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Abstract

The group lasso penalty is widely used to introduce structured sparsity in statistical learning, char-
acterized by its ability to eliminate predefined groups of parameters automatically. However, when
the groups overlap, solving the group lasso problem can be time-consuming in high-dimensional
settings due to groups’ non-separability. This computational challenge has limited the applicability
of the overlapping group lasso penalty in cutting-edge areas, such as gene pathway selection and
graphical model estimation. This paper introduces a non-overlapping and separable penalty de-
signed to efficiently approximate the overlapping group lasso penalty. The approximation substan-
tially enhances the computational efficiency in optimization, especially for large-scale and high-
dimensional problems. We show that the proposed penalty is the tightest separable relaxation of
the overlapping group lasso norm within the family of `q1/`q2 norms. Moreover, the estimators
derived from our proposed norm are statistically equivalent to those derived from the overlapping
group lasso penalty in terms of estimation error, support recovery, and minimax rate under the
squared loss. The effectiveness of our method is demonstrated through extensive simulation exam-
ples and a predictive task of cancer tumors.

Keywords: overlapping group lasso, separable approximation, computational efficiency, statistical
error bound, support recovery, high-dimensional regression

1. Introduction

Grouping patterns of variables are commonly observed in real-world applications. For example, in
regression modeling, explanatory variables might belong to different groups with the expectation
that the variables within the same group are highly correlated. In this context, variable selection
or model regularization should also consider the grouping patterns, and one may prefer to either
include the entire group of variables in the selection or completely exclude the group. Group lasso
(Yuan and Lin, 2006) is one popular method designed for this group selection task via adding `1/`2
regularization, and is part of a broader class for group selection (Bach, 2008; Levina et al., 2008;
Meier et al., 2008; Ravikumar et al., 2009; Zhao et al., 2009b; Danaher et al., 2014; Loh, 2014;
Basu et al., 2015; Xiang et al., 2015; Campbell and Allen, 2017; Tank et al., 2017; Yan and Bien,
2017; Austin et al., 2020; Yang and Peng, 2020).
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While the original group lasso penalty (Yuan and Lin, 2006) focuses on regularizing disjoint pa-
rameter groups, overlapping groups appear frequently in many applications such as tumor metastasis
analysis (Jacob et al., 2009; Zhao et al., 2009b; Yuan et al., 2011; Chen et al., 2012) and structured
model selection problems (Mohan et al., 2014; Cheng et al., 2017; Yu and Bien, 2017; Tarzanagh
and Michailidis, 2018). For example, in tumor metastasis analysis, scientists usually aim to select
a small number of tumor-related genes. Biological theory suggests that rather than functioning in
isolation, genes act in groups to perform biological functions. Therefore, the gene selection is more
meaningful when co-functioning groups of genes are selected together (Ma and Kosorok, 2010).
In particular, gene pathways, which represent overlapping groups of genes, render mechanistic in-
sights into the co-functioning patterns. Applying group lasso with these overlapping groups is thus
a natural way to incorporate the prior group information into tumor metastasis analysis. For another
example, graphical models have been widely used to represent conditional dependency structures
among variables. Cheng et al. (2017) developed a mixed graphical model for high-dimensional data
with both continuous and discrete variables. In their model, groups of parameters corresponding to
each edge emerged naturally, with these groups overlapping as edges share common nodes. Select-
ing the graph structures under this class of models requires the elimination of groups of parameters,
which is achieved by the overlapping group lasso penalty.

The optimization involving the group lasso penalty with non-overlapping groups is efficient
(Friedman et al., 2010; Qin et al., 2013; Yang and Zou, 2015). However, the overlapping group
lasso problems present more complex challenges despite their convex nature. This complexity
arises because the non-separability between groups intrinsically increases the problem’s dimen-
sionality compared with the non-overlapping situation (Yan and Bien, 2017). Proposed methods
for such optimization problems include the second-order cone program method, SLasso (Jenatton
et al., 2011a), the ADMM-based methods (Boyd et al., 2011; Deng et al., 2013), and their smoothed
improvement, FoGLasso (Yuan et al., 2011). Nevertheless, these exact solvers involve expensive
calculations when the overlapping becomes severe, which may limit the applicability of the overlap-
ping group lasso penalty in many large-scale applications such as genome-wide association studies
(Yang et al., 2010; Lee and Xing, 2012, 2014) or graphical model fitting problems (Cheng et al.,
2017). For instance, Cheng et al. (2017) showed that although overlapping group lasso is a natural
choice for their problem, it is infeasible even for estimating moderate-size graphs. Instead, they
used a fast lasso approach (Tibshirani, 1996) to solve the graph estimation problem without theo-
retical support. As we introduce later, our proposed solution includes the method of Cheng et al.
(2017) as a special case, but our method is more general and comes with theoretical guarantees.

In this paper, we propose a non-overlapping approximation alternative to the overlapping group
lasso penalty. The approximation is formulated as a weighted non-overlapping group lasso penalty
that respects the original overlapping group patterns, thereby simplifying the optimization signifi-
cantly. The proposed penalty is shown to be the tightest separable relaxation of the original overlap-
ping group lasso penalty within a broad family of penalties. Our analysis reveals that the estimator
derived from our method is statistically equivalent to the original overlapping group lasso estima-
tor in terms of estimator error and support recovery. The practical effectiveness of our proposed
method is demonstrated through simulation examples and its application to a predictive task involv-
ing a breast cancer gene dataset. As a high-level summary, our major contribution to the paper is
the design of a novel approximation penalty to the overlapping group lasso penalty, which enjoys
substantially better computational efficiency in optimization while maintaining equivalent statistical
properties to the original penalty.

2



THE NON-OVERLAPPING STATISTICAL APPROXIMATION TO OVERLAPPING GROUP LASSO

The remainder of this paper is organized as follows: Section 2 introduces the overlapping group
lasso problem and the proposed approximation method. We also establish the optimality of the
proposed penalty from the optimization perspective. Section 3 details the statistical properties of
the penalized estimator derived from the proposed penalty. Comparisons between our estimator and
the original overlapping group lasso estimator are made to demonstrate their statistical equivalence
in terms of estimation errors and variable selection performance. Empirical evaluations using both
simulated and real breast cancer gene expression data are presented in Sections 5 and 6, respectively.
Finally, Section 7 concludes the paper with additional discussions.

2. Methodology

Notation and Preliminaries. Throughout this paper, given a positive integer z, we define [z] =

{1, 2, . . . , z}. For a vector x ∈ Rp, we define ‖x‖z = (|x1|z + |x2|z + . . .+ |xp|z)
1
z . Given a

set T , |T | represents the cardinality. When referring to a matrix A, AT denotes the sub-matrix
consisting of columns indexed by T , and AT,T denotes the sub-matrix induced by both rows and
columns indexed by T . The operator norm is defined as: ‖A‖a,b = sup‖u‖a≤1 ‖Au‖b. When A is
a symmetric matrix, γmin(A) and γmax(A) denote its smallest and largest eigenvalues, respectively.
Given two sequences {an} and {bn}, we denote an . bn or an = O(bn) if an 6 Cbn for a
sufficiently large n and a universal constant C > 0. We write an � bn or an = o(bn) if an/bn → 0.
Furthermore, an � bn if both an . bn and an & bn hold. We will introduce other notations within
the text as needed. Table 9 in Appendix A lists all the notations used in the paper.

2.1 Overlapping Group Lasso

In a statistical learning problem, consider parameters represented by a vector β ∈ Rp, with βj
representing the j-th element of β. Let G = {G1, · · · , Gm} be m predefined groups for the p
parameters, where each group Gg is a subset of [p] and ∪g∈[m]Gg = [p]. For each group Gg,
dGg = |Gg| denotes the group size, with dGmax = maxg∈[m] d

G
g . For any set T ⊂ [p], βT denotes

the subvector of β indexed by T . Let w = {w1, · · · , wm} be the user-defined positive weights
associated with the groups. The group lasso penalty (Yuan and Lin, 2006) is defined as:

φG(β) =
∑
g∈[m]

wg
∥∥βGg∥∥2

. (1)

We will omit G in all notations when the group structure is clear.
In statistical estimation problems that involve group selection, the group lasso norm is combined

with a convex empirical loss function Ln, and the estimator is determined by solving the following
M-estimation problem:

minimizeβ∈Rp
{
Ln(β) + λnφ(β)

}
. (2)

When the groups are disjoint, the group lasso penalty selects and eliminates variables by groups.
When the groups overlap, the above estimation enforces an “all-out” pattern by simultaneously set-
ting all variables within certain groups to zero, thus the zero-out variables are form a union of a
subset of the groups (Jenatton et al., 2011a). Such a pattern is desirable in various applications,
such as graphical models, multi-task learning, and gene analysis (Jacob et al., 2009; Zhao et al.,
2009b; Mohan et al., 2014; Cheng et al., 2017; Tarzanagh and Michailidis, 2018). Another gen-
eralization of the group lasso for overlapping groups is the latent overlapping group lasso (Jacob
et al., 2009; Mairal and Yu, 2013), which follows an “all-in” pattern by maintaining the nonzero
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patterns as a union of groups. As noted by Yan and Bien (2017), the decision to adopt an “all-in”
or “all-out” strategy depends on the problem and the corresponding scientific interpretation. The
comparison between these two strategies is not our objective. However, both methods suffer from
computational difficulties. Our emphasis in this paper is on introducing an approximation method
for the overlapping group lasso penalty (1), leaving the computational improvements of the latent
overlapping group lasso for future work.

Problem (2) is a non-smooth convex optimization problem (Jenatton et al., 2011a; Chen et al.,
2012), and the proximal gradient method (Beck and Teboulle, 2009; Nesterov, 2013) is one of the
most general yet efficient strategies to solve it. Intuitively, proximal gradient descent iteratively
minimizes the objective by applying the proximal operator of λnφ(β) at each step. The proximal
operator associated with the group lasso penalty in (1) is:

proxλn(µ) = argmin
β∈Rp

{1

2
‖µ− β‖2 + λnφ(β)

}
, (3)

whose dual problem has been shown by Jenatton et al. (2011b) to be:

minimize
{ξg∈Rp}g∈[m]

(1

2
‖µ−

m∑
g=1

ξg‖22
)
, s.t. ‖ξg‖2 ≤ λnwg, and ξgj = 0 if j /∈ Gg. (4)

The proximal operator (3) and its dual can be computed using a block coordinate descent (BCD)
algorithm (Jenatton et al., 2011b). We list the procedure in Algorithm 1 for readers’ information.
The convergence of this algorithm is guaranteed by Bertsekas (1997, Proposition 2.7.1).

Algorithm 1 BCD algorithm for the proximal operator of the overlapping group lasso
Input: G, {wg}mg=1 > 0, u, λn > 0.
Output: β∗.
Initialization: {ξg}mg=1 = 0 ∈ Rp.

1: while stopping criterion not reached do
2: for all g ∈ {1, · · · ,m} do
3: Calculate rg = µ−

∑
h6=g ξ

h.

4: if ||rg||2 6 λnwg then ξgj =

{
0 if j /∈ Gg
rgj if j ∈ Gg

5: else ξgj =

0 if j /∈ Gg
λwgr

g
j

||rg ||2 if j ∈ Gg
6: end if
7: end for
8: end while
9: β∗ = u−

∑
g∈[m] ξ

g.

Although additional techniques that employ smoothing techniques have been developed to im-
prove optimization (Yuan et al., 2011; Chen et al., 2012), (3) and (4) still offer crucial insights into
the computational bottlenecks caused by overlapping groups. Notably, the duality between (3) and
(4) reveals that the intrinsic dimension of the overlapping group lasso problem is equivalent to that
of a

∑
g∈[m] dg-dimensional separable problem. When the groups contain a nontrivial proportion
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of overlapping variables, computing the overlapping group lasso problems becomes substantially
more difficult, eventually prohibitive in large-scale problems. This issue significantly limits the
applicability of the overlapping group lasso penalty. Next, we introduce our non-overlapping ap-
proximation to rectify this challenge.

2.2 The Non-overlapping Approximation of the Overlapping Group Lasso

The fundamental challenge in solving overlapping group lasso problems stems from the non-separability
of the penalty. Thus, to enhance computational efficiency, our approach hinges on introducing sep-
arable operators. As a starting point, we will illustrate this concept with a toy example of an in-
terlocking group structure. In this structure, the groups are arranged sequentially, each overlapping
with its adjacent neighbors (Figure 1a). For simplicity, we consider a scenario where the weight for
all groups is uniformly set to wg ≡ 1.

(a) Interlocking group structure.

(b) Partitioned group structure.

Figure 1: Illustration of proposed group partition in an interlocking group structure. Red regions
are the overlapping variables in the original group structure.

We now partition the original overlapping groups in Figure 1b into smaller groups as in Fig-
ure 1b. This partition treats intersections as individual groups. We define these new groups as
G = {G1, · · · ,Gm}, where, for this specific instance, m = 2m − 1. Taking G1 as an example, it
comprises G1 = G1 ∪G2. By the triangle inequality, we have:

‖βG1‖2 ≤ ‖βG1‖2 + ‖βG2‖2.

Extending this principle to each group, the norm of the overlapping group lasso based on G can be
bounded by a reweighted non-overlapping group norm based on G:∑

g∈[m]

‖βGg‖2 ≤
∑

g∈[m]

wg‖βGg‖2, (5)

where wg equals 1 for odd g and 2 for even g. Consequently, controlling the sum on the right-
hand side of (5) effectively controls the overlapping group lasso norm on the left-hand side. The
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key advantage of this approach is the separability of the right-hand side norm, which substantially
enhances the efficiency of optimization.

While the previous example focuses on interlocking group structures, the underlying idea is
applicable to any general overlapping pattern, as we introduce in the following two steps.

Step 1: Overlapping-induced partition construction. The predefined group structure G can
be represented by a m × p binary matrix G, where Ggj = 1 if and only if the j-th variable is
a member of the g-th group, and Ggj = 0 otherwise. Our method starts from constructing a
new non-overlapping group structure G from G, detailed in Algorithm 2. To distinguish clearly
between the original group structureG and the derived non-overlapping structureG, standard letters,
such as {g, d,m,w,G}, are used to denote quantities related to the original group structure, while
calligraphic letters, like {g,d,m,w,G}, are used to represent quantities about G. For instance,
m denotes the number of groups in G, and g ∈ [m] serves as the index for groups within G.

Algorithm 2 Algorithm to construct the overlapping-induced partition G

Input: Binary matrix G.
Output: New group structure G.

1: Initialize the column index set as C = {1, . . . , p}.
2: Initialize k = 1.
3: while C is not empty do
4: Choose the first column index j in C, and set I to be the set of all column indices in G

identical to G,j : I = {j′ ∈ C,G,j′ = G,j}.
5: Set Gk = I , and remove I from C: C ← C \ I .
6: k = k + 1.
7: end while
8: Return G← {G1,G2, · · · ,Gm}.

Step 2: Overlapping-based group weights calculation. Note that each group within G is a
subset of at least one of the original groups in G. Conversely, each group in G can be reconstructed
as the union of several groups in G. Consequently, we define two mappings:

F (g) = {g : g ∈ [m],Gg ⊂ Gg} and F−1(g) = {g : g ∈ [m],Gg ⊂ Gg}.

Given the positive weights w of G, we set the weights w of G as:

wg =
∑

g∈F (g)

wg, g ∈ [m]. (6)

With the new partition G and the new weights w from the previous two steps, we define the
following norm as the proposed alternative to the original overlapping group lasso norm:

ψG(β) =
m∑

g=1

wg

∥∥βGg

∥∥
2
. (7)

In general, by the triangle inequality, the proposed norm is always an upper bound of the original
group lasso norm:

φG(β) =
m∑
g=1

wg
∥∥βGg∥∥2

6
m∑

g=1

wg

∥∥βGg∥∥2
= ψG(β). (8)
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Our proposed penalty is essentially a weighted non-overlapping group lasso on G. For illustration,
Figure 2 shows the unit ball of these two norms based on G1 = {β1, β2} and G2 = {β1, β2, β3} in
a three dimensional problem. All singular points of the φG-ball (where exactly zero happens in (2))
are also singular points of the ψG-ball.

Readers may observe that the inequality in (8) could apply to other separable norms. For in-
stance, consider partitioning all p variables into individual groups and using a weighted lasso norm
as another upper bound for φG, represented by:

p∑
j=1

( ∑
{g|βj∈Gg}

wg

)
|βj |. (9)

This approach to employing a weighted lasso norm was previously explored by Cheng et al. (2017).
We will now explain what makes our proposed norm in (7) special.

Figure 2: Illustration of two norms in R3: The outer region depicts the unit ball of the overlapping
group lasso norm defined by {β : φG(β) 6 1}; The inner region represents the unit ball
of our proposed separable norm {β : ψG(β) 6 1}.

Intuitively, as illustrated by our construction process for G (Figure 2), our method introduces
additional singular points in the norm only when necessary to achieve separability. Unlike the lasso
upper bound, this approach avoids adding redundancy. As such, our approximation is expected to
maintain a certain level of tightness. We now formally substantiate this intuition. Given any group
structure G and weights w, following Cai et al. (2022), we define the `q1/`q2 norm of β for any
0 6 q1, q2 6∞ as:

||β{G,w}||q1,q2 =
( ∑
g∈[m]

wg||βGg ||q1q2
) 1
q1 . (10)

This general class of norms potentially includes most commonly used penalties, such as the
weighted lasso penalty. The subsequent theorem demonstrates that the proposed ψG(β) is the
tightest separable relaxation of the original overlapping group lasso norm among all separable
`q1/`q2 norms.
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Theorem 1. Let G represent the set of all possible partitions of [p]. Given the original groups G
and group weights w, there does not exist 0 6 q1, q2 6∞, G̃ ∈ G, w̃ ∈ (0,∞)p such that:{

φG(β) 6 ||β{G̃,w̃}||q1,q2 6 ψG(β) for all β ∈ Rp

||β{G̃,w̃}||q1,q2 < ψG(β) for some β ∈ Rp
. (11)

3. Statistical Properties

Incorporating the proposed norm ψG into an M-estimation procedure leads to the following opti-
mization problem:

minimizeβ∈Rp
{
Ln(β) + λnψ

G
}
, (12)

which is different but related to (2). In this section, we explore the statistical properties of the
regularized estimator based on ψG and the estimator based on φG, demonstrating that ψG could
serve as an effective alternative to φG. Following previous group lasso studies (Huang and Zhang,
2010; Lounici et al., 2011; Chen et al., 2012; Negahban et al., 2012; Dedieu, 2019), our analysis
will focus on high-dimensional linear models. Specifically, the linear model is defined as:

Y = Xβ∗ + ε, (13)

where Y ∈ Rn×1 is the response vector, X ∈ Rn×p is the covariate matrix, and ε ∈ Rn×1 is a
random noise vector. The overlapping group lasso estimator under the linear regression model is
defined by a solution of (2) under the squared loss:

β̂G ∈ arg min
β∈Rp

{ 1

2n
‖Y −Xβ‖22 + λnφ

G(β)
}
. (14)

Correspondingly, we define the regularized estimator by our approximation norm as:

β̂G ∈ arg min
β∈Rp

{ 1

2n
‖Y −Xβ‖22 + λnψ

G(β)
}
. (15)

The solution uniqueness of (14) and (15) has been studied by Jenatton et al. (2011a), and we in-
clude their results in Appendix B for completeness. However, our study only requires the estimator
to be one solution to the problem, as in Jenatton et al. (2011a); Negahban et al. (2012); Wainwright
(2019). Therefore, we will not specifically focus on the uniqueness in our discussion.

As a remark, our objective is not to present (15) as an approximate optimization problem of (14).
Instead, we aim to establish the statistical equivalence of the two classes of estimators defined by
(14) and (15) in terms of their statistical properties under sparse regression models when appropriate
values of λn are chosen (which may differ for each estimator). Our theoretical analysis focuses on
three aspects. In Section 3.1, we establish that under reasonable assumptions, the `2 estimation
error bound for (15) is no larger than that for (14). In Section 3.2, we present the minimax error
rate for the overlapping sparse group regression problem, showing that both (14) and (15) achieve
minimax optimality under specific requirements of the group structures. Lastly, in Section 3.3,
we demonstrate that both estimators consistently recover the support of the sparse β∗ with high
probability under similar sample size requirements.
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3.1 Estimation Error Bounds

We start by introducing additional quantities. Define the overlapping degree hGj as the number of
groups in G that contain βj , with hGmax = maxhj . Given a group index set I ⊆ [m], we use GI to
denote the union

⋃
g∈I Gg. Given G and I , following Wainwright (2019), we define two parameter

spaces:

M(I) =
{
β ∈ Rp | βj = 0 for all j ∈ (GI)

c
}
,

M⊥(I) =
{
β ∈ Rp | βj = 0 for all j ∈ GI

}
,

and we further use βM(I) to denote the projection of β onto M(I).
Given a set T ⊆ [p], we define a set of groups GT = {g ∈ [m] | Gg ∩ T 6= ∅}. Note that (GGT )c

is referred to as the hull of T in Jenatton et al. (2011a). Let supp(β) = {j ∈ [p] | βj 6= 0} denote the
support set. We define the group support set SG(β) = Gsupp(β), and the augmented group support
SG(β) = {g ∈ [m] | Gg ∩ GS(β) 6= ∅}. Furthermore, we define s = |supp(β)|, sg = |S(β)|, and
sg = |S(β)|. We omit the subscript G in notations when G is clearly given in context. Now, we
introduce additional assumptions under the regression model (13).

Assumption 1 (Sub-Gaussian noise for the response variable). The coordinates of ε are i.i.d. zero-
mean sub-Gaussian with parameter σ. Specifically, there exists σ > 0 such that E[exp(tε)] 6
exp(σ2t2/2) for all t ∈ R.

Our theoretical studies also hold for a fixed design ofX , with trivial modifications. We prefer to
introduce the random design here to make the statements more concise and interpretable, especially
for the comparison in Section 3.3.

Assumption 2 (Normal random design for covariates). The rows of the data matrix X are i.i.d.
from N(0,Θ), where 1/c1 6 γmin(Θ) 6 γmax(Θ) 6 c1 for some constant c1 > 0.

Assumption 3 (Dimension of the group structure). The predefined group structure G satisfies
dmax 6 c2n for some constant c2 > 0. In addition, we assume logm� n.

The following theorem establishes the `2 estimation error bounds for the two estimators.

Theorem 2. Given G and its induced G according to Algorithm 2, define hgmin = minj∈Gg hj and
hgmax = maxj∈Gg hj . Let δ ∈ (0, 1) be a scalar that might depend on n. Under Assumptions 1, 2
and 3, for β̂G and β̂G defined in (14) and (15), we have the following results:

1. Suppose that β∗ satisfies the following group sparsity condition:

sg(β
∗) .

n

logm+ dmax
·

min
g∈[m]

(w2
gh

g
min)

max
g∈S

(w2
gh

g
max)

. (16)

When λn = c′σ
min
g∈[m]

(w2
gh
g
min)

√
dmax
n + logm

n + δ for some constant c′ > 0, we have

∥∥∥β̂G − β∗∥∥∥2

2
. σ2 ·

( ∑
g∈S

w2
g

)
· hGSmax

min
g∈[m]

(
w2
gh

g
min

) · (dmax

n
+

logm

n
+ δ

)
. (17)

with probability at least 1− e−c3nδ for constant c3 > 0.
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2. Suppose that β∗ satisfies the group sparsity condition:

sg(β∗) .
n

logm + dmax
·

min
g∈[m]

(w2
g)

max
g∈S

(w2
g)
. (18)

When λn = c′σ
min
g∈[m]

wg

√
dmax
n + logm

n + δ for some constant c′ > 0, we have

∥∥∥β̂G − β∗∥∥∥2

2
. σ2 ·

∑
g∈{F−1(g)}g∈S

w2
g

min
g∈[m]

(
w2

g

) ·
(
dmax

n
+

logm

n
+ δ

)
. (19)

with probability at least 1− e−c4nδ for constant c4 > 0.

The error bound in (17) subsumes the non-overlapping group lasso error bound as a particular
instance. When the groups in G are disjoint, the reduced form of (17) matches the bounds studied
in Huang and Zhang (2010); Lounici et al. (2011); Negahban et al. (2012); Wainwright (2019). The
main difference in the context of overlapping groups is the necessity to account for the overlapping
degree and the extension of sparsity requirements to augmented groups. The conditions specified in
(16) and (18) relate to the cardinality of the augmented group support set (the number of non-zero
groups in non-overlapping group structure). Although the conditions in (16) and (18) may initially
appear distinct, they generally converge to a similar requirement in many typical cases, which can
lead to an informative comparison between the two bounds in (17) and (19). The following results
can characterize this.

Assumption 4. Assume the predefined group structure G and its induced group structure G satisfy
max{dmax,m} � max{dmax,m}.

Proposition 3. Suppose that maxg∈S |F−1(g)| is bounded by a constant. Under Assumption 4, the
following inequality holds:∑

g∈F−1(S)

w2
g

min
g∈[m]

(
w2
g

) · (dmax

n
+

logm

n
+ δ

)
.

( ∑
g∈S

w2
g

)
· hGSmax

min
g∈[m]

(
w2
gh

g
min

) · (dmax

n
+

logm

n
+ δ

)
.

This implies that the error bound for the estimator β̂G in (17) also serves as an upper bound for the
error associated with the estimator β̂G.

The quantity |F−1(g)| is the number of groups in G that has intersect with Gg. Proposition 3
requires that every Gg such that Gg ∩ supp(β∗) 6= ∅ is partitioned into bounded number of non-
overlapping groups. On the other hand, Assumption 4 requires that the maximum of two quantities
— the maximum group size and the number of groups in the given group structure G — should
have the same order as those in the induced structure G. The above requirement always holds for
interlocking groups with similar groups and overlap sizes (see Figure 1). More importantly, we
can always assess the assumption directly on data by calculating the group sizes and numbers for
both G and G. In Section 4.3, we evaluate five group structures from real-world gene pathways
and examine the ratio of the maximum of two quantities from each G and G. Assumption 4 looks
reasonable in all of these real-world grouping structures. See details in Table 1.
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3.2 Lower Bound of Estimation Error

Proposition 3 provides a comparison of the upper bounds on the estimation errors for the two esti-
mators. While the comparison offers intuitive insights, it does not rigorously establish the statistical
equivalence without the tightness of the error bounds. To strengthen our findings, we now inves-
tigate the minimax estimation error rate in linear regression models characterized by overlapping
group sparsity. Our focus will be on the following class of group-wise sparse vectors:

Ω(G, sg) =

{
β :

∑
Gg∈G

1{‖βGg‖2 6=0} 6 sg

}
. (20)

Following the assumptions in Cai et al. (2022), we focus on the special case of equal-size groups.

Assumption 5 (Equal-size groups). The m predefined groups of G come with equal group size d,
with m� p and d� log(p).

Theorem 4 (Lower bound of estimation error). Under Assumptions 1,2 and 5, we have

inf
β̂

sup
β∈Ω(G,sg)

E‖β̂ − β‖22 &
σ2
(
sg(d+ log(msg ))

)
n

. (21)

Combining Theorem 2 and Theorem 4, we can see that both estimators attain the minimax error
rate and are statistically equivalent, as demonstrated by the following corollary:

Corollary 1. Under Assumptions 1–4, if h
GS
max � 1, both β̂G and β̂G attain the minimax estimation

rate specified in (21).

3.3 Support Recovery Consistency

We now analyze the support recovery consistency of β̂G and β̂G. We begin by introducing more
quantities for our analysis. For any β ∈ Rp, we define the mapping rG(β) : Rp → Rp as follows:

rG(β)j =

βj
∑

g∈Gsupp(β),Gg∩j 6=∅

wg
‖βGg∩supp(β)‖2

, if j ∈ supp(β),

0, if j /∈ supp(β).

(22)

The quantity rG(β) is closely related to subgradients of the penalty and is used for determining
optimality conditions. In the lasso case, rG(β) is the sign vector, which is exactly the lasso penalty.
When focusing on β∗, we write S = supp(β∗), rG = rG(β∗), and β∗min = min

{
|β∗j |;β∗j 6= 0

}
.

Our analysis essentially follows the strategy in Jenatton et al. (2011a). The major difference
is that we study the problem with a more tailored setup for the random design rather than the
fixed design as in Jenatton et al. (2011a). Using random designs, as discussed before, is helpful
to compare the two estimators β̂G and β̂G. We now introduce additional assumptions for studying
the pattern consistency, which can be seen as the population-level counterpart of the assumptions in
Jenatton et al. (2011a).

Assumption 1’ (Gaussian noise for the response variable). Under model (13), the coordinates of ε
are i.i.d from N(0, σ2).

11
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Assumption 6 (Irrepresentable condition). For any β ∈ Rp, define:

φcS(βSc) =
∑

g∈[m]\GS

wg‖βSc∩Gg‖2,

and its dual norm:
(φcS)∗[u] = sup

φcS(βSc )≤1
β>Scu.

Assume that there exists τ ∈ (0, 2/3], such that

(φcS)∗[ΘScSΘ−1
SSrS] 6 1− 3τ

2
. (23)

Assumption 1’ is widely used to study support recovery consistency of linear regression. For
example, in addition to Jenatton et al. (2011a), it is also used in Zhao and Yu (2006); Wainwright
(2009, 2019). Assumption 6 is the population-level version of the irrepresentable condition as
discussed in Zhao and Yu (2006) and Wainwright (2019).

Theorem 5. Suppose that Assumption 1’, Assumption 2 and Assumption 6 hold. Under model (13),
assume the support of β∗ is compatible with the overlapping group lasso penalty, such that the zero
positions are given by an exact union of groups in G. Mathematically, that means:

[p] \
{ ⋃
Gg∩S=∅

Gg
}

= S. (24)

1. If
log(p− |S|) > |S|,

λn|S|
1
2 . min

{β∗min

AS
,

β∗minaSc

AS
∑
g∈GS

wg
√
|Gg ∩ S|

}
, (25)

n & max
{σ2 log(p− |S|)

a2
Scλ

2
n

,
maxj∈S{(β∗j )2} log(p− |S|)

a2
Scλ

2
n

}
, (26)

where aS = ming∈GS

wg
dg

, aSc = ming∈GSc
wg
dg

, and AS = hmax(GS) maxg∈GS
wg‖u‖1.

Then for the overlapping group lasso estimator β̂G, we have:

P
(

supp(β̂G) 6= S
)
68 exp

(
− n

2

)
+ exp

(
−

na2
Sτ

2γmin(ΘSS)

4 ‖rS‖22 γmax

(
ΘScSc|S

))
+ exp

(
−
nλ2

nτ
2a2

Sc

144σ2

)
+ 2|S| exp

(
− nc2(S, G)

2σ2

) (27)

with

c(S, G) � min
{β∗min

AS
,

β∗minaSc

AS
∑
g∈GS

wg
√
|Gg ∩ S|

}
.

12
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2. Furthermore, if maxg∈GS
F−1(g) � 1 for the proposed estimator β̂G, then the following

property holds:

P
(

supp(β̂G) 6= S
)
68 exp

(
− n

2

)
+ exp

(
−

na2
Sτ

2γmin(ΘSS)

4
∥∥rGS∥∥2

2
γmax

(
ΘScSc|S

))
+ exp

(
−
nλ2

nτ
2a2

Sc

144σ2

)
+ 2|S| exp

(
− nc2(S,G)

2σ2

)
,

(28)

with
c(S,G) � min

{β∗min

AS
,

β∗minaSc

AS
∑

g∈GS

wg

√∣∣Gg ∩ S
∣∣
}
.

The conditions involved in the above theorem can be seen as the population-level counterparts
of those used in Jenatton et al. (2011a) for the overlapping group lasso estimator under the fixed
design. As an illustration of the conditions, in the lasso context, (25) and (26) reduce to the typical
scaling of n ≈ log p and λn ≈ σ(log p/n)1/2. Together with the requirements on the sample
size |S| log(p−|S|) and on β∗min, they match the requirements in Wainwright (2009) for the support
recovery by the lasso regression. For non-overlapping group lasso estimators, our assumptions align
with the conditions outlined in Wainwright (2019, Corollary 9.27) under the random design.

Theorem 5 shows that both estimators consistently identify the support of the group sparse
regression coefficients. Compared to the previous study of the overlapping group lasso estimator
of Jenatton et al. (2011a), we switch to the random design of X , because such a setting renders
a common basis for the comparison of the two estimators directly. Specifically, comparing (27)
and (28), as well as the common conditions, we can see that the two estimators give comparable
performance in support recovery with respect to the sampling complexity.

4. Comparison of Computational Complexity

In the previous section, we have shown that the proposed penalty induces a class of estimators statis-
tically equivalent to the original overlapping group lasso estimator. In this section, we demonstrate
the advantage of our proposed estimator in computational complexity. Specifically, solving (15)
admits a lower complexity compared with solving (13).

As previously mentioned, the most common strategy for solving the overlapping group lasso
problem is proximal-based methods (Jenatton et al., 2011b; Yuan et al., 2011; Chen et al., 2012).
These algorithms involve an outer loop implementing gradient-based steps and an inner loop exe-
cuting the proximal operator (3), as studied in detail by Chen et al. (2012); Yan and Bien (2017). Ac-
cording to Chen et al. (2012), the per-iteration time complexity for the proximal step isO(

∑
g∈[m] dg),

and the proximal gradient method outer loops render a convergence rate ofO(1/ε) in scenarios with
overlapping groups, where ε denotes the desired accuracy.

In contrast, the proposed penalty converts the optimization of the overlapping group lasso prob-
lem to a non-overlapping group lasso problem. For any available proximal gradient algorithm, as the
groups are disjoint, the proximal operator in (3) can be computed in closed form with the complex-
ity of O(p) for each iteration (Yuan and Lin, 2006), which gives a substantial reduction compared
with the overlapping group lasso, especially when the groups in the original structure heavily over-
lap. Moreover, in non-overlapping scenarios, the outer loop enjoys an improved convergence rate
of O(1/

√
ε) (Liu et al., 2009a; Mairal et al., 2010). Therefore, solving (15) by proximal gradient

methods enjoys better efficiency in both per-iteration complexity and number of iterations.
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Furthermore, even more efficient strategies (Friedman et al., 2010; Qin et al., 2013; Yang and
Zou, 2015) exists for solving the non-overlapping group lasso problem compared to proximal gra-
dient methods. These methods offer further improvements in computational complexity. However,
as far as we know, these improvement options are unavailable for solving the overlapping group
lasso problem. Hence, the proposed method can enjoy the benefits of these more efficient strategies,
further amplifying its computational advantage.

5. Simulation

In this section, we assess the performance of the proposed estimator to demonstrate our claimed
properties. At a high level, we use simulation experiments to show that the proposed estimator
based on (7) delivers similar statistical performance to the overlapping group lasso estimator while
offering significantly better computational efficiency. Our estimator achieves this primarily because
of the tightest separable relaxation property in Theorem 1, which can be attributed to two designs of
the norm (7): the induced partition G and the corresponding overlapping-based weights w. There-
fore, in our simulation experiments, we will also evaluate the effects of these two designs by com-
paring the proposed estimator with other benchmark estimators. In Sections 5.1–5.3, we evaluate
the performance of the proposed estimator and compare it with the weighted lasso estimator with
overlapping-based weights, as discussed in (9), under various configurations. This sequence of ex-
periments will highlight the importance of our proposed partitionG. In Section 5.4, we compare the
proposed estimator with two other group lasso estimators that use the same G but with overlapping-
ignorant weights, under the same set of configurations. The results will demonstrate the importance
of using the proposed overlapping-based weights w.

Two MATLAB-based solvers are employed for the overlapping group lasso problems. The first
solver, FoGLasso (Yuan et al., 2011), is from the SLEP package (Liu et al., 2009b). It can handle
general overlapping group structures. The second solver, from the SPAM package (Mairal et al.,
2014), is designed to solve the overlapping group lasso problem when the groups can be represented
by tree structures, as formally defined in Section 5.2. Therefore, the SPAM solver is used only for
the experiment in Section 5.2. The SLEP solver is more general, but using the two solvers can
provide a more thorough evaluation across multiple implementations. For a fair comparison, the
SLEP and SPAM package solvers were also applied to solve lasso and non-overlapping group lasso
estimators in our benchmark set to ensure that the timing comparison implementation is consistent.

As an important note, SLEP is widely acknowledged as one of the most efficient solvers for over-
lapping group lasso problems (Yuan et al., 2011; Chen et al., 2012). However, for non-overlapping
group lasso problems, alternative solvers, such as Yang and Zou (2015), may offer much better
computational efficiency. For example, Yang and Zou (2015) reported that their solver is about 10–
30 times faster than the SLEP package when solving non-overlapping group lasso problems. This
enhanced efficiency is possible because of the separability in non-overlapping groups, a feature not
available for overlapping problems. For a fair comparison to avoid implementation bias, we use
SLEP to solve our proposed estimator. Therefore, the computational advantage demonstrate here
will be conservative. In practice, with the better solvers used, our method would enjoy an even more
substantial computational advantage over the original overlapping group lasso than what is reported
in the experiments.

Evaluation criterion. For each configuration, we generate 50 independent replicates and report
the average results. The performance assessment is conducted in three aspects:
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• Regularization path computing time. We start by determining the regularization path
through a line search to identify two pivotal values: λmax and λmin. The search for λmax
starts at 108 and decreases by multiplying by 0.9 at each iteration, stopping when at least one
variable is selected. Conversely, the search for λmin starts at 10−8 and increases by multiply-
ing by 1.1 each time, until a value is found that does not retain all variables. We then select
50 values in log scale within the range [λmin, λmax], compute the entire regularization path,
and record the computation time as a performance metric. This evaluation of computing time
mimics the most practical situation where the whole regularization path is solved for tuning
purposes.

• Relative `2 estimation error: From the entire regularization path, we select the smallest
relative estimation error, defined as ‖β̂ − β∗‖2/‖β∗‖2, as the estimation error for the method.
This serves as the measure of the ideally tuned performance.

• Support discrepancy: From the entire regularization path, we select the smallest support dis-
crepancy, defined as |{i ∈ [p] : |sign(β̂i)| 6= |sign(β∗i )|}|/p. Such a (normalized) Hamming
distance is commonly used as a performance metric for support recovery (Grave et al., 2011;
Jenatton et al., 2011a) to quantify the accuracy of pattern selection.

5.1 Interlocking Group Structure

In the first set of experiments, we evaluate the performances under interlocking group structure
(Figure 1a). This group structure exhibits a relatively low degree of overlap and is frequently used
for evaluating overlapping group lasso methods (Yuan et al., 2011; Chen et al., 2012). Specifically,
we set m interlocked groups with d variables in each group and 0.2d variables in each intersection.
For example, G1 = {1, · · · , 10}, G2 = {8, 9, · · · , 17}, · · · , G10 = {33, 34, · · · , 42} when m = 5
and d = 10. We will vary m and d to evaluate their impacts on the performance.

Following the strategy of Yan and Bien (2017), we generate the data matrix X from a Gaussian
distribution N(0,Θ), where Θ is determined to match the correlations within the specified group
structure. Initially, we construct a matrix Θ̃ as follows:

Θ̃ij =


1, if i = j,

0, if βi and βj belong to different groups in G,
0.6, if βi and βj are in the same group in G,

0.36, if βi and βj are in the same group in G but different groups in G,

and then Θ is derived as the projection of Θ̃ onto the set of symmetric positive definite matrices
with a minimum eigenvalue of 0.1. Such strong within-group correlation patterns have also been
used in Zhao et al. (2009a); Yang and Zou (2015).

We generate β∗ by initially sampling its p coordinates from N(10, 16), then randomly flipping
signs of the covariates and randomly setting 90% of the groups to zero. This setup is consistent with
the settings in Bach (2008); Friedman et al. (2010); Huang and Zhang (2010). The response variable
Y is generated according to Y = Xβ∗+ ε, where ε ∼ N(0, σ2), and we set the signal-to-noise ratio
to 3 following Yang and Zou (2015). The group weight in the overlapping group lasso problem is
wg =

√
dg, as is usually used in practice. For all methods, we employ the absolute difference in

function values between iterations as the stopping criterion, with a tolerance set at 10−5.
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Method Overlapping group lasso Proposed approximation method Weighted lasso

Figure 3: Regularization path computing time, `2 estimation error, and support discrepancy under
different configurations of interlocking groups. (a) Varying n with fixed m = 400 and
d = 40 (p = 12808); (b) Varying m with fixed n = 4000 and d = 40 ; (c) Varying d with
fixed n = 4000 and m = 400.

Figure 3 presents the average computation times, estimation errors, and support discrepancy
along with 95% confidence intervals (CIs). The results highlight the significant computational ad-
vantage of the proposed method over the original overlapping group lasso. Specifically, our method
is 5–20 times faster than the original overlapping group lasso.

Even though the overlap within the interlocking group structure is not severe, solving the
overlapping group lasso problem carries a more substantial computational burden due to the non-
separable structure within its penalty term. Computational time escalates with larger sample sizes,
an increased number of variables, and larger group sizes, emphasizing the substantial computational
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disadvantage of the overlapping group lasso as the problem scales up. In contrast, our proposed
method consistently achieves accuracy similar to the overlapping group lasso estimator in both
the estimation error and support discrepancy. This consistency in performance, observed across a
spectrum of configurations, serves as an empirical confirmation of the validity of our theoretical
findings.

On the other hand, the weighted lasso approximation is slightly faster than our method, which
is expected from the optimization perspective. However, the weighted lasso approximation ex-
hibits much higher errors compared to both the overlapping group lasso estimator and our estimator
across all configurations. This reveals that the weighted gives a poor approximation to the overlap-
ping group lasso. This shortcoming arises because the weighted lasso fails to leverage the group
information, unlike the induced groups G used in our estimator.

In summary, our proposed estimator achieves comparable statistical performance to the orig-
inal overlapping group lasso estimator while significantly enhancing computational efficiency. In
contrast, despite its computational efficiency, the weighted lasso yields notably poor estimations,
rendering it a noncompetitive alternative for approximating the original problems.

5.2 Nested Tree Structure of Overlapping Groups

In the second set of experiments, we evaluate the performance of the estimators under a configura-
tion of the tree-group structures introduced in Jenatton et al. (2011b), described below.

Definition 1. A set of groups G = {G1, · · · , Gm} is said to be tree-structured in [p] if ∪g∈[m]Gg =
[p] and if for all g, g′ ∈ [m]. Gg ∩Gg′ 6= ∅ implies either Gg ⊂ Gg′ or Gg′ ⊂ Gg.

In particular, we consider the nested tree structure, a special case of tree-structured groups where
all groups are nested. This configuration is interesting as it represents an extreme setting of over-
lapping groups – the overlapping degree is maximized in a certain sense, and we hope to evaluate
the methods under this extreme scenario. The nested tree structure was also used in (Kim and Xing,
2012; Nowakowski et al., 2023). In this experiment, we use the SPAM solver, specifically designed
for tree group structures, to provide a thorough evaluation across different implementations.

We consider the following nested group configuration: 800 groups G = {G1, . . . , G800} are
established, where Gg ⊂ Gg+1 and |Gg| = g × 4, for g = 1, · · · , 800, with a total of p = 3200
variables. The sample size varies from 600 to 2400. The data matrix X is generated from N(0,Θ),
where Θ is generated by first constructing the matrix Θ̃ as:

Θ̃ij =


1, if i = j,

0.6, if βi and βj belong to the same group in G,

0.36, if βi and βj are in the same group in G but in different groups in G,

.

and then projecting Θ̃ onto the set of symmetric positive definite matrices with minimum eigenvalue
0.1. The generative process for β∗ and y remains nearly identical as before, where the only differ-
ence is that the first 90% of the groups are set to zero following the hierarchical structure. The group
weights are set to wg = 1/dg as suggested in Nowakowski et al. (2023). For a fair comparison of
the two solvers, in this experiment, we adopt the stopping criterion provided in the SPAM package
(Mairal et al., 2014) with a convergence tolerance 10−5.
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Figure 4: Regularization path computing time, `2 estimation error, and support discrepancy across
various sample sizes under the nested tree group structure.

Figure 4 shows the performance of the three methods using both solvers. SLEP is generally
faster than SPAM, but the two solvers give consistent conclusions about the estimators. As studied
by Jenatton et al. (2011b), solving the overlapping group lasso problem becomes highly efficient
under such a nested group structure because, under a tree structure, a single iteration over all groups
is adequate to obtain the exact solution of the proximal operator. Our timing results support this
statement. Compared with the previous setting, the timing advantage of our method is reduced.
However, our method is still at least twice as fast as the overlapping group lasso. In terms of es-
timation error and support discrepancy, our proposed estimator consistently delivers similar results
compared to the overlapping group lasso estimator. The comparison with the weighted lasso re-
mains similar to the previous experiment; while the lasso estimator computes quickly, it continues
to offer a very poor approximation.

In summary, solving overlapping group lasso problems exhibits efficiency when applied to tree
structures. However, even in such cases, our proposed estimator maintains reasonable computational
advantage and similar statistical estimation performance compared to the original overlapping group
lasso estimator.

5.3 Group Structures Based on Real-world Gene Pathways

The previous two sets of experiments are based on human-designed group structures. To better re-
flect realistic situations, in this set of experiments, we use five gene pathway sets from the Molecular
Signatures Database (Subramanian et al., 2005) as group structures, summarized in Table 1. Each
gene pathway represents a collection of genes united by common biological characteristics. These
pathways have been widely considered in studies of cancer and biological mechanisms (Menashe
et al., 2010; Yuan et al., 2011; Livshits et al., 2015; Chen et al., 2020).

In particular, this data set can be used to assess the empirical applicability of Assumption 4 in our
theory. The last column of Table 1 shows the ratio between max{m,dmax} and max{m, dmax}.
All values are within the range of [2,6], indicating that the two terms can be treated as terms in the
same order.
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Pathway databases d̄/sd(d) h̄/sd(h) p
max{m,dmax}/
max{m, dmax}

BioCarta (Kong et al., 2006) 15.4/ 8.71 3.25/ 5.56 1129 2.35
PID (Schaefer et al., 2008) 38.51/ 19.59 3.28/ 5.09 2297 5.95

KEGG (Kanehisa et al., 2015) 58.48/ 47.36 2.58/ 3.39 4207 3.61
WIKI (Slenter et al., 2017) 38.17/ 44.10 4.35/ 7.70 6242 4.94

Reactome (Gillespie et al., 2021) 45.31/ 54.10 8.78/ 13.26 8331 2.35

Table 1: Summary information for the gene pathways: The mean and standard deviation of both
the group size (d̄/sd(d)), the overlapping degree (h̄/sd(h)), the number of genes (p), and
the ratio required in Assumption 4.

We use the gene expression data from Van De Vijver et al. (2002) as the covariate matrix X ,
which can be accessed through the R package breastCancerNKI (Schroeder et al., 2021). This
design matrix has 295 observations and 24481 genes. We perform gene filtering for each gene
pathway set to exclude genes not defined within any pathways, a data processing step commonly
used in similar studies (Jacob et al., 2009; Chen et al., 2012; Lee and Xing, 2014). The data-
generating procedure for β∗ and y remains almost the same as before, except that we use a much
sparser model because of the smaller sample size of the data. Specifically, we randomly sample
0.05m active groups and set the coefficients in other groups to zero. The weights in overlapping
group lasso are set to

√
dg.

Group
Structure

Overlapping group lasso Weighted lasso The proposed approximation

BioCarts 67.18 [ 62.28, 72.08] 6.22 [ 5.99, 6.45] 16.03 [ 15.17, 16.89]
KEGG 287.27 [ 267.18, 307.36] 28.77 [ 26.42, 31.12] 48.32 [ 45.12, 51.52]

PID 445.99 [ 420.56, 471.42] 10.27 [ 9.74, 10.80] 31.25 [ 29.43, 33.07]
WIKI 1279.22 [1214.34, 1344.10] 63.56 [ 57.36, 69.76] 132.79 [121.82, 143.76]

Reactome 3739.97 [3569.27, 3910.67] 116.34 [106.32, 126.36] 194.61 [181.31, 207.91]

Table 2: Comparison of the average computing time (in seconds) and the corresponding 95% con-
fidence intervals for each pathway group structure.

Group Structure Overlapping group lasso Lasso Proposed approximation
BioCarts 0.22 [0.20, 0.24] 0.28 [0.24, 0.32] 0.25 [0.22, 0.28]
KEGG 0.52 [0.47, 0.57] 0.80 [0.76, 0.84] 0.54 [0.51, 0.57]

PID 0.23 [0.21, 0.25] 0.50 [0.44, 0.56] 0.25 [0.23, 0.28]
WIKI 0.55 [0.49, 0.61] 0.65 [0.58, 0.72] 0.55 [0.49, 0.61]

Reactome 0.66 [0.63, 0.69] 0.85 [0.83, 0.87] 0.65 [0.62, 0.68]

Table 3: Comparison of the relative `2 estimation errors and the corresponding 95% confidence
intervals for each group structure.
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Group Structure Overlapping group lasso Lasso Proposed approximation
BioCarts 0.041 [0.039, 0.043] 0.043 [0.040, 0.046] 0.041 [0.039, 0.043]
KEGG 0.023 [0.021, 0.025] 0.026 [0.024, 0.028] 0.023 [0.021, 0.025]

PID 0.033 [0.031, 0.035] 0.033 [0.031, 0.035] 0.033 [0.031, 0.035]
WIKI 0.013 [0.012, 0.014] 0.013 [0.011, 0.015] 0.013 [0.012, 0.014]

Reactome 0.012 [0.011, 0.013] 0.020 [0.019, 0.021] 0.012 [0.010, 0.014]

Table 4: Comparison of the support discrepancy and the corresponding 95% confidence intervals
for each group structure.

Table 2 displays the computing time, Table 3 displays the estimation error results, and Table 4
displays the support discrepancy results for the five pathway group structures. The high-level mes-
sage remains consistent: Both our proposed group lasso approximation and the lasso approximation
could substantially reduce the computing time. Across all settings, the proposed method reduces
the computation time by 4 - 20 times and is more than 10 times faster in all settings with higher
dimensions. Meanwhile, the proposed estimator delivers statistical performance similar to that of
the original overlapping group lasso estimator. In contrast, the lasso approximation fails to leverage
the group information effectively and yields inferior estimation results.

5.4 Comparison of the Proposed Weights against Other Weighting Choices

In addition to the partitioned groups, the overlapping-based weight defined in (6) for each parti-
tioned group g is another crucial component to ensure the tightness of (7). We will demonstrate
this aspect by experiments here to compare the proposed weights (6) with two other commonly
used choices of weights that do not consider the original overlapping pattern: uniform weights and
group size-dependent weights (Yuan and Lin, 2006), on the same induced groups G. Specifically,
uniform weighting is the setting when all groups share the same weight while the size-dependent
weighting uses the weight

√
dg if wg =

√
dg (interlocking and gene pathway groups) and is 1/dg

if wg = 1/dg (nested groups). The comparative analysis is performed under all group structures in
the previous simulations, maintaining consistent simulation settings.

Figure 5a and Figure 5b illustrate the weighting effects comparison in the settings of Figure 3
and Figure 4, respectively. Under the interlocking group structure (Figure 5a), three weighting
schemes deliver similar performance in terms of estimation errors. Still, the size-dependent weight-
ing leads to a larger support discrepancy. This interlocking group structure is not very distinctive for
the three weights themes because the overlapping degree is nearly uniform. The nested group struc-
tures (Figure 5b) highlight the importance of the proposed weights more effectively. Our method
significantly outperforms the other two weighting schemes and aligns well with the original over-
lapping group lasso estimator. The comparison of weighting designs on the gene pathway group
structure is shown in Tables 5–6. The proposed estimator gives a close approximation to the orig-
inal overlapping group lasso, but the other two weighting designs lead to significantly different
performances in several settings.

In summary, the experiments demonstrate that the weights designed in our penalty also serve
as an indispensable part of a successful approximation to the overlapping group lasso estimation,
which is another aspect of the tightest separable relaxation property in Theorem 1.
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(a) Performance under interlocking group structure
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(b) Performance under nested tree structure
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Figure 5: Regularization `2 estimation error and support discrepancy using different choices of
weights. Figure 5a is an extension to Figure 3 under interlocking group structure, and
Figure 5b is an extension to Figure 4 under nested tree structure.

6. Application Example: Pathway Analysis of Breast Cancer Data

In this section, we demonstrate the proposed method thorough a predictive tasks on the breast cancer
tumor data, as previously used in Section 5.3. Unlike the previous simulation studies, here we use
the complete data set with tumor labels for each observation. Specifically, each observation is
labeled according to the status of the breast cancer tumors, with 79 classified as metastatic and 216
as non-metastatic. These labels serve as the response variable for our analysis.

Gene pathways have been widely considered to identify key gene groups in cancer studies. In
particular, Yuan et al. (2011); Chen et al. (2012); Lee and Xing (2014) used overlapping group
lasso techniques to exclude less significant biological pathways in cancer prediction. As a detailed
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Group
Structure

Proposed weight Uniform weight
Group size-

dependent weight
BioCarts 0.25 [0.22, 0.28] 0.28 [0.26, 0.30]* 0.35 [0.30, 0.40]*
KEGG 0.54 [0.51, 0.57] 0.80 [0.77, 0.83]* 0.58 [0.51, 0.65]*

PID 0.25 [0.23, 0.27] 0.24 [0.21, 0.27] 0.39 [0.36, 0.42]*
WIKI 0.55 [0.49, 0.61] 0.83 [0.80, 0.86]* 0.74 [0.67, 0.81]*

Reactome 0.65 [0.62, 0.68] 0.58 [0.55, 0.61]* 0.69 [0.63, 0.75]

Table 5: Comparative analysis of average estimation errors and the corresponding 95% confidence
intervals for three weighting designs. The ∗ indicates that the error is statistically different
from that of overlapping group lasso by a paired t-test.

Group
Structure

Proposed weight Uniform weight
Group size-

dependent weight
BioCarts 0.041 [0.039, 0.043] 0.045 [0.042, 0.048]* 0.042 [0.039, 0.045]
KEGG 0.023 [0.021, 0.025] 0.059 [0.055, 0.063]* 0.024 [0.022, 0.026]

PID 0.033 [0.031, 0.035] 0.037 [0.035, 0.039]* 0.030 [0.027, 0.033]*
WIKI 0.013 [0.012, 0.014] 0.025 [0.023, 0.027]* 0.013 [0.012, 0.014]

Reactome 0.012 [0.010, 0.014] 0.010 [0.008, 0.012]* 0.022 [0.021, 0.023]*

Table 6: Comparative analysis of average support discrepancy and the corresponding 95% confi-
dence intervals for three weighting designs. The ∗ indicates that the value is statistically
different from that of overlapping group lasso by a paired t-test.

example, Chen et al. (2012) leveraged the overlapping group lasso penalty to pinpoint biologically
meaningful gene groups. Their analysis identified several groups of genes associated with essential
biological functions, such as protease activity, protease inhibitors, and nicotine and nicotinamide
metabolism, which turned out to be important breast cancer markers (Ma and Kosorok, 2010). This
evidence highlights the potential of using the overlapping group lasso penalty in cancer analysis.
On the other hand, another way to incorporate gene pathway information in such analysis is to
retain genes by entire pathways. Jacob et al. (2009) used the latent overlapping group lasso penalty
to achieve this while Mairal and Yu (2013) introduced an `∞ variant further. The success of all
these previous studies reveals the potential of the gene pathway information in cancer prediction.
They also show that the proper way to use the pathways (e.g., either eliminating-by-group, as in
overlapping group lasso, or including-by-group, as in latent overlapping group lasso) highly depends
on the dataset and genes.

In our analysis, we use regularized logistic regression to build a classifier with several penalties:
the overlapping group lasso penalty (OGL), our proposed group lasso approximation penalty (Pro-
posed approximation), the standard lasso penalty (Tibshirani, 1996), the latent overlapping group
lasso penalty (LOG) (Jacob et al., 2009), and the `∞ latent overlapping group lasso penalty (Mairal
and Yu, 2013). As mentioned in previous sections, our focus is not on justifying the overlapping
group lasso should be used. Instead, our primary objective is to demonstrate that when an over-
lapping group lasso penalty is used, our method provides a good approximation to the over-
lapping group lasso (with a much faster computation) across various pathway sets (Table 1),
regardless whether or not the overlapping group lasso penalty is the best option for the problem.
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Two additional aspects can also be evaluated as by-products from our analysis. First, as the
lasso penalty does not consider the pathway information, comparing the performance of the group-
based penalty and the lasso penalty in this problem would verify whether a specific gene pathway
set contains predictive grouping information for breast cancer tumor type. Second, by assessing
the predictive performances among the overlapping group lasso classifier and the latent overlap-
ping group lasso classifiers, we can verify whether a specific gene pathway set is more suitable for
eliminating-by-group or including-by-group strategies for prediction.

Database
Method

OGL Lasso Proposed approximation

BioCarts 732 26 75
KEGG 2468 102 225
PID 1231 41 107
WIKI 5172 170 395
Reactome 11356 321 1186

Table 7: Computing time (in seconds) under different pathway databases.

Database
Method

OGL Lasso
Proposed

approximation
LOG LOG∞

BioCarts 0.7103 0.6989 0.7242 0.6888 0.6995
KEGG 0.7021 0.6862 0.7081 0.7390 0.7333
PID 0.7475 0.7004 0.7301 0.6881 0.6891
WIKI 0.6862 0.7282 0.6893 0.7149 0.7207
Reactome 0.6921 0.7301 0.7053 0.7463 0.7438

Table 8: Predictive AUC results of the three methods under different pathway databases.

We adopt the evaluation procedure of Lee and Xing (2014), where we randomly split the data
set into 200 training observations and 95 test observations. All methods are tuned by 5-fold cross-
validation on the training data. We calculate the area under the receiver operating characteristic
(AUC) curve, a commonly used metric for classifying accuracy (Hanley and McNeil, 1982), on
the test data. The total time for the entire cross-validation process is recorded as the computation
time. The experiment is repeated 100 times independently. Table 7 and Table 8 show the average
computing time and AUC, respectively. The results can be summarized as follows:

• First and foremost, the proposed estimator acts as an effective and computationally efficient
approximation for the overlapping group lasso estimator. The results evidently support this
claim. The proposed estimator delivers predictive performance that is (the most) similar to
the overlapping group lasso estimator across various pathway datasets while significantly
reducing the computing time by roughly ten times.

• Second, the lasso classifier performs best only on the WIKI pathway set, suggesting that the
pathways in the WIKI database might not be sufficiently informative for cancer prediction.

• Third, the superiority of either the overlapping group lasso regularizations or the latent over-
lapping group lasso regularizations depends on the specific group information. Among the

23



QI AND LI

four pathway sets with useful group information, the overlapping group lasso delivers supe-
rior predictive performance for the Biocarts and PID databases, while the latent overlapping
group lasso classifiers provide better predictions on the KEGG and Reactome databases.

As a remark, while our evaluation is based on prediction accuracy, it is not the only criterion to
determine if a method is proper for the dataset. For example, Mairal and Yu (2013) found that nei-
ther the overlapping group lasso model nor the latent overlapping group lasso model outperformed
simple ridge regularization in prediction. The value of structured penalties also lies in their ability
to identify potentially more interpretable genes, depending on the biological interpretations.

7. Discussion

We have introduced a separable penalty as an approximation to the group lasso penalty when groups
overlap. The penalty is designed by partitioning the original overlapping groups into disjoint sub-
groups and reweighing the new groups according to the original overlapping pattern. The penalty is
the tightest separable relaxation of the overlapping group lasso among all `q1/`q2 norms. We have
also shown that for linear problems, the proposed estimator is statistically equivalent to the orig-
inal overlapping group lasso estimator but enjoys significantly faster computation for large-scale
problems.

Several interesting directions could be considered for future research. The overlapping group
lasso penalty presents a variable selection by eliminating variables by entire groups. A counter-
part selection procedure can include variables by entire groups, which is achieved by the latent
overlapping group lasso (Jacob et al., 2009). This penalty also suffers from a non-separability com-
putational bottleneck. It would be valuable to investigate whether a similar approximation strategy
could be designed to boost the computational performance in this scenario. More generally, the
introduced concept of “tightest separable relaxation” might be a promising direction for optimiz-
ing non-separable functions. Studying the more general form and corresponding properties of this
concept may generate fundamental insights about optimization.
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Appendix A. Notation Summary

Indices:
[z] index set {1, ..., z}
Gg index set of gth group
GS collection of non-zero groups,

⋃
g∈S(β)Gg

GS
⋃
g∈S(β)Gg

βj the jth element of β
βGg

sub-vector of β indexed by Gg
βM(S) projection of β onto M(S)
A,T sub-matrix consisting of the columns indexed by T

Parameters:
H a diagonal matrix, diag( 1

h1
, · · · , 1

hp
)

G group structure matrix, Ggj = 1 iff βj ∈ Gg
dg group size, dg =

∑
j∈[p] Ggj

dmax maximum group size, dmax = maxg∈[m] dg
hj overlap degree, hj =

∑
g∈[m] Ggj

hgmax maximum overlap degree in Gg , hgmax = maxj∈Gg
hj

hgmin minimum overlap degree in Gg, minj∈Gg
hj

hmax maximum overlap degree, hmax = maxj∈[p] hj
hg overlap degree of Gg, h{j|j∈Gg}
σ parameter in the sub-Gaussian distribution
sg number of non-zero groups |S|
sg number of groups in the argument group support set |S|
κ parameter controls convexity

Definitions:
φ(β) group lasso norm,

∑
g∈[m]

wg
∥∥βGg

∥∥
2
,

φ∗(β) dual norm of φ(β), max
g∈[m]

1
wg

∥∥(Hβ)Gg

∥∥
2

F (g) ⊆ [m] overlapping groups which include the variables in Gg

F−1(g) ⊆ [m] non-overlapping groups that were partitioned from Gg

||β{G,w}||q1,q2 `q1,q2 norm,

 ∑
g∈[m]

wg

( ∑
j∈Gg

|βj |q2
) q1

q2


1
q1

supp(β) support set, {j ∈ {1, · · · , p}|βj 6= 0}
S(β) group support set, {g ∈ {1, · · · ,m}|Gg ∩ supp(β) 6= ∅}
S(β) {g = {1, · · · ,m}|Gg ∩GS(β) 6= ∅}
M(S) {β ∈ Rp|βj = 0 for all j ∈ (GS)c}
M⊥(S) {β ∈ Rp|βj = 0 for all j ∈ GS}
Ω(G, sg)

{
β :

∑
Gg∈G

1{‖βGg‖2 6=0} 6 sg
}

JG(β) [p]\
{⋃

Gg∩supp(β)=∅Gg
}
.

GJG(β) {g ∈ [m] | Gg ∩ JG(β) 6= ∅}
GJG(β)c {g ∈ [m] | Gg ∩ JG(β)c 6= ∅}

Table 9: Mathematical notations in the paper.
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Appendix B. Uniqueness of the Overlapping Group Lasso Problem

The group lasso penalization problems (14) and (15) are generally convex, but may not be strictly
convex. The uniqueness of these problems has been studied by Jenatton et al. (2011a). Here we
introduce their results for completeness. Note that our theoretical properties in Section 3 do not rely
on such uniqueness.

Lemma 6. (see Jenatton et al., 2011a, Proposition 1) If the gram matrixQ = X>X/n is invertible,
or if there exists g ∈ [m] such that Gg = [p], then the optimization problem specified in (14), with
λn > 0, is guaranteed to have a unique solution. The same property holds for problem (15) with G
replaced by G.

Appendix C. Additional Theoretical Results

To begin with, we introduce our proposed upper bound for the dual norm of the overlapping group
lasso penalty.

Proposition 1. Recall that φG(β) is the overlapping group lasso penalty defined in (1). Let φ∗ be
the dual norm of φG(β). Then the sharp upper bound for φ∗ is:

max
g∈[m]

1

wg

∥∥(Hβ)Gg
∥∥

2
,

where H is a diagonal matrix with diagonals ( 1
h1
, · · · , 1

hp
).

Assumption 7. Under model (13), we assume

1. (Sub-Gaussian noises) The coordinates of ε are i.i.d zero mean sub-Gaussian random vari-
able denote with parameter σ, which means that there exist σ > 0 such that

E[etε)] 6
eσ

2t2

2
, for all t ∈ R.

2. (Group normalization condition)
√
γmax(X>GgXGg/n) 6 c for some constant c.

3. (Restricted strong convexity condition) For some κ > 0,∥∥X (β̄ − β∗)∥∥2

2

n
> κ

∥∥β̄ − β∗∥∥2

2
, for all β̄ ∈

{
β | φ

(
(β − β∗)M⊥(S)

)
6 3φ

(
(β − β∗)M(S)

)}
.

Remark: The assumption requires an upper bound for the quadratic form associated with each
group. This type of assumption is commonly used for developing the upper estimation error bound
for non-overlapping group lasso (Huang and Zhang, 2010; Lounici et al., 2011; Negahban et al.,
2012; Dedieu, 2019; Wainwright, 2019). Additionally, the restricted curvature conditions have been
well discussed by Wainwright (2019). The curvature κ in Assumption 7 is a parameter measuring
the convexity. Generally speaking, the restricted curvature conditions state the loss function is
locally strongly convex in a neighborhood of ground truth and thus guarantees that a small distance
between the estimate and the true parameter implies the closeness in the loss function. However,
such a strong convexity condition cannot hold in the high-dimensional setting. So, we focus on
a restrictive set of estimates. Restricted curvature conditions are milder than the group-based RIP
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conditions used in (Huang and Zhang, 2010; Dedieu, 2019), which require that all submatrices up
to a certain size are close to isometries (Wainwright, 2019). Based on Assumption 7, Theorem 7
gives `2 norm estimation upper error bound for overlapping group lasso.

Theorem 7. Define hgmin = min
j∈Gg

hj , dmax = max
g∈[m]

dg, and dmax = max
g∈[m]

dg. Suppose that

Assumption 7 holds. Then for any δ ∈ [0, 1],

1. with λn = 8cσ
min
g∈[m]

(w2
gh
g
min)

√
dmax log 5

n + logm
n + δ, the following bound holds for β̂G in (14)

∥∥∥β̂G − β∗∥∥∥2

2
.
σ2

κ2
·

( ∑
g∈S

w2
g

)
· hGSmax

min
g∈[m]

(
w2
gh

g
min

) · (dmaxlog 5

n
+

logm

n
+ δ

)
. (29)

with probability at least 1− e−2nδ.

2. with λn = 8cσ
min
g∈[m]

wg

√
dmax log 5

n + logm
n + δ, the following bound holds for β̂G in (15)

∥∥∥β̂G − β∗∥∥∥2

2
.
σ2

κ2
·

∑
g∈F−1(S)

w2
g

min
g∈[m]

(
w2
g

) · (dmaxlog 5

n
+

logm

n
+ δ

)
. (30)

Following the framework in Negahban et al. (2012); Wainwright (2019), we further study the
applicability of the restricted curvature conditions in terms of a random design matrix. Given a
group structure G, Theorem 7 is developed based on the assumption that the fixed design matrix
X satisfies the restricted curvature condition. In practice, verifying that a given design matrix X
satisfies this condition is difficult. Indeed, developing methods to “certify” design matrices this way
is one line of ongoing research (Wainwright, 2019). However, it is possible to give high-probability
results based on the following assumptions.

Theorem 8. Under Assumptions 1,2, and 3, we have

1. with probability at least 1 − e−c′n, maxg∈[m]

√
γmax(X>GgXGg/n) 6 c for some constants

c, c′ > 0, as long as logm = o(n).

2. the restricted strong convexity condition, which is∥∥X (β̄ − β∗)∥∥2

2

n
> κ

∥∥β̄ − β∗∥∥2

2
, for all β̄ ∈

{
β | φ

(
(β − β∗)M⊥(S)

)
6 3φ

(
(β − β∗)M(S)

)}
.

hold with probability at least 1− e−
n
32

1−e−
n
64

for some constant κ > 0.
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Appendix D. Proofs

D.1 Proof of Theorem 1

Lemma 9. For any norm || ·{G̃,w̃} ||q1,q2 satisfying the conditions in (11), the following two state-
ments hold:

1. For any g ∈ [m], there exists a g̃ ∈ [|G̃|] such that Gg ⊆ G̃g̃.

2. For any g̃ ∈ [|G̃|], there exists a g ∈ [m] such that G̃g̃ = Gg.

Proof Based on Lemma 9, if a norm ||β{G̃,w̃}||q1,q2 satisfies (11), then it must be that G̃ = G.
Consequently, any disparity between ||β{G̃,w̃}||q1,q2 and our proposed norm could only be due to
differences in weights or the values of q1 or q2. Consequently, for any β with non-zero elements
solely in the gth group Gg, we have:∑

g∈[m]

wg||βGg ||2 =
∑
g∈[m]

( ∑
g∈F (g)

wg

)
||Gg||2 6 ||β{G,w̃}||q1,q2 6

∑
g∈[m]

wg||βGg ||2, (31)

which further implies that

(w̃g||βGg ||q1q2)
1
q1 = wg||βGg ||2.

By setting one element in Gg to 1, and other elements to 0, it follows that w̃g = wg. Since this
holds for any group in G, we have w̃ = w.

From (31), it is evident that (wg||βGg ||
q1
q2)

1
q1 = wg||βGg ||2 for any β with non-zero elements

only in Gg. This suggests that q1 = 1 and q2 = 2. Therefore, the existing norm ||β{G̃,w̃}||q1,q2 does
not satisfy the second condition in (11).

D.1.1 PROOF OF LEMMA 9

Proof We begin by proving the first item. Recall that G represents the space of all possible partitions
of [p]. Given that G̃ ∈ G, for an arbitrary g ∈ [m], suppose Gg * G̃g̃ for any g̃. Then, we can
identify the smallest set T such that:

Gg ⊆
⋃
g̃∈T

G̃g̃.

Let T = {t1, t2, · · · , t|T |}. Select one element βj ∈ Gg ∩ G̃t1 and another βk ∈ Gg ∩ G̃t2 .
Since both βj and βk belong to Gg, if an original group includes βj , it also contains βk. Let β be a
vector where only βj and βk are non-zero, then we have:∑

g∈[m]

wg||βGg ||2 =
( ∑
{g|βj∈Gg}

wg
)√

β2
j + β2

k 6 ||β{G̃,w̃}||q1,q2

6
∑

g∈[m]

wg||βGg ||2 =
( ∑
{g|βj∈Gg}

wg
)√

β2
j + β2

k,

which further leads to

||β{G̃,w̃}||q1,q2 =
(

(w̃t1 |βj |)q1+(w̃t2 |βk|)q1
) 1
q1 = w̃

1
q1
t1
|βj |+w̃

1
q1
t2
|βk| =

( ∑
{g|βj∈Gg}

wg

)√
β2
j + β2

k,
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for any 0 6 q1, q2 6∞. However, by settingβj = βk = 1, β{[p]\{j,k}} = 0 if w
1
q1
t1

+ w
1
q1
t2
6=
√

2
(∑

{g|βj∈Gg}wg

)
βj = 2, βk = 1, β{[p]\{j,k}} = 0 if w

1
q1
t1

+ w
1
q1
t2

=
√

2
(∑

{g|βj∈Gg}wg

) ,

we arrive at a contradiction. Thus, we demonstrate that if a norm || ·{G̃,w} ||q1,q2 exists, then each

group in G̃ is a union of groups in G.
Now, we continue to prove the second item. Given that the first part establishes each group in

G̃ is a union of groups in G, consider a specific group g̃ ∈ [|G̃|]. Assume there is an index set
V ⊆ [m] such that G̃g̃ =

⋃
g∈V Gg with |V | > 1. Denote V = {v1, · · · , v|V |}. We analyze two

scenarios:

• Case I: @a ∈ [m] s.t. (Gv1 ∪Gv2) ⊆ Ga.

• Case II: ∃a ∈ [m] s.t. (Gv1 ∪Gv2) ⊆ Ga.

Under case I, if only Gv1 and Gv2 have non-zero values in β, we obtain:∑
g∈[m]

wg||βGg ||2 =
( ∑
g∈F (v1)

wg

)√
β2
Gv1

+
( ∑
g∈F (v2)

wg

)√
β2
Gv2

6 ||β{G̃,w̃}||q1,q2 6
∑

g∈[m]

wg||βGg ||2

= wv1

√
β2
Gv1

+ wv2

√
β2
Gv2

=
( ∑
g∈F (v1)

wg

)√
β2
Gv1

+
( ∑
g∈F (v2)

wg

)√
β2
Gv2
,

which leads to

wv1

√
β2
Gv1

+ wv2

√
β2
Gv2

= w̃g̃

( ∑
j∈G̃g̃

|βj |q2
) 1
q2 = w̃g̃

( ∑
j∈{Gv1∪Gv2}

|βj |q2
) 1
q2 .

This equation does not hold by picking j ∈ Gv1 , k ∈ Gv2 , and setting{
βj = βk = 1, β{[p]\{j,k}} = 0 if wv1 + wv2 6= w̃g̃ · 2

1
q2

βj = 2, βk = 1, β{[p]\{j,k}} = 0 if wv1 + wv2 = w̃g̃ · 2
1
q2

.

Therefore, |V | > 1 cannot happen.
Under case II, let βj ∈ Gv1 and βk ∈ Gv2 . Define βj as the vector with 1 at the j-th element and

0 elsewhere, and βk as the vector with 1 at the k-th element and 0 elsewhere, with j 6= k.
When β = βj , we have:∑

g∈[m]

wg||βGg ||2 =
( ∑
g∈F (v1)

wg

)
6 w̃g̃ 6

∑
g∈[m]

wg||βGg ||2 = wv1 ,
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indicating that w̃g̃ = wv1 for all q1, q2. Similarly, for β = βk, we have:∑
g∈[m]

wg||βGg ||2 =
( ∑
g∈F (v2)

wg

)
6 w̃g̃ 6

∑
g∈[m]

wg||βGg ||2 = wv2 ,

indicating that w̃g̃ = wv2 for all q1, q2.
If wv1 6= wv2 , then such a weight assignment is not feasible. Assuming wv1 = wv2 = wg̃ = k,

then for any β with non-zero values only in Gv1 , we have wg̃||βGv1
||2 = (wg̃||βGv1

||q1q2)
1
q1 , implying

that if a norm satisfies (11), it must be an `1/`2 norm.
SinceGv1 andGv2 are different groups, there is at least one original group that contains variables

in Gv1 but not in Gv2 , and vice versa. Taking β with non-zero values in both Gv1 and Gv2 , we have:∑
g∈[m]

k||βGg ||2 > k||βGv1
∪ βGv2

||2 = ||β{G̃,w̃}||1,2,

which is a contradiction. Hence, in both cases, |V | > 1 is not possible, implying that there exists a
g ∈ [m] such that G̃g̃ = Gg.

D.2 Proof of Theorem 2

Proof We begin by examining the bound for the estimator β̂G. Considering a fixed design matrixX
and a group structureG that comply with Assumption 7, and selecting an appropriate λn, Theorem 7
asserts that both inequalities (17) and (19) hold with a probability of at least 1− e−2nδ.

Under Assumptions 1,2, and 3, Theorem 8 establishes that Assumption 7 is valid with a proba-
bility of at least 1− e−c2nδ2 − e−

n
32

1−e
n
64

, where c2 is a positive constant.
Considering these two theorems together, we conclude that under Assumptions 1,2, and 3, both

(17) and (19) are satisfied with a probability of at least 1−e−c2nδ2−e−2nδ− e−
n
32

1−e
n
64

. This probability

can be further bounded below by 1− e−c′nδ for some suitable constant c′.
The bound for β̂G can be directly derived, noting that it represents a group lasso estimator with

group G and weights w.

D.3 Proof of Corollary 3

Proof Assuming that max{dmax,m} � max{dmax,m}, then we have(dmaxlog 5

n
+

logm

n
+ δ
)
�
(dmaxlog 5

n
+

logm

n
+ δ
)
.

Let wg =
∑

g∈F (g)wg, by the Cauchy–Schwarz inequality, we have

w2
g =

( ∑
g∈F (g)

wg

)2
6 hg

( ∑
g∈F (g)

w2
g

)
.
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Therefore, ∑
g∈F−1(S)

w2
g 6

∑
g∈F−1(S)

hg(
∑

g∈F (g)

w2
g) 6 h

GS
max

( ∑
g∈F−1(S)

∑
g∈F (g)

w2
g

)
.

Let’s introduce kg as the number of non-overlapping groups from G into which the gth group
is partitioned in the new structure G. We also define K as the maximum number of such partitions,
i.e., K = maxg kg and K 6∞. Now we want to show that∑

g∈F−1(S)

∑
g∈F (g)

w2
g 6

∑
g∈S

kgw
2
g .

Recall the definition of F−1(S) as:

F−1(S) = {g | g ∈ F−1(g), g ∈ S}.

For each g ∈ F−1(g) that also belongs to F−1(S), we add w2
g to the summation. Therefore, the

maximum contribution from each original group g to the sum
∑

g∈F−1(S)

∑
g∈F (g)

w2
g is kgw2

g .

Given that
{g|g ∈ F (g) and g ∈ F−1(S)} = S,

we have

h
GS
max

( ∑
g∈F−1(S)

∑
g∈F (g)

w2
g

)
6 h

GS
max

∑
g∈S

kgw
2
g 6 h

GS
maxK

∑
g∈S

w2
g .

On the other hand, we have

min
g∈[m]

(
w2

g

)
= min

g∈[m]

( ∑
g∈F (g)

wg

)2
> min

g∈[m]

( ∑
g∈F (g)

min
g∈[m]

{wg}
)2

> min
g∈[m]

(
hgmin min

g∈[m]
{wg}

)2

=

(
hgmin min

g∈[m]
{wg}

)2

> min
g∈[m]

(
w2
gh

g
min

)
.

Therefore, ∑
g∈F−1(S)

w2
g

min
g∈[m]

(
w2
g

) 6

K
( ∑
g∈S

w2
g

)
· hGSmax

min
g∈[m]

(
w2
gh

g
min

) .

Consequently, if K is upper bounded by a constant, then

σ2

κ2
·

∑
g∈F−1(S)

w2
g

min
g∈[m]

(
w2
g

) ·(dmaxlog 5

n
+

logm

n
+ δ

)
.
σ2

κ2
·

( ∑
g∈S

w2
g

)
· hGSmax

min
g∈[m]

(
w2
gh

g
min

) ·(dmaxlog 5

n
+

logm

n
+ δ

)
.
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D.4 Proof of Proposition 1

Proof Let HGg be the sub-matrix of H consisting of the columns indexed by Gg. Let uGg , vGg be
the sub-vectors of u, v indexed by Gg respectively. Given two vectors u, v ∈ Rp, we have

φ∗(v) = sup
φ(u)61

{
uT v

}
= sup

φ(u)61
{u1v1 + u2v2 + · · ·+ upvp}

= sup
φ(u)61

{
v1

h1
· h1 · u1 + · · ·+ vp

hp
· hp · up

}
= sup

φ(u)61

{ m∑
g=1

(
HGgvGg

)T
uGg

}
= sup

φ(u)61

{ m∑
g=1

(
(Hv)Gg

)
wg

· wg · uGg
}

6 sup
φ(u)61

{ m∑
g=1

∥∥(Hv)Gg
∥∥

2

wg
·
∥∥wguGg∥∥2

}
6

(
max
g∈[m]

1

wg
·
∥∥(Hv)Gg

∥∥
2

)
· φ(u)

6 max
g∈[m]

1

wg
·
∥∥(Hv)Gg

∥∥
2
,

where the first inequality is achieved by using Cauchy’s inequality.
Let g0 = arg max

g∈[m]

1
wg

∥∥ (Hv)Gg
∥∥

2
and hg0max = 1. Define u ∈ Rp as:

uj =

{
0 for j /∈ Gg0

1
wg0
· vj
hj

2 · 1∥∥∥(Hv)Gg0

∥∥∥
2

for j ∈ Gg0 ,

then we have

φ (u) =
m∑
g=1

wg
∥∥uGg∥∥2

= wg0 ·
1

wg0
· 1∥∥ (Hv)Gg0

∥∥
2

·

√√√√ ∑
j∈Gg0

vj2

hj
4

=
1∥∥ (Hv)Gg0

∥∥
2

√√√√ ∑
j∈Gg0

vj2

hj
2 = 1,

where the last equality holds due to the fact that hj = 1 for any j ∈ Gg0 , and we also have

uT v =
1

wg0

1∥∥ (Hv)Gg0

∥∥
2

·
∑
j∈Gg0

vj
2

hj
2 =

1

wg0

1∥∥ (Hv)Gg0

∥∥
2

·
∥∥ (Hv)Gg0

∥∥2

2

=
1

wg0

∥∥ (Hv)Gg0

∥∥
2

= max
g∈[m]

1

wg0

∥∥ (Hv)Gg
∥∥

2
= φ∗ (v) .

Therefore, this is a sharp bound.
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D.5 Proof of Theorem 7

Proof This section mostly follow the proof in Wainwright (2019, Chap. 14). For simplicity, we
write S = S(β∗) and S = S(β∗). From the optimality of β̂G, we have

0 >
1

n

∥∥Y −Xβ̂∥∥2

2
− 1

n

∥∥Y −Xβ∗∥∥2

2
+ λn

(
φ(β̂)− φ(β∗)

)
=

1

n

(
Y TY − 2Y TXβ̂ + β̂TXTXβ̂ − Y TY + 2Y TXβ∗ − β∗TXTXβ∗

)
+ λn

(
φ(β̂)− φ (β∗)

)
=

1

n

(
(2XTXβ∗ − 2XTY )T (β̂ − β∗) + (β̂ − β∗)TXTX(β̂ − β∗)

)
+ λn

(
φ(β̂)− φ(β∗)

)
=
〈
5
∥∥Y −Xβ∗∥∥2

2

n
,
(
β̂ − β∗

)〉
+

∥∥X(β̂ − β∗)∥∥
2

n
+ λn

(
φ(β̂)− φ(β∗)

)
>
〈
5
∥∥Y −Xβ∗∥∥2

2

n
,
(
β̂ − β∗

)〉
+ κ
∥∥(β̂ − β∗)∥∥2

2
+ λn

(
φ(β̂)− φ(β∗)

)
> −

∣∣∣〈5 ∥∥Y −Xβ∗∥∥2

2

n
,
(
β̂ − β∗

)〉∣∣∣+ κ
∥∥(β̂ − β∗)∥∥2

2
+ λn

(
φ(β̂)− φ(β∗)

)
,

where the penultimate step is valid due to the assumption of restrictive strong convexity.

By applying Holder’s inequality with the regularizer φ and its dual norm φ∗, we have

∣∣∣∣〈5 ‖Y −Xβ∗‖22n
,
(
β̂ − β∗

)〉∣∣∣∣ 6 φ∗
(
5
‖Y −Xβ∗‖22

n

)
φ
(
β̂ − β∗

)
. (32)

Next, we have

φ(β̂) = φ
(
β∗ + (β̂ − β∗)

)
= φ

(
β∗M(S) + β∗M⊥(S) + (β̂ − β∗)M(S) + (β̂ − β∗)M⊥(S)

)
> φ

(
β∗M(S) + (β̂ − β∗)M⊥(S)

)
− φ(β∗M⊥(S))− φ

(
(β̂ − β∗)M(S)

)
= φ(β∗M(S)) + φ

(
(β̂ − β∗)M⊥(S)

)
− φ(β∗M⊥(S))− φ

(
(β̂ − β∗)M(S)

)
.

The inequality holds by applying the triangle inequality on φ(β̂), and the last step holds by
applying Lemma 11. Consequently, we have

φ(β̂)− φ (β∗) > φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

)
− 2φ(β∗M⊥(S))

= φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

)
,

(33)

where φ
(
β∗
M⊥(S)

)
= 0 as β∗

M⊥(S)
is a zero vector.
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Based on (32) and (33), we have

1

n

∥∥∥Y −Xβ̂∥∥∥2

2
− 1

n
‖Y −Xβ∗‖22 + λn

(
φ(β̂)− φ(β∗)

)
> −

∣∣∣∣〈5 ‖Y −Xβ∗‖22n
,
(
β̂ − β∗

)〉∣∣∣∣+ κ
∥∥∥(β̂ − β∗)∥∥∥2

2
+ λn

(
φ(β̂)− φ(β∗)

)
> κ

∥∥∥(β̂ − β∗)∥∥∥2

2
+ λn

(
φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

))
−
∣∣∣∣〈5 ‖Y −Xβ∗‖22n

,
(
β̂ − β∗

)〉∣∣∣∣
> κ

∥∥∥(β̂ − β∗)∥∥∥2

2
+ λn

(
φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

))
− φ∗

(
5
‖Y −Xβ∗‖22

n

)
φ
(
β̂ − β∗

)
> κ

∥∥∥(β̂ − β∗)∥∥∥2

2
+ λn

(
φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

))
− λn

2
φ
(
β̂ − β∗

)
,

where the last step is valid because Lemma 10 implies that we can guarantee λn > 2φ∗
(
5‖Y−Xβ

∗‖22
n

)
with high probability by taking appropriate λn. Moreover, Lemma 12 implies that

β̂ ∈
{
β ∈ Rp | φ

(
(β − β∗)M⊥(S)

)
6 3φ

(
(β − β∗)M(S)

)}
.

By the triangle inequality, we have

φ(β̂ − β∗) = φ
(

(β̂ − β∗)M(S) + (β̂ − β∗)M⊥(S)

)
6 φ

(
(β̂ − β∗)M(S)

)
+ φ

(
(β̂ − β∗)M⊥(S)

)
,

and hence we have
1

n

∥∥∥Y −Xβ̂∥∥∥2

2
− 1

n
‖Y −Xβ∗‖22 + λn

(
φ(β̂)− φ(β∗)

)
> κ

∥∥∥(β̂ − β∗)∥∥∥2

2
+ λn

(
φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

))
− λn

2
φ
(
β̂ − β∗

)
> κ

∥∥∥(β̂ − β∗)∥∥∥2

2
+ λn

(
φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

))
− λn

2

(
φ
(

(β̂ − β∗)M(S)

)
+ φ

(
(β̂ − β∗)M⊥(S)

))
> κ

∥∥∥β̂ − β∗∥∥∥2

2
+
λn
2

(
φ(β̂ − β∗)M⊥(S) − 3φ(β̂ − β∗)M(S)

)
> κ

∥∥∥β̂ − β∗∥∥∥2

2
− 3λn

2
φ
(

(β̂ − β∗)M(S)

)
.

By definition, we have φ
(

(β̂ − β∗)M(S)

)
=
∑
g∈S

wg

∥∥∥(β̂ − β∗)
Gg

∥∥∥
2
, and by Cauchy-Schwarz

inequality, we have

∑
g∈S

wg

∥∥∥∥(β̂ − β∗)Gg
∥∥∥∥

2

6
√∑
g∈S

w2
g ·

√
h
GS
max ·max

g∈S

∥∥∥∥(β̂ − β∗)Gg
∥∥∥∥2

2

6
√∑
g∈S

w2
g ·
√
h
GS
max ·

∥∥∥(β̂ − β∗)∥∥∥2

2

=

√∑
g∈S

w2
g ·
√
h
GS
max

∥∥∥(β̂ − β∗)∥∥∥
2
.
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On the other hand, since κ
∥∥∥β̂ − β∗∥∥∥2

2
− 3λn

2

√∑
g∈S

w2
g ·
√
h
GS
max

∥∥∥(β̂ − β∗)∥∥∥
2
6 0, we have

∥∥∥β̂ − β∗∥∥∥2

2
6

9λ2
n

4κ2

∑
g∈S

w2
g · h

GS
max

6
9

4κ2
·

64c2σ2
∑
g∈S

w2
g · hmax(S)

min
g∈[m]

(
w2
gh

g
min

) ·
(
dmaxlog 5

n
+

logm

n
+ δ

)

6
144c2σ2

κ2
·

∑
g∈S

w2
g · h

GS
max

min
g∈[m]

(
w2
gh

g
min

) · (dmaxlog 5

n
+

logm

n
+ δ

)
.

D.5.1 LEMMAS FOR THE PROOF OF THEOREM 7

In these lemmas, we abbreviate β̂G by β̂.

Lemma 10. Under the Assumption 7 and (2), taking

λn = 8cσ√
min
g∈[m]

(w2
gh
g
min)

√
dmax log 5

n + logm
n + δ for some δ ∈ [0, 1],

then P
(
λn > 2φ∗(X

>ε
n )
)
> 1− e−2nδ.

Proof of Lemma 10 Let Vi·g = −εi
(

Xig1
hg1wg

,
Xig2
hg2wg

, . . . ,
Xigdg
hgdg

wg

)
∈ Rdg . According to the varia-

tional form of `2 norm, we have 1
n ‖
∑n

i=1 Vi·g‖2 = sup
u∈Sdg−1

〈
u, 1

n

∑n
i=1 Vi·g

〉
, where Sdg−1 is the

Euclidean sphere inRdg . Also, for any vector u ∈ Sdg−1 and t ∈ R, we have

1

n
logE

(
e
t
〈
u,

n∑
i=1

Vi·g
〉)

=
1

n
logE

(
e
t
dg∑
j=1

uj
n∑
i=1

Vi·gj
)

=
1

n
logE

(
e
t
n∑
i=1

( dg∑
j=1

ujVi·gj

))
=

1

n
logE

(
e
−t

n∑
i=1

( dg∑
g=1

ujXigj
εi

hgj wg

))
=

1

n
logE

(
e
−t

n∑
i=1

εi

( dg∑
j=1

ujXigj
hgj wg

))
.
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Since {εi}ni=1 are i.i.d zero mean sub-Gaussian random variables with parameter σ, let u = (u1, · · · , udg)T ∈
Rdg×1, Xi,g = (Xig1 , · · ·Xigdg

)T ∈ Rdg×1, then we have

1

n
logE

(
e
−t

n∑
i=1

εi

(
dg∑
j=1

ujxigj
hgj wg

))
=

1

n
logE

(
e
−tε1

(
dg∑
j=1

ujX1gj
hgj wg

))
+ · · ·+ 1

n
logE

(
e
−tεn

(
dg∑
j=1

ujXngj
hgj wg

))

6
t2σ2

2n

( n∑
i=1

( dg∑
j=1

ujXigj

wghgj

)2
)

6
t2σ2

2n

1

w2
g

(
hgmin

)2( n∑
i=1

( dg∑
j=1

ujXigj

)2
)

=
t2σ2

2n

1

w2
g

(
hgmin

)2( n∑
i=1

〈u, Xi,g〉2
)

=
t2σ2

2n

1

w2
g

(
hgmin

)2( n∑
i=1

(uTXi,gX
T
i,gu)

)

=
t2σ2

2

1

w2
g

(
hgmin

)2(uT( 1

n

n∑
i=1

Xi,gX
T
i,g

)
u

)

=
t2σ2

2

1

w2
g

(
hgmin

)2(uT XT
Gg
XGg

n
u

)

6
t2σ2

2

1

w2
g

(
hgmin

)2(γmax(
XT
Gg
XGg

n
)

)
.

By Assumption 7, we have γmax(
XT
Gg
XGg
n ) 6 c2. Combining this with the previous proof, we

have 1
n logE

(
e
t〈u,

n∑
i=1

Vi·g〉)
6 c2t2σ2/2w2

g

(
hgmin

)
. Therefore, the random variable 〈u,

n∑
i=1

Vi·g〉 is

the sub-Gaussian with the parameter at most
√
c2σ2/w2

g

(
hgmin

)
, and by properties of sub-Gaussian

variables, we have

logP
(〈
u,

n∑
i=1

Vi·g

〉
>
λn
4

)
6 −

λ2
nw

2
gh

g
min

32C2σ2
.

We can find a 1
2 covering of Sdg−1 in Euclidean norm:{u1, u2, . . . , uN} with N ≤ 5dg , recall

that 1
n ‖
∑n

i=1 Vi·g‖2 = 1
n sup
u∈Sdg−1

〈u,
n∑
i=1

Vi·g〉, so that for any u ∈ Sdg−1 , we can find a uq(u) ∈{
u1, . . . , uN

}
, such that

∥∥uq(u) − u
∥∥

2
6 1

2 , and

1

n
sup

u∈Sdg−1

〈
u,

n∑
i=1

Vi·g

〉
=

1

n
sup

u∈Sdg−1

(〈
u− uq(u),

n∑
i=1

Vi·g

〉
+
〈
uq(u),

n∑
i=1

Vi·g

〉)
6

1

n
sup

u∈Sdg−1

〈
u− uq(u),

n∑
i=1

Vi·g

〉
+

1

n
max
q∈[N ]

〈
uq, Vi·g

〉
.

By applying the Cauchy-Schwarz inequality, we have

1

n
sup

u∈Sdg−1

〈
u− uq(u),

n∑
i=1

Vi·g

〉
6

∥∥u− uq(u)
∥∥

2

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
6

1

2n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
.
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Hence, we obtain 1
n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
6 1

2n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2

+ 1
n max
q∈[N ]

〈
uq,

n∑
i=1

Vi·g

〉
, which indicates that

1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
6 2 max

q∈[N ]

〈
uq,

1

n

n∑
i=1

Vi·g

〉
.

Consequently, we can express the probability as

P
( 1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
>
λn
2

)
6 P

(
max
q∈[N ]

〈
uq,

1

n

n∑
i=1

Vi·g

〉
>
λn
4

)
6

N∑
q=1
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uq,

1

n

n∑
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Vi·g

〉
>
λn
4

)
6 N exp

(
−
nλ2

nw
2
gh

g
min

32C2σ2

)
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(
−
nλ2

nw
2
gh

g
min

32C2σ2
+ dg log 5

)
,

and by setting λn = 8Cσ√
min
g∈[m]

(w2
gh
g
min)

√
dmax log 5

n + logm
n + δ, we get

P
(

max
g∈[m]

1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
>
λn
2

)
6

m∑
g=1

P
( 1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
>
λn
2

)
6 exp

(
− nλ2

n

32C2σ2
min
g∈[m]

(w2
gh

g
min) + dmax log 5 + logm

)
6 exp{−2nδ}.

From proposition 1, we have

φ∗
(X>ε

n

)
6 max

g∈[m]

1

wg

∥∥∥(HX>ε
n

)
Gg

∥∥∥
2

= max
g∈[m]

1

wg

∥∥∥ 1

n

n∑
i=1

−εi
(Xig1

hg1
, · · · ,

Xigdg

hgdg

)∥∥∥
2

= max
g∈[m]

∥∥∥ 1

n

n∑
i=1

Vi·g

∥∥∥
2
.

Therefore, P
(
λn > 2φ∗(X

>ε
n )
)
> 1− e−2nδ.

Lemma 11. The group lasso regularizer (1) is decomposable with respect to the pair
{
M (S) ,M⊥(S)

}
.

That is, φ(a+ b) = φ(a) + φ(b), for all a ∈M (S) and for all b ∈M⊥(S).

Proof of Lemma 11 By definition, we have

φ (a+ b) =

m∑
g=1

wg

∥∥∥(a+ b)Gg

∥∥∥
2

=
∑

g∈M(S)

wg
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2

+
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=
∑

g∈M(S)

wg
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= φ (a) + φ (b) .
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Lemma 12. If λn > 2φ∗
(
XT ε
n

)
, then φ

(
(β̂ − β∗)M⊥(S)

)
6 3φ

(
(β̂ − β∗)M(S)

)
.

Proof of Lemma 12 (see Wainwright, 2019, proposition 9.13) From equation (33), we have

φ(β̂)− φ (β∗) > φ
(

(β̂ − β∗)M⊥(S)

)
− φ

(
(β̂ − β∗)M(S)

)
,

On the other hand, by the convexity of the cost function, we have

1

n
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2
− 1

n
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2
>
〈
5
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2

n
,
(
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)〉
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〈
5
∥∥Y −Xβ∗∥∥2

2

n
,
(
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)〉
.

By applying Holder’s inequality with the regularizer φ and its dual norm φ∗, we have∣∣∣∣〈5 ‖Y −Xβ∗‖22n
,
(
β̂ − β∗

)〉∣∣∣∣ 6 φ∗
(
5
‖Y −Xβ∗‖22

n

)
φ
(
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)
.

Therefore,
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2
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2

(
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,

and
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1
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2
− 1

n
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2
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(
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)
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(
φ
(
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2
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)
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2

(
φ
(
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)
− 3φ

(
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,

from which the claim follows.

D.6 Proof of Theorem 8

Two lemmas are used in this proof:

Lemma 13 (Theorem 6.5 in (Wainwright, 2019)). Let |||.|||2 be the spectral norm of a matrix. There
are universal constants c2, c3, c4, c5 such that, for any matrix A ∈ Rn×p, if all rows are drawn i.i.d
from N(0,Θ), then the sample covariance matrix Θ̂ satisfies the bound

E
(
et|||Θ̂−Θ|||2

)
6 ec3

t2θ2

n
+4p for all |t| < n

64e2|||Θ|||2
,

and hence for all δ ∈ [0, 1]

P
( |||Θ̂−Θ|||2
|||Θ|||2

6 c5(

√
p

n
+
p

n
) + δ

)
> 1− c4e

−c2nδ2 . (34)
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Lemma 14. Under Assumptions 1,2, and 3, and use ρ(Θ) to denote the maximum diagonal of a
covariance matrix Θ. For any vector β ∈ Rp and a given group structure with m groups, we have

‖Xβ‖2√
n
≥ 1

4

∥∥∥Θ
1
2β
∥∥∥

2
− 8ρ(Θ)

(
max
g∈[m]

1
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√
hgmin

)√
2(logm+ dmax log 5)

n
φ(β), (35)

with probability at least 1− e−
n
32

1−e−
n
64
.

Proof We first prove the first part of Theorem 8. By Lemma 13, we have

P
( |||XT
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XGg
n −ΘGg ,Gg |||2
|||ΘGg ,Gg |||2

6 c5(

√
dg
n

+
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)
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By the triangle inequality, since XT
Gg
XGg is a positive semi-definite, we have
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n
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√
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with probability at least 1 − c4e
−c2nδ2 . Because |||ΘGg ,Gg |||2 ≤ |||Θ|||2 6 c1 for some constant

c1 and dg 6 n, we have γmax(
XT
Gg
XGg
n ) 6 c + δ for some constant c, with probability at least

1− e−c2nδ2 . Taking the union probability for all m groups, we have
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XGg

n
) ≤ c+ δ

with probability at least 1− exp(−c′2nδ2) for some constant c′ > 0 as long as

logm� nδ2.

For simplicity, we take δ as a constant.
Now we proceed to prove the second part. First note that we must have ρ(Θ) ≤ γmax(Θ) ≤ c1

by Assumptions 1,2, and 3. By applying Minkowski inequality, we have
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Let β = β∗ − β̄, we now want to prove that φ
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)
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Since φ
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)
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)
, combining with triangle inequality, we have
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From Lemma 14, we have

‖Xβ‖2√
n

>
1

4

∥∥∥Θ
1
2β
∥∥∥

2
− 8ρ(Θ) max

g∈[m]

1

wg
√
hgmin

√
2(logm+ dmax log 5)

n
φ(β)

>
1

4
√
c1
‖β‖2 − 32ρ(Θ) max

g∈[m]

1

wg
√
hgmin

√
2(logm+ dmax log 5)

n

√
sg

√
max
g∈S̄

w2
gh

g
max ‖β‖2

>
1

64
√
c1
‖β‖2 ,

where the last step is valid due to Assumption 2 and 3.

D.6.1 LEMMAS FOR THE PROOF OF THEOREM 8

Proof of Lemma 14 To begin with, for a vector β ∈ Rp with a fixed group structure, we define the
set:

Sp−1(Θ) =
{
β ∈ Rp

∣∣∣∥∥∥Θ
1
2β
∥∥∥

2
= 1
}
,

the function:

g(t) = 4ρ(Θ) max
g∈[m]

1

wg
√
hgmin

√
2(logm+ dmax log 5)

n
· t,

and the event:

E
(
Sp−1(Θ)

)
=

{
X ∈ Rn×p

∣∣∣∣ inf
β∈Sp−1(Θ)

‖Xβ‖2√
n

+ 2g(φ(β)) 6
1

4

}
,

where φ(.) is the overlapping group lasso regularizer. In addition, given 0 6 r` 6 ru, we define the
set

K (r`, ru) =
{
β ∈ Sp−1(Θ)

∣∣g (φ(β)) ∈ [r`, ru]
}
,

and the event:

A (r`, ru) =

{
X ∈ Rn×p

∣∣∣∣ inf
β∈K(r`,ru)

‖Xβ‖2√
n

6
1

2
− ru

}
.

Now we introduce two additional lemmas:

Lemma 15. For υ = 1
4 , we have E ⊆ A(0, υ) ∪

(⋃∞
`=1 A

(
2`−1υ, 2`υ

))
.

Lemma 16. For any pair (r`, ru), where 0 6 r` 6 ru, we have P (A (r`, ru)) 6 e−
n
32 e−

n
8
r2u .

Based on Lemma 15 and Lemma 16, we have

P (X ∈E) 6 P (A(0, υ)) +

∞∑
`=1

P
(
A(2`−1υ, 2`υ)

)
6 e−

n
32

{ ∞∑
t=0

e−
n
8

22`υ2

}
.

Since υ = 1
4 and 22` > 2`, we have

P (X ∈E) 6 e−
n
32

∞∑
`=0

e−
n
8

22`υ2 6 e−
n
32

∞∑
`=0

e−n
`
4
υ2 6

e−
n
32

1− e−
n
64

.
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We now get the upper bound of P (X ∈E). We next show that the bound in (35) always hold
on the complementary set Ec. If X /∈ E, based on the definition of E, we have inf

β∈Sp−1(Θ)

|Xβ‖2√
n

>

1
4 − 2g (φ(β)) . That is ∀β ∈ Sp−1(Θ). ‖Xβ‖2√

n
> 1

4 − 2g (φ(β)). Therefore, for any β′ ∈ {β′ ∈
R| β′∥∥∥Θ

1
2 β′
∥∥∥
2

∈ Sp−1(Θ)}, we have

∥∥∥X β′∥∥Θ
1
2 β′
∥∥

2

∥∥∥
2

√
n

>
1

4
− 2g

(
φ

(
β′∥∥Θ
1
2β′
∥∥

2

))
∥∥∥Xβ′∥∥∥

2√
n

>
1

4

∥∥Θ
1
2β′
∥∥

2
− 2g

(
φ(β′)

)
,

where we finish the proof by substituting the definition of g(φ(β)).

Proof of Lemma 15 By definition, K(0, υ)∪
(⋃∞

`=1 K
(
2`−1υ, 2`υ

))
is a cover of Sp−1(Θ). There-

fore, for any β, it either belongs to K(0, υ) or K
(
2`−1υ, 2`υ

)
, which leads to the following two

cases:
Case 1 If β ∈ K(0, υ), by definition, we have g (φ(β)) ∈ [0, υ] and

‖Xβ‖2√
n

6
1

4
− 2g (φ(β)) 6

1

4
=

1

2
− υ.

Therefore, the event A(0, υ) must happen in this case.
Case 2: If β /∈ K(0, υ), we must have β ∈ K

(
2`−1υ, 2`υ

)
for some ` = 1, 2, · · · , and moreover

‖Xβ‖2√
n

6
1

4
− 2g (φ(β)) 6

1

4
− 2 ·

(
2`−1υ

)
6

1

2
−
(

2 · 2`−1
)
υ 6

1

2
− 2`υ.

So that the event A
(
2`−1υ, 2`υ

)
must happen. Therefore, E ⊆ A(0, υ) ∪

( ∞⋃
`=1

A
(
2`−1υ, 2`υ

))
.

Proof of Lemma 16 To prove Lemma 16, we first introduce the following lemmas:

Lemma 17 (Gordon’s Inequality). Let {Zu,v}u∈U,v∈V and {Yu,v}u∈U,v∈V be zero-mean Gaussian
process indexed by a non-empty index set I = U × V . If

1. E
(

(Zu,v − Zu′v′)2
)
≤ E

((
Yu,v − Yu′,v′

)2) for all pairs (u, v) and (u′ v′) ∈ I .

2. E
(

(Zu,v − Zu′v)2
)

= E
((
Yu,v − Yu′,v

)2)
,

then we have E(max
v∈V

min
u∈U

Zu,v) ≤ E(max
v∈V

min
u∈U

Yu,v).

Lemma 18. Suppose that α = (α1, ..., αd), where each αi, i ∈ [d] is a zero-mean sub-Gaussian
random variable with parameter at most σ2, then for any t ∈ R, we have E (exp (t ‖α‖2)) 6
5d exp

(
2t2σ2

)
.

46



THE NON-OVERLAPPING STATISTICAL APPROXIMATION TO OVERLAPPING GROUP LASSO

Lemma 19. Suppose that α = (α1, ..., αd), where each αi, i ∈ [d] is a zero-mean sub-Gaussian
random variable with parameter at most σ2, and for a given group structure G, let

∥∥αGg∥∥ be the
corresponding group norm, m be the number of groups and dmax be the maximum group size, then

E
(

max
g

∥∥αGg∥∥) 6 2
√

2σ2 (logm+ dmax log 5).

Lemma 20 (Theorem 2.26 in (Wainwright, 2019)). Let x = (x1, · · · , xn) be a vector of i.i.d stan-
dard Gaussian variable, and f : Rn → R be a L-Lipschitz, with respect to the Euclidean norm, then
f(x) − Ef(x) is sub-Gaussian with parameter at most L, and hence P ((f(x)− E [f(x))) > t] 6

e−
t2

2L2 , ∀t > 0.

We now start to prove. First, we define and bound the random variable T (r`, ru) = − inf
β∈K(r`,ru)

‖Xβ‖2√
n

.

Let Sn−1 be a unit ball on Rn, by the variational representation of the `2-norm, we have

T (r`, ru) =− inf
β∈K(r`,ru)

‖Xβ‖2√
n

= − inf
β∈K(r`,ru)

sup
u∈Sn−1

〈u,Xβ〉√
n

= sup
β∈K(r`,ru)

inf
u∈Sn−1

〈u,Xβ〉√
n

.

Let X = WΘ
1
2 , where W ∈ Rn×p is a standard Gaussian matrix, and define the transformed

vector v = Θ
1
2β, then

T (r`, ru) = sup
β∈K(r`,ru)

inf
u∈Sn−1

〈u,Xβ〉√
n

= sup
v∈K̄(r`,ru)

inf
u∈Sn−1

〈u,Wv〉√
n

,

where K̄ (r`, ru) =
{
v ∈ Rp

∣∣∣‖v‖2 = 1, g
(
φ(Θ−

1
2 v)
)
∈ [r`, ru]

}
.

Define Zu,v = 〈u,Wv〉√
n

, since (u, v) range over a subset of Sn−1 × Sp−1, each variable Zu,v is
zero-mean Gaussian with variance n−1. We compare the Gaussian process Zu,v to the zero-mean
Gaussian process Yu,v which defined as:

Yu,v =
〈ζ, u〉√
n

+
〈ξ, v〉√
n

where ζ ∈ Rn, ξ ∈ Rp, have i.i.d N(0, 1) entries.

Next, we show that the Yu,v and Zu,v defined above satisfy conditions in Gordon’s inequality.
By definition, we have

E
(
Zu,v − Zu′,v′

)2
= E

(
〈u,Wv〉√

n
− 〈u

′,Wv′〉√
n

)2

=
1

n

n∑
i=1

p∑
j=1

(
uivj − u′iv′j

)2
=

1

n

n∑
i=1

p∑
j=1

(
uivj − u′ivj + u′ivj − u′iv′j

)2
=

1

n

(
‖v‖22

∥∥u− u′∥∥2

2
+
∥∥u′∥∥2

2

∥∥v − v′∥∥2

2
+ 2

(
‖v‖22 −

〈
v, v′

〉)(〈
u, u′

〉
− ‖u‖22

))
.

(36)
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Since ‖v‖22 6 1, ‖u′‖22 6 1, we have E
(
Zu,v − Zu′,v′

)2
6 1

n

(
‖u− u′‖22 + ‖v − v′‖22

)
. On

the other hand, we have

E
(
Yu,v − Yu′,v′

)2
= E

(
〈ζ, u− u′〉√

n
+
〈ξ, v − v′〉√

n

)2

=
1

n

( n∑
i=1

p∑
j=1

(u− u′)2 +
n∑
i=1

p∑
j=1

(v − v′)2

)
=

1

n

(∥∥u− u′∥∥2

2
+
∥∥v − v′∥∥2

2

)
.

(37)
Taking equation (36) and (37) together, we have

E
(
Zu,v − Zu′,v′

)2
6

1

n

(∥∥u− u′∥∥2

2
+
∥∥v − v′∥∥2

2

)
= E

(
Yu,v − Yu′,v′

)2
.

If V = V ′, then nE
((
Zu,v − Zu′,v′

)2)
= ‖u− u′‖2 = nE

((
Yu,v − Yu′,v′

)2). By applying
Lemma 17, we have

E
(

sup
v∈K̃(r`,ru)

inf
u∈Sn−1

Zu,v

)
6 E

(
sup

v∈K̃(r`,ru)

inf
u∈Sn−1

Yu,v

)
.

Therefore,

E
(
T (r`, ru)

)
= E

(
sup

v∈K̃(r`,ru)

inf
u∈Sn−1

〈u,Wv〉√
n

)
6 E

(
sup

v∈K̃(r`,ru)

inf
u∈Sn−1

(
〈ξ, v〉√
n

+
〈ζ, u〉√
n

))

= E
(

sup
β∈K(r`,ru)

〈
Σ

1
2 ξ, β

〉
√
n

)
− E

(
‖ζ‖2√
n

)
.

Next, we bound these two terms. For the second term, we have E
(
‖ζ‖2√
n

)
= E

(√
ξ21+...+ξ2n

n

)
>

E
(
|ξ1|+...+|ξn|

n

)
=
√

2
π . For the first term, we have E

(
sup

β∈K(r`,ru)

〈
Θ

1
2 ξ,β

〉
√
n

)
6 E

(
sup

β∈K(r`,ru)

φ(β)φ∗(Θ
1
2 ξ)√

n

)
,

where φ∗(Θ
1
2 ξ) is the the dual norm defined before. Since β ∈ K (r`, ru), g (φ(β)) 6 ru, by the

definition of g(t), we have

φ(β) 6
ru(

4ρ(Θ) max
g∈[m]

1

wg
√
hgmin

√
2(logm+dmax log 5)

n

) . (38)

Let ηGg = (Θ
1
2 ξ)Gg , to bound E

(
max
g

∥∥∥(Θ
1
2 ξ)Gg

∥∥∥
2

)
= E

(
max
g

∥∥ηGg∥∥2

)
. Since Θ

1
2 ξ ∼

N(0,Θ), by the properties of normal distribution, its corresponding marginal distribution of jth
variable (Θ

1
2 ξ)j also follows zero mean normal distribution with covariance matrix Θjj , which is

the jth diagonal elements of Θ. Therefore, any subset of Θ
1
2 ξ is a zero-mean sub-Gaussian random
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sequence with parameters at most ρ(Θ). By (38) and Lemma 19, we have

E
(

sup
β∈K(r`,ru)

φ(β)φ∗Θ
1
2 ξ√

n

)
6 E

(
sup

β∈K(r`,ru)

ru(
4ρ(Θ)

(
max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

) φ∗(Θ 1
2 ξ
)

√
n

)

=
ru(

4ρ(Θ)
(

max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

)E(φ∗
(

Θ
1
2 ξ
)

√
n

)

6
ru(

4ρ(Θ)
(

max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

)E(max
g∈[m]

1√
nwg

∥∥∥∥H (Θ
1
2 ξ
)
Gg

∥∥∥∥
2

)

6
ru(

4ρ(Θ)
(

max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

)E(max
g∈[m]

1√
nwgh

g
min

∥∥∥∥(Θ
1
2 ξ
)
Gg

∥∥∥∥
2

)

6
ru(

4ρ(Θ)

√
2(logm+dmax log 5)

n

)E(∥∥∥∥max
g∈[m]

(
Θ

1
2 ξ
)
Gg

∥∥∥∥
2

)

6
ru(

4ρ(Θ)

√
2(logm+dmax log 5)

n

) (2ρ(Θ)
√

(logm+ dmax log 5) 2σ2
)
6
ru
2
.

Therefore, E [T (r`, ru)] 6 −
√

2
π + ru

2 . Next we want to bound P
(
T (r`, ru) > −1

2 + ru
)

based on the bound of this expectation. To apply Lemma 20, we first show that, the f = T (rl, ru),
a function of the random variable W is a 1√

n
-Lipschitz function and without making confusion, we

denote the corresponding function as T (W ). For any standard Gaussian matrix W1 and W2, we
have

∣∣∣T (W1)− T (W2)
∣∣∣ =

∣∣∣ sup
v∈K̃(r`,ru)

inf
u∈Sn−1

〈
u,W1v

〉
√
n

− sup
v∈K̃(r`,ru)

inf
u∈Sn−1

〈
u,W2v

〉
√
n

∣∣∣
=
∣∣∣ sup
v∈K̃(r`,ru)

(
−
∥∥W1v

∥∥
2√

n

)
− sup
v∈K̃(r`,ru)

(
−
∥∥W2v

∥∥
2√

n

)∣∣∣
=
∣∣∣(− inf

v∈K̃(r`,ru)

∥∥W1v
∥∥

2√
n

)
−
(
− inf
v∈K̃(r`,ru)

∥∥W2v
∥∥

2√
n

)∣∣∣
=
∣∣∣ inf
v∈K̃(r`,ru)

∥∥W2v
∥∥

2√
n
− inf
v∈K̃(r`,ru)

∥∥W1v
∥∥

2√
n

∣∣∣.

Suppose that ‖W1v1‖2√
n

= inf
v∈K̃(r`,ru)

‖W1v‖2√
n

and ‖W2v2‖2√
n

= inf
v∈K̃(r`,ru)

‖W2v‖2√
n

.
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• Case I If ‖W1v1‖2 > ‖W2v2‖2, then we have

|T (W1)− T (W2)| =

∣∣∣∣∣ inf
v∈K̃(r`,ru)

‖W2v‖2√
n
− inf
v∈K̃(r`,ru)

‖W1v‖2√
n

∣∣∣∣∣
=
‖W1v1‖2 − ‖W2v2‖2√

n
6
‖W1v2‖2 − ‖W2v2‖2√

n

6
‖(W1 −W2)v2‖2√

n
6
‖W1 −W2‖F√

n

.

• Case II If ‖W1v1‖2 6 ‖W2v2‖2, then we have

|T (W1)− T (W2)| =

∣∣∣∣∣ inf
v∈K̃(r`,ru)

‖W2v‖2√
n
− inf
v∈K̃(r`,ru)

‖W1v‖2√
n

∣∣∣∣∣
=
‖W2v2‖2 − ‖W1v1‖2√

n
6
‖W2v1‖2 − ‖W1v1‖2√

n

6
‖(W1 −W2)v1‖2√

n
6
‖W1 −W2‖F√

n
,

where ‖.‖F represent the Frobenious norm of a matrix.

Thus under the Euclidean norm, T (W ) is a 1√
n

-Lipschitz function. Therefore, by Lemma 19,
we have

P(T (rl, ru)− E(T (rl, ru)) > t) 6 e−nt
2/2, ∀t > 0.

Set t =
√

2
π−

1
2+ ru

2 > 1
4+ ru

2 , we have E(T (rl, ru))+t 6 −1
2+ru and P

[
T (r`, ru) > −1

2 + ru
]
6

e−
n
32 e−

n
8
r2u , which is actually the Lemma 16.

Proof of Lemma 18 We can find a 1
2 - cover of Sd−1, and for any u ∈ Sd−1 in the Euclidean

norm with cardinally at most N 6 5d. Suppose that there exists uq(u) ∈
{
u1, . . . , uN

}
, such that∥∥uq(u) − u

∥∥
2
6 1

2 . By the variational representation of the `2 norm, we have

‖α‖2 = max
u∈Sd−1

〈u, α〉 6 max
q(u)∈[N ]

〈
uq(u), α

〉
+

1

2
‖α‖2 .

Therefore, ‖α‖2 6 2 max
q(u)∈[N ]

〈
uq(u), α

〉
. Consequently,

E (exp (t ‖α‖2)) 6 E
(

exp

(
2t max

q∈[N ]
〈uq, α〉

))
= E

(
max
q∈[N ]

exp (2t 〈uq, α〉)
)

6
N∑
q=1

E (exp (2t 〈uq, α〉)) 6 5d exp

(
4t2σ2

2

)
6 5d exp

(
2t2σ2

)
.
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Proof of Lemma 19 For any t > 0, by Jensen’s inequality, we have

exp

(
tE
(

max
g

∥∥αGg∥∥)) 6 E
(

exp

(
tmax

g

∥∥αGg∥∥2

))
= E

(
max
j

exp
(
t
∥∥αGg∥∥2

))
6

m∑
j=1

E
(
exp

(
t
∥∥αGg∥∥2

))
6

m∑
j=1

5dg exp
(
2t2σ2

)
6 m · 5dmax · exp(2t2σ2).

By taking log at both sides, we have tE
(

max
g

∥∥αGg∥∥) 6 logm+ dmax log 5 + 2t2σ2. Conse-

quently, let t =
√

logm+dmax log 5
2σ2 , we have E

(
max
g

∥∥αGg∥∥) 6 2
√

(logm+ dmax log 5) 2σ2.

D.7 Proof of Theorem 4

The two lemmas below are integral to the proof:

Lemma 21 (Packing Number for Binary Sets). Consider a set A defined for real numbers m, sg as

A =

{
a ∈ {0, 1}m |

m∑
j=1

aj ≤ sg
}
.

Then the
√

sg
2 -packing number of set A >

(msg)−2

( m

b sg2 c)·2
sg
2

, and

log

( (
m
sg

)
− 2( m

b sg2 c
)
· 2

sg
2

)
� sg log(

m

sg
).

Lemma 22 (Packing Number for Sparse Group Vectors). For the set Ω(G, sg), the
√

2dsg
5 -packing

number &
(msg)−2

( m

b sg2 c)·2
sg
2
· (
√

2)dsg , and

log

( (
m
sg

)
− 2( m

b sg2 c
)
· 2

sg
2

· (
√

2)dsg
)
� sg(d+ log(

m

sg
)).

Proof of Theorem 4 First, selectN points ω(1), . . . , ω(N) from Ω(G, sg) such that
∥∥ω(i) − ω(j)

∥∥ >√
2dsg

5 for all distinct i, j. Clearly,
∥∥ω(i) − ω(j)

∥∥ 6
√

4sgd. Define β(i) = rω(i) for each i. This
results in

2ksgr
2

5
≤
∥∥∥β(i) − β(j)

∥∥∥2

2
6 4sgdr

2.

Next, let y(i) = Xβ(i) + ε for 1 6 i 6 N . Consider the Kullback-Leibler divergence between
different distribution pairs:

DKL

(
(y(i), X), (y(j), X)

)
= E(y(j),X)

[
log

(
p
(
y(i), X

)
p
(
y(j), X

))].
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where p
(
y(i), X

)
is the probability density of

(
y(i), X

)
. Conditioning on X , we have

E(y(j),X)

[
log

(
p
(
y(i), X

)
p
(
y(j), X

)) | X] =
‖X(β(i) − β(j))‖22

2σ2
.

Thus, for 1 ≤ i 6= j ≤ N,

DKL

((
y(i), X

)
,
(
y(j), X

))
= EX

∥∥X (β(i) − β(j)
)∥∥2

2

2σ2
=
n(β(i) − β(j))>Σ(β(i) − β(j))

2σ2

≤
3c1

∥∥β(i) − β(j)
∥∥2

2

2σ2
≤ 2c1ndr

2sg
σ2

.

From Lemma 22, logN � sg
(
d+ log m

sg

)
. Setting

ndr2sg

σ2
+log 2

logN = 1
2 , we obtain

r &

√√√√(d+ log m
sg

)
σ2

3nd
.

By generalized Fano’s Lemma, inf
β̂

sup
β

E‖β̂ − β‖2 >
√

2r2ksg
5

(
1 −

ndr2sg

σ2
+log 2

logN

)
. Conse-

quently,

inf supE‖β̂ − β‖22 ≥
(

inf supE‖β̂ − β‖2
)2

&
σ2
(
sg(d+ log(msg ))

)
n

.

Proof of Lemma 21 Notice that the cardinality of A is
(
m
sg

)
. Denote the hamming distance between

any two points x, y ∈ A by
h(a, b) = | {j : aj 6= bj} |.

Then, for a fixed point a ∈ A,∣∣∣ {b ∈ A, h(a, b) ≤ sg
2

}
=

(
m⌊ sg
2

⌋) · 2b sg2 c∣∣∣.
In fact, all elements b ∈ A with h(a, b) ≤ sg

2 can be obtained as follows. First, take any subset
J ⊂ [m] of cardinality

⌊ sg
2

⌋
, then set aj = bj for j /∈ J and choose bj ∈ {0, 1} for j ∈ J .

Now let As be any subset of A with cardinality at most T =
(msg)−2

( m

b sg2 c)·2
sg
2
, then we have

| {b ∈ A | there exist a ∈ As with h(a, b) ≤ sg
2

}
≤ (|As|) ·

(
m⌊ sg
2

⌋) · 2 sg2 | < |A|.
It implies that one can find an element b ∈ A with h(a, b) >

sg
2 for all a ∈ As. Therefore

one can construct a subset As with |As| ≥ T and the property h(a, b) >
sg
2 for any two distinct

elements a, b ∈ As.
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On the other hand, h(a, b) >
sg
2 implies ‖a−b‖ >

√
sg
2 . Therefore, there exist at least T points

in A such that the distance between any two points is greater than
√

sg
2 .

Moreover, since
(msg)

( m

b sg2 c)
=
b sg2 c!(m−b

sg
2
c)!

sg !(m−sg)! =
(m−sg+1)···m−b sg2 c

(b sg2 c+1)···sg
=
∏d sg

2
e

j=1
m−sg+j

b sg2 c+j
, we have

(
m− b sg2

⌋
2sg

)b sg2 c
6

(
m
sg

)
( m
b sg2 c

)
2
sg
2

6

(
m− sg + 1

dsge

)d sg
2
e
,

and therefore we can find C1, C2, such that C1sg log(msg ) 6 log T 6 C2sg log(msg ), so that

log

( (
m
sg

)
− 2( m

b sg2 c
)
· 2

sg
2

)
� sg log(

m

sg
).

Proof of Lemma 22 Given a group support a ∈ A, define ka =

∣∣∣∣{i | i ∈ ( ⋃
{g|ag=0}

Gg
)c}∣∣∣∣, and

the set

Ω(a) =

{
ω ∈ Rp | ωi = 0 if i ∈

⋃
{g|ag=0}

Gg, ωi ∈ {−1, 1} if i ∈
( ⋃
{g|ag=0}

Gg

)c}
.

Notice that Ω(a) ⊆ Ω(G, sg), and |Ω(a)| = 2ka . Also denote the hamming distance between
x, y ∈ Ω(a) by

h(x, y) = | {j : xj 6= yj} |.

Then for any fixed x ∈ Ω
(a)
G , we have

∣∣∣∣{y ∈ Ω(a), h(x, y) ≤ ka
10
}
∣∣∣∣ =

b ka
10
c∑

j=0

(
ka
j

)
.

Let Ω
(a)
s be any subset of Ω(a) with cardinality at most N (a) = 2ka−2

b ka10 c∑
j=0

 ka
j

 . Then,

∣∣∣∣{y ∈ Ω(a) | ∃x ∈ Ω(a)
s with h(x, y) ≤ ka

10
}
∣∣∣∣ < |Ω(a)|.

On the other hand, h(x, y) > ka
10 implies ‖x − y‖ ≥

√
2ka
5 . Thus, there are at least N (a)

points in Ω(a) with pairwise distances greater than
√

2ka
5 . From the results in Graham et al. (1994,

Chap. 9), ∑
j≤b ka

10
c

(
ka
j

)
<

9

8

(
ka
bka10c

)
≤ 9

8
(10e)

ka
10 ≤ 9

8
2
ka
2 .
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Consequently, we have N (a) > 8
92

ka
2 & (

√
2)ka .

The value of ka depends on the predefined groups and group support a and spans a range from
0 to sgd. Lemma 22 seeks a lower bound for all conceivable overlapping patterns, necessitating an
analysis of the maximum value of ka.

Furthermore, according to Lemma 21, we can identify at least T points in A where the distance

between any two points exceeds
√

sg
2 . For {a1, · · · , aT } group supports, if there is a group structure

such that we could find at least 8
9(
√

2)sgd on each group support, and the distance between every

pair of these points is greater than
√

2sgd
5 , then Lemma 22 is proved.

Considering m non-overlapping groups, ka = sgd for each group support a. In addition, given

any two group support a, b with ‖a − b‖ >
√

sg
2 , ‖x − y‖ >

√
dsg
2 >

√
2dsg

5 for any x ∈ Ω(a)

and y ∈ Ω(b). Thus, considering all possible overlapping patterns, we can find at least
(msg)−2

( m

b sg2 c)·2
sg
2
·

8
9(
√

2)dsg point in Ω(G, sg), such that the distance between every pair of points is greater than√
2dsg

5 .

D.8 Proof of Theorem 5

This proof consists of parts: Parts I-IV dedicated to Theorem 5.1, and Part V is for Theorem 5.2. To
be more specific, Part I provides some additional concepts, Part II introduces the reduced problem,
Part III shows the successful selection of the correct pattern under favorable conditions, and Part IV
establishes that certain conditions are satisfied with high probability.

D.8.1 PART I

Recall that S = supp(β∗). With S, we define the norm φS for any β ∈ Rp as

φS(βS) =
∑
g∈GS

wg‖βS∩Gg‖2,

along with its dual norm (φS)∗[u] = supφS(βS)≤1 β
>
S u. Similarly, for Sc = [p] \ S, we define the

norm φcS for any β ∈ Rp as

φcS(βSc) =
∑

g∈[m]\GS

wg‖βSc∩Gg‖2,

accompanied by its corresponding dual norm (φcS)∗[u] = supφcS(βSc )≤1 β
>
Scu.

We also introduce equivalence parameters aS, AS, aSc , ASc as follows:

∀β ∈ Rp, aS‖βS‖1 6 φS(βS) 6 AS‖βS‖1, (39)

∀β ∈ Rp, aSc‖βSc‖1 6 φcS(βSc) 6 ASc‖βSc‖1. (40)

We now study the equivalence parameters from two aspects. First, since

sup
aS‖βS‖161

β>S u > sup
φS(βS)61

β>S u > sup
AS‖βS‖161

β>S u,
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by the definition of dual norm, we have

∀u ∈ R|S|, A−1
S ‖u‖∞ 6 (φS)∗[u] 6 a−1

S ‖u‖∞. (41)

Similarly, by order-reversing,

∀u ∈ R|S
c|, A−1

Sc ‖u‖∞ 6 (φcS)∗[u] 6 a−1
Sc ‖u‖∞. (42)

Second, by the Cauchy-Schwarz inequality, for any β ∈ Rp and g ∈ GS,
wg√
dg
‖βS∩Gg‖1 6 wg‖βS∩Gg‖2 6 max

g∈GS

wg‖βS∩Gg‖1.

Consequently, we have

min
g∈GS

wg√
dg
‖βS‖1 6 φS(βS) 6 hmax(GS) max

g∈GS

wg‖βS‖1,

Therefore, we can set aS = min
g∈GS

wg√
dg

and AS = hmax(GS) max
g∈GS

wg. With an trivial extension, we

can set aSc = min
g∈GSc

wg/
√
dg.

D.8.2 PART II

From the full problem to the reduced problem
Recall that the group lasso estimator in (14) is defined as

β̂G = arg min
β∈Rp

1

2n
‖Y −Xβ‖22 + λnφ

G(β). (43)

Now we write φG(β) = φ(β) and L(β) = 1
2n‖Y −Xβ‖

2
2 for ease of notation. Following

Jenatton et al. (2011a); Wainwright (2009), we consider the following restricted problem

β̂R = arg min
β∈Rp,βSc=0

L(β) + λnφ(β) = arg min
β∈Rp,βSc=0

L(β) + λn
∑
g∈GS

wg
∥∥βS∩Gg∥∥2

:= arg min
β∈Rp,βSc=0

L(β) + λnφS(βS).
(44)

Let LS(βS) = 1
2n‖Y −XSβS‖22. Due to the restriction of β̂R, we can obtain β̂R by first solving

the following reduced problem

β̂S = arg min
βS∈R|S|

1

2n
‖Y −XSβS‖22 + λn

∑
g∈GS

wg
∥∥βS∩Gg∥∥2

= arg min
βS∈R|S|

LS(βS) + λnφS(βS),
(45)

and then padding β̂S with zeros on Sc. In addition,

LS(β̂S) =
1

2n
‖Y −XSβ̂S‖22

=
1

2n

(
Y >Y − 2Y >XSβ̂S + (XSβ̂S)>XSβ̂S

)
=

1

2n

(
Y >Y − 2(Xβ∗ + ε)>XSβ̂S + (XSβ̂S)>XSβ̂S

)
=

1

2n

(
Y >Y − 2(XSβ

∗
S)>XSβ̂S − 2ε>XSβ̂S + (XSβ̂S)>XSβ̂S

)
,
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and consequently,

∇LS(β̂S) =
1

n
X>SXSβ̂S −

1

n
X>SXSβ

∗
S −

1

n
ε>XS

:= QSS(β̂S − β∗S)− qS,
(46)

where Q = 1
nX
>X , q = 1

n

n∑
i=1

εixi.

D.8.3 PART III

Part III mostly follows the proof in Theorem 7 of Jenatton et al. (2011a). Here we aim to show that
supp(β̂G) = S under certain conditions.

To begin with, Given β ∈ Rp, we define JG(β) as:

JG(β) = [p] \
{ ⋃
Gg∩supp(β)=∅

Gg

}
.

JG(β) is called the adapted hull of the support of β in Jenatton et al. (2011a). For simplicity, we
write JG(β) = J(β). Notice that by assumption we have

J(β∗) = [p] \
{ ⋃
Gg∩supp(β∗)=∅

Gg

}
= S.

Now we consider the reduced problem (45), and we want to show that for all g ∈ GS,
∥∥∥β̂S∩Gg∥∥∥∞ >

0. That is, no active group is missing.

Lemma 23. (see Jenatton et al., 2011a, Lemma 14)
For the loss L(β) and norm φ in (43), β̂ ∈ Rp is a solution of

min
β∈Rp

L(β) + λnφ(β) (47)

if and only if {
∇L(β̂)J(β̂) + λnr(β̂)J(β̂) = 0

(φc
J(β̂)

)∗
[
∇L(β̂)J(β̂)c

]
6 λn.

(48)

In addition, the solution β̂ satisfies

φ∗[∇L(β̂)] 6 λn. (49)

As β̂S is the solution of (45), Equation (49) in Lemma 23 implies that

(φS)∗
[
∇LS(β̂S)

]
(46)
= (φS)∗

[
QSS

(
β̂S − βS

)
− qS

]
6 λn. (50)

By the property of the equivalent parameters, we have

A−1
S

∥∥∥QSS

(
β̂S − βS

)
− qS

∥∥∥
∞

(41)
6 (φS)∗

[
QSS

(
β̂S − βS

)
− qS

] (50)
6 λn. (51)
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If

λn 6
γmin (QSS)β∗min

3|S|
1
2AS

, (52)

and

‖qS‖∞ 6
γmin (QSS)β∗min

3|S|
1
2

, (53)

then we have∥∥∥β̂S − β∗S∥∥∥∞ =
∥∥∥Q−1

SSQSS

(
β̂S − β∗S

)∥∥∥
∞

6
∥∥Q−1

SS

∥∥
∞,∞

∥∥∥QSS

(
β̂S − β∗S

)∥∥∥
∞

6 |S|
1
2γmax

(
Q−1

SS

) ∥∥∥QSS

(
β̂S − β∗S

)∥∥∥
∞

6 |S|
1
2γ−1

min (QSS)
(∥∥∥QSS

(
β̂S − βS

)
− qS

∥∥∥
∞

+ ‖qS‖∞
)

(51)
6 |S|

1
2γ−1

min (QSS) (λnAS + ‖qS‖∞)

6 |S|
1
2γ−1

min (QSS)λnAS + |S|
1
2γ−1

min (QSS) ‖qS‖∞

6
2

3
β∗min.

(54)

If there exist a group g ∈ GS such that
∥∥∥β̂S∩Gg∥∥∥

∞
<

β∗min
3 , then

∥∥∥β̂S − β∗S∥∥∥∞ > β∗min −
β∗min

3
=

2β∗min

3
.

Thus, (54) implies that for all g ∈ GS,∥∥∥β̂S∩Gg∥∥∥
∞
>
β∗min

3
> 0. (55)

Secondly, we want to show that β̂R solves problem (43). As β̂R is obtained by padding β̂S with
zeros on Sc,

J(β̂R) = [p] \
{ ⋃
Gg∩supp(β̂R)=∅

Gg

}
= [p] \

{ ⋃
Gg∩supp(β̂S)=∅

Gg

}
(54)
= [p] \

{ ⋃
Gg∩S=∅

Gg

}
= S.

From Lemma 23 we know that β̂R is the optimal for problem (43) if and only if

∇L(β̂R)S + λnr(β̂
R)S = 0, (56)

and
(φcS)∗

[
∇L(β̂R)Sc

]
6 λn. (57)
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We now verify the condition in (56). Since

L(β̂R) =
1

2n
‖Y −Xβ̂R‖22

=
1

2n

(
Y >Y − 2(Xβ∗)>Xβ̂R − 2ε>Xβ̂R + (Xβ̂R)>Xβ̂R

)
,

we have

∇L(β̂R)S =
[ 1

n
X>X

(
β̂R − β∗

)
− 1

n
ε>X

]
S

=
[
Q
(
β̂R − β∗

)]
S
− qS = QSS

(
β̂R − β∗

)
S
− qS

= QSS

(
β̂RS − β∗S

)
− qS = QSS

(
β̂S − β∗S

)
− qS

= ∇LS(β̂S).

(58)

On the other hand, as β̂R is obtained by padding β̂S with zeros on Sc, we have

λnr(β̂
R)S = λnrS(β̂S).

Because β̂S is the optimal for problem (45), (48) in Lemma 23 implies that

∇LS(β̂S) + λnrS(β̂S)
(46)
= QSS(β̂S − β∗S)− qS + λnrS(β̂S) = 0. (59)

Thus, (56) holds as

∇L(β̂R)S + λnrS(β̂R) = ∇LS(β̂S) + λnrS(β̂S)
(59)
= 0. (60)

Now we continue to show (57). Notice that(
β̂R − β∗

)
S

(58)
=
(
β̂S − β∗S

)
(59)
= Q−1

SS(qS − λnrS(β̂S)). (61)

Let qSc|S = qSc −QScSQ
−1
SSqS, we have

∇L(β̂R)Sc
(58)
=
(
Q(β̂R − β∗)

)
Sc
− qSc = QScS(β̂R − β∗)S − qSc

(61)
= QScSQ

−1
SS

(
qS − λnrS(β̂S)

)
− qSc

= −QScSQ
−1
SSλnrS(β̂S) +QScSQ

−1
SSqS − qSc

= −λnQScSQ
−1
SS

(
rS(β̂S)− rS(β∗S)

)
− λnQScSQ

−1
SSrS(β∗S)− qSc|S.

. (62)

The previous expression leads us to study the difference of rS(β̂S)−rS(β∗S). We now introduce
the following lemma.

Lemma 24. (see Jenatton et al., 2011a, Lemma 12)
For any J ⊂ [p], let uJ and vJ be two nonzero vectors in R|J |, and define the mapping rJ :

R|J | 7→ R|J | such that

rJ (βJ)j = βj Σ
g∈GJ ,Gg∩j 6=φ

ωg∥∥βJ∩Gg∥∥2

.
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Then there exists ξJ = t0uJ + (1− t0)vJ for some t0 ∈ (0, 1), such that

‖rJ (uJ)− rJ(vJ)‖1 6 ‖uJ − vJ‖∞
(∑
j∈J

∑
g∈GJ

wg1{j∈Gg}∥∥ξJ∩Gg∥∥2

+
∑
j∈J

(∑
k∈J

∑
g∈GJ

|ξj ||ξk|w4
g1{j,k∈Gg}∥∥ξJ∩Gg∥∥3

2

))
.

Lemma 24 implies that

∥∥∥rS(β̂S)− rS(β∗S)
∥∥∥

1
6
∥∥∥β̂S − β∗S∥∥∥∞

(∑
j∈S

∑
g∈GS

wg1{j∈Gg}∥∥∥β̃S∩Gg∥∥∥
2

+
∑
j∈S

∑
k∈S

∑
g∈GS

(wg)
4
1{j,k∈Gg}|β̃j ||β̃k|

w3
g

∥∥∥β̃S∩Gg∥∥∥3

2

)
,

(63)
where β̃ = t0β̂S + (1− t0)β∗S.

To find an upper bound of the right-hand side. Recall that (54) implies that
∥∥∥β̂S − β∗S∥∥∥∞ 6

2
3β
∗
min, so we have ∥∥∥β̃S∩Gg∥∥∥

2
>
√
|S ∩Gg|min{|β̃|j | β̃j 6= 0}

>
√
|S ∩Gg|(β∗min − t0

∥∥∥β̂S − β∗S∥∥∥∞)

>
√
|S ∩Gg|(β∗min −

∥∥∥β̂S − β∗S∥∥∥∞)

>
√
|S ∩Gg|

β∗min

3
.

Consequently, the first term could be upper bounded by∑
j∈S

∑
g∈GS

wg1{j∈Gg}∥∥∥β̃S∩Gg∥∥∥
2

=
∑
g∈GS

wg|S ∩Gg|∥∥∥β̃S∩Gg∥∥∥
2

6
3

β∗min

∑
g∈GS

wg

√
|S ∩Gg|.

On the other hand, the Cauchy-Schwarz inequality gives∥∥∥β̃S∩Gg∥∥∥2

1
6 |S ∩Gg|

∥∥∥β̃S∩Gg∥∥∥2

2
.

Thus, the second term could also be upper bounded by

∑
j∈S

∑
k∈S

∑
g∈GS

(wg)
4
1{j,k∈Gg}|β̃j ||β̃k|

w3
g

∥∥∥β̃S∩Gg∥∥∥3

2

=
∑
g∈GS

w4
g

∥∥∥β̃S∩Gg∥∥∥2

1

w3
g

∥∥∥β̃S∩Gg∥∥∥3

2

6
∑
g∈GS

wg|S ∩Gg|∥∥∥β̃S∩Gg∥∥∥
2

6
3

β∗min

∑
g∈GS

wg

√
|S ∩Gg|.

Let c2 = 6
β∗min

∑
g∈GS

wg
√
|S ∩Gg|, then (63) implies∥∥∥rS(β̂S)− rS(β∗S)

∥∥∥
1
6 c2

∥∥∥β̂S − β∗S∥∥∥∞ .
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If
‖QScSQ

− 1
2

SS ‖2,∞ 6 3, (64)

then we have

∥∥∥QScSQ
−1
SS

(
rS(β̂S)− rS(β∗S)

)∥∥∥
∞

=

∥∥∥∥QScSQ
− 1

2
SSQ

− 1
2

SS

(
rS(β̂S)− rS(β∗S)

)∥∥∥∥
∞

6

∥∥∥∥QScSQ
− 1

2
SS

∥∥∥∥
∞,2

∥∥∥∥Q− 1
2

SS

∥∥∥∥
2

∥∥∥rS(β̂S)− rS(β∗S)
∥∥∥

2

6 3γmax(Q
− 1

2
SS )

∥∥∥rS(β̂S)− rS(β∗S)
∥∥∥
∞

6 3γ
− 1

2
min(QSS)c2

∥∥∥β̂S − β∗S∥∥∥∞
(54)
6 3c2γ

− 1
2

min (QSS) |S|
1
2γ−1

min (QSS) (λnAS + ‖qS‖∞)

= 3
6

β∗min

∑
g∈GS

wg

√
|S ∩Gg|γ

− 3
2

min (QSS) |S|
1
2 (λnAS + ‖qS‖∞) .

If the following conditions are satisfied:

a−1
Sc

6

β∗min

∑
g∈GS

wg

√
|S ∩Gg|γ

− 3
2

min (QSS) |S|
1
2λnAS 6

τ

12
, (65)

a−1
Sc

6

β∗min

∑
g∈GS

wg

√
|S ∩Gg|γ

− 3
2

min (QSS) |S|
1
2 ‖qS‖∞ 6

τ

12
, (66)

(φcS)∗[QScSQ
−1
SSrS] 6 1− τ, (67)

(φcS)∗[qSc|S] 6
λnτ

2
, (68)

then we have

(φcS)∗
[
∇L(β̂R)Sc

]
(62)
= (φcS)∗

[
λnQScSQ

−1
SS

(
rS(β̂S)− rS(β∗S)

)
+ λnQScSQ

−1
SSrS(β∗S)− qSc|S

]
6 (φcS)∗

[
λnQScSQ

−1
SS

(
rS(β̂S)− rS(β∗S)

)]
+ (φcS)∗

[
λnQScSQ

−1
SSrS(β∗S)

]
+ (φcS)∗

[
−qSc|S

]
6 λn (φcS)∗

[
QScSQ

−1
SS

(
rS(β̂S)− rS(β∗S)

)]
+ λn(1− τ) +

λnτ

2
(42)
6 λna (Sc)−1

∥∥∥QScSQ
−1
SS

(
rS(β̂S)− rS(β∗S)

)∥∥∥
∞

+ λn −
λnτ

2

6
λnτ

4
+
λnτ

4
+ λn −

λnτ

2
6 λn,

which is (57). Because (56) and (57) are satisfied, Lemma 23 implies that β̂R is the optimal. Thus,

supp(β̂G) = supp(β̂R) = S.

60



THE NON-OVERLAPPING STATISTICAL APPROXIMATION TO OVERLAPPING GROUP LASSO

D.8.4 PART IV

The results in Part III depend on conditions (52), (53), (64), (65), (66), (67), and (68), which are
summarized as follows:

‖QScSQ
− 1

2
SS ‖2,∞ 6 3, (69)

λn|S|
1
2 6 min

{
γmin (QSS)β∗min

3AS
,

τγ
3
2
min(QSS)aScβ

∗
min

72AS
∑
g∈GS

wg
√
|Gg ∩ S|

}
, (70)

(φcS)∗[QScSQSSrS] 6 1− τ, (71)

(φcS)∗[qSc|S] 6
λnτ

2
, (72)

‖qS‖∞ 6 min

{
γmin (QSS)β∗min

3AS
,

τγ
3
2
min(QSS)aScβ

∗
min

72AS
∑
g∈GS

wg
√
|Gg ∩ S|

}
. (73)

In Part IV, we want to make sure that these conditions hold with high probability.
Condition (69)

To begin with, for any matrix A ∈ Rm×n, the Cauchy-Schwarz inequality implies that

‖A‖2,∞ = sup
‖u‖261

‖Au‖∞ = sup
‖u‖261

max
i∈[m]

(√∑
j∈[n]

Aijuj

)
6 sup
‖u‖261

max
i∈[m]

(√∑
j∈[n]

A2
ij

√∑
j∈[n]

u2
j

)
6 max

i∈[m]

(√∑
j∈[n]

A2
ij

)
6 max

i∈[m]

{√
diag(AA>)

}
.

Recall that Q = 1
nX
>X . Let A = QScSQ

− 1
2

SS , we have

‖QScSQ
− 1

2
SS ‖2,∞ 6 max{

√
diag(QScSQ

−1
SSQSSc)}.

Using the Schur complement of Q on the block matrices QSS and QScSc , the positiveness of Q
implies the positiveness of QScSc −QScSQ

−1
SSQSSc . Thus,

max diag(QScSQ
−1
SSQSSc) 6 max diag(QScSc) 6 max

j∈Sc
Qjj .

Lemma 25. (Lemma 1 of Laurent and Massart (2000))
Suppose that the random variable U follows χ2 distribution with d degrees of freedom, then for

any positive x,
P(U − d ≥ 2

√
dx+ 2x) 6 exp(−x),

P(d− U ≥ 2
√
dx) 6 exp(−x).
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As X follows multivariate normal, Q̃jj =
nQjj
Θ2
jj
∼ χ2

n. Then by Lemma 25, we have

P(max
j∈Sc

√
Qjj > 3) 6 P(max

j∈Sc
Qjj > 5) 6 P(

⋃
j∈Sc

Qjj > 5) 6
∑
j∈Sc

P(Qjj > 5)

6
∑
j∈Sc

P(Qjj > 5Θ2
jj) =

∑
j∈Sc

P(n
Qjj
Θ2
jj

> 5n)

6
∑
j∈Sc

P(Q̃jj > n+ 2n+ 2n) 6 (p− |S|) exp(−n)

= exp(−n+ log(p− |S|))

6 exp(−n
2

),

(74)

where the last inequality holds as n > 2 log(p− |S|). Thus,

P(‖QScSQ
− 1

2
SS ‖2,∞ > 3) 6 P(max

j∈Sc

√
Qjj > 3) 6 exp(−n

2
).

Similarly, let QScSc|S = QScSc − QScSQ
−1
SSQSSc . The diagonal terms of QScSc|S is less than

the diagonal terms of QScSc , which implies

P(‖Q1/2
ScSc|S‖2,∞ > 3) 6 P(max

j∈Sc

√
Qjj > 3) 6 exp(−n

2
).

Condition (70)

Lemma 26. (see Wainwright, 2009, Lemma 9)
Suppose that d 6 n and X ∈ Rn×d have i.i.d rows Xi ∼ N(0,Θ), then

P
(
γmax

(
1

n
X>X

)
> 9γmax(Θ)

)
6 2 exp(−n

2
),

P
(
γmax

(
(
1

n
X>X)−1

)
>

9

γmin(Θ)

)
6 2 exp(−n

2
).

As we assume that |S| 6 n and XSS ∼ N (0,ΘSS), then Lemma 26 implies

P (γmax(QSS) > 9γmax(ΘSS)) 6 2 exp(−n
2

),

and also
P (γmin(ΘSS) > 9γmin(QSS)) 6 2 exp(−n

2
).

Thus, by assuming that

λn|S|
1
2 6 min

{
3γmin(Θ)β∗min

AS
,

τγ
3
2
min(Θ)aScβ

∗
min

8AS
∑
g∈GS

wg
√
|Gg ∩ S|

}
,
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we have

λn|S|
1
2 6 min

{
γmin (QSS)β∗min

3AS
,

τγ
3
2
min(QSS)aScβ

∗
min

72AS
∑
g∈GS

wg
√
|Gg ∩ S|

}

holds with high probability.

Condition (71)
For any j ∈ Sc, Xj ∈ Rn is zero-mean Gaussian. Following the decomposition in Wainwright

(2009), we have

X>j = ΘjSΘ−1
SSX

>
S + E>j , (75)

where Ej are i.i.d from N
(

0,
[
ΘScSc|S

]
jj

)
with ΘScSc|S = ΘScSc − ΘScS (ΘSS)−1 ΘSSc . Let

ESc be an |Sc| × n matrix, with each row representing Ej for an element j ∈ Sc, then we have

QScSQ
−1
SSrS = X>ScXS(X>SXS)−1rS

(75)
=
(

ΘScSΘ−1
SSX

>
S + E>Sc

)
XS(X>SXS)−1rS

= ΘScSΘ−1
SSrS + E>ScXS(X>SXS)−1rS

:= ΘScSΘ−1
SSrS + η.

(76)

The preceding expression prompts us to establish an upper bound for the dual norm of η. To
achieve this, we begin by examining the scenario in which XS is fixed. Our objective now is to
derive the covariance matrix of η. For any j ∈ Sc, we have

E[ηj ] = E
[
E>j XS(X>SXS)−1rS

]
= 0.

For any pair of j, k ∈ Sc, we have

E[ηjηk] = E
[
E>j XS(X>SXS)−1rSE

>
k XS(X>SXS)−1rS

]
= E

[
r>S (X>SXS)−1X>S EjE

>
k XS(X>SXS)−1rS

]
= r>S (X>SXS)−1X>S E

[
EjE

>
k

]
XS(X>SXS)−1rS,

where

E
[
EjE

>
k

]
(75)
= E

[(
Xj −XSΘ−1

SSΘ>jS

)(
X>k −ΘkSΘ−1

SSX
>
S

)]
= E

[
XjX

>
k

]
− E

[
XSΘ−1

SSΘjSX
>
k

]
− E

[
XjΘkSΘ−1

SSX
>
S | XS

]
+ E

[
XSΘ−1

SSΘ>jSΘkSΘ−1
SSX

>
S

]
= E

[
XjX

>
k

]
−XSΘ−1

SSΘjSE
[
X>k

]
− E [Xj ] ΘkSΘ−1

SSX
>
S +XSΘ−1

SSΘjSΘkSΘ−1
SSX

>
S

= E
[
XjX

>
k

]
− E [Xj ]E

[
X>k

]
= Cov

[
Xj , X

>
k

]
=
(
ΘScSc|S

)
jk
In×n.
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Consequently,

E[ηjηk] = r>S (X>SXS)−1X>S E
[
EjE

>
k

]
XS(X>SXS)−1rS

= r>S (X>SXS)−1X>S
(
ΘScSc|S

)
jk
In×nXS(X>SXS)−1rS

= r>S (X>SXS)−1rS ·
(
ΘScSc|S

)
jk

=
r>S (QSS)−1rS

n
·
(
ΘScSc|S

)
jk
.

And we have Cov(η) =
r>S (QSS)−1rS

n ·
(
ΘScSc|S

)
:= Ξ.

Lemma 27. (Theorem 2.26 in Wainwright (2019))
Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, and let f : Rn 7→ R be a

Lipschitz function with respect to the Euclidean norm and Lipschitz constant L. Then the variable
f(X)− E[f(X)] is sub-Gaussian with parameter at most L, and hence

P[|f(X)− E[f(X)]| > t] 6 2 exp(− t2

2L2
) for all t > 0.

To apply the concentration bound in Lemma 27, we define function Ψ(u) = (φ∗Sc)
[
Ξ

1
2u
]
. As

η = Ξ
1
2W whereW ∼ N(0, I|Sc|×|Sc|), (φcS)∗(η) has the same distribution as Ψ(W ) . We continue

to show that Ψ is a Lipschitz function given fixed XS.

|Ψ(u)−Ψ(v)| 6 Ψ(u− v) = (φcS)∗
[
Ξ

1
2 (u− v)

]
6 a−1

S

∥∥∥Ξ
1
2 (u− v)

∥∥∥
∞

= a−1
S

∥∥∥∥ [r>S (QSS)−1rS
n

·
(
ΘScSc|S

)] 1
2

(u− v)

∥∥∥∥
∞

6 a−1
S ‖rS‖2 n

− 1
2γ

1
2
max

(
Q−1

SS

)
γ

1
2
max

(
ΘScSc|S

)
‖u− v‖2 .

Thus, the corresponding Lipstichiz constant is

Lη = a−1
S ‖rS‖2 n

− 1
2γ

1
2
max

(
Q−1

SS

)
γ

1
2
max

(
ΘScSc|S

)
.

On the other hand, suppose that E [(φcS)∗(η)] 6 τ
4 , since Ψ is a Lipschitiz function, by applying

t = τ
4 in concentration Lemma 27 on Lipschitz functions of multivariate standard random variables,

we have

P
(

(φcS)∗ [η] >
τ

2

)
= P

(
Ψ(W ) >

τ

2

)
= P

(
Ψ(W )− τ

4
>
τ

4

)
6 P

(
Ψ(W )− E [(φcS)∗ (η)] >

τ

4

)
= P

(
Ψ(W )− E [Ψ(W )] >

τ

4

)
6 exp

(
− τ2

4L2
η

)
.

Now we further assume that {γmax(Q−1
SS) 6 9

γmin(ΘSS)}. Under this condition, we have

Lη = a−1
S ‖rS‖2 n

− 1
2γ

1
2
max

(
Q−1

SS

)
γ

1
2
max

(
ΘScSc|S

)
6

3a−1
S ‖rS‖2 γ

1
2
max

(
ΘScSc|S

)
(nγmin(ΘSS))

1
2

. (77)
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Lemma 28. (Sudakov inequality, Theorem 5.27 in Wainwright (2019)) IfX and Y are a.s. bounded,
centered Gaussian processes on T such that

E (Xt −Xs)
2 ≤ E (Yt − Ys)2

then
E sup

T
Xt ≤ E sup

T
Yt.

Lemma 29. (Exercise 2.12 in Wainwright (2019)) Let X1, . . . , Xn be independent σ2-subgaussian
random variables. Then

E[ max
1≤i≤n

|Xi|] ≤ 2
√
σ2 log n.

On the other hand, for any ut, us, we have

E(u>t η − u>s η)2 = E(u>t Ξ
1
2W − u>s Ξ

1
2W )2 = (ut − us)>Ξ(ut − us)

6||ut − us||22γmax (Ξ) = E(γ
1
2
max (Ξ)u>t W − γ

1
2
max (Ξ)u>s W )2.

By using Sudakov-Fernique inequality in Lemma 28, we have

E
[

sup
φcS(u)61

u>Ξ
1
2W
]
6 E

[
sup

φcS(u)61
γ

1
2
max (Ξ)u>W

]
.

Consequently,

E
[
(φcS)∗(η)

]
= E

[
sup

φcS(u)61
u>η

]
= E

[
sup

φcS(u)61
u>Ξ

1
2W
]

6 γ
1
2
max (Ξ)E

[
sup

φcS(u)61
u>W

]
= γmax (Ξ)

1
2 E
[
(φcS)∗(W )

]
.

(78)

Notice that

‖rS‖22 6 |S|max
j∈S

r2
j = |S|

(
max
j∈S
{β∗j ·

∑
g∈GGS ,Gg∩j 6=∅

wg
‖β∗Gg∩S‖2

}
)2

6 |S|
(

max
j∈S
{|β∗j |} ·max{

∑
g∈GGS ,Gg∩j 6=∅

wg
‖β∗Gg∩S‖2

}
)2

6 |S|
(max
j∈S
{|β∗j |}

β∗min

·max{
∑

g∈GGS ,Gg∩j 6=∅

wg√
|Gg ∩ S

}
)2

6 |S|
(max
j∈S
{|β∗j |}

β∗min

·max{
∑

g∈GGS ,Gg∩j 6=∅

wg}
)2

6 |S|
(max
j∈S
{|β∗j |}

β∗min

· hmax(GS) max
g∈GGS

wg}
)2

6
(max
j∈S
{|β∗j |}

β∗min

)2
|S|A2

S = max
j∈S
{(β∗j )2}|S|

( AS

β∗min

)2

.
max
j∈S
{(β∗j )2}

λ2
n

.

(79)
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Thus, if XS satisfies γmax(Q−1
SS) 6 9

γmin(ΘSS) , we have

E [(φcS)∗(η)]
(78)
6 γmax (Ξ)

1
2 E [(φcS)∗(W )]

6
‖rS‖2 γ

− 1
2

min (QSS) γ
1
2
max

(
ΘScSc|S

)
n

1
2

E [(φcS)∗(W )]

6
‖rS‖2 3γ

1
2
max

(
ΘScSc|S

)
(nγmin(ΘSS))

1
2

E [(φcS)∗(W )]

(42)
6
‖rS‖2 3γ

1
2
max

(
ΘScSc|S

)
(nγmin(ΘSS))

1
2

E
[
a−1
Sc ‖W‖∞

]
6
‖rS‖2 3γ

1
2
max

(
ΘScSc|S

)
aSc(nγmin(ΘSS))

1
2

E [‖W‖∞]

Lemma 29
6

6 ‖rS‖2 γ
1
2
max

(
ΘScSc|S

)
aSc(nγmin(ΘSS))

1
2

√
log(p− |S|) 6 τ

4
,

(80)

where the last inequality holds as Assumption 6 implies that

n &
max
j∈S
{(β∗j )2} log(p− |S|)

a2
Scλ

2
n

(79)
&
‖rS‖22 log(p− |S|)

a2
Sc

>
576 ‖rS‖22 log(p− |S|)γmax

(
ΘScSc|S

)
a2
Scγmin(ΘSS)τ2

.

Consequently, (77) and (80) together implies

P
(

(φcS)∗ [η] >
τ

2
| XS, γmax(Q−1

SS) 6
9

γmin(ΘSS)

)
6 exp

(
− τ2

4L2
η

)
6 exp

(
−

τ2na2
Sγmin(ΘSS)

12 ‖rS‖22 γmax

(
ΘScSc|S

)). (81)

Thus, let A be the event {XS | γmax(Q−1
SS) 6 9

γmin(ΘSS)}. We have

P
(

(φcS)∗ [η] >
τ

2
| XS

)
= P

(
(φcS)∗ [η] >

τ

2
| XS, γmax(Q−1

SS) 6
9

γmin(ΘSS)

)
+P
(

(φcS)∗ [η] >
τ

2
| XS, γmax(Q−1

SS) >
9

γmin(ΘSS)

)
6 exp

(
−

τ2na2
Sγmin(ΘSS)

4 ‖rS‖22 γmax

(
ΘScSc|S

))+ P (Ac)

6 exp

(
−

τ2na2
Sγmin(ΘSS)

4 ‖rS‖22 γmax

(
ΘScSc|S

))+ 2 exp(−n
2

).
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Condition (72)
Now we are going to study condition (72). Recall that qSc|S = qSc−QScSQ

−1
SSqS andQScSc|S =

QScSc − QScSQ
−1
SSQSSc . Given X , qSc|S is a centered Gaussian random vector with covariance

matrix

E
[
qSc|Sq

>
Sc|S

]
= E

[
qScq

>
Sc − qScq>SQ−1

SSQSSc −QScSQ
−1
SSqSq

>
Sc +QScSQ

−1
SSqSq

>
SQ
−1
SSQSSc

]
= E

[
qScq

>
Sc −QScSQ

−1
SSqSq

>
SQ
−1
SSQSSc

]
= E

[
qScq

>
Sc

]
− E

[
QScSQ

−1
SSqSq

>
SQ
−1
SSQSSc

]
=
σ2

n
QScSc −

σ2

n
QScSQ

−1
SSQSSc :=

σ2

n
QScSc|S.

Next, we define ψ(u) = (φcS)∗
(
σn−1/2Q

1/2
ScSc|Su

)
so that (φcSc)

∗ [qSc|S] has the same distri-
bution as ψ(W ). Now we want to show that ψ is a Lipschitz function

|ψ(u)− ψ(v)| 6 ψ(u− v) = (φcS)∗
(
σn−1/2Q

1/2
ScSc|S(u− v)

)
6 σn−1/2a−1

Sc

∥∥∥∥Q 1
2

ScSc|S(u− v)

∥∥∥∥
∞

6 σn−1/2a−1
Sc

∥∥∥∥Q 1
2

ScSc|S

∥∥∥∥
2,∞
‖(u− v)‖∞

6 σn−1/2a−1
Sc

∥∥∥∥Q 1
2

ScSc|S

∥∥∥∥
2,∞
‖(u− v)‖2 .

Suppose that
∥∥∥Q1/2

ScSc|S

∥∥∥
2,∞

6 3, thenψ is a Lipschitz function with Lipschitz constant 3σn−1/2a−1
Sc .

In addition, if E[(φcS)∗(qSc|S)] 6 λnτ
4 , then by Lemma 27 , we have for t = λnτ

4 ,

P
(

(φcS)∗
[
qSc|S

]
>
λnτ

2

)
= P

(
ψ(W ) >

λnτ

2

)
= P

(
ψ(W )− λnτ

4
>
λnτ

4

)
6 P

(
ψ(W )− E[(φcS)∗(qSc|S)] >

λnτ

4

)
= P

(
ψ(W )− E [ψ(W )] >

λnτ

4

)
6 exp

(
−
τ2λ2

nna
2
Sc

144σ2

)
.

Now, we consider random X . For any ut, us, we have

E
[
(ut − us)>qSc|S

]2
=
σ2

n
(ut − us)>QScSc|S(ut − us) 6

σ2

n

∥∥Q 1
2

ScSc|S
∥∥2

2

∥∥(ut − us)
∥∥2

2

= E
[
σn−

1
2 ‖QScSc|S‖

1
2
2 (ut − us)>W

]2
.
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By using Sudakov-Fernique inequality, if ‖QScSc|S‖2 6 9, we get

E[(φcS)∗(qSc|S)] = E sup
φcS(u)≤1

u>qSc|S

6 σn−1/2‖QScSc|S‖
1
2
2 E sup

φcS(u)≤1
u>W

6 σn−
1
2 ‖QScSc|S‖

1
2
2 E [(φcS)∗ (W )]

6 3σn−
1
2E [(φcS)∗ (W )]

6
λnτ

4
.

(82)

On the other hand, Assumption 1’ and 6 imply that

9σ2E2 [(φcS)∗ (W )]

n
6

9σ2 log(p− |S|)
a2
Scn

6
λ2
nτ

2

16
.

Therefore, we have

P
(

(φcS)∗
[
qSc|S

]
>
λnτ

2
| X,

∥∥∥Q1/2
ScSc|S

∥∥∥
2,∞

6 3

)
6 exp

(
−
τ2nλ2

na
2
Sc

144σ2

)
.

Let B be the event {X |
∥∥∥Q1/2

ScSc|S

∥∥∥
2,∞

6 3}. We have

P
(

(φcS)∗
[
qSc|S

]
>
λnτ

2
| X
)

= P
(

(φcS)∗
[
qSc|S

]
>
λnτ

2
| X,

∥∥∥Q1/2
ScSc|S

∥∥∥
2,∞

6 3

)
+P
(

(φcS)∗
[
qSc|S

]
>
λnτ

2
| X,

∥∥∥Q1/2
ScSc|S

∥∥∥
2,∞

> 3

)
6 exp

(
−
τ2nλ2

na
2
Sc

144σ2

)
+ P (Bc)

(69)
6 exp

(
−
τ2nλ2

na
2
Sc

144σ2

)
+ exp(−n

2
).

Condition (73)
The last condition (73) lead us to control the term P (‖qS‖∞ > c′(S, G)), with

c′(S, G) = min

{
γmin (QSS)β∗min

3AS
,

τγ
3
2
min(QSS)aScβ

∗
min

72AS
∑
g∈GS

wg
√
|Gg ∩ S|

}
.

For any given X , Jenatton et al. (2011a) showed that for any δ > 0,

P (‖qS‖∞ > δ) 6 2|S| exp

(
−nδ

2

2σ2

)
.

Recall under the event A, we have

γmin(ΘSS)

9
6 γmin(QSS).
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Which implies that

c′(S, G) > min

{
γmin (ΘSS)β∗min

27AS
,

τγmin(ΘSS)
3
2aScβ

∗
min

648AS
∑
g∈GS

wg
√
|Gg ∩ S|

}

> min

{
β∗min

27c1AS
,

τaScβ
∗
min

648c
3
2
1AS

∑
g∈GS

wg
√
|Gg ∩ S|

}
:= c(S, G).

Thus, consider random X , we have

P
(
‖qS‖∞ > c′(S, G) | A

)
6 P (‖qS‖∞ > c(S, G) | A) 6 2|S| exp

(
−nc

2(S, G)

2σ2

)
.

Thus,

P
(
‖qS‖∞ > c′(S, G)

)
= P

(
‖qS‖∞ > c′(S, G) ∩A

)
+ P

(
‖qS‖∞ > c′(S, G) ∩Ac

)
6 P

(
‖qS‖∞ > c′(S, G) ∩A

)
+ P (Ac)

= P
(
‖qS‖∞ > c′(S, G) | A

)
P (A) + P (Ac)

6 P
(
‖qS‖∞ > c′(S, G) | A

)
+ P (Ac)

6 2|S| exp

(
−nc

2(S, G)

2σ2

)
+ 2 exp(−n/2).

In summary, the probability of one of the conditions being violated is upper bound by

8 exp(−n
2

)+exp

(
−

na2
Sτ

2γmax(ΘSS)

4 ‖rS‖22 γmax

(
ΘScSc|S

))+exp

(
−
nλ2

nτ
2a2

Sc

32σ2c4
2

)
+2|S| exp

(
−nc

2(S, G)

2σ2

)
.

D.8.5 PART V

First, given the original group structure G and its induced counterpart G, along with their respective
weights w and w, we consider the scenario where J = S. For all β ∈ Rp, we have

φGS (βS) =
∑
g∈GGS

wg‖βS∩Gg‖2 6
∑
g∈GS

wg
( ∑
g:g∈F−1(g),Gg⊂S

‖βS∩Gg‖2
)

=
∑

g:Gg⊂S

( ∑
g:g∈F (g),g∈GS

wg
)
‖βS∩Gg‖2

=
∑

g:Gg⊂S

( ∑
g:g∈F (g)

wg
)
‖βS∩Gg‖2

=
∑
g∈GG

S

wg‖βS∩Gg‖2 = φGS(β).

(83)

Since φGS (β) 6 φGS(β), we can set aGS = aGS = min
g∈GGS

wg√
dg

. Since

max
g∈GG

S

wg = max
g:Gg∩S6=∅

∑
g∈F (g)

wg 6 hmax(GS) max
g∈GGS

wg,
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we can set AG
S = AGS . On the other hand, for all β ∈ Rp, we have

(φGS )c(βcS) =
∑

g∈[m]\GGS

wg‖βSc∩Gg‖2 6
∑

g∈[m]\GS

wg
( ∑
g:g∈F−1(g),Gg⊂Sc

‖βSc∩Gg‖2
)

=
∑

g:Gg⊂Sc

( ∑
g:g∈F (g),g∈[m]\GGS

wg
)
‖βSc∩Gg‖2

=
∑

g:Gg⊂Sc

( ∑
g:g∈F (g)

wg
)
‖βSc∩Gg‖2

=
∑

g∈[m]\GG
S

wg‖βSc∩Gg‖2 = (φGS)c(β).

(84)

Consequently, with an trivial extension, we can set aGSc = aGSc 6 min
g∈GG

Sc

wg/
√
dg.

Based on the result of Theorem 5.1, (28) holds if

λn|S|
1
2 . min

{β∗min

AS
,

β∗minaSc

AS
∑

g∈GS

wg

√∣∣Gg ∩ S
∣∣
}
.

By the Cauchy–Schwarz inequality, we have∑
g∈GS

wg

√
|Gg ∩ S| 6

∑
g∈GS

wg
∑

g∈F−1(g)

√∣∣Gg ∩ S
∣∣

=
∑

g∈F−1(g),g∈GS

√∣∣Gg ∩ S
∣∣( ∑
g∈F (g)

wg
)

=
∑
g∈GS

wg

√∣∣Gg ∩ S
∣∣.

If F−1(g) = O(1) for every g ∈ GS, we have

|Gg ∩ S| =
∑

g∈F−1(g)

|Gg ∩ S| �
( ∑
g∈F−1(g)

√
|Gg ∩ S|

)2
.

Consequent, we have
√
|Gg ∩ S| �

∑
g∈F−1(g)

√
|Gg ∩ S|,

∑
g∈GS

wg

√
|Gg ∩ S| �

∑
g∈GS

wg

√∣∣Gg ∩ S
∣∣,

and

min

{
β∗min

AGS
,

β∗mina
G
Sc

AGS
∑
g∈GS

wg
√
|Gg ∩ S|

}
� min

{
β∗min

AG
S

,
β∗mina

G
Sc

AG
S

∑
g∈GS

wg

√∣∣Gg ∩ S
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}
.
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