σ2 ∧ 1 ≥ 1−σ2

1+2σ
√
1−σ2

.

Appendix B. Proof of Lemma 15
The proof of Lemma 15 uses elements of the proof of Proposition 12. The interested reader
is invited to read the proof of Proposition 12 first.
Proof [Proof of Lemma 15] It will be useful to first generalize our notation. For that, we
denote

Cij,x = (AXB)ij , C
′
ij,x = (AXA)ij , C

′′
ij,x = (AXZ)ij
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for x ∈ Sn, and

E ij
x−1 := {

√
1− σ2C ′

ij,x−1 ≥ sσ,x/2} ∪ {σC ′′
ij,x−1 ≥ sσ,x/2}

where x−1 is the inverse permutation of x. The fact that P(Cii,x < Cij,x) ≤ 8e−c(σ)s
2
xn

follows directly from the bound for Ẽj derived in the proof of Proposition 12 part (ii). To
prove P(Cii,x < Cji,x) notice that C ′

ji,x = C ′
ij,x−1 and that C ′′

ji,x
d
= C ′′

ij,x−1 . On the other
hand, notice that sx = sx−1 (hence sσ,x = sσ,x−1). Arguing as in Lemma 23 it is easy to see
that

P(Cii,x < Cji,x) ≤ 8e−c(σ)s
2
xn.

The bound on P(∃j, s.t Cij,x ∨ Cji,x > Cii,x) then follows directly by the union bound.

Appendix C. Proofs of Lemmas 4 and 7
Proof [Proof of Lemma 4] By assumption C is diagonally dominant, which implies that
∃i1 such that Ci1i1 = maxi,j Cij (in other words, if the largest entry of C is in the i1-th
row, then it has to be Ci1i1 , otherwise it would contradict the diagonal dominance of C).
In the first step of GMWM we select Ci1i1 , assign π(i1) = i1 and erase the i1-th row and
column of C. By erasing the i1-th row and column of C we obtain a matrix which is itself
diagonally dominant. So by iterating this argument we see ∃ i1, · · · , in ⊂ [n] such that
π(ik) = ik, for all k, so π has to be the identical permutation. This proves that if C is
diagonally dominant, then Π = Id. By using the contrareciprocal, (4) follows.

Proof [Proof of Lemma 7]
We argue by contradiction. Assume that for some 1 ≤ k ≤ r, we have π(ik) ̸= ik (and

π−1(ik) ̸= ik). This means that at some some step j the algorithm selects either C(j)
ikπ(ik)

or C(j)
π−1(ik)π(ik)

as the largest entry, but this contradicts the row-column dominance of ik.
This proves that that if there exists a set of indices Ir ⊂ [n] of size r such that for all i ∈ Ir,
Cii is row-column dominant, then that set is selected by the algorithm, which implies that
π(i) = i for i ∈ Ir, thus overlap(π, id) ≥ r. (6) follows by the contrareciprocal.

Appendix D. Additional technical lemmas
Here we gather some technical lemmas used throughout the paper.

D.1 General concentration inequalities

The following lemma corresponds to (Laurent and Massart, 2000, Lemma 1.1) and controls
the tails of the weighted sums of squares of Gaussian random variables.
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Lemma 24 (Laurent-Massart bound) Let X1, · · · , Xn be i.i.d standard Gaussian ran-
dom variables. Let µ = (µ1, · · · , µn) be a vector with non-negative entries and define
ζ =

∑n
i=1 µi(X

2
i − 1). Then it holds for all t ≥ 0 that

P(ζ ≥ 2∥µ∥2
√
t+ 2∥µ∥∞t) ≤ e−t

P(ζ ≤ −2∥µ∥2
√
t) ≤ e−t

An immediate corollary now follows.

Corollary 25 Let X1, · · · , Xn1 and Y1, · · · , Yn2 be two independent sets of i.i.d standard
Gaussian random variables. Let µ = (µ1, · · · , µn1) and ν = (ν1, · · · , νn2) be two vectors
with non-negative entries. Define ζ =

∑n1
i=1 µiX

2
i and ξ =

∑n2
i=1 νiY

2
i . Then it holds for

t ≥ 0 that

P
(
ζ − ξ ≥ ∥µ∥1 − ∥ν∥1 + 2(∥µ∥2 + ∥ν∥2)

√
t+ 2∥µ∥∞t

)
≤ 2e−t, (24)

P
(
ζ − ξ ≤ ∥µ∥1 − ∥ν∥1 − 2(∥µ∥2 + ∥ν∥2)

√
t− 2∥ν∥∞t

)
≤ 2e−t. (25)

The next lemma give us a distributional equality for terms of the form ⟨g,Xg⟩ where g
is a standard Gaussian vector and X is a permutation matrix.

Lemma 26 Let X ∈ Pn and g = (g1, · · · , gn) be a standard Gaussian vector. Then is holds

⟨g,Xg⟩ d=
n∑
i=1

λig
′2
i ,

where λi are the eigenvalues of 1
2(X +XT ) and g′ = (g1, · · · , gn) is a vector of independent

standard Gaussians. Moreover, if |SX | = sxn for sx ∈ (0, 1], µ ∈ Rn1 is a vector containing
the positive eigenvalues of 1

2(X + XT ), and −ν ∈ Rn2 is a vector containing the negative
eigenvalues of 1

2(X +XT ), then

∥µ∥1 − ∥ν∥1 = sxn,
√
n ≤ ∥µ∥2 + ∥ν∥2 ≤

√
2n,

∥µ∥∞, ∥ν∥∞ ≤ 1.

Proof Notice that ⟨g,Xg⟩ = ⟨g, 12(X + XT )g⟩ and given the symmetry of the matrix
1
2(X +XT ) all its eigenvalues are real. Take its SVD decomposition 1

2(X +XT ) = V ΛV T .
We have that

⟨g, 1
2
(X +XT )g⟩ = (V T g)TΛV T g

d
=

n∑
i=1

λig
′2
i

using the rotation invariance of the standard Gaussian vectors. Notice that

|SX | = Tr(X) = Tr

(
1

2
(X +XT )

)
=

n∑
i=1

λi
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which leads to
∥µ∥1 − ∥ν∥1 =

n∑
i=1

λi = |SX | = sxn.

The fact that ∥µ∥∞, ∥ν∥∞ ≤ 1 follows easily since X is a unitary matrix. The inequality
∥µ∥2 + ∥ν∥2 ≥

√
n follows from the fact that ∥µ∥22 + ∥ν∥22 = n. From the latter, we deduce

that ∥µ∥2 + ∥ν∥2 ≤
√
∥µ∥22 +

√
n− ∥µ∥22 ≤ 2

√
n
2 , and the result follows.

D.2 Concentration inequalities used in Theorem 9
In this section we provide proofs of Lemma’s 17 and 18 used to prove Theorem 9.
Proof [Proof of Lemma’s 17 and 18.] Recall that Bij =

√
1− σ2Aij + σZij .

Step 1. First let us consider the terms of the form ⟨Ai:, Ai:⟩. We can write

⟨Ai:, Ai:⟩ =
n−1∑
i=1

µig
2
i

where gi are independent standard Gaussian random variables and µi = 1/n for all i.
Observe that ||µ||2 =

√
n−1
n2 . By Lemma 24 we have for i ∈ [n] and all t > 0

P

(
⟨Ai:, Ai:⟩ ≤

n− 1

n
− 2

√
t(n− 1)

n2

)
≤ e−t.

For the choice t = 5 log n we obtain

⟨Ai:, Ai:⟩ ≥ 1−O

(√
log n

n

)

with probability at least 1− e−5 logn.

Step 2. Let us consider now terms of the form ⟨Ai:, Zi:⟩. We can write

⟨Ai:, Zi:⟩ =
1

n

n−1∑
i=1

(gig
′
i) =

1

n
G⊤G′

where G = (gi)
n−1
i=1 and G′ = (g′i)

n−1
i=1 are i.i.d. standard Gaussian random variables. We

can write

G⊤G′ = ∥G∥

((
G

∥G∥

)⊤
G′

)
.

Since G′ is invariant by rotation ( G
∥G∥)

⊤G′ is independent from G and has distribution
N (0, 1). By Gaussian concentration inequality we hence have(

G

∥G∥

)⊤
G′ ≤ C

√
log n
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with probability at least 1− e−5 logn for a suitable choice of C. Similarly, by Lemma 24 we
have

∥G∥ ≤ 2
√
n

with probability at least 1− e−5 logn. Hence with probability at least 1− 2e−5 logn we have

1

n
G⊤G′ ≤ 2C

√
log n

n
.

Step 3. The same argument can be used to show that for i ̸= j

P

(
⟨Ai:, Aj:⟩ ≥ C

√
log n

n

)
≤ e−5 logn.

Conclusion. We can conclude by using the identity Bij =
√
1− σ2Aij + σZij and taking

the union bound over all indices i ̸= j.
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