
Journal of Machine Learning Research 25 (2024) 1-36 Submitted 8/22; Revised 12/23; Published 1/24

Invariant and Equivariant Reynolds Networks

Akiyoshi Sannai SANNAI.AKIYOSHI.7Z@KYOTO-U.AC.JP
Department of Physics
Kyoto University, RIKEN
Kitashirakawa, Sakyo, Kyoto 606-8502 Japan

Makoto Kawano KAWANO@WEBLAB.T.U-TOKYO.AC.JP
Graduate School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan

Wataru Kumagai KUMAGAI@WEBLAB.T.U-TOKYO.AC.JP

Graduate School of Engineering
The University of Tokyo, RIKEN
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan

Editor: Jean-Philippe Vert

Abstract
Various data exhibit symmetry, including permutations in graphs and point clouds. Machine learn-
ing methods that utilize this symmetry have achieved considerable success. In this study, we ex-
plore learning models for data exhibiting group symmetry. Our focus is on transforming deep
neural networks using Reynolds operators, which average over the group to convert a function into
an invariant or equivariant form. While learning methods based on Reynolds operators are well-
established, they often face computational complexity challenges. To address this, we introduce
two new methods that reduce the computational burden associated with the Reynolds operator:
(i) Although the Reynolds operator traditionally averages over the entire group, we demonstrate
that it can be effectively approximated by averaging over specific subsets of the group, termed the
Reynolds design. (ii) We reveal that the pre-model does not require all input variables. Instead,
using a select number of partial inputs (Reynolds dimension) is sufficient to achieve a universally
applicable model. Employing these methods, which hinge on the Reynolds design and Reynolds
dimension concepts, allows us to construct universally applicable models with manageable com-
putational complexity. Our experiments on benchmark data indicate that our approach is more
efficient than existing methods.
Keywords: equivariance, graph neural networks, invariant representations, symmetry, Reynolds
operator.

1. Introduction

Symmetry is inherent in much of the important data used in machine learning and artificial intel-
ligence. The most important method for handling such data is learning a model that incorporates
invariance/equivariance. For example, point clouds and graphs possess symmetries related to sym-
metric groups, and various researches have studied invariant/equivariant models for them (Murphy
et al., 2019; Maron et al., 2019a; Zaheer et al., 2017; Maron et al., 2018, 2020). However, such

c©2024 Akiyoshi Sannai, Makoto Kawano and Wataru Kumagai.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/22-0891.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-0891.html

SANNAI, KAWANO AND KUMAGAI

models lack expressive power or are too computationally expensive. Therefore, in this study, we
address the following problem:

Can we construct an invariant/equivariant model with both high expressive power and low
computational cost?

Our method improves on the Reynolds operator approach in terms of expressive power (univer-
sality) and computational cost. Invariant/equivariant Reynolds operators are defined by

γG(f)(−) =
1

|G|
∑
g∈G

f(g · −),

τG(f)(−) =
1

|G|
∑
g∈G

g−1 · f(g · −)

which converts a function f into an invariant/equivariant function, respectively. We call the above f
a pre-model, and the model transformed by Reynolds operators a Reynolds model. Yarotsky (2021)
adapts this operator to a deep neural network to construct a model of invariant/equivariant functions,
which has high expressive power. However, there are two difficulties in implementing this approach.

Difficulty 1. Computational complexity of Reynolds operators.

Because the order of the group that describes the symmetry is very large, the computational
complexity of the Reynolds operator often becomes significant. In the case of the symmetric group
Sn, for example, the computational complexity of the Reynolds operator is n!. Therefore, existing
methods based on the Reynolds operator struggle to perform calculations on point clouds and graphs
with a large n.

In this study, we employ a deep neural net fθ, parameterized by θ, as a pre-model to derive a
Reynolds model τG(fθ). Then, we regard θ as a parameter of the Reynolds model τG(fθ).

Difficulty 2. Parameter Redundancy of Reynolds Models.

The fact that different pre-models can be converted into the same Reynolds model leads to
Difficulty 2. For example, for the symmetric group Sn and two pre-models fθ1(x1, x2, . . . , xn) =
x1 and fθ2(x1, x2, . . . , xn) = x2, the Reynolds models of fθ1 and fθ2 are equal since γSn(fθ1) =
γSn(fθ2). This implies that the two different parameters, θ1 and θ2, yield the same Reynolds model,
indicating parameter redundancy. In general, there is a significant amount of such redundancy,
depending on the order of the groups. This redundancy is a challenge that needs to be addressed,
as it can lead to issues such as vanishing differentials and negatively impact the generalization gap
inequality.

The primary goal of this study is to resolve these two difficulties. To achieve this, we propose
two new concepts: Reynolds design and Reynolds dimension.

Reynolds design. An invariant Reynolds design for a function class F is a subset H of a group
G satisfying

1

|G|
∑
g∈G

f(g · x) =
1

|H|
∑
g∈H

f(g · x)

2

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

for any function f ∈ F . An equivariant Reynolds design is similarly defined. Considering the
Reynolds design for a given function class, the computational complexity can be greatly reduced.
In the case of graphs, for example, we show that the Reynolds design is of order n2, despite the
fact that the order of the group is n! (Theorem 3). With the Reynolds design, we overcome the
computational complexity of Reynolds operators in Difficulty 1.

Reynolds dimension. The Reynolds model of a pre-model is often represented by another pre-
model with less input dimension. For example, consider the weighted sum of the i-th power of
variables f = a1x

i
1 + · · · + anx

i
n, where

∑
ai = 1/n, as a pre-model. Then, we have γSn(f) =

γSn
(
xi1
)
. Therefore, the only input variable needed to represent γSn(f) is x1. The Reynolds

dimension d is the minimum input dimension required for functions to represent certain invariant
functions through the Reynolds operator:

1

|G|
∑
g∈G

f(g · x) =
1

|G|
∑
g∈G

f̃d((g · x)|d),

where f̃d is a certain function with input dimension d, and (g ·x)|d denotes the vector comprising the
first d components of g · x. The definition of Reynolds dimension is further elaborated in Section 6.
As can be seen in this example, input variables can be reduced in many cases, thereby considerably
reducing the parameter redundancy in Difficulty 2.

Our contributions are summarized as follows:

• We introduced a subset of a group, termed the Reynolds design, which significantly reduces
the computational complexity of the Reynolds operator.

• We reduced the input space of pre-models while preserving expressive power by considering
the Reynolds dimension and the corresponding partial variable inputs.

• We proved the representation theorem of equivariant maps between higher-order tensor spaces,
which guarantees the universality of our models.

• Our experiments on benchmark data with models incorporating these two enhancements
demonstrated that our method is more efficient than existing approaches.

2. Previous Work

Equivariance and Invariance. Various machine learning tasks aim to approximate a certain target
map, such as the labeling function in classification and regression. When symmetries are present
in data, the target maps often have invariance or equivariance to the symmetries. In such cases,
invariant or equivariant networks are effective and efficient to approximate the target map because
model complexity can be significantly reduced compared with neural networks without specific
structure for the symmetries. Convolutional neural networks (CNNs) are well-known as a seminal
equivariant model for translation symmetry (Krizhevsky et al., 2012). Inspired by the success of
CNNs, various equivariant models have been proposed. Besides continuous symmetries such as
translation, symmetries of finite groups frequently appear in many machine learning tasks. When
sets or point clouds are used as inputs, the target functions are typically invariant to the order of
data points. Then, this function has invariance to the permutations group on data points (Qi et al.,
2017; Zaheer et al., 2017). In the case where graphs or hyper-graphs are inputs, the symmetry is

3

SANNAI, KAWANO AND KUMAGAI

represented by permutation on a tensor product space. Several researchers generalized convolution
to the setting of graphs inspired by CNNs (Bruna et al., 2014; Henaff et al., 2015; Kipf and Welling,
2017; Defferrard et al., 2016). Kondor et al. (2018); Maron et al. (2019a); Chen et al. (2019) have
recently investigated graph neural networks. Hartford et al. (2018) consider interaction between
sets. Graham et al. (2019) consider relational databases as a generalization of graphs and provides
equivariant models to handle relational databases.

An existing work similar to ours is that of Puny et al. (2022). The original definition of the
Reynolds operator for functions requires averaging over the entire group G. Both Puny et al. (2022)
and our method rewrite the Reynolds operator by the average over G by replacing G with an ap-
propriate subset D. One of the differences between Puny et al. (2022) and our method is that Puny
et al. (2022) constructs D depending only on the input space of functions, whereas we construct
D depending on the function space of the neural networks. The above construction makes our
construction of D being smaller than that of Puny et al. (2022).

Universality. The expressive power of learning models is mathematically validated by universal
approximation theorems. Many universal approximation theorems have been proved for different
conditions. Invariant models with universal approximation property are provided for point cloud
networks and sets network (Qi et al., 2017; Zaheer et al., 2017), networks with matrices and higher-
order tensors as inputs (Hartford et al., 2018), graph and hyper-graph networks (Maron et al., 2018),
and networks invariant to the actions of finite groups Maron et al. (2019b). The universality of
equivariant models for finite groups is proved by Ravanbakhsh et al. (2017). There are also learning
models with universality in other settings (Yarotsky, 2021; Keriven and Peyré, 2019; Segol and
Lipman, 2019).

3. Reynolds Operators and Reynolds Designs

In this section, we provide the definition of Reynolds operators and introduce the Reynolds design,
which contributes to remarkably reducing the computational complexity of Reynolds operators.

LetG be a group. AG-action on the vector space RN is the structure-preserving homomorphism
ρ : G→ GLN (R), where GLN (R) denotes the group ofN×N regular matrices. Then, for a vector
x ∈ RN , we define ” · ” : G×RN → RN by g · x = ρ(g)x. A function f : RN → RM is invariant
if f(g · x) = f(x) holds for any g ∈ G and any x ∈ RN , and equivariant if f(g · x) = g · f(x)
holds for any g ∈ G and any x ∈ RN .

Here, we define the Reynolds operators.

Definition 1 (Reynolds Operator (cf. Mumford et al. (1994), Definition 1.5)) For a groupG, the
following are called the equivariant and invariant Reynolds operators, respectively:

τG(f)(x) =
1

|G|
∑
g∈G

g−1 · f(g · x), (1)

γG(f)(x) =
1

|G|
∑
g∈G

f(g · x). (2)

4

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Figure 1: The equivariant Reynolds operator for a function f with a group G.

Figure 2: The invariant Reynolds operator for a function f with a group G.

Figures 1 and 2 visually represent the in-out relations of equivariant and invariant Reynolds opera-
tors. More generally, for a subset H in G,*1 we define τH and γH by replacing G by H in (1) and
(2), respectively.

The equivariant Reynolds operator converts an arbitrary map into an equivariant map. In other
words, we can use Reynolds operators to construct deep neural nets of equivariant functions. How-
ever, the computational complexity of Reynolds operators increases depending on the order of G.

To reduce the computational complexity of Reynolds operators, we introduce the notion of
Reynolds design. To the best of our knowledge, this is the first study to propose this notion.

Design theory in mathematics provides a suitable subset that represents some property of the
whole. Here, we explain spherical design. Let Pt be the set of all polynomials of at most degree
t ∈ N on Rd. Then, there exists a finite subset H of the sphere Sd−1 ⊂ Rd such that an arbitrary
polynomial p ∈ Pt satisfies

1

|Sd−1|

∫
Sd−1

p(h)dh =
1

|H|
∑
h∈H

p(h).

Then, such a subset H is called the t-spherical design.

*1. The subset H in G may not be a subgroup of G.

5

SANNAI, KAWANO AND KUMAGAI

Definition 2 (Reynolds Design) The Reynolds design*2 H of a function f is a subset of G that
satisfies τG(f) = τH(f), i.e.,

1

|G|
∑
g∈G

g−1 · f(g · x) =
1

|H|
∑
g∈H

g−1 · f(g · x). (3)

Furthermore, when (3) holds for all f ∈ F , the Reynolds designH of a set of functionsF is defined.

We provide two examples of Reynolds’ design in the following. First, since an invariant function
f satisfies f = τG(f), H = {id} is a Reynolds design of invariant functions for any G. Second,
since a power of one variable satisfies τSn

(
xi1
)

= 1
n(xi1 + · · · + xin) = τCn

(
xi1
)

with the cyclic
group Cn of order n, H = Cn is the Reynolds design of a power of one variable for G = Sn.
The Reynolds design, as demonstrated in these examples, significantly reduces the computational
complexity of the Reynolds operator.

4. Representation Theorem for Equivariant Maps

In this section, we provide the representation theorem for equivariant functions. The case of graph
representations is an important application of the representation theorem, where a certain Reynolds
designH can be of orderO(n2) for graphs with n-nodes. In this case, the computational complexity
of the Reynolds operator reduces from O(n!) to O(n2).

Unless otherwise noted, we suppose that groups are Sn throughout the rest of this paper.

4.1 Hypergraphs and higher order tensors

A hypergraph consists of data (V,X), with V being a set of n nodes andX a tensor of rankm. X is
attached to hyperedges, which is the ordered subset of V . The type of hyperedge is indicated by the
rank of the tensor X , which is as follows: When m = 1, X represents node values, where Xi is the
value of the i-th node; When m = 2, X represents edge values, where Xij is the value attached to
the (i, j) edge; in general, m-th order tensor encodes hyperedge values, where Xi1,...,im represents
the value of the hyperedge represented by (i1, . . . , im).

For example, we represent a graph using an adjacency matrix X , where Xij equals one if there
is a path from vertex i to vertex j and zero otherwise. We denote the set of m-tensors by Rnm .

We define Sn-action on tensors X ∈ Rnm×a (the last index denoted by a represents feature
depth) by (g · X)i1...il,α = Xg−1(i1)...g−1(il),α for i1, . . . , i` ∈ [n] and α ∈ [a]. Note that this
is equivalent to the Sn-action induced by the permutation on the node set V . The orbits of the
Sn-action for n = 3 and m ∈ {1, 2, 3} are represented as in Figure 3.

4.2 Representation theorem of Equivariant Functions to the Spaces of Matrices.

This subsection presents a special case of the representation theorem presented in the following
subsection. To do so, we introduce some notations. When a group G acts on a set X , the stabilizer
of an element x ∈ X is the subset of G defined by Stab(x) := {g ∈ G|g · x = x}. In particular,
when X is a Euclidean space RN , Stab(G) is defined by a subset of G that fixes the first coordinate
of all vectors in RN . Similarly, When S is a subset of X , the stabilizer of S is the subset of G

*2. The notion of Reynolds design is analogous to that of the spherical design, by which the integral over the sphere
Sd−1 can be reduced to a sum over a small finite subset H ⊂ Sd−1 (Bannai and Bannai, 2009).

6

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Figure 3: The orbits of group action.

defined by Stab(S) := {g ∈ G|∀x ∈ S, g · x = x}. In addition, when a group G acts on a set X ,
G also acts on the space of maps f from X to a set Y as g · f(x) := f(g−1 · x). Then, Stab(f) is
well-defined (i.e., Stab(f) := {g ∈ G|g · f = f}). Next, we define the linear map for basis vectors
eij ∈ Rn2

as follows:

êij : R 3 a 7→ aeij ∈ Rn
2
.

Then, the following theorem holds.

Theorem 1 Let F : Rnl×a → Rn2
be a continuous function, then F is equivariant if and only if

there exist two continuous Stab(e11)invariant map and Stab(e12)invariant map F1, F2 : Rnl×a →
R satisfying

F = τH1(ê11 ◦ F1) + τH2(ê12 ◦ F2),

where H1, H2 are Reynolds design of ê11 ◦ F1, ê12 ◦ F2, respectively. Furthermore, we can show
that |H1| = n and |H2| = n(n− 1).

7

SANNAI, KAWANO AND KUMAGAI

Theorem 1 has two major implications: a reduction in model complexity and a reduction in
computational complexity. To begin, this theorem reduces learning an equivariant function F to
learning functions F1 and F2. Note that the output spaces of the function significantly decrease
from n2 to 1. Hence, the model complexity is reduced. Second, since H1 is of order n and H2 is
of order n(n− 1), the total computational complexity for the Reynolds operator is n2. By contrast,
the computational complexity of the original Reynolds operator τSn is n!. Hence, the computational
complexity of the Reynolds operator was reduced from n! to n2, resulting in a significant reduction
in the amount of calculation.

4.3 Basis Tableau and Representation Theorem

In subsection 4.2, we proved Theorem 1, in which equivariant functions have computationally effi-
cient representations compared to the original Reynolds operators of Sn in (1) and (2). In this sub-
section, we delve into the more general combinatorial structure underlying Theorem 1 and present
the general version of Theorem 1, employing concepts such as Young diagrams and Young tableaux
in combinatorics.

We first define a Young diagram, which is a way to represent the division of a natural number
m. Here, division refers expressing a natural number m as a sum of several non-negative integers.

Definition 3 (Young Diagram) Let D ∈ [m] be fixed. A vector k = (k1, . . . , kD) of natural
numbers k1, . . . , kD is called a Young diagram of depth D if it satisfies m = k1 + . . . + kD and
k1 ≥ . . . ≥ kD.

The partition can be represented by a total of m boxes, consisting of D rows with ki boxes in
the d-th row. Figure 4 provides some examples. Next, we define a basis tableau, which is a Young
diagram filled with numbers.

Definition 4 (Basis Tableau) Let n ≥ m and k = (k1, . . . , kD) a Young diagram. A vector T =
(t1, . . . , tD) of vectors td = (td,1, . . . , td,kd) ∈ [n]kd is called basis tableau of depth D if it satisfies
the following conditions:

1. td,w 6= td′,w′ for (d,w) 6= (d′, w′).

2. td,1 < td,2 < . . . < td,kd for each d ∈ [D].

3. If kd = kd+1, then td,1 < td+1,1 for d = 1, . . . , D − 1.

Figure 4 shows an example of basis tableaux for m = 3. We denote the set of basis tableaux for
m of depth D by Tm,D, and the set

⋃
1≤D≤m Tm,D of basis tableaux with at most depth m by Tm.

Basis tableaux determines a set of vectors.
We introduce vectors induced from basis tableaux in the following. To do so, we first introduce

some notations. For the standard basis e1, . . . , en of Rn and u = (u1, . . . , um) ∈ [n]m, we set as

eu := eu1,...,um = eu1 ⊗ · · · ⊗ eum ∈ Rn ⊗ · · · ⊗ Rn︸ ︷︷ ︸
m

= Rn
m
. (4)

For any basis tableau T = [t1, . . . , tD] ∈ Tm,D, natural numbers u = (u1, . . . , um) ∈ [n]m

are given as u` := d ∈ [n] if ` ∈ {td}.*3 Then, we define the map φ : Tm → [n]m by
φ(T) := (u1, .., um) ∈ [n]m.

*3. For a vector t = [t1, . . . , tk], we set {t} := {t1, . . . , tk}. For example, when t = [1, 1], {t} = {1}.

8

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Figure 4: Young diagrams and basis tableaux for m = 3, and the corresponding basis tableau
vectors in Rn3

= Rn ⊗ Rn ⊗ Rn.

Figure 5: The conversion method from a basis tableau to the corresponding basis tableau vector.
When the depth of the basis tableau is D, the number of steps above is D.

Definition 2 Let n ≥ m, D ∈ [m] and T ∈ Tm,D. The basis tableau vector is defined by eT :=
eφ(T) ∈ Rnm , where the right-hand side is defined by (4).

Figure 5 shows an example of the process to calculate a basis tableau vector. Moreover, Figure
4 shows examples of basis tableaux vectors when m = 3. For eT ∈ Rnm , eT induces the linear
map by

êT ,b : Rb 3 (a1, . . . , ab) 7→ (a1eT , . . . , abeT) ∈ Rn
m×b. (5)

Then, we have the following theorem.

Theorem 3 (Representation Theorem) Let n ≥ m and G = Sn. For any continuous map F :
Rnl×a → Rnm×b, F is equivariant if and only if there exist Stab(êT ,b)-invariant continuous maps
FT : Rnl×a → Rb indexed by basis tableaux T ∈ Tm such that

F =

m∑
D=1

∑
T∈Tm,D

τHD(êT ,b ◦ FT),

where Cn−i denote the cyclic group of order n− i on the set {i+ 1, .., n} and

HD := Cn ◦ · · · ◦ Cn−D+1

9

SANNAI, KAWANO AND KUMAGAI

= {σn · σn−1 · · ·σn−D+1 | σi ∈ Ci (i ∈ [n−D + 1, n])}.

Furthermore, HD is a Reynolds design of êT ,b ◦ FT for any T ∈ Tm,D.

Theorem 1 corresponds to the case m = 2 in Theorem 3. In this case, the Young diagrams are
k = (2) and (1, 1), whose depth is 1 and 2 respectively. Also, the basis tableaux are uniquely
indexed by the above two Young diagrams. As a result, we have two functions, F1 and F2, and two
bases, e11 and e12. The order of H1 and H2 follows from the definition directly.

In general, it is known that the generalization bound is improved by |Stab(G)|1/2 when using
the invariant model compared to when using the fully connected model (Sannai et al., 2021).

5. Proof of Theorem 3

We introduce the following notion to obtain tableau-based representation of elements in [n]m.

Definition 4 (Extended Tableau) Let n ≥ D. Let [n]D# be the set of D different natural numbers
at most n defined by [n]D# := {[j1, . . . , jD] ∈ [n]D | ja 6= jb for a 6= b ∈ [D]}. Then, we call
elements in T̃m,D := [n]D# × Tm,D extended tableaux with depth D.

We denote the set
⋃

1≤D≤m T̃m,D of extended tableaux with at most depth m by T̃m. The action
g ·[j1, . . . , jD] := [g ·j1, . . . , g ·jD] ofG on [n]D# is well-defined. Then, we define the action ofG on
T̃m,D by g ·(j,T) := (g ·j,T). In the following, we identify an extended tableau ([1, 2, . . . , D],T)
with the basis tableau T .

Next, we introduce some notations to represent elements in [n]m by extended tableaux. We first
define the partial order � of vectors of natural numbers that can have different dimensions. For
t = [t1, . . . , tk] ∈ Nk and t′ = [t′1, . . . , t

′
k] ∈ Nk′ , we denote as t � t′ if either (i) k > k′ or (ii)

k = k′ and t1 > t′1. We note that t1 � . . . � tD holds for a basis tableau T = [t1, . . . , tD] by
definition.

Let u = [u1, . . . , uk] ∈ [n]m. We set D(u) := |{u}|. We define the multiplicity map multu :
{u} → [m] by multu(u) := |{` ∈ [m] | u` = u}|. For u ∈ {u}, we define tu := [t1, . . . , tku],
where ku := multu(u), ut1 = · · · = utku = u, and t1 < · · · < tku . Here, we note that either
tu � tu′ or tu ≺ tu′ holds for u 6= u′ ∈ {u} by definition. Thus, there exist different natural
numbers j1, . . . , jD ⊂ [n] such that {j1, . . . , jD} = {u} and tj1 � . . . � tjD .

Definition 5 (Tableau Representation) Let n ≥ m . We define the map ψ : [n]m 3 u 7→ (j,T) ∈
T̃m called tableau representation by

ψ(u) := ([j1, . . . , jD], [tj1 , . . . , tjD]) ∈ T̃m,D.

We define the map φ : T̃m → [n]m as follows: For any extended tableau (j,T) ∈ T̃m,D,
natural numbers u = [u1, . . . , um] ∈ [n]m are given as u` := jd ∈ [n] if ` ∈ {td}, and
φ(j,T) := (u1, .., um) ∈ [n]m.

Lemma 6 When n ≥ m, the tableau representation ψ : [n]m → T̃m is bijective and ψ(g · u) =
g · ψ(u) for g ∈ HD.

10

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Proof First, from the construction, ψ is injective and φ ◦ ψ = id[n]m . Since [n]m and T are finite
sets, if we show that φ is injective, then ψ is bijective. For the extended tableau S,T , assume that
φ(S) = φ(T). Note that the set of row vectors {s1, ..., sd} of S is uniquely determined from φ(S).
Then, since the extended tableaux satisfy the order � in which this goes between the row vectors,
the extended tableau S having row vectors {s1, ..., sd} is unique. Hence, we have S = T .

Definition 7 (Extended Tableau Vector) Let n ≥ m. The extended tableau vector ej,T is defined
by ej,T := eφ(j,T).

For an extended tableau (j,T) ∈ T̃m, the linear map êj,T ,b : Rb → Rnm×b is defined by replacing
eT by ej,T in (5).

Lemma 8 (Normalization) Let n ≥ D. For j ∈ [n]D#, there uniquely exists g ∈ HD such that
j = g−1 · [1, 2, . . . , D] ∈ [n]D#. Hence, this correspondence [n]D# 3 j → g ∈ HD is bijective.

Proof There uniquely exists σ1 ∈ Cn such that σ1 (j1) = 1. Inductively, there uniquely exists σd ∈
Cn−d+1 such that σd (σd−1 · σd−2 · · ·σ1(jd)) = d for d = 2, . . . , D. Then, g := σD · · ·σ1 ∈ HD

satisfies g · j = [1, 2, . . . , D] by definition.

Lemma 9 Let T be a basis tableau of depth D. Then, Sn = H−1D · Stab(eT ,b) holds, where
eT ,b := Im êT ,b.

Proof The same discussion as in Lemma8 shows that there exists an h ∈ HD satisfying g · T =
h−1 ·T for any g ∈ Sn. This implies that hg ∈ Stab(eT ,b). Hence, g = h−1 ·hg ∈ H−1D ·Stab(eT ,b)
holds.

From Lemma 8, an extended tableau (j,T) ∈ T̃m,D is uniquely represented by (j,T) = g−1 ·
([1, . . . , D],T) = g−1 · T as in Figure 6, where g ∈ HD, and we identified T ∈ Tm,D with
([1, . . . , D],T) ∈ T̃m,D in the last equation. Thus, we have T̃m,D =

⋃
g∈HD g

−1Tm,D, and T̃m =⋃
1≤D≤m

⋃
g∈HD g

−1Tm,D. From Lemma 6, for each u ∈ [n]m, there uniquely exists g ∈ HD and
T ∈ Tm such that ψ(u) = g−1 · T (or equivalently u = ψ−1(g−1 · T)). In the following, we omit
the bijective ψ for notational simplicity.

In the following, we prove Theorem 3. We can write F =
∑

u∈[n]m êu,b ◦ fu by maps fu :

Rnl×a → Rb. Then, since F is equivariant, we have
∑

u∈[n]m êu,b ◦ fu(g · x) = F (g · x) =
g · F (x) =

∑
u∈[n]m êg·u,b ◦ fu(x). This implies that

êu,b ◦ fu(g · x) = êu,b ◦ fg−1·u(x). (6)

Then, we obtain the following equations:

F (x)

11

SANNAI, KAWANO AND KUMAGAI

Figure 6: Reduction from an extended tableau to a basis tableau by permutations. An extended
tableau (j,T) is converted into a basis tableau by multiplying g = σD · σD−1 · · ·σ1.

=
∑

u∈[n]m
êu,b ◦ fu(x)

=
∑

1≤D≤m

∑
g∈HD

∑
T∈Tm,D

êg−1·T ,b ◦ fg−1·T (x)

=
∑

1≤D≤m

∑
T∈Tm,D

∑
g∈HD

êg−1·T ,b ◦ fg−1·T (x)

=
∑

1≤D≤m

∑
T∈Tm,D

∑
g∈HD

êg−1·T ,b ◦ fT (g · x)

=
∑

1≤D≤m

∑
T∈Tm,D

∑
g∈HD

g−1 · (êT ,b ◦ fT (g · x))

=
∑

1≤D≤m

∑
T∈Tm,D

∑
g∈HD

1

|HD|
g−1 · (|HD|êT ,b ◦ fT (g · x))

=
∑

1≤D≤m

∑
T∈Tm,D

τHD (|HD|êT ,b ◦ fT) (x)

=
∑

1≤D≤m

∑
T∈Tm,D

τHD (êT ,b ◦ FT) (x),

where the fourth equality follows from (6), and the last equality follows by putting FT := |HD|fT .
Here, assume that there is a basis tableax T such that FT is not Stab(eT ,b)-invariant. Then we can
confirm s · F 6= F for some s ∈ Stab(eT ,b) by checking T -component of the functions.

Conversely, assume that we have the desired equation and FT is Stab(eT ,b)-invariant. To show
that F is an equivariant function, it is enough to show that

∑m
D=1

∑
T∈Tm,D τG(êT ,b ◦ FT) =∑m

D=1

∑
T∈Tm,D τHD(êT ,b ◦ FT).

This is equivalent to showing that τG(êT ,b ◦ FT) = τHD(êT ,b ◦ FT) for any T . Using Lemma
14, we can express any g ∈ G as h−1s for some h ∈ HD and s ∈ Stab(êT ,b). Then we have

τG(êT ,b ◦ fT) =
∑
g∈G

g−1 · (êT ,b ◦ fT (g · x))

=
∑
g∈G

g · (êT ,b ◦ fT (g−1 · x))

=
∑

h∈HD,s∈Stab(eT ,b)

h−1s · (êT ,b ◦ fT (s−1h · x))

12

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

=
∑

h∈HD,s∈Stab(eT ,b)

h−1 · (êT ,b ◦ fT (s−1h · x))

=
∑

h∈HD,s∈Stab(eT ,b)

h−1 · (êT ,b ◦ fT (h · x))

=
∑
h∈HD

h−1 · (êT ,b ◦ fT (h · x))

= τHD(êT ,b ◦ fT),

where the fourth equality is derived from the definition of stabilizer subgroups and the fifth equality
is derived from the invariance of fT . �

6. Invariant/Equivariant ReyNets and Universality

In this section, we provide our equivariant and invariant models and show their universality. First,
we introduce multilayer perceptron.

Definition 10 (multilayer perceptron (MLP)) Let L ∈ N. A multilayer perceptron N : Rd0 →
RdL with L + 1 layers is a composition map of affine maps (A1, . . . , AL) and an activation map ρ
represented by

N := AL ◦ ρ ◦AL−1 ◦ · · · ◦ ρ ◦A1,

where A` : Rd`−1 → Rd` are affine maps and the activation function is applied element-wise.

MLPs are well-known for their universality, provided they have arbitrary depth and width, as demon-
strated in Leshno et al. (1993).

In the following, we define equivariant models. Note that not all input variables are required
when considering the case of converting with Reynolds operators (see the calculation after Defini-
tion 2). Therefore, we introduce an equivariant model with a selection of variables, called d-reduced
Equivariant Reynolds Nets.

Definition 11 (d-reduced Equivariant Reynolds Nets for HD) We assume that n ≥ m,nl ≥ d.
Let HD be a subset of G and P : Rnl×a → Rd×a be a projection onto d-components. For any basis
tableaux T ∈ Tm, let NT : Rd×a → Rb be a multilayer perceptron (MLP). The map E : Rnl×a →
Rnm×b

E =
m∑
D=1

∑
T∈Tm,D

τHD(êT ,b ◦ NT ◦ P),

is called a d-reduced equivariant Reynolds network (equivariant ReyNet).

We simply call nl-reduced equivariant ReyNets (i.e., P is the identity matrix) equivariant ReyNets.
Note that d-reduced ReyNets are determined by the functions NT ,T ∈ Tm. Theorem 3 guarantees
the universal approximation property of this model.

Theorem 12 (Universality) We assume that n ≥ m and G = Sn. Let HD be as in Theorem 3 and
F : Rnl×a → Rnm×b be a continuous equivariant function. For any compact set K ⊂ Rn`×a ,
there exists an equivariant Reynolds network that approximates F to an arbitrary precision on K.
Namely, equivariant Reynolds nets are a universal approximator for equivariant functions.

13

SANNAI, KAWANO AND KUMAGAI

Proof By Theorem 3, there exist continuous maps fT : Rnl×a → Rb satisfying

F =
m∑
D=1

∑
T∈Tm,D

τHD(êT ,b ◦ fT),

for standard Young tableaux T ∈ Tm,D. Since K is a compact set and Sn is a finite group, we
may assume that K is closed under Sn-action by taking

⋃
g∈Sn g ·K. Then, for any ε, we have an

MLP NT that approximates fT , namely ‖NT − fT ‖K < ε holds. Hence by the definition of our
invariant model, we have∥∥∥∥∥∥F −

m∑
D=1

∑
T∈Tm,D

τHD (êT ,b ◦ NT)

∥∥∥∥∥∥
K

=

∥∥∥∥∥∥
m∑
D=1

∑
T∈Tm,D

τHD (êT ,b ◦ fT) −
m∑
D=1

∑
T∈Tm,D

τHD (êT ,b ◦ NT)

∥∥∥∥∥∥
K

≤
m∑
D=1

∑
T∈Tm,D

‖τHD (êT ,b ◦ fT)− τHD (êT ,b ◦ NT) ‖K

≤
m∑
D=1

∑
T∈Tm,D

‖τHD (êT ,b ◦ (fT −NT))‖K

≤
m∑
D=1

∑
T∈Tm,D

∥∥∥∥∥∥
∑
g∈HD

1

|HD|
êg−1·T ,b ◦ (fT −NT) (g · −)

∥∥∥∥∥∥
K

≤
m∑
D=1

∑
T∈Tm,D

∑
g∈HD

1

|HD|
∥∥êg−1·T ,b ◦ (fT −NT) (g · −)

∥∥
K

≤
m∑
D=1

∑
T∈Tm,D

∑
g∈HD

1

|HD|
∥∥êg−1·T ,b ◦ (fT −NT) (−)

∥∥
K

≤
m∑
D=1

∑
T∈Tm,D

∑
g∈HD

1

|HD|
‖fT −NT ‖K

≤
m∑
D=1

∑
T∈Tm,D

∑
g∈HD

1

|HD|
ε

≤ m|Tm,D|ε.

By replacing ε, we obtain ∥∥∥∥∥∥F −
m∑
D=1

∑
T∈Tm,D

τHD (êT ,b ◦ NT)

∥∥∥∥∥∥
K

< ε.

14

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Task Symmetry
n 3 5 10 20

FNN 1.730e-4 9.180e-4 1.454e-3 3.0583
IEGN (Maron et al., 2018) 6.600e-3 3.786e-3 9.294e-4 4.471e-3
ReyNet (ours) 2.147e-4 3.960e-4 1.408e-3 3.151e-3
4-red ReyNet (ours) 8.544e-5 4.889e-5 7.529e-5 6.554e-5

Task Diagonal
n 3 5 10 20

FNN 1.295e-4 2.655e-4 1.148e-4 1.081e-1
IEGN (Maron et al., 2018) 2.065e-3 2.266e-3 4.098e-3 4.743e-4
ReyNet (ours) 1.007e-4 2.472e-4 6.635e-4 1.112e-4
4-red ReyNet (ours) 6.947e-5 1.932e-5 5.568e-5 3.566e-5

Table 1: Results of comparison to a baseline method

We note that the universality of equivariant ReyNets can also be demonstrated in a similar
manner when the MLPs, as defined in Definition 11, are substituted with any models possessing
universality for functions defined on compact domains.

Standard invariant models are combined with an MLP after an equivariant model (Zaheer et al.,
2017; Maron et al., 2019b). Following this, the invariant model is constructed using the above-
defined equivariant model.

Definition 13 (d-reduced Invariant Reynolds Nets) A d-reduced invariant Reynolds network (d-
red ReyNet) is a function I : Rnl×a → R defined as

I =M◦ Σ ◦ E ,

where E : Rnl×a → Rnm×b is a d-reduced equivariant Reynolds network, and Σ is the orbit sum,*4

andM is an MLP.

Next, we discuss the extent to which reduction is allowed, which is an important discussion
because the size of the reduction directly affects the number of parameters. We define this size as
Reynolds dimension and explain its relation to the invariant theory. Invariant theory is a field of
mathematics that deals with invariant polynomials, and the set of generators of invariant polynomi-
als, which will be introduced next, plays an essential role in invariant theory.

Definition 5 A finite set of G-invariant polynomials f1, .., fr of n variable is called a generator of
G-invariant polynomials, if for anyG-invariant polynomial f , there exists a polynomial h(y1, ..., yr)
such that f(x1, .., xn) = h(f1(x1, .., xn), ..., fr(x1, .., xn)).

In the case of a general group G, there are cases where there is no generator, but in the case of a
finite group, Hilbert (1890) proved that the existence of generators of invariant polynomials. Based
on Hilbert’s theorem, we define the following Reynolds dimensions.

*4. The orbit sum Σ : R[n]m×b → R[n]m/G×b is defined by Σ(X)G·u,β :=
∑
g∈G xg·u,β for X = [xu,β] ∈ R[n]m×b,

u ∈ [n]m, β ∈ [b] and G · u ∈ [n]m/G.

15

SANNAI, KAWANO AND KUMAGAI

Definition 14 (Reynolds dimension) Let G be a finite group and r1, .., rs be generators of invari-
ant polynomials. The smallest natural number d satisfying the following property is the Reynolds
dimension of the group G. There exist polynomial h1, .., hs of d-variables and an index subset
{j1, . . . , jd} ⊂ [n] such that

ri(x) =
1

|G|
∑
g∈G

hi((g · x)|d)

holds, where |d denotes the projection onto {j1, . . . , jd} components.

For example, when Sn acts by permutation on an n-dimensional space, the Reynolds dimension
is 1. However, if the space to be acted on is a space of tensor rank 2 or higher, such as the space of
adjacency matrices of a graph, the Reynolds dimension will be 2 or higher even if the group is Sn.

In the following proposition, we construct the Reynolds design corresponding to Reynolds di-
mensions. For this purpose, let us review some notations. We define StabG([d]) to be the set of
elements of G for which xj1 , . . . , xjd are fixed. In addition, [G/G′] a complete system of represen-
tatives of G/G′ for subgroup G′ ⊂ G is a set of order |G/G′| that satisfies G =

⋃
a∈[G/G′] aG

′.
Then we see the following proposition.

Proposition 15 In the same situation as Definition 14, [G/StabG([d])] is a Reynolds design of hi.

Proof Note that hi is a polynomial of d-variables. Hence, StabG([d]) acts trivially on hi. This
implies that τG(hi) = τ[G/StabG([d])](hi).

Proposition 16 In the same situation as Definition 14 with G = Sn, the Reynolds design of hi is
represented as Hd (i.e., Hd = [G/StabG([d])]), where Hd was defined in Theorem 3.

Proof We may assume that {j1, . . . , jd} = [d] by replacing the valuables. By the definition of
StabG([d]), it is enough to show that (1) |G| = |Hd||StabG([d])| and (2) for any g ∈ G, there are
h ∈ Hd and s ∈ StabG([d]) satisfying g = h · s. The first condition follows from direct calcu-
lation. To see the second condition, we calculate g−1(i). By the construction of Hd (Theorem 3),
there is an h ∈ Hd such that g−1(i) = h−1(i) for any i > d. Also, there is an s ∈ StabG([d])
such that g−1(i) = h−1(i) for any i ≤ d. Note that StabG([d]) does not affect i > d. Therefore,
g−1(i) = s−1 · h−1(i) holds for any i.

Theorem 17 (Universality) We assume that G = Sn. Let d be the Reynolds dimension of G. Then,
the Reynolds invariant nets constructed above for E : Rnl×a → Rnd×b is a universal approximator
for invariant functions f : Rn`×a → Rb. In other words, the input space of E can be replaced by a
composite E ◦ Z with the zero padding map Z : Rd×a → Rn`×a. *5

*5. The zero padding map Z : Rd×a = Rd⊗Ra → Rn
`×a = Rn

`

⊗Ra is the linear map defined by Z((x1, . . . , xd)⊗
eα) := (x1, . . . , xd, 0, . . . , 0︸ ︷︷ ︸

n`−d

)⊗ eα for α = 1, 2, . . . , a.

16

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Finally, we describe the connection between this Reynolds dimension and universality. This is
an analogy to the variable direction of width-bound universality.

Proof Let f : Rn`×a → Rb be a continuous invariant function. By replacing K with
⋃
g∈G g ·K,

we may assume that K is closed under the action of G. Then, by the Stone-Weierstrass theorem,
there exists a polynomial f̂ : Rn`×a → Rb which approximate f with arbitrary precision on K. Put
f̃ = γG(f̂), then

∥∥∥f(x)− γG(f̂)(x)
∥∥∥
K

=
1

|G|

∥∥∥∥∥∥|G|f(x)−
∑
g∈G

f(g · x)

∥∥∥∥∥∥
K

≤ 1

|G|
∑
g∈G
‖f(x)− f̂(g · x)‖K

=
1

|G|
∑
g∈G

∥∥∥f (g · x)− f̂(g · x)
∥∥∥
K

≤ 1

|G|
∑
g∈G

ε = ε,

where we used the property f(x) = f(g · x) in the third equation.
We now use the following theorem by Hilbert.

Theorem 18 (Hilbert finiteness theorem (Hilbert, 1890)) Let G be a finite group or, more gener-
ally, a linearly reductive group. In this case, there is always a generator of G-invariant polynomials.

By Theorem 18, we have a generator of invariant polynomials r1, . . . , rs. From the definition of the
generator, there exists a polynomial P , and f̃ can be written in the form

f̃ (x1, . . . , xnla) = P (r1 (x1, . . . , xnla) , .., rs (x1, . . . , xnla)).

By the assumption of Reynolds dimension,

r1 (x1, . . . , xnla) , . . . , rs (x1, . . . , xnla)

are written as
γG (h1 (xj1 , . . . , xjd)) , . . . , γG (hs (xj1 , . . . , xjd))

for some polynomials
h1 (xj1 , . . . , xjd) , . . . , hs (xj1 , . . . , xjd)

of d-variables.
By Proposition 15, Hd is a complete system of representative of G/ Stab([d]). We obtain the

following decomposition:

G =
⋃

g∈[G/StabG([d])]

g · StabG([d]) =
⋃
g∈Hd

g · StabG([d]) = Hd · StabG([d]).

Then, this induces the decomposition of Reynolds operators;

γG = γHd ◦ γStab([d]),

17

SANNAI, KAWANO AND KUMAGAI

where

γStab([d]) : R [x1, . . . , xnla]→ R [x1, . . . , xnla]
Stab([d]) ,

γHd : R [x1, . . . , xnla]
Stab([d]) → R [x1, . . . , xnla]

G ,

and R [x1, . . . , xnla] ,R [x1, . . . , xnla]
Stab([d]) ,R [x1, . . . , xnla]

G are the set of polynomials, Stab([d])-
invariant polynomials, and invariant polynomials, respectively. This implies

ri = γG (hi (xj1 , . . . , xjd))

= γHd
(
γStab([d])(hi (xj1 , . . . , xjd))

)
= γHd (hi (xj1 , . . . , xjd)) .

Here the last equality follows from the fact that hi (xj1 , . . . , xjd) is a StabG([d])-invariant poly-
nomial. By contrast, note that the invariant Reynolds operator is equal to the composition of the
equivariant Reynolds operator and the orbit sum; γG = Σ ◦ τG. For the vector valued function
h = (h1, .., hs), by the universal approximation theorem of fully connected neural nets, we can take
a fully connected neural netQ with which ‖Q−h‖K < ε holds. LetN be a fully connected neural
net that approximates P above; ‖N − P‖K < ε. Then,

N ◦ Σ ◦ τHd ◦Q(x1, .., xn)

≈ N ◦ Σ ◦ τHd(h1(x1, .., xn), .., hs(x1, .., xn))

≈ N (γG(h1)(x1, .., xn), .., γG(hs)(x1, .., xn))

= N (r1(x1, .., xn), .., rs(x1, .., xn))

≈ P (r1(x1, .., xn), .., rs(x1, .., xn))

= f̃(x1, .., xn)

≈ f(x1, .., xn).

Here we denote the approximation by ≈.

This theorem indicates that in order to have universality, m can be reduced to the minimum
number of variables required to represent generators, which implies that the input dimension can
be correspondingly reduced. Although the actual number of values depends on the individual case
and cannot be written in closed form, we will see later that we experiment with m = 2 and obtain
competitive results.

6.1 A Conjecture on Reynolds Dimension

By Theorem 17, the Reynolds dimension provides sufficient number of input dimensions of the
pre-model to guarantee the universality for invariant functions. However, it is hard to determine the
Reynolds dimension in general cases. As a special case, when the symmetric group Sn acts on a
tensor space Rn` with the tensor rank ` = 1, we can verify that the Reynolds dimension is 1 and
especially does not depend on n. Based on this fact, we conjecture that the Reynolds dimension is
independent of sufficiently large n in the case of higher-order tensor spaces as follows.

Conjecture 6 Let G be an Sn acting on Rn` as in Section 4. For arbitrary enough large n, the
Reynolds dimension d(n) of G is independent of n.

18

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

7. Advantages of Reduced ReyNets

The effect of input dimension reduction. An advantage of reducing the input dimension of pre-
models is a tight inequality of the generalization gap. As is shown in Section 10.2 in Anthony and
Bartlett (2009), the generalization gap is bounded by the logarithm of the volume of the hyper cube
in the input space. Hence, our reduction of the input dimension of pre-models makes the upper
bound tight.

Robustness for extrapolation. As a significant advantage of reduced ReyNets, it is worth
mentioning that the model gives us an extrapolation method. To understand this, consider the case
that we learn graphs of n-nodes with d-reduced ReyNets (n2 ≥ d). Here, note that the functionNT

of the d-reduced ReyNets does not depend on n by Definition 11. Thus, this function NT can also
be applied to the case of the graphs of n′-nodes for n′ 6= n ((n′)2 ≥ d). Maron et al. (2018) claimed
that their models could also extrapolate. Since Maron et al. (2018) extrapolates using parameters,
the gap between parameters and functions can have a negative influence. However, since reduced
ReyNets transfer the functions directly, reduced ReyNets are robust under the change of n. We
confirm the difference between two methods in the experiment (see Section 8.1 and Figure 7).

8. Experiments

We evaluated the performance of ReyNets in equivariant and invariant tasks using multiple data sets.
First, we created synthetic data sets for equivariant and invariant tasks and compared ReyNets with
fully-connected neural networks (FNNs) and invariant and equivariant Graph Networks (IEGN) (Maron
et al., 2018). Then, to verify the performance with real data, we conducted experiments using eight
types of graph benchmark data sets. Please refer to the appendix for the details of each experiment.
Our code is publicly available at: https://github.com/makora9143/ReyNet.

8.1 Synthetic Datasets

We created four synthetic data sets for comparison. Given the input matrix data A ∈ Rn×n, each
task is defined as:

a) Symmetry: projection onto the symmetric matrices F (A) = 1
2(A + A>), b) Diagonal:

diagonal extraction F (A) = diag(A), c) Power: computing each squared element F (A) = [A2
i,j],

and d) Trace: computing the trace F (A) = tr(A), where the task function F is equivariant with
symmetry, diagonal, and power, and invariant with trace. With reference to Maron et al. (2018),
we sampled i.i.d. random matrices A with uniform distribution in [0, 10]; then, we transformed A
into F (A). In our experiments, we provided n ∈ {3, 5, 10, 20}, and the size of the training data set
and test data set was both 1000. In the experiments, we also compared ReyNet with a variant, 4-red
ReyNet.

Objective Function. The squared error function with the ground truth output was used as the
objective function for training. By Theorem 3, the squared error between the ReyNet output and all
components of the correct matrix is equal to the squared error between the neural network output
and only the (1,1) and (1,2) components of the correct matrix.

Since the equivariant task is a regression task, the model attempts to reduce the gap of all
the elements between the output matrix and the ground truth matrix; `std : Rn×n × Rn×n → R.
Meanwhile, by using the result of Theorem 3, ReyNet is not required to calculate the gap of whole

19

https://github.com/makora9143/ReyNet

SANNAI, KAWANO AND KUMAGAI

n MSE Corner MSE

3 1.438e-4 1.249e-4
5 4.912e-5 9.375e-5

10 1.157e-4 6.487e-5
20 1.608e-4 8.537e-5

Table 2: Comparison of objective function

4 6 8 10 12 14 16 18 20
n

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
SE 4red-ReyNet (ours)

Maron et al. (2018)

Figure 7: Extrapolation of regression on symmetry Synthetic Datasets.

elements but the 1st row of the 1st column element and the 1st row of the 2nd column element:
`corner : R1×2 × R1×2 → R. In this study, we call the former objective function the standard
mean squared error (MSE) loss and the latter the Corner MSE loss. We validated the effect of the
Corner MSE loss function prior to conducting synthetic experiments. We trained 4-red ReyNets
with standard MSE loss and Corner MSE loss. Table 8.1 shows the result of using each objective
function. With the exception of the n = 5 case, Corner MSE loss achieved a lower error than
standard MSE loss. Therefore, we used Corner MSE loss because it is a good choice for equivariant
tasks.

Results. Table 1 shows the result of synthetic data sets, symmetry and diagonal, which is the
average of MSE of five different seeds. The results of the remaining data sets are shown at Appendix.
As a result, our 4-red ReyNet outperforms IEGN in Maron et al. (2018).

Extrapolation. Notably, the size of the inputs n has no effect on our 4-red ReyNet. To evaluate
the extrapolation performance, we trained 4-red ReyNet with ntrain = 3 data set and then validated
the MSE on ntest ∈ {3, 4, . . . , 20} data sets. The results are depicted in Figure 7. We can see
that our 4-red ReyNet is generalized to the input size. Note that with regard to invariant tasks, we
confirmed the model is not generalized to the tasks as reported by Maron et al. (2018).

20

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

MUTAG PTC PROTEINS NCI1

Graph Model

PPGN 88.33 ± 7.1 60.59 ± 7.9 73.96 ± 4.6 77.32 ± 2.2
GIN 85.83 ± 7.7 56.64 ± 7.0 72.56 ± 5.9 76.84 ± 2.3

Invariant Model

IEGN 78.33 ± 10 55.59 ± 8.6 75.31 ± 5.4 76.06 ± 1.4
4-red ReyNet-(i) 89.44 ± 7.1 61.18 ± 5.2 75.41 ± 5.6 77.25 ± 2.0
4-red ReyNet-(ii) 88.33 ± 8.9 59.41 ± 7.8 74.60 ± 4.2 77.79 ± 2.1

NCI109 COLLAB IMDB-B IMDB-M

Graph Model

PPGN 78.98 ± 2.2 75.80 ± 2.0 70.60 ± 4.8 47.40 ± 3.3
GIN 73.51 ± 3.0 76.98 ± 2.1 70.60 ± 4.7 44.87 ± 3.9

Invariant Model

IEGN 73.79 ± 2.9 78.12 ± 2.9 69.40 ± 6.1 47.20 ± 3.3
4-red ReyNet-(i) 75.90 ± 2.2 73.62 ± 1.6 70.10 ± 5.1 48.80 ± 2.9
4-red ReyNet-(ii) 76.19 ± 2.1 74.31 ± 1.9 70.10 ± 4.6 46.73 ± 3.9

Table 3: Graph classification results (Acc.)

8.2 Graph Classification

As an example of real-world data, we selected eight benchmark data sets from the TU Dortmund
data collection (Kersting et al., 2016): five from bioinformatics and three from social networks.
Since these data sets are provided for classification tasks, we treated them as invariant tasks. Due to
the small size of these data sets, we followed an evaluation protocol that included a 10-fold for the
data sets of Yanardag and Vishwanathan (2015). In this experiment, we prepared two variants of
4-red ReyNets with different neural network architectures NT : three hidden units’ sizes of (16, 16,
16) for 4-red ReyNet-(i) and (128, 256, 512) for 4-red ReyNet-(ii). We used IEGN (Maron et al.,
2018), provably powerful graph networks (PPGN) (Maron et al., 2019a), and graph isomorphism
network (GIN) (Xu et al., 2019) as the baseline methods. These are DNN-based methods used
for TU Dataset experiments in their studies. Note that PPGN and GIN are practical models that
are proposed for graph data, and IEGN and 4-red ReyNet are invariant models that are not limited
to graph data. In this study, we re-implemented these methods by referring to available published
code. The architecture of our 4-red ReyNets and baselines is adopted from Maron et al. (2018): after
respective equivariant layers, the network consists of an invariant max-pooling (i.e. diagonal and
off-diagonal) followed by three fully connected layers with hidden units of size (512, 256, #classes).
We followed the settings in the published code for the optimizer’s learning rate and the scheduler’s
decay rate in each data set, except when the model training was not convergent, in which case we
tuned the learning rate to decrease. For more details, please refer to the appendix.

Results. We report the average accuracy scores and standard deviations of 10-folds in Table
8.1. As a result, our 4-red ReyNet outperformed the existing methods on the five bioinfomatics data

21

SANNAI, KAWANO AND KUMAGAI

GCN GIN ReyNet

0.7363± 0.0098 0.7366± 0.0268 0.7342 ± 0.0161

Table 4: Results on MOL-HIV (Wu et al., 2018).

sets and achieved slightly worse results on the three social networks data sets. To demonstrate our
experimental results, we show the results reported in those benchmark studies with the reproduction
results in this study in the appendix.

Effectiveness on Real Data. In order to further validate the effectiveness of ReyNet on real
data, we chose and performed Mol-HIV data task from the Open Graph Benchmark Dataset (OGB).
The Mol-HIV data task is a classification task to predict the property of the given graph, and is
one of the largest in the MoleculeNet data sets. Each graph represents a molecule, where nodes are
atoms and edges are chemical bonds. Input node features are of nine dimensions. For more details,
please refer to Hu et al. (2020).

Since in OGB, to encode these raw input features, AtomEncoder and BondEncoder modules
are provided, we used these modules to encode the input data first. As baseline methods, we chose
GCN and GIN (Kipf and Welling, 2017) listed on the leaderboard, and used implementation code
available online. Due to computational cost, we set the embedding dimension of AtomEncoder
and BondEncoder to 32.*6 ReyNet was designed in an architecture refer to GIN. The results are
shown in Table 4. While ReyNet was comparable to the baseline, it achieved sufficient accuracy,
confirming that ReyNet is also effective on real data.

9. Discussion

From the viewpoint of computational complexity, the method proposed in this paper only reduces
the computational complexity of the combinatorial explosion level to, say, n2. Although this reduc-
tion is not sufficient from a practical standpoint, it is a solid theoretical step forward. The compu-
tational complexity of the proposed method may be improved by sparsification and other methods
used in transformer and other applications. From a future perspective, the discovery of symmetry
also suggests that, from a deep learning perspective, it is sufficient to discover Reynolds designs
instead of discovering the entire group action.

10. Conclusion

We considered invariant/equivariant models over higher order tensor spaces. The method of con-
verting deep neural nets using Reynolds operators had some computational complexity issues that
we were able to solve by using our Reynolds designs. Then, we constructed reduced equivariant
Reynolds networks (equivariant ReyNets) based on the Reynolds designs and proved their univer-
sality.

We also introduced Reynolds dimension in the invariant case. Furthermore, we constructed re-
duced invariant Reynolds networks (invariant ReyNets) and demonstrated their universality. More-

*6. While the embedding dimension of GCN and GIN listed on the leaderboard is 300, if the embedding dimension of
ReyNet is set to 300 dimensions, the experiment cannot be performed due to memory usage. Therefore we used 32
dimensions.

22

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Figure 8: Architecture of invariant ReyNet.

over, we showed that invariant/equivariant ReyNets perform better than or comparable to existing
models, including graph-specific models in graph classification tasks, even though ReyNets are
applicable to more general tasks. Moreover, we observed that reduced ReyNets with a few input
variables can extrapolate well to cases with more input variables.

Acknowledgments

The first author thanks Daigo Matsumaru and D-lab for their advice on improving research ac-
tivities. The first author was supported in part by JSPS KAKENHI Grant Number JP20K03743,
JP23H04484 and JST PRESTO JPMJPR2123. The third author was partially supported by the
JSPS KAKENHI Grant Numbers 19H04071 and 23H04974.

Appendix A. ReyNet Implementation

A.1 ReyNet Architecture

Given Definition 11, we can implement the neural network N such that each layer has Cinput ×
Coutput × dinput × doutput weight parameters (the bias parameters are omitted for brevity), where
C∗ represents the number of features (dimension), and d∗ represents the number of set size (dimen-
sion). For example, if we feed the data x ∈ RC×N×N to 4-red ReyNet, which contains three fully
connected layers, then the weight parameters of the first layer may be C ×D1 × 4× d and those of
second layer is D1 ×D2 × d× 2. However, by implementing these specific FC layers, the number
of parameters becomes enormous. To avoid enormous parameters, we refer to the separable convo-
lution layer (Howard et al., 2017), which separates the normal convolution layer into depthwise and
pointwise convolution. That is, we separate N into set-wise MLP and feature-wise MLP as shown
in Figure 8. This separation allows us to reduce the number of parameters. Note that although we
can adopt skip connections such as Chollet (2017), we cannot observe any experimental advantage.
Consequently, we did not employ skip connections in this study.

A.2 Efficient d-reduced ReyNet Implementation

Forward propagation of the d-reduced equivariant ReyNet is implemented based on Definition 11.
Given an input x with a set size of N , we need to 1) permute x to N(N − 1) patterns using g, 2)
feed the permuted input g ·x to the neural networkNT ,b, 3) apply g−1, and 4) average all gs. When
implementing ReyNet in Python to use the deep learning framework, it is known that the for loop
is slow due to the nature of Python. Instead of using the for loop, the conventional implementation

23

SANNAI, KAWANO AND KUMAGAI

Figure 9: mapping1(·) = (P ◦ g)(·) Implementation Trick.

is calculated in the form of a tensor such as torch.tensor/numpy.ndarray. Thus, Algorithm 1 can be
used for a straightforward implementation, which is easy to understand; however, the problem is
that it needs space complexity of O(N4) and computational complexity O(N2) based on the first
and second lines, which is not practical.

Meanwhile, there are no learning parameters in the processing from the first line to the fourth
line, and the processing depends only on the set size of the input data, and the output of the fourth
line can be determined deterministically from the input data. Therefore, we can implement a pro-
cess from the first line to the fourth line as Algorithm 2. The algorithm is also represented in
the Figure 9. Moreover, the processes from the fifth to seventh lines require memory complexity
O(N4). However, these processes can be assembled into one method mapping2 depicted in Figure
10. As a result, the algorithm of our d-reduced equivariant ReyNet becomes Algorithm 3. The
space complexity of this algorithm is O(N2), and the computational complexity is O(N).

24

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Algorithm 1 Naı̈ve implementation of the d-reduced equivariant ReyNet (Definition 11)

Require: x ∈ RC×N×N , Neural Network N : Rd → R2, Zero-padding êb : R2 → RN2
, Slicing

P : RN2 → Rd
Ensure: y = E(x) = 1

|H|
∑

g∈H g
−1 · (êb ◦ N ◦ P)(g · x) ∈ RC×N×N

1: x← insert a dimension // C × 1×N2

2: y ← g · x: permute // C ×N(N − 1)×N2

3: y ←P(y): slicing // C ×N(N − 1)× d
4: y ← N (y): NN // C ×N(N − 1)× 2
5: y ← êb(y): 0-padding // C ×N(N − 1)×N2

6: y ← g−1 · y: inv-permute // C ×N(N − 1)×N2

7: y ← 1
|H|
∑

g∈H y: average // C ×N2

8: return y

Algorithm 2 mapping1(x,N)

Require: x ∈ RC×N×N , Set Size N
Ensure: y ∈ RC×N(N−1)×2

1: xx← copy x twice // C × 2N × 2N
2: diagonal← diag(x) // C × 2N
3: diag1← diagonal[0 : N] // C ×N
4: y = []
5: for i = 0 . . . N − 1 do
6: diag2← i - offset diag(x)
7: diag3← −i - offset diag(x)
8: diag4← diagonal[i : N + i]
9: z ← stack([diag1, diag2, diag3, diag4])>

10: y.append(z)
11: end for
12: return y

25

SANNAI, KAWANO AND KUMAGAI

Figure 10: mapping2(·) =
∑

(g−1 ◦ êb)(·) Implementation Trick.

Algorithm 3 Efficient implementation of the d-reduced equivariant ReyNet (Definition 11)
Require: x ∈ RC×N×N , Neural Network f : Rd → R2

Ensure: y = 1
|H|
∑

g∈H g
−1 · f(g · x) ∈ RC×N×N

1: y ←mapping1(x,N) // C ×N(N − 1)× d
2: y ← f(y) // C ×N(N − 1)× 2
3: y ←mapping2(y,N) // C ×N2

4: return y

26

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

1

2 def permute(x):
3 g_tensor = one_hot(torch.tensor([cyclic_perm_index(swap_positions(list(range

(N)), 1, i))
4 for i in range(1, N)]).reshape(-1, N),
5 num_classes=N).unsqueeze(0) # 1 x n! x n x n
6 g_size = g_tensor.size(1)
7 # B x C x n x n -> B x C x 1 x n x n
8 h = x.unsqueeze(2)
9 # 1 x N! x N x N * B x C x 1 x N x N

10 h = g_tensor.matmul(h).matmul(g_tensor.transpose(-1, -2))
11 return h
12

13 def slice(x, dim):
14 """
15 Args:
16 x: Tensor. B x C x N! x N x N
17 Return
18 Tensor B x C x N! x dim x dim
19 """
20 return x[..., :dim, :dim]
21

22

23 def inverse_permute():
24 """
25 Args:
26

27 Return:
28 tensor: B x C x N x N
29 """
30 output = h.new_zeros(B, self.in_features, g_size, N, N)
31 output[:, :, :, 0, :2] = h
32 output = g_tensor.transpose(-1, -2).matmul(output).matmul(g_tensor)
33 output = output.sum(2)
34 return
35

36

37 def forward(x):
38 coeff = (torch.ones(N, N).fill_diagonal_(0) +
39 torch.zeros(N, N).fill_diagonal_(1 / (N - 1))).reshape(1, 1, N, N).

to(x)
40

41 h = permute(x)
42 h = slice(h, dim=2)
43 # NN: B x C x n! x 4 -> B x C x n! x 2
44 h = NN(h.reshape(B, self.in_features, g_size, -1))
45 h = inverse_permute(h)
46 return h * coeff.repeat(B, self.in_features, 1, 1)

Listing 1: Python Code of ReyNet using PyTorch.

27

SANNAI, KAWANO AND KUMAGAI

0 20 40 60 80 100 120 140
Set Size #

0

10

20

30

40

50
m

s
ReyNet
ReyNet-Efficient
Maron et al.[2019]

Figure 11: Runtime speed on different number of set sizes

A.3 Runtime Speed

Figures 11 and 12 show the runtime speed of our ReyNet compared with Maron et al. (2018). Figure
11 shows the runtime speed when the size of the set changes without changing the number of input
features. Note that the feature size is set to 1. We can confirm that the computational complexity of
Reynet is O(N2) and that of efficient version is improved to O(N), while our efficient ReyNet is
slightly slower than (Maron et al., 2018). Figure 12 shows the runtime speed when the number of
input features is changed and the size of the set is not changed. Note that the input set size is set to
20. In contrast to the runtime speed of the different set sizes, the different number of features does
not affect runtime speed.

Appendix B. Synthetic Regression Tasks Details

In the experiments on synthetic data sets, we used two models; Reynolds Networks (ReyNets) and
4-reduced Reynolds Networks (4-red ReyNets), while only 4-reduced Reynolds Networks (4-red
ReyNets) for the graph benchmark data set. For synthetic equivariant tasks, we adopted equivariant
ReyNets. For synthetic invariant tasks, we implemented invariant ReyNets for which the architec-
ture was adopted from Maron et al. (2018); *7 an equivariant ReyNet is followed by invariant max
pooling,*8 and fully connected layers. The fully connected layers consist of three layers, and the
number of the units are 512, 256, and 1. We adopted the ReLU function as activation. We used

*7. Please refer to https://github.com/Haggaim/InvariantGraphNetworks/blob/master/models/invariant basic.py#L14 or
our submitted code.

*8. This operation outputs the max value of diagonal and non-diagonal elements of an input matrix.

28

https://github.com/Haggaim/InvariantGraphNetworks/blob/master/models/invariant_basic.py#L14

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

0 10 20 30 40 50
Input Channel Size #

2.2

2.4

2.6

2.8

3.0

3.2
m

s
ReyNet
ReyNet-Efficient
Maron et al.[2019]

Figure 12: Runtime speed on different number of input features

Adam optimizer and set the learning rate as 1e-3 and weight decay as 1e-5. Batch size was 100.
Note that the models of Maron et al. (2018) were reimplemented using PyTorch in reference to the
author’s implementation in Tensorflow.

B.1 Extrapolation

Figures 13 and 14 show the detailed version of only 4-red ReyNets in Figure 7. In Figure 7 our
results seems an almost horizontal straight line, but these figures show that the MSE also slightly
increases as n increases.

Appendix C. Graph Classification Tasks Details

C.1 Datasets

Bioinformatics Datasets. MUTAG consists of 188 compounds classified into two types based on
their mutagenic effects on bacteria. The nodes representing each compound are labeled with 7 types.
PTC is a data set on the carcinogenicity of rats by 344 compounds. Each node is given 19 different
labels. PROTEINS is a data set of proteins. The nodes of each graph represent secondary structural
elements, and the edges represent amino-acid sequences or neighborhoods in 3D space. Each node
is given three types of labels. NCI1 and NCI109 are subsets of the compound data set screened for
activity against non-small cell lung cancer cell lines and ovarian cancer cell lines, respectively.

Social Network Datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration data
sets. Each graph is an ego-network between performers. The ego network consists of the edges

29

SANNAI, KAWANO AND KUMAGAI

Task Symmetry
n 3 5 10 20

FNN 1.730e-4 9.180e-4 1.454e-3 3.0583
IEGN (Maron et al., 2018) 6.600e-3 3.786e-3 9.294e-4 4.471e-3
ReyNet (ours) 2.147e-4 3.960e-4 1.408e-3 3.151e-3
4-red ReyNet (ours) 8.544e-5 4.889e-5 7.529e-5 6.554e-5

Task Diagonal
n 3 5 10 20

FNN 1.295e-4 2.655e-4 1.148e-4 1.081e-1
IEGN (Maron et al., 2018) 2.065e-3 2.266e-3 4.098e-3 4.743e-4
ReyNet (ours) 1.007e-4 2.472e-4 6.635e-4 1.112e-4
4-red ReyNet (ours) 6.947e-5 1.932e-5 5.568e-5 3.566e-5

Task Power
n 3 5 10 20

FNN 2.586 3.091e+1 5.756e+1 6.268e+2
IEGN (Maron et al., 2018) 4.036e-1 3.462e-1 7.062e-1 4.735e-1
ReyNet (ours) 3.798e-1 1.257 3.620 3.065
4-red ReyNet (ours) 1.204e-1 1.330e-1 1.217e-1 1.165e-1

Task Trace
n 3 5 10 20

FNN 2.821e-4 1.135e-3 9.529e-3 5.149e-2
IEGN (Maron et al., 2018) 1.241e-3 6.696e-3 3.663e-2 5.527e-2
ReyNet (ours) 1.884e-3 2.949e-3 4.275e-2 5.338e-2
4-red ReyNet (ours) 3.491e-4 1.914e-3 6.758e-3 1.220e-2

Table 5: Results of comparison to a baseline method

connecting the nodes of the performers who are co-starring and the nodes representing a certain
performer. Each graph is annotated with the movie’s genre, and the task is to classify this genre.
COLLAB is a scientific collaboration data set. Each graph consists of the nodes of the researchers
collaborating in three research fields. The task is to classify the graph into this research field.

C.2 Implementation.

The architecture of our ReyNets and baselines was adopted from Maron et al. (2018): after respec-
tive equivariant layers, the network consists of an invariant max-pooling (i.e. diagonal and off-
diagonal) followed by three fully connected layers with hidden units of size (512, 256, #classes).
With regards to the respective equivariant layer, the hidden features(channels) of IEGN and the
feature-wise MLP of ReyNet were set to (16, 32, 256), which was determined in Maron et al.
(2018). Simultaneously, we prepared two variants for set-wise MLP of ReyNet: (i) (16, 16, 16) and
(ii) (128, 256, 512). For GIN and PPGN, we applied their published codes; for GIN, the hidden size

30

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

4 6 8 10 12 14 16 18 20
n

1.825

1.850

1.875

1.900

1.925

1.950

1.975

2.000
M

SE
1e 4

Figure 13: Extrapolation of symmetry regression

IEGN (Maron et al., 2018) 790K
PPGN (Maron et al., 2019a) 1.78M
GIN (Xu et al., 2019) 335K
ReyNet-(i) 666K
ReyNet-(ii) 832K

Table 6: Parameters for MUTAG experiment

was 64, and the number of layers was five; for PPGN, the number of blocks was three, and the size
of the hidden units was (256, 256, 256). ReLU was the activation function for all the models. The
number of input features is shown in Table C.3. Each model was fed the features and adjacency
matrix as the input data, for example, the node of MUTAG has 7 features, and then the models are
fed 8 features. Only for GIN, which is assumed to work on a message-passing scheme, we provided
synthetic node features; the node degree as one-hot encodings. With the above implementation, the
parameter size of each model for MUTAG experiment is represented in Table 6. The batch size was
set to 5 according to Maron et al. (2018), except for GIN, which had a batch size of 32. We followed
each published code for the optimizer’s learning rate and the scheduler’s decay rate in each data set,
except when the model training was not convergent, in which case we tuned the learning rate to
decrease. For ReyNet, we used 1e-4 as learning rate, except for MUTAG, for which the learning
rate was 1e-3. We conducted the experiments using an NVIDIA Titan X or an NVIDIA V100.

31

SANNAI, KAWANO AND KUMAGAI

4 6 8 10 12 14 16 18 20
n

0.114

0.116

0.118

0.120

0.122

0.124

0.126
M

SE

Figure 14: Extrapolation error of power regression

C.3 Results.

Table C.3 displays not just the results of our experiments, but also the results reported in the existing
literature for the baseline methods; this includes DGCNN (Zhang et al., 2018), PSCN (Niepert et al.,
2016), DGK (Yanardag and Vishwanathan, 2015), GNTK (Du et al., 2019), and GHC (Nguyen and
Maehara, 2020).

32

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

MUTAG PTC PROTEINS NCI1

size 188 344 1113 4110
classes 2 2 2 2
avg node # 17.9 25.5 39.1 29.8
features # 7(+1) 22(+1) 3(+1) 37(+1)

Literature

DGCNN 85.83 ± 1.7 58.59 ± 2.5 75.54 ± 0.9 74.44 ± 0.5
PSCN (k=10) 88.95 ± 4.4 62.29 ± 5.7 75 ± 2.5 76.34 ± 1.7
DGK 87.44 ± 2.7 60.08 ± 2.6 75.68 ± 0.5 80.31 ± 0.5
GHC-Tree 89.28±8.3 52.98 ±1.8 75.23± 1.7 48.8±1.0
GNTK 90.0 ± 8.5 67.9 ± 6.9 75.6 ± 4.2 84.2 ± 1.5

Our implementation

IEGN 78.33 ± 10 55.59 ± 8.6 75.31 ± 5.4 76.06 ± 1.4
PPGN 88.33 ± 7.1 60.59 ± 7.9 73.96 ± 4.6 77.32 ± 2.2
GIN 85.83 ± 7.7 56.64 ± 7.0 72.56 ± 5.9 76.84 ± 2.3

ReyNet-(i) 89.44 ± 7.1 61.18 ± 5.2 75.41 ± 5.6 77.25 ± 2.0
ReyNet-(ii) 88.33 ± 8.9 59.41 ± 7.8 74.60 ± 4.2 77.79 ± 2.1

NCI109 COLLAB IMDB-B IMDB-M

size 4127 5000 1000 1500
classes 2 3 2 3
avg node # 29.6 74.4 19.7 13
features # 38(+1) 0(+1) 0(+1) 0(+1)

Literature

DGCNN NA 73.76 ± 0.5 70.03 ± 0.9 47.83 ± 0.9
PSCN (k=10) NA 72.6 ± 2.2 71 ± 2.3 45.23 ± 2.8
DGK 80.32 ± 0.3 73.09 ± 0.3 66.96 ± 0.6 44.55 ± 0.5
GHC-Tree NA 75.23±1.7 72.1±2.6 48.6±4.4
GNTK NA 83.6 ± 1.0 76.9 ± 3.6 52.8 ± 4.6

Our implementation

IEGN 73.79 ± 2.9 78.12 ± 2.9 69.40 ± 6.1 47.20 ± 3.3
PPGN 78.98 ± 2.2 75.80 ± 2.0 70.60 ± 4.8 47.40 ± 3.3
GIN 73.51 ± 3.0 76.98 ± 2.1 70.60 ± 4.7 44.87 ± 3.9

ReyNet-(i) 75.90 ± 2.2 73.62 ± 1.6 70.10 ± 5.1 48.80 ± 2.9
ReyNet-(ii) 76.19 ± 2.1 74.31 ± 1.9 70.10 ± 4.6 46.73 ± 3.9

Table 7: Graph benchmark results with the results from literature.

33

SANNAI, KAWANO AND KUMAGAI

References

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. cambridge
university press, 2009.

Eiichi Bannai and Etsuko Bannai. A survey on spherical designs and algebraic combinatorics on
spheres. European Journal of Combinatorics, 30(6):1392–1425, 2009.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep locally
connected networks on graphs. In International Conference on Learning Representations, 2014.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. Advances in Neural Information
Processing Systems, 2019.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1251–1258, 2017.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in Neural Information Processing Systems,
29:3844–3852, 2016.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
Neural Information Processing Systems, 32, 2019.

Devon Graham, Junhao Wang, and Siamak Ravanbakhsh. Equivariant entity-relationship networks.
arXiv preprint arXiv:1903.09033, 2019.

Jason Hartford, Devon Graham, Kevin Leyton-Brown, and Siamak Ravanbakhsh. Deep models of
interactions across sets. In International Conference on Machine Learning, pages 1909–1918.
PMLR, 2018.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163, 2015.

David Hilbert. Über die theorie der algebraischen formen. Mathematische Annalen, 1890.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in Neural Information Processing Systems, 33:22118–22133, 2020.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32:7092–7101, 2019.

Kristian Kersting, Nils M Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels. URL http://graphkernels. cs. tu-dortmund. de, 2016.

34

INVARIANT AND EQUIVARIANT REYNOLDS NETWORKS

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems, 25:1097–1105,
2012.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pages 2156–2167, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning. PMLR, 2019b.

Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On learning sets of symmetric elements.
In International Conference on Machine Learning. PMLR, 2020.

David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34.
Springer Science & Business Media, 1994.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Confer-
ence on Learning Representations, 2019.

Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In International Con-
ference on Machine Learning, pages 7306–7316. PMLR, 2020.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International Conference on Machine Learning, pages 2014–2023. PMLR,
2016.

Omri Puny, Matan Atzmon, Edward J Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. In International
Conference on Learning Representations, 2022.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. In International Conference on Machine Learning, pages 2892–2901. PMLR, 2017.

35

SANNAI, KAWANO AND KUMAGAI

Akiyoshi Sannai, Masaaki Imaizumi, and Makoto Kawano. Improved generalization bounds of
group invariant/equivariant deep networks via quotient feature spaces. In Uncertainty in Artificial
Intelligence, pages 771–780. PMLR, 2021.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Confer-
ence on Learning Representations, 2019.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical Science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1365–1374, 2015.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, pages 1–68, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems,
pages 3391–3401, 2017.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI Conference on Artificial Intelligence, volume 32,
2018.

36

	Introduction
	Previous Work
	Reynolds Operators and Reynolds Designs
	Representation Theorem for Equivariant Maps
	Hypergraphs and higher order tensors
	Representation theorem of Equivariant Functions to the Spaces of Matrices.
	Basis Tableau and Representation Theorem

	Proof of Theorem 3
	Invariant/Equivariant ReyNets and Universality
	A Conjecture on Reynolds Dimension

	Advantages of Reduced ReyNets
	Experiments
	Synthetic Datasets
	Graph Classification

	Discussion
	Conclusion
	ReyNet Implementation
	ReyNet Architecture
	Efficient d-reduced ReyNet Implementation
	Runtime Speed

	Synthetic Regression Tasks Details
	Extrapolation

	Graph Classification Tasks Details
	Datasets
	Implementation.
	Results.

