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Abstract

Because of the widespread use of black box prediction methods such as random forests
and neural nets, there is renewed interest in developing methods for quantifying variable
importance as part of the broader goal of interpretable prediction. A popular approach is
to define a variable importance parameter — known as LOCO (Leave Out COvariates) —
based on dropping covariates from a regression model. This is essentially a nonparametric
version of R2. This parameter is very general and can be estimated nonparametrically, but
it can be hard to interpret because it is affected by correlation between covariates. We
propose a method for mitigating the effect of correlation by defining a modified version of
LOCO. This new parameter is difficult to estimate nonparametrically, but we show how to
estimate it using semiparametric models.
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1 Introduction

Due to the increasing popularity of black box prediction methods like random forests and
neural nets, there has been renewed interest in the problem of quantifying variable impor-
tance in regression. Consider predicting Y ∈ R from covariates (X,Z) where X ∈ Rg and
Z ∈ Rh. We have separated the covariates into X and Z where X represents the covariates
whose importance we wish to assess. In what follows, we let U = (X,Z, Y ) denote all the
variables. Define µ(x, z) = E[Y |X = x, Z = z] so that

Y = µ(X,Z) + ε

where E[ε|X,Z] = 0.
A popular measure of the importance of X is

ψL = E[(µ(Z)− µ(X,Z))2] = E[(Y − µ(Z))2]− E[(Y − µ(X,Z))2]. (1)

where µ(Z) = E[Y |Z = z]. Up to scaling, ψL is a nonparametric version of the usual R2 from
standard regression. This was called LOCO (Leave Out COvariates) in Lei et al. (2018)
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and Rinaldo et al. (2019) and has been further studied recently in Williamson et al. (2021),
Williamson et al. (2020) and Zhang and Janson (2020). The parameter ψL is appealing
because it is very general and easy to interpret. But it suffers from some problems. In
particular, the value of ψL depends on the correlation between X and Z. When X and
Z are highly correlated, ψ will be near 0 since removing X has little effect. In some
applications, this might be undesirable as it obscures interpretability. We refer to this
problem as correlation distortion. Another, more technical problem with LOCO, is its
quadratic nature which causes some issues when constructing confidence intervals.

In this paper, we define a modified version of ψL denoted by ψ0 that is invariant to the
correlation between X and Z. There is a tradeoff: the modified parameter ψ0 is free from
correlation distortion but it is more difficult to estimate than ψL. In a sense, we remove the
correlation from the estimand at the expense of larger confidence intervals. This is similar
to estimating a coefficient in a linear regression where the value of the regression coefficient
does not depend on the correlation between X and Z while the width of the confidence
interval does. To reduce the difficulties in estimating ψ0, we approximate µ(x, z) with the
semiparametric model µ(x, z) = β(z)Tx+ f(z).

Related Work. Assessing variable importance is an active area of research. Recent
papers on LOCO include Lei et al. (2018); Rinaldo et al. (2019); Williamson et al. (2021,
2020); Zhang and Janson (2020). Another approach is to use derivatives of the regression
function as suggested in Samarov (1993), and has received renewed attention in the machine
learning literature (Ribeiro et al., 2016). There has been a surge of interest in an approach
based on Shapley values, see for example, Messalas et al. (2019); Aas et al. (2019); Lundberg
and Lee (2016); Covert et al. (2020); Fryer et al. (2020); Covert and Lee (2020); Israeli
(2007); Bénard et al. (2021). We discuss derivatives and Shapley values in Section 5.
Another paper that uses semiparametric models for intepretability is Sani et al. (2020) but
that paper does not focus on variable importance. Loh and Zhou (2021) contains a review of
several feature importance methods and, in particular, discusses the importance of missing
data.

Paper Outline. In Section 2 we describe some issues related to LOCO and this leads
us to define a few modified versions of the parameter. In Section 3 we discuss inference
for the parameters. Section 4 contains some simulation studies. Section 5 discusses other
issues and other measures of variable importance. A concluding discussion is in Section 6.
Technical details and proofs are in an appendix.

2 Issues With LOCO

The parameter ψL is general and it is easy to obtain point estimates for it; see Section 3.1.
But it does have two shortcomings which we now discuss.

2.1 Issue 1: Inference For Quadratic Functionals

The first, and less serious issue, is that ψL is a quadratic parameter and it is difficult to get
confidence intervals for quadratic parameters because their limiting distribution and rate of

2



Variable Importance

convergence change as ψL approaches 0. This is actually a common problem but it receives
little attention. Many other parameters have this problem, including distance correlation
(Székely et al., 2007), RKHS correlations (Sejdinovic et al., 2013) and kernel two-sample
statistics (Gretton et al., 2012) among others.

To illustrate, consider the following toy example. Let Y1, . . . , Yn ∼ N(µ, σ2) and consider

estimating ψ = µ2 with ψ̂ = Y
2
n. When µ 6= 0, we have

√
n(ψ̂ − ψ)  N(0, τ2) for some

τ2. When µ = 0, ψ̂ ∼ σ2χ2
1/n. When µ is close to 0, its distribution is neither Normal nor

chi-squared, and the rate of convergence can be anything between 1/n and 1/
√
n.

More generally, when dealing with a quadratic functional ψ, it is often the case that
an estimator ψ̂ converges to a Normal at a n−1/2 rate when ψ 6= 0 but at the null, where
ψ = 0, the influence function for the parameter vanishes, the rate becomes n−1 and the
limiting distribution is typically a combination of χ2 random variables. Near the null, we
get behavior in between these two cases. A valid confidence interval Cn should satisfy
P (ψn ∈ Cn)→ 1−α even if ψn is allowed to change with n. In particular, we want to allow
ψn → 0. Finding a confidence interval with this uniformly correct coverage, with length
n−1/2 away from the null and length n−1 at the null is, to the best of our knowledge, an
unsolved problem.

Our proposal is to construct a conservative confidence interval that does not have length
O(1/n) at the null. We replace the standard error se of ψ̂ with

√
se2 + c2/n where c is a

constant. We take c = (Var[Y ])2 to put the quantity on the right scale, but other constants
could be used. This leads to valid confidence intervals but they are conservative near the
null as they shrink at rate n−1/2 instead of n−1.

We are only aware of two other attempts to address this issue. Both involve expanding
the width of the confidence interval to be O(n−1/2). Dai et al. (2021) added noise of the form
cZ/
√
n to the estimator, where Z ∼ N(0, 1). They choose c by permuting the data many

times and finding a c that gives good coverage under the simulated permutations. However,
this is computationally expensive and adding noise seems unnecessary. Williamson et al.
(2020) deal with this problem by writing ψ as a sum of two parameters ψ = ψ1 + ψ2 such
that neither ψ1 nor ψ2 vanish when ψ = 0. Then, they estimate ψ1 and ψ2 on separate
splits of the data. This again amounts to adding noise of size O(1/

√
n).

All three approaches are basically the same; they have the effect of expanding the
confidence interval by O(n−1/2) which maintains validity at the expense of efficiency at the
null. Our approach has the virtue of being simple and fast. It does not require adding
noise, extra calculations or doing an extra split of the data.

To see that expanding the standard error does lead to an interval with correct coverage,
let ψ̂ denote an estimator of a parameter ψn which we allow to change with n. We are
concerned with the case were the bias bn satisfies bn = o(n−1/2) and the variance vn satisfies
vn = o(1/n). (The variance would be of order 1/n in the non-degenerating case.) Then, by
Markov’s inequality, the non-coverage of the interval ψ̂n ± zα/2

√
se2 + c2/n is

P
(
|ψ̂n − ψn| > zα/2

√
se2 + c2/n

)
≤ P

(
|ψ̂n − ψn| > zα/2

√
c2/n

)
≤ n

cz2
α/2

E[|ψ̂n − ψn|2] =
n

cz2
α/2

(b2n + vn) = o(1).
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2.2 Issue 2: Correlation Distortion

The second and more pernicious problem is that ψL depends on the correlation between X
and Z. In particular, if X and Z are highly correlated, then ψL will typically be close to
0. We call this, correlation distortion. There may be applications where this is acceptable.
But in some cases we may want to alleviate this distortion and that is the focus of this
paper.

To appreciate the effect of correlation distortion, consider the linear model Y = βX +
θZ + ε. In this case, a natural measure of variable importance is β which is unaffected
by correlation between X and Z. The standard error of the estimate β̂ is affected by
the correlation but the estimand itself is not. For this model, ψL = β2γ2 where γ2 =
E[(X − ν(Z))2] and ν(z) = E[X|Z = z]. This makes it clear that ψL → 0 as X and Z
become more correlated. The same fate befalls the partial correlation ρ between Y and X

which in this model is ρ = (1 + β2σ2

γ2
)−1/2 where σ2 = Var[ε]. Again, ρ→ 0 as γ → 0.

To deal with this problem, we define a modified LOCO parameter ψ0 which is unaffected
by the dependence between X and Z. Let p0(x, y, z) = p(y|x, z)p(x)p(z). Then p0 is the
distribution that is closest to p in Kullback-Leibler distance subject to making X and Z
independent. We define

ψ0 = E0[(µ0(X,Z)− µ0(Z))2]. (2)

A simple calculation shows that µ0(z) = E0[Y |Z = z] =
∫
µ(x, z)p(x)dx and so

ψ0 =

∫
(µ0(x, z)− µ0(z))2p(x)p(z)dxdz. (3)

We can think of ψ0 as a counterfactual quantity answering the question: what would the
change in µ(X,Z) be if we dropped X and had X and Z been independent.

This parameter completely eliminates the correlation distortion but, as we show in our
simulations, it can be hard to get an accurate estimate of ψ0. In particular, nonparametric
confidence intervals are wide. A simple, but somewhat ad-hoc solution, is to first remove
Z ′js that are highly correlated with X. That is, define ψ1 = E[(µ(V ) − µ(X,V ))2] where
V = (Zj : |ρ(X,Zj)| ≤ t) for some t where ρ is a measure of dependence.

The main solution we propose is to use the semiparametric model µ(x, z) = xTβ(z) +
f(z). Under this model, one can show that ψ0 takes the form tr

(
ΣXE[β(Z)β(Z)T ]

)
where

ΣX = Var[X]. (See appendix 8.4 for details). However, this parameter is still difficult to
estimate so we propose the following two simpler models. First, let µ(x, z) = βTx + f(z).
Then ψ0 becomes

ψ2 = βTΣXβ. (4)

The second model is
µ(x, z) = βTx+

∑
j

∑
j

γjkxjzk + f(z). (5)

In Section 3.5 we show that ψ0 then becomes

ψ3 = θTΩθ (6)

where

θ =

{
E[Z̃Z̃T ⊗ (X − ν(Z))(X − ν(Z))T ]

}−1

E

[(
Y − µ(Z)

) (
Z̃ ⊗ (X − ν(Z))

)]
.
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ψ0 =
∫ ∫

(µ(x, z)− µ0(z))2p(x)p(z)dxdz ψ1 = E[(µ(X,V )− µ(V ))2]
ψ2 = βTΣXβ ψ3 = θTΩθ

µ0(z) =
∫
µ(x, z)p(x)dx V = (Zj : |ρ(X,Zj)| ≤ t)

Z̃T = (1, ZT ) Ω = ΣX ⊗
[

1 mT
Z

mZ ΣZ +mZm
T
Z

]
β = E[(Y − µ(Z))(X − ν(Z))]/E[(X − ν(Z))2]

θ =

{
E[Z̃Z̃T ⊗ (X − ν(Z))(X − ν(Z))T ]

}−1

E

[(
Y − µ(Z)

) (
Z̃ ⊗ (X − ν(Z))

)]

Table 1: Summary of Decorrelated Parameters
.

ν(z) = E[X|Z = z], Z̃ = (1, Z) and

Ω = ΣX ⊗ E[Z̃Z̃T ] = ΣX ⊗
(

1 mT
Z

mZ ΣZ +mZm
T
Z

)
,

mZ = E[Z] and ΣZ = Var[Z]. Table 1 summarizes the expressions for the parameters.

Remark: Using the semiparametric model simplifies statistical inference for ψ0. Of
course, using a model always carries risks. In particular, if the model is not a reasonable
approximation to µ(x, z) then we could be introducing bias. Therefore, as in all cases where a
model is used, one should be aware that if the model is wrong then we are actually estimating
the projection of µ(x, z) onto the model and then ψ0 captures the importance of X in the
projected model.

Remark: In all the above definitions, we can replace X with b(X) = (b1(X), . . . , bk(X))
for a given set of basis functions b1, . . . , bk to make the model more flexible. For example,
we can take b(X) = (X,X2, X3) or an orthogonalized version of the polynomials, which is
what we use in several of our examples.

In these semiparametric models, we can estimate the nuisance functions ν(z) = E[X|Z =
z] and µ(z) either nonparametrically or parametrically.

3 Inference

In this section we discuss estimation of ψ ∈ {ψL, ψ0, ψ1, ψ2, ψ3}. For ψ0, ψ2 and ψ3 we
use one-step estimation which we now briefly review. See Hines et al. (2021) for a recent
tutorial on one-step estimators. Let ψ(γ) be a parameter with efficient influence function
φ(u, γ, ψ) where γ denotes nuisance functions. We split the data into two groups D0 and D1
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and we estimate γ from D0. Splitting the data is a common technique in semiparametric
inference as it leads to central limit theorems under weaker conditions than would otherwise
be necessary. The one-step estimator is

ψ̂ = ψ̂pi +
1

n

∑
i

φ(Ui, γ̂, ψ̂pi)

where ψ̂pi = ψ(γ̂) is the plug-in estimator and the average is over D1. This estimator
comes from the von Mises expansion of ψ(γ) around a point γ given by ψ(γ) = ψ(γ) +∫
φ(u, γ)dP (u)+R where R is the remainder. Alternatively, we can define ψ̂ as the solution

to the estimating equation n−1
∑

i φ(Ui, γ̂, ψ) = 0.

Both estimators have second order bias ||γ̂ − γ||2. Under appropriate conditions, both
estimators satisfy

√
n(ψ̂ − ψ) N(0, τ2) where τ2 = E[φ2(U, γ, ψ)]. The key condition for

this central limit theorem to hold is that ||γ̂−γ||2 = oP (n−1/2) which holds under standard
smoothness assumptions. For example, if γ is in a Holder class of smoothness s, then an
optimal estimator γ̂ satisfies ||γ̂ − γ||2 = OP (n−2s/(2s+d)) = oP (n−1/2) when s > d/2. The
plugin estimator has first order bias ||γ̂ − γ|| which will never be oP (n−1/2).

The usual confidence interval is ψ̂±zα/2se where se2 = τ̂2/n and τ̂2 = n−1
∑

i φ
2(Ui, γ̂).

But we find that this often underestimates the standard error. Instead, we use a different
approach described in Section 3.6. We consider three different estimators for the nuisance
functions µ(z) and ν(z): (i) linear, (ii) additive and (iii) random forests.

3.1 Estimating ψL

Williamson et al. (2021) found the efficient influence function for ψL. However, in Williamson
et al. (2020) the authors note that one can avoid having to use the influence function by
rewriting ψL as

ψL = E[(Y − µ(Z))2]− E[(Y − µ(X,Z))2].

It is easy to check that the corresponding plugin estimator

ψ̂L =
1

n

∑
i

(Yi − µ̂(Zi))
2 − 1

n

∑
i

(Yi − µ̂(Xi, Zi))
2

already has second order bias O(||µ̂−µ||2) so that using the influence function is unnecessary.

3.2 Estimating ψ0

We first derive the efficient, nonparametric estimator of ψ0 and then we discuss some issues.
Recall that U = (X,Y, Z).

Theorem 1 Let ψ0 = ψ0(µ, p) =
∫ ∫

(µ(x, z)−µ0(z))2p(x)p(z)dxdz. The efficient influence
function is

φ(U, µ, p) =
∫

(µ(x, Z)− µ0(Z))2p(x)dx+
∫

(µ(X, z)− µ0(z))2p(z)dz

+2p(X)p(Z)
p(X,Z) (µ(X,Z)− µ0(Z))(Y − µ(X,Z))− 2ψ(p).
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In particular, we have the following von Mises expansion. Let (µ, p) be arbitrary and let
(µ, p) denote the true functions. Then

ψ0(µ, p) = ψ0(µ, p) +

∫ ∫
φ(u, µ, p)dP (u) +R

where the remainder R satisfies

R = O(||pX − pX || × ||δ − δ||) +O(||pZ − pZ || × ||δ − δ||) +O(||pX − pX || × ||pZ − pZ ||) +O(||δ − δ||2)

and δ = µ(x, z) − µ0(z). Hence, if ||pX − pX || = oP (n−1/4), ||pZ − pZ || = oP (n−1/4),
||δ − δ|| = oP (n−1/4) then

√
nR = oP (1).

The one-step estimator is

ψ̂0 = ψ0(µ̂, p̂) +
1

n

∑
i

φ(Ui, µ̂, p̂).

The estimator from solving the estimating equation is ψ̂ = (2n)−1
∑

i L(Ui, µ̂, p̂) where

L(U, µ, p) =
∫

(µ(x, Z)− µ0(Z))2p(x)dx+
∫

(µ(X, z)− µ0(z))2p(z)dz

+2p(X)p(Z)
p(X,Z) (µ(X,Z)− µ0(Z))(Y − µ(X,Z)). (7)

Corollary 2 Suppose that ||p̂− p|| = oP (n−1/4) and ||µ̂− µ|| = oP (n−1/4). When ψ0 6= 0,
for either of the two estimators above,

√
n(ψ̂0 − ψ0) N(0, σ2)

where σ2 = E[φ2(U, µ, p)].

In our implementation, we estimate p(x, z), p(x), p(z) with kernel density estimators.
We estimate integrals with respect to the densities by sampling from the kernel estimators.
Specifically,

µ̂∗(z) =
1

N

N∑
j=1

µ̂(X∗j , z) where X∗1 , . . . , X
∗
N ∼ p̂(x).

Similarly,
∫

(µ(X, z)− µ̂0(z))2p(z) is estimated by

1

N

∑
j

(µ(X,Z∗j )− µ̂0(Z∗j ))2 where Z∗1 , . . . , Z
∗
N ∼ p̂(z)

and
∫

(µ(x, Z)− µ̂0(Z))2p(x) is estimated by N−1
∑

j(µ(X∗j , z)− µ̂0(z))2. Thus

ψ̂0 = 1
2n

∑
i L(Ui, µ̂, p̂)

= 1
nN

∑
i

∑
j

(
µ̂(X∗j , Zi)− 1

N

∑N
s=1 µ̂(X∗s , z)

)2
+ 1

nN

∑
i

∑
j

(
µ̂(Xi, Z

∗
j )− 1

N

∑N
s=1 µ̂(Xi, Z

∗
s )
)2

+ 2
n

∑
i
p̂(Xi)p̂(Zi)
p̂(Xi,Zi)

(
µ̂(Xi, Zi)− 1

N

∑
j µ̂(X∗j , Zi)

)
(Yi − µ̂(Xi, Zi)).
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Finite Sample Problems. In principle, ψ̂0 is fully efficient. In practice, ψ̂0 can behave
poorly as we now explain. One of the terms in the von Mises remainder is ||µ̂0(z)−µ0(z)||2.
Now µ0(z) =

∫
µ(x, z)p(x)dx. When X and Z are highly correlated, there will be a large

set Az of x values, where there are no observed data and so µ̂0(z) will be quite far from
µ0(z) because µ̂(x, z) must suffer large bias or variance (or both) over that region. This is
known as extrapolation error. For this reason we now consider alternative versions of ψ0.1

3.3 Estimating ψ1

Recall that ψ1 = E[(µ(X,V ) − µ(V ))2] where V = (Zj : |ρ(X,Zj)| ≤ t) for some t. We
take ρ(X,Zj) =

∑g
i=1 |ρ(Xi, Zj)| where ρ(Xi, Zj) is the Pearson correlation. We use t = .5

in our examples. For simplicity we assume that the values ρ(X,Zj) are distinct. In this

case P (V̂ = V ) → 1 as n → ∞ where V̂ = (Zj : |ρ̂(X,Zj)| ≤ t) and the randomness of

V̂ can be ignored asymptotically and ψ1 can be estimated in the same way as ψL with V̂
replacing Z.

Lemma 3 If ||µ̂(x, v)− µ(x, v)|| = oP (n−1/4) and ψ1 6= 0 then
√
n(ψ̂1 − ψ1) N(0, τ2).

An alternative to removing correlated variables is to group together highly correlated
variables and only report the variable importance of the group.

3.4 Estimating ψ2

Consider the partially linear model Y = βTX + f(Z) + ε. Then µ0(z) =
∫
µ(x, z)p(x)dx =

βTmX + f(z) where mX = E[X] and so

ψ2 ≡
∫ ∫

(µ(x, z)− µ0(z))2p(x)p(z)dxdz = βTΣXβ

and β = E[(Y − µ(Z))(X − ν(Z))]/E[(X − ν(Z))2].

The efficient influence function for ψ2 is

φ = 2βTΣXφβ + βT ((X −mX)(X −mX)T )β − ψ2

where

φβ = Σ−1
X (X − ν(Z))

{
(Y − µ(Z))− (X − ν(Z))Tβ)

}
and we have the von Mises expansion ψ2(µ, ν, β,ΣX) = ψ2(µ, ν, β,ΣX)+

∫
φ(u, µ, ν, β,ΣX)dP+

R where the remainder R satisfies

R = O(||µ(P )− µ(P )|| × ||ν(P )− ν(P )||) +O(||vec(ΣX(P ))− vec(ΣX(P ))||2)

+O(||β(P )− β(P )||2) +O(||β(P )− β(P )|| × ||vec(ΣX(P ))− vec(ΣX(P ))||).

1. Readers familiar with causal inference will recognize that, formally, µ0(z) is the average treatment effect
if we think of Z as a treatment and X as a confounder. But the role of treatment and confounder is
switched with the treatment being the multivariate vector Z. The difficulty in estimating µ0(z) when X
and Z are highly correlated is known as the overlap problem in causal inference (D’Amour et al., 2021).
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We omit the calculation of the influence function and remainder as they are standard.
Hence, if ||µ(P ) − µ(P )|| × ||ν(P ) − ν(P )||) = o(n−1/2), ||β(P ) − β(P )|| = o(n−1/4), and
||vec(ΣX(P )) − vec(ΣX(P ))|| = o(n−1/4), then

√
nR = o(1). It is easy to verify that

||β(P ) − β(P )|| = O(||µ(P ) − µ(P )|| × ||ν(P ) − ν(P )||) and so ψ2 satisfies the double
robustness property, namely, that the bias involves the product of two quantities. It suffices
to estimate either µ or ν accurately to get a consistent estimator.

The one-step estimator is given by

ψ̂2 =
1

n

∑
i

β̂T (Xi − µ̂(Zi))(Xi − µ̂(Zi))
T β̂ +

2

n

∑
i

β̂T Σ̂Xφβ(Xi, Zi)

where

β̂ =

{
1

n

∑
i

(Xi − ν̂(Zi))(Xi − ν̂(Zi))
T

}−1
1

n

∑
i

(Xi − ν̂(Zi))(Yi − µ̂(Zi))

and the sums are over D1.

3.5 Estimating ψ3

Consider the partially linear model with interactions:

Y = βTX +

g∑
j=1

h∑
k=1

γjkXjZk + f(Z) + ε.

Define

Θ =

 β1 γ11 · · · γ1h
...

...
...

...
βg γg1 · · · γgh

 , W =

 X1 X1Z1 · · · X1Zh
...

...
...

...
Xg XgZ1 · · · XgZh

 = X Z̃T

where Z̃T = (1, ZT ). Then we can write

Y = θTW + f(Z) + ε

where θ = vec(Θ) and W = vec(W) = vec(XZ̃T ) = Z̃ ⊗X.

Lemma 4 We have

θ =

{
E[Z̃Z̃T ⊗ (X − ν(Z))(X − ν(Z))T ]

}−1

E

[(
Y − µ(Z)

) (
Z̃ ⊗ (X − ν(Z))

)]

and under this model, ψ0 is equal to ψ3 = θTΩθ where

Ω = ΣX ⊗ E[Z̃Z̃T ] = ΣX ⊗
(

1 mT
Z

mZ ΣZ +mZm
T
Z

)
,
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mZ = E[Z] and ΣZ = Var[Z]. The efficient influence function for ψ3 is

φ = 2θTΩφθ + θT Ω̊θ − ψ3 (8)

where

φθ =
{
E[RXZR

T
XZ ]

}−1
RXZ(RY −RTXZθ),

RY = Y − µ(Z), RXZ = vec[(X − ν(Z))Z̃T ],

Ω̊ =

{
[(X−mX)(X−mX)T −ΣX ]⊗

[
1 mT

Z

mZ Γ

]}
+

{
ΣX ⊗

[
0 (Z −mZ)T

Z −mZ Γ̊

]}
,

(the influence function of Ω) Γ = ΣZ +mZm
T
Z , and

Γ̊ = (Z −mZ)(Z −mZ)T − ΣZ +mZ(Z −mZ)T + (Z −mZ)mT
Z

(the influence function of Γ).

Then ψ3(u, θ,Ω) = ψ3(u, θ,Ω) +
∫
φ(u, θ,Ω)dP (u) +R where the remainder R satisfies

R = O(||θ(P )− θ(P )||2) +O(||vec(Ω(P ))− vec(Ω(P ))||2)

+O(||θ(P )− θ(P )|| × ||vec(Ω(P ))− vec(Ω(P ))||).

Thus if ||θ(P ) − θ(P )|| = o(n−1/4) and ||vec(Ω(P )) − vec(Ω(P ))|| = o(n−1/4) then
√
nR =

o(1). Again, we have the double robustness property.

The sample estimate of θ is θ̂ = (RTXZRXZ)−1RTXZRY where the ith row of RXZ is

vec[(Xi − ν̂(Zi))Z̃
T
i ] and RY (i) = Yi − µ̂(Zi). Let Ω̂ be the sample version of Ω. The

one-step estimator is

ψ̂3 =
1

n

∑
i

θ̂T φ̂Ω(Ui)θ̂ +
2

n

∑
i

θ̂T Ω̂φθ(Ui)

where the sums are over D1.

3.6 Confidence Intervals

Now we describe the construction of the confidence intervals using a method we refer to as
t-Cross. Let ψ denote a generic parameter. We combine two ideas: cross-fitting (Newey
and Robins, 2018) and t-inference (Ibragimov and Müller, 2010). Here are the steps:

1. Divide the data into B disjoint sets D1, . . . ,DB; we take B = 5 in the examples.

2. Estimate the nuisance functions using all the data except Dj and compute ψ̂j on Dj .
Here, ψ̂j is the estimate of ψ using the data in Dj .

3. Let ψ = B−1
∑B

j=1 ψ̂j . When ψ 6= 0, each ψ̂j is asymptotically Normal so that ψ is
asymptotically tB−1.

10
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4. The confidence interval is
ψ ± tB−1,α/2 se

where se2 = (s2/B + c2/n) where s2 = (B − 1)−1
∑B

j=1(ψ̂j − ψ)2.

The t-method loses some efficiency because it divides the data into groups. The rate of
convergence does not change but the interval could be slightly larger. But the advantage is
that s2 is an unbiased estimate of the variance of ψ̂ which does not depend on the accuracy
of the estimated influence function. So we are trading efficiency for robustness.

Remark: Nonparametric and semiparametric confidence intervals require fairly strict
assumptions. For example, we need to assume fast rates for the nuisance functions. An
alternative is to use variability intervals which are centered at the mean of the estimator
rather than at the true value. This might be less informative but requires much weaker
assumptions.

4 Simulations

In this section, we compare the behavior of the different parameters in some synthetic
examples. For each example, we estimate all the parameters ψL, ψ0, ψ1, ψ2, ψ3. To estimate
the parameters we need to estimate the nuisance functions µ(z) and ν(z). As mentioned
above, we consider three approaches to estimating these functions: linear models, additive
models and random forests. For the additive models we use the R package mgcv. For
random forests we use the R package grf. We always use the default settings making no
attempt to tune the methods to achieve good coverage.

Example 1. We start with a very simple scenario where Y = 2X + ε, ε ∼ N(0, 1),
Z1 = δX + ξ, ξ ∼ N(0, 1), and (Z2, . . . , Z5) ∼ N(0, I). Figure 2 shows the coverage as a
function of the correlation between X and Z1. As expected, ψL has poor coverage as the
correlation increases. The parameter ψ0 partially corrects the correlation distortion while
the other parameters do a much better job. The coverage for ψ1 decreases as correlation
increases. However, when the correlation is large enough, it becomes easier to identify
correlated variables and then the coverage increases. The true values of the parameters are
plotted in Figure 1.

Examples 2-5. Now we consider four multivariate examples. In each case, n = 10, 000,
h = 5 and ε ∼ N(0, 1). The distributions are defined as follows:

Example 2: X is standard Normal, Z1 = X +N(0, .42), (Z2, . . . , Zh) is standard multi-
variate Normal. The regression function is Y = 2X3 + ε. Hence Cor(X1, Z) = .93.

Example 3: Here, Z ∼ N(0, I), X1 = 2Z1 + ε1, X2 = 2Z2 + ε2, Y = 2X1X2 + ε where
ε, ε1, ε2 ∼ N(0, 1). Hence Cor(X1, Z1) = Cor(X2, Z2) = .89.

Example 4: Let X ∼ Unif(−1, 1), Z ∼ Unif(−1, 1), and Y = X2(X+(7/5))+(25/9)Z2+
ε. This example is from Williamson et al. (2021). Our coverage for ψL is similar but
slightly less than that in Williamson et al. (2021) but we are using a different nonparametric
estimator. In this case, X and Z are uncorrelated.

Example 5: X ∼ N(0, 1), Z1 = X + N(0, .42) (Z2, . . . , Zd) ∼ N(0, I) and Y = 2X2 +
XZ1 + ε. In this case Cor(X,Z1) = .93

11
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Figure 1: This plot shows the true values of the parameters in Example 1 as a function of
the correlation ρ between X and Z. The top red line is ψ0 = ψ2 = ψ3. The green
line is ψL. The blue line is ψ1 which equals ψL for ρ < .5 and equals ψ0 for ρ > .5.

In examples 2,4 and 5, we replaced X with orthogonal polynomials b1(X), b2(X), b3(X).

The results from 100 simulations are summarized in Figures 2 and 3 and in Table 2.
The standard error of the coverage is 0.03. Figure 2 shows how often the confidence interval
contains the target parameter ψ0 as a function of the correlation which varies from 0 to 1.
In other words, we treat ψ0 = β2 = 4 as the truth and we evaluate how well an interval
based on estimating ψj covers ψ0. They all cover well except ψL and ψ1. This is to be
expected as ψ0 = ψ2 = ψ3 in this example. However, ψL decreases as a function of the
correlation. In fact, we evaluated how often the interval for ψL contains the true value of ψL.
It turns out that the coverage of the interval based on ψL does cover ψL at the nominal level
(although, as with many examples, the forest based method tends to sometimes undercover).
The coverage for ψ1 goes down and then up because Z1, which is correlated with X, gets
removed when the correlation is large enough. Essentially, when the correlation is less than
.5, ψ1 = ψL but after that, Z1 is removed and ψ1 = ψ0. This shows the inherent instability
of trying to remove correlated variables.

Figure 3 shows the average of the left and right endpoints of the confidence intervals. The
vertical line marks our target which is ψ0. The first thing to notice is that no method does
uniformly well. Inferences for ψ3 are mostly pretty good, but the others are not and this is
to be expected. The coverage of ψL is poor because it is not targeting the right parameters.
Similarly for ψ1. The poor coverage of ψ0 in some cases is due to the difficulty of estimating
the parameter nonparametrically. ψ2 does not include interactions and does poorly when
there are interactions. The random forest method has a tendency to undercover. However,
what is not shown here, is that each method does cover its own target at the nominal level.

Estimating variable importance well is surprisingly difficult. Generally, we find that ψ3

works best. However, it does poorly in two cases: in Example 5, with linear regressions,
and in Example 2 using random forests. ψ0 rarely does well. Apparently, the functional is
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Figure 2: Example 1: Coverage as a function of correlation. Top: linear. Middle: additive.
Bottom: forests.

too difficult to estimate nonparametrically. ψ1 works well in a few cases, but is not reliable
enough in general. Similar behavior occurs for ψ2. Except for a few cases, ψL never does
well. This is not unexpected due to the correlation distortion.

However, it should be noted that these methods are all doing well in the sense of covering
the value of ψ in the projected model at the nominal level. For example, when using linear
models for µ and ν, we are really estimating the value of ψ for the projection of the
distribution onto the space of linear models. The parameter estimate may capture useful
information even if it is not estimating ψ0.
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Figure 3: The average of the left and right endpoints of the confidence intervals over 100
simulations for Examples 2,3,4,5. The vertical line is ψ0. The plot shows how the
confidence intervals of each parameter compare to the true value of ψ0. Top left
is Example 2. Top right is Example 3. Bottom left is Example 4. Bottom middle
is Example 5. The bottom right shows the legend for all the plots. In each panel,
the groups of three line segments correspond to the three different models: the top
is based on linear models, the middle is based on additive models and the bottom
is based on random forests.

5 Other Issues

In this section we discuss two further topics: other variable importance parameters, and
Shapley values.
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Linear Additive Forest
ψL ψ0 ψ1 ψ2 ψ3 ψL ψ0 ψ1 ψ2 ψ3 ψL ψ0 ψ1 ψ2 ψ3

Example 2 1 0.84 1 1 1.00 0.00 0.79 1.00 1.00 0.97 0.00 0.75 1.00 0.99 0.30
Example 3 0 0.00 0 0 0.99 0.00 0.88 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.91
Example 4 1 0.87 1 1 1.00 0.98 0.20 0.98 0.98 0.98 0.00 0.21 0.00 0.86 0.85
Example 5 0 0.01 0 0 0.00 0.00 0.83 0.00 0.00 0.85 0.00 0.05 0.00 0.00 1.00

Table 2: Coverage results for Examples 2,3,4 and 5. The standard error on the estimates
coverage is 0.03. Overall, ψ3 performs best in these examples. But when linear
regressions are used, ψ3 fails. For random forests, ψ3 does poorly in Example 2.
The most robust behavior is given by the additive model.

5.1 Other Parameters

We have focused on LOCO in this paper but there are many other variable importance
parameters all of which can be estimated in a manner similar to the methods in this paper.
Samarov (1993) suggested ψ =

∫
(∂µ(x, z)/∂x)T (∂µ(x, z)/∂x)dP . This parameter is not

subject to correlation distortion. Estimating derivatives can be difficult but in the semi-
parametric case, ψ takes a simple form. In the partially linear model we have ψ = ||β||2
and in the partially linear model with interactions (5) we have

ψ = ||β||2 + 2βGTmZ +GTΣZG

where Gjk = γjk.

Another parameter is inspired by causal inference. If we viewed X as a treatment and
Z as confounding variables, then (under some conditions) the causal effect, that is the
mean of Y had X been set to x, is given by Robins’ g-formula g(x) =

∫
µ(x, z)dP (z).

We could then define ψ as the variance Var[g(X)] or the average squared derivative of∫
(∂g(x)/∂x)T (∂g(x)/∂x)dP . These parameters do not suffer from correlation distortion.

Now Var[g(X)] equals βTΣXβ under the partially linear model and is (β + ΓmZ)TΣX(β +
ΓmZ) under the partially linear model with interactions. Using the derivative, in the
partially linear model we get ψ = ||β||2 and in partially linear model with interactions we
get

ψ = ||β||2 + 2βΓTmZ + ΓTmZm
T
ZΓ.

The nonparametric partial correlation is defined by

ρ =
E[(Y − µ(Z))(X − ν(Z))]√
E(Y − µ(Z))2E(X − ν(Z))2

.

Under p0 we get a decorrelated version

ρ0 =
E0[(Y − µ0(Z))(X − ν0(Z))]√
E0(Y − µ0(Z))2E0(X − ν0(Z))2

=

∫ ∫
(µ(x, z)− µ0(z))(x−mX)p(x)p(z)dxdz

σX

√∫ ∫ ∫
(y − µ0(z))2p(y|x, z)p(x)p(z)

.

More detail about ρ0 are in the appendix.
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5.2 Shapley Values

A method for defining variable importance that has attracted much attention lately is based
on Shapley values (Messalas et al., 2019; Aas et al., 2019; Lundberg and Lee, 2016; Covert
et al., 2020; Fryer et al., 2020; Covert and Lee, 2020; Israeli, 2007; Mase et al., 2019; Bénard
et al., 2021). This is an idea from game theory where the goal is to define the importance of
each player in a cooperative game. While Shapley values can be useful in some settings, for
example, computer experiments (Owen and Prieur, 2017) we argue here that Shapley values
do not solve the decorrelation issue and LOCO or decorrelated LOCO may be preferable
for routine regression problems. However, this is an active area of research and the issue is
far from settled. Shapley values may indeed have some other advantages.

The Shapley value is defined as follows. Suppose we have covariates (Z1, . . . , Zd) and
that we want to measure the importance of Zj . For any subset S ⊂ {1, . . . , d} let ZS =
(Zj : j ∈ S) and let µ(S) = E[Y |ZS ]. The Shapley value for Zj is

sj =
1

d!

∑
π

[V (S+
j (π))− V (Sj(π))]

where the sum is over of permutations of (Z1, . . . , Zd), Sj(π) denotes all variables before Zj
in permutation π, S+

j (π) = {Sj(π)
⋃
{j}} and V (S) is some measure of fit the regression

model with variables S. If V (S) = −E[(Y − µ(S))2], then

sj =
1

d!

∑
π

E[(µ(Sj)− µ(S+
j ))2].

This is just the LOCO parameter averaged over all possible submodels. The Shapley value
for a group of variables can be defined similarly.

It is clear that this parameter is difficult to compute and inference, while possible
(Williamson and Feng, 2020) is very challenging. The appeal of the Shapley value is that
it has the following nice properties:

(A1):
∑

j sj = E[(Y − µ(Z))2].

(A2) If E[(Y − µ(S
⋃
{i}))2] = E[(Y − µ(S

⋃
{j}))2] for every S not containing i or j,

then si = sj .
(A3) If we treat {Zj , Zk} as one variable, then its Shapley value sjk satisfies sjk = sj+sk.
(A4) If E[(Y − µ(S

⋃
{j}))2] = E[(Y − µ(S))2] for all S then sj = 0.

However, we see two problems with Shapley values applied to regression. First, it defines
variable importance with respect to all submodels. But most of those submodels are not
of interest. Indeed, most of them would be a bad fit to the data and are not relevant.
So it is not clear why we should involve them in any definition of variable importance or
in the axioms. (An intriguing idea might be to weight the submodels according to their
predictive value). Second, they succumb to correlation distortion. To see this, suppose that
Y = βZ1 + ε, that the Zj ’s have variance 1 and that they are perfectly correlated, that is,
P (Zj = Zk) = 1 for every j and k. The Shapley value for Z1 turns out to be s1 = β2/d
which is close to 0 when d is large. In contrast, ψ0 = β2, which seems more a appropriate.
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The confidence interval for ψ0 would have infinite length since the design is singular which
also seems appropriate, since estimating the importance of a single variable among a set of
perfectly correlated variables should be an impossible inferential task. For these reasons,
we feel that decorrelated LOCO may have some advantages over Shapley values.

6 Conclusion

We showed that correlation distortion can be removed from LOCO by modifying the defini-
tion appropriately. This leads to the parameter ψ0. As we have seen, getting valid inferences
for ψ0 nonparametrically is difficult even in fairly simple examples. This is mainly because
the parameter involves the function µ0(z) =

∫
µ(x, z)p(x)dx which requires estimating

µ(x, z) in regions where there is little data due to the dependence between x and z. The
easiest remedy is to remove correlated variables as we did for ψ1 but this led to disappoint-
ing behavior. The other remedy was to use a semiparametric model for µ(x, z) which led
to ψ2 and ψ3. This appears to be the best approach. We emphasize that even when the
coverage for ψ2 and ψ3 is low, (when the semiparametric model is misspecified), these pa-
rameters are still useful if we interpret them as projections. For example, ψ2 measures the
variable importance of X in the regression function of the form βx+f(z) that best approx-
imates µ(x, z). In the sense ψ2 still captures part of the variable importance. Graham and
de Xavier Pinto (2021) discuss in detail the interpretation of misspecified semiparametric
models.

We only dealt with low dimensional models. The methods extend to high dimensional
models by using the usual sparsity based estimators for the nuisance functions µ(z) and
ν(z). We plan to explore this in future work.

Finally, we briefly discussed the role of Shapley values which have become popular in
the literature on variable importance. The motivation for using Shapley values appears to
be that they might alleviate correlation distortion. Indeed, if the variables were indepen-
dent, Shapley values would probably not be considered. But we argued that they do not
adequately address the problem. Instead, we believe that some form of decorrelation might
be preferred.

Acknowledgments

We would like to acknowledge two referees, whose comments helped to improve the paper.

7 Appendix

In this appendix we have proofs and details for a few other parameters.
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7.1 Proofs

Theorem 1. Let ψ0(µ, p) =
∫ ∫

(µ(x, z) − µ0(z))2p(x)p(z)dxdz. The efficient influence
function is

φ(X,Y, Z, µ, p) =

∫
(µ(x, Z)− µ0(Z))2p(x)dx+

∫
(µ(X, z)− µ0(z))2p(z)dz

+ 2
p(X)p(Z)

p(X,Z)
(µ(X,Z)− µ0(Z))(Y − µ(X,Z))− 2ψ(p).

In particular, we have the following von Mises expansion

ψ0(µ, p) = ψ0(µ, p) +

∫ ∫
φ(x, y, z, µ, p)dP (x, y, z) +R

where the remainder R satisfies

||R|| = O(||p(x, z)− p(x, z)||2) +O(||µ(x, z)− µ(x, z)||2)

+ O(||p(x, z)− p(x, z)|| × ||µ(x, z)− µ(x, z)||).

Proof. To show that φ(X,Y, Z, µ, p) is the efficient influence function we verify that
φ(X,Y, Z, µ, p) is the Gateuax derivative of ψ and that it has the claimed second order
remainder. We will use the symbol ′ to denote the Gateuax derivative defined by

lim
ε→0

ψ0((1− ε)P + εδXY Z)− ψ0(P )

ε

where δXY Z is a point mass at (X,Y, Z). Also, let δX denote a point mass at X, δXY a point
mass at (X,Y ) etc. Let w(x, z) = p(x)p(z). Then ψ0 =

∫ ∫
(µ(x, z) − µ0(z))2w(x, z)dxdz.

Now

ψ′ =

∫ ∫
(µ(x, z)−µ0(z))2w′(x, z)dxdz+2

∫ ∫
w(x, z)(µ(x, z)−µ0(z))(µ′(x, z)−µ′0(z))dxdz

First, note that w′(x, z) = p(x)(δZ(z)− p(z)) + p(z)(δX(x)− p(x)). Next

µ(x, z) =

∫
yp(y|x, z)dy =

∫
y
p(x, y, z)

p(x, z)
dy

and

µε(x, z) =

∫
y
p(x, y, z) + ε(δXY Z − p(x, y, z))
p(x, z) + ε(δXZ − p(x, z))

dy

So

µ′(x, z) =

∫
y

{
p(x, z)(δXY Z − p(x, y, z))− p(x, y, z)(δXZ − p(x, z))

p2(x, z)

}
dy

=
Y

p(X,Z)
I(x = X, z = Z)− µ(x, z)− µ(x, z)I(x = X, z = Z)

p(x, z)
+ µ(x, z)

=
(Y − µ(x, z))

p(x, z)
I(x = X, z = Z)
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Now µ0(z) =
∫
µ(x, z)p(x) dx so

µ′0(z) =

∫
µ(x, z)(δX(x)− p(x))dx+

∫
p(x)µ′(x, z)dx

= µ(X, z)− µ0(z) +
(Y − µ(X, z))p(X)

p(X, z)
I(z = Z)

so

φ(X,Y, Z, µ, p) =

∫
(µ(x, Z)− µ0(Z))2p(x)dx− ψ +

∫
(µ(X, z)− µ0(z))2p(z)dz − ψ

+ 2 w(X,Z)(µ(X,Z)− µ0(Z))
(Y − µ(X,Z))

p(X,Z)

− 2

∫ ∫
w(x, z)(µ(x, z)− µ0(z))(µ(X, z)− µ0(z))dxdz

− 2
(Y − µ(X,Z))p(X)

p(X,Z)

∫
w(x, Z)(µ(x, Z)− µ0(Z))dx

=

∫
(µ(x, Z)− µ0(Z))2p(x)dx+

∫
(µ(X, z)− µ0(z))2p(z)dz − 2ψ

+ 2 w(X,Z)(µ(X,Z)− µ0(Z))
(Y − µ(X,Z))

p(X,Z)

− 2

∫ ∫
w(x, z)(µ(x, z)− µ0(z))(µ(X, z)− µ0(z))dxdz

− 2
(Y − µ(X,Z))p(X)p(Z)

p(X,Z)

∫
p(x)(µ(x, Z)− µ0(Z))dx

=

∫
(µ(x, Z)− µ0(Z))2p(x)dx+

∫
(µ(X, z)− µ0(z))2p(z)dz

+ 2
p(X)p(Z)

p(X,Z)
(µ(X,Z)− µ0(Z))(Y − µ(X,Z))− 2ψ(p)

which has the claimed form.
Now we consider the von Mises remainder. The remainder at (p, µ) in the direction of

(p, µ) is

R = ψ(p, µ)− ψ(p, µ)−
∫
φ(u, µ, p)dP (u).

Now

−R = ψ(p, µ)− ψ(p, µ)

+

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz +

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz

+ 2

∫ ∫ ∫
p(x, y, z)

p(x)p(z)

p(x, z)
(µ(x, z)− µ0(z))(y − µ(x, z)) dx dy dz − 2ψ(p)

=

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz +

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz

+ 2

∫ ∫ ∫
p(x, y, z)

p(x)p(z)

p(x, z)
(µ(x, z)− µ0(z))(y − µ(x, z)) dx dy dz − ψ(p, µ)− ψ(p, µ)
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=

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz +

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz

+ 2

∫ ∫
p(x, z)

p(x)p(z)

p(x, z)
(µ(x, z)− µ0(z))(µ(x, z)− µ(x, z)) dx dz − ψ(p, µ)− ψ(p, µ)

=

∫ ∫
p(x) p(z) (µ(x, z)− µ0(z))2 dx dz +

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))2 dx dz

−
∫ ∫

p(x)p(z)(µ(x, z)− µ0(z))2 dx dz −
∫ ∫

p(x) p(z) (µ− µ0)2 dx dz + 2S

where

S = 2

∫ ∫
(p(x, z)− p(x, z))(µ(x, z)− µ(x, z))p(x)p(z)(µ(x, z)− µ0(z))dx dz.

Now consider the term m =
∫ ∫

p(x)p(z)(µ(x, z)− µ0(z))(µ(x, z)− µ(x, z)) dx dz. We have

m =

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))(µ(x, z)− µ(x, z)) dx dz

=

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))(µ(x, z)− µ0(z) + µ0(z)− µ0(z) + µ0(z)− µ(x, z)) dx dz

=

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))(µ(x, z)− µ0(z)) dx dz

+

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))(µ0(z)− µ0(z)) dx dz

+

∫ ∫
p(x)p(z)(µ(x, z)− µ0(z))(µ0(z)− µ(x, z)) dx dz

=

∫ ∫
p(x)p(z)

√
δ
√
δ dx dz + 0−

∫ ∫
p(x)p(z)δ dx dz,

where δ = µ(x, z)− µ0(z) and δ = µ(x, z)− µ0(z). Hence,

−R =

∫ ∫
p(x)p(z)δ dx dz +

∫ ∫
p(x)p(z)δ dx dz + 2

∫ ∫
p(x)p(z)

√
δ
√
δ dx dz

− 2

∫ ∫
p(x)p(z)δ dx dz −

∫ ∫
p(x)p(z)δ dx dz

−
∫ ∫

p(x)p(z)δ dx dz −
∫ ∫

p(x)p(z)δ dx dz +

∫ ∫
p(x)p(z)δ dx dz

=

∫ ∫
p(x)p(z)δ dx dz +

∫ ∫
p(x)p(z)δ dx dz −

∫ ∫
p(x)p(z)(

√
δ −
√
δ)2 dx dz

− 2

∫ ∫
p(x)p(z)δ dx dz −

∫ ∫
p(x)p(z)δ dx dz +

∫ ∫
p(x)p(z)δ dx dz

=

∫ ∫
(p(x)− p(x))p(z)(δ − δ) dx dz +

∫ ∫
p(x)(p(z)− p(z))(δ − δ) dx dz

+

∫ ∫
(p(x)− p(x))(p(z)− p(z))δ dx dz −

∫ ∫
p(x)p(z)(

√
δ −
√
δ)2 dx dz.

And hence

||R|| = O(||p(x)− p(x)|| ||δ − δ||) +O(||p(z)− p(z)|| ||δ − δ||)
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+ O(||p(x)− p(x)|| ||p(z)− p(z)||) +O(||δ − δ||2)

= O(||p(x, z)− p(x, z)||2) +O(||µ(x, z)− µ(x, z)||2)

+ O(||p(x, z)− p(x, z)|| × ||µ(x, z)− µ(x, z)||). �

Lemma 3. Suppose that ||µ̂(x, v)−µ(x, v)|| = oP (n−1/4). Then, when ψ1 6= 0, we have
that

√
n(ψ̂1 − ψ1) N(0, τ2) for some τ2.

Proof We have

Yi − µ̂(V̂i) = (Yi − µ(Vi)) + (µ(Vi)− µ(V̂i)) + (µ(V̂i)− µ̂(V̂i))

= (Yi − µ(Vi))− (V̂i − Vi)T∇µ(Ṽi) + (µ(V̂i)− µ̂(V̂i))

for some Ṽi between Vi and V̂i. Squaring, summing and letting εi = Yi − µ(Vi),

1

n

∑
i

(Yi − µ̂(V̂i))
2 =

1

n

∑
i

ε2i +
1

n

∑
i

((V̂i − Vi)T∇µ(Ṽi))
2 +

1

n

∑
i

(µ(V̂i)− µ̂(V̂i))

+
2

n

∑
i

εi(V̂i − Vi)T∇µ(Ṽi)
2 +

2

n

∑
i

εi(µ(V̂i)− µ̂(V̂i))

+
2

n
(V̂i − Vi)T∇µ(Ṽi)(µ(V̂i)− µ̂(V̂i))

=
1

n

∑
i

ε2i +
2

n

∑
i

εi(V̂i − Vi)T∇µ(Ṽi) +
2

n

∑
i

εi(µ(V̂i)− µ̂(V̂i)) +Rn

where Rn = O(||δ̂ − δ||2) +O(||µ̂− µ||2) +O(||δ̂ − δ|| ||µ̂− µ||2) = oP (n−1/2). The mean of
the first three terms is E[(Y − µ(V ))2]. By a similar argument,

1

n

∑
i

(Yi − µ̂(Xi, V̂i))
2 =

1

n

∑
i

ε̃2i +
2

n

∑
i

ε̃i(V̂i − Vi)T∇µ(Xi, Ṽi)

+
2

n

∑
i

ε̃i(µ(Xi, V̂i)− µ̂(Xi, V̂i)) + R̃n

where ε̃i = Yi−µ(Xi, Vi), R̃n = O(||δ̂−δ||2)+O(||µ̂−µ||2)+O(||δ̂−δ|| ||µ̂−µ||2) = oP (n−1/2)
and the mean of the first three terms is E[(Y −µ(X,V ))2]. The result follows from the CLT
and the fact that

√
n(Rn + R̃n) = oP (1).

Lemma 4. We have that ψ0 under the partially linear model with interactions, is equal
to ψ3 = θTΩθ where

Ω = ΣX ⊗
(

1 mT
Z

mZ ΣZ

)
.

Proof. Let us write

µ(x, z) = θTW ≡ θT0 X +
h∑
j=1

θTj XZj
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where we have written θ = (θ0, θ1, . . . , θh) and so µ0(z) = θT0 mX +
∑h

j=1 θ
T
j mXZj . Thus

(µ(x, z)− µ0(z))2 = θT0 (X −mX)(X −mX)T θ0 +
h∑
j=1

θTj (X −mX)(X −mX)TZ2
j θj

+ 2
h∑
j=1

θT0 (X −mX)(X −mX)TZj θj + 2
∑
j 6=k

θTj (X −mX)(X −mX)TZjZkθk

and so

E0[(µ(x, z)− µ0(z))2] = θTΣX θ0 +

h∑
j=1

θTj ΣX(ΣZ(j, j) +m2
Z(j)) θj

+ 2

h∑
j=1

θT0 ΣX mZ(j) θj + 2
∑
j 6=k

θTj θk(ΣZ(j, k) +mZ(j) mZ(k))

= θTΩ θ. �

7.2 ψL Under the Semiparametric Model

Here we give the form that ψL takes under the semiparametric model. Under the model
µ(x, z) = f(z) + xTβ(z), we have ψL = E[βT (Z)(X − ν(Z))(X − ν(Z))Tβ(Z)] which has
efficient influence function

φ = 2β(Z)T (X − ν(Z))(X − ν(Z))TV −1(Z)XY

− 2β(Z)T (X − ν(Z))(X − ν(Z))TV −1(Z)(X − ν(Z))(X − ν(Z))Tβ

− βT (X − ν(Z))(X − ν(Z))Tβ − ψL.

When µ(x, z) = βTx+
∑

jk γjkxjzk + f(z) then

ψL = θT (Ω11 + Ω12 + Ω21 + Ω22)

where

Ω11 =

(
1 mT

Z

mZ ΣZ +mZm
T
Z

)
⊗ ΣX ,

Ω12 =

(
1 mT

Z

mZ ΣZ +mZm
T
Z

)
⊗ E[(X −mX)(mX − ν(Z))T ],

Ω21 =

(
1 mT

Z

mZ ΣZ +mZm
T
Z

)
⊗ E[(X −mX)(mX − ν(Z))T ],

Ω12 =

(
1 mT

Z

mZ ΣZ +mZm
T
Z

)
⊗ E[(mX − ν(Z))(X −mX)T ],

Ω22 =

(
1 mT

Z

mZ ΣZ +mZm
T
Z

)
⊗ E[(mX − ν(Z))(mX − ν(Z))T ].

We omit the expression for influence function.
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7.3 Partial Correlation

In this section, we give the decorrelated version of the partial correlation. Recall that

ρ0 =
E0[(Y − µ0(Z))(X − ν0(Z))]√
E0(Y − µ0(Z))2E0(X − ν0(Z))2

=

∫ ∫
(µ(x, z)− µ0(z))(x−mX)p(x)p(z)dxdz

σX

√∫ ∫ ∫
(y − µ ∗ (z))2p(y|x, z)p(x)p(z)

.

Theorem 5 The efficient influence function for ρ0 is

φ =
1√
φ2φ3

{
φ1 −

ψ1

2ψ2
φ2 −

ψ2

2ψ3
φ3

}

where, in this section, we define

ψ1 =

∫ ∫
(µ(x, z)− µ0(z))(x−mX)p(x)p(z)dxdz

ψ2 = σ2
X

ψ3 =

∫ ∫ ∫
(y − µ0(z))2p(y|x, z)p(x)p(z)dxdzdy

and

φ1 = µ0(X)(X −m) + (X −m)
Y − µ(X,Z)

p(X,Z)
p(X)p(Z) + (X −m)p(X)µ(X,Z)− µ0(z)− 2ψ1

φ2 = (X −m)2 − σ2
X

φ3 = (Y − v(Z))2 − ψ3 − 2
p(X)p(Z)

p(X,Z)
(Y − µ(X,Z)).

Proof Let us write ρ0 = f(ψ1, ψ2, ψ3) where f(a, b, c) = a/
√
bc and

ψ1 = E0[(Y − µ0(Z))(X − ν0(Z))]

ψ2 = σ2
X

ψ3 =

∫ ∫ ∫
(y − µ ∗ (z))2p(y|x, z)p(x)p(z).

So the influence function is

f1(ψ1, ψ2, ψ3)φ1 + f2(ψ1, ψ2, ψ3)φ2 + f3(ψ1, ψ2, ψ3)φ3

where fj = ∂f/∂ψj and φj is the influence function for ψj . Hence,

φ =
1√
φ2φ3

{
φ1 −

ψ1

2ψ2
φ2 −

ψ2

2ψ3
φ3

}
.

Now

ψ1 =

∫
(µ0(x)− ψ0)(x−mX)p(x)dx =

∫
µ0(x)(x−mX)p(x)dx
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where µ0(x) =
∫
µ(x, z)p(z). So

φ1 =

∫
µ0(x)′(x−mX)p(x) dx−

∫
µ0(x)m′Xp(x) dx+

∫
µ0(x)(x−mX)p(x)′ dx

= 7

∫
µ0(x)′(x−mX)p(x) dx−

∫
µ0(x)(X −mX)p(x) dx+ µ0(X)(X −mX)− ψ1

= µ0(X)(X −mX) +

∫
µ0(x)′(x−mX)p(x) dx− 2ψ1.

Now

µ0(x)′ =

∫
µ′(x, z)p(z) dz + µ(x, Z)− µ0(z)

=

∫
Y − µ(x, z)

p(x, z)
I(X = x, Z = z)p(z) dz + µ(x, Z)− µ0(z)

= I(x = X)
Y − µ(x, Z)

p(x, Z)
p(Z) + µ(x, Z)− µ0(z).

Thus,∫
µ′(x, z)p(z) dz =

∫
(x−m)p(x)

{
I(x = X)

Y − µ(x, Z)

p(x, Z)
p(Z) + µ(x, Z)− µ0(z)

}

= (X −m)
Y − µ(X,Z)

p(X,Z)
p(X)p(Z) + (X −m)p(X)µ(X,Z)− µ0(z)

So

φ1 = µ0(X)(X −m) + (X −m)Y−µ(X,Z)
p(X,Z) p(X)p(Z) + (X −m)p(X)µ(X,Z)− µ0(z)− 2ψ1.

Also
φ2 = (X −m)2 − σ2.

Now we turn to ψ3 =
∫ ∫ ∫

(y − µ ∗ (z))2p(x, y, z). Then

φ3 = (Y − v(Z))2 − ψ3 − 2

∫
p(x, y, z)(y − v(z))v′(z)dz

= (Y − v(Z))2 − ψ3 − 2

∫
p(x, z)(µ− v(z))v′(z)dz

and

v′(z) = µ(X, z)− v(z) + I(z = Z)
p(X)(Y − µ(X, z))

p(X, z)

so that

φ3 = (Y − v(Z))2 − ψ3 − 2
∫
p(x, z)(µ− v(z))v′(z)dz

= (Y − v(Z))2 − ψ3 − 2p(X)p(Z)
p(X,Z) (Y − µ(X,Z)).

The remainder can be shown to be second order in a similar way to ψ0. We omit the details.
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7.4 Varying Coefficient Model

Let µ(x, z) = xTβ(z) + f(z). In this case ψ0 becomes ψ4 = tr(ΣXH). Define

V (z) = Var[X|Z = z] C(z) = Cov[X,Y |Z = z]

f(z) = µ(z)− ν(z)Tβ(z) β(z) = V −1(Z)C(z)

M = E[β(Z)] S = Var[β(Z)].

Lemma 6 The efficient influence function for ψ4 is

φ = tr(ΣXφH) + (X −mX)TH(X −m)− ψ4

where H = E[β(Z)β(Z)T ],

φH = β(Z)β(Z)T −H + β(Z)[Y XT − β(Z)T (X − ν(Z))(X − ν(Z))T ]V −1(Z)

+ V −1(Z)[XY − (X − ν(Z))(X − ν(Z))Tβ(Z)]β(Z)T .

Hence, the estimator is

ψ̂4 =
1

n

∑
i

tr(Σ̂X φ̂H(Ui)) +
1

n

∑
i

(Xi −X)TH(Ui)(Xi −X).
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