
Journal of Machine Learning Research 25 (2024) 1-45 Submitted 10/22; Revised 11/23; Published 4/24

Margin-Based Active Learning of Multiclass Classifiers ∗

Marco Bressan marco.bressan@unimi.it
Dept. of Computer Science, Università degli Studi di Milano, Italy

Nicolò Cesa-Bianchi nicolo.cesa-bianchi@unimi.it
Dept. of Computer Science, Università degli Studi di Milano, Italy
& Politecnico di Milano, Italy

Silvio Lattanzi silviol@google.com
Google Research

Andrea Paudice andrea.paudice@unimi.it
Dept. of Computer Science, Università degli Studi di Milano, Italy

Editor: Samory Kpotufe

Abstract
We study active learning of multiclass classifiers, focusing on the realizable transductive
setting. The input is a finite subset X of some metric space, and the concept to be learned
is a partition C of X into k classes. The goal is to learn C by querying the labels of as few
elements of X as possible. This is a useful subroutine in pool-based active learning, and is
motivated by applications where labels are expensive to obtain. Our main result is that, in
very different settings, there exist interesting notions of margin that yield efficient active
learning algorithms. First, we consider the case X ⊂ Rm, assuming that each class has an
unknown “personalized” margin separating it from the rest. Second, we consider the case
where X is a finite metric space, and the classes are convex with margin according to the
geodesic distances in the thresholded connectivity graph. In both cases, we give algorithms
that learn C exactly, in polynomial time, using O(log n) label queries, where O(·) hides a
near-optimal dependence on the dimension of the metric spaces. Our results actually hold
for or can be adapted to more general settings, such as pseudometric and semimetric spaces.
Keywords: active learning, semimetric space, pseudometric space, convexity, margin

1. Introduction

We study the following active learning problem. Given a finite set X from some domain, we
have access to an oracle Oh that, upon receiving x ∈ X, replies with h(x), where h : X → [k]
is an unknown function from some class H. The queries to Oh can be adaptive, that is, each
element x queried can depend on the answers to previous queries. The goal is to learn h
exactly by making as few queries to Oh as possible. This problem, and active learning more in
general, have gained a lot of attention in recent years. The reason is that collecting unlabeled
data has become relatively cheap, and the most expensive part has become data annotation
(which often requires human intervention). As a result, active learning is now a mainstream

∗. Preliminary versions of this work appeared in the Proceedings of the 34th Annual Conference on Learning
Theory (COLT), PMLR 134:775–803, 2021 (Bressan et al., 2021a) and in Advances in Neural Information
Processing Systems 34 (NeurIPS), 34:25231–25243, 2021 (Bressan et al., 2021b).

c©2024 Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, Andrea Paudice.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/22-1127.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-1127.html

Bressan, Cesa-Bianchi, Lattanzi, Paudice

field of machine learning, with a rich literature providing algorithms and bounds for several
settings (Dasgupta, 2005; Dasgupta et al., 2005; Balcan et al., 2007; Settles, 2012; Balcan
and Hanneke, 2012; Balcan and Long, 2013; Gonen et al., 2013; Hanneke, 2014; Dasarathy
et al., 2015; Hanneke and Yang, 2015; Wiener et al., 2015; Beygelzimer et al., 2016; Kane
et al., 2017; Hopkins et al., 2020a,b, 2021).

It is well known that active learning may provide exponential savings over passive learning.
Consider for instance the class of thresholds H = {Ix≤t : t ∈ [0, 1]} over X = [0, 1], and
suppose one wants to learn a threshold that, with probability at least 1 − δ, has error ε
against the target threshold t∗ with respect to some unknown distribution P over X . In
the passive model, one can draw a sample X of n = Θ

(
1
ε log 1

δ

)
points x, obtain the pairs(

x, t∗(x)
)
, and then take any threshold t̂ consistent with the labeled sample. However, if one

is allowed to first draw X alone (that is, without the labels) from P , and then to adaptively
query the points of X for their labels, then a simple binary search learns a good threshold by
looking at only O(log n) = O

(
log 1

ε + log log 1
δ

)
labels. This idea can be applied to any H

and any P . First, draw a set X of n = n(ε, δ) i.i.d. unlabeled points from P , where n(ε, δ) is
the sample complexity of the passive case. Then, learn h exactly over X by making as few
queries as possible; ideally only O(log n), where the constants hidden in the O(·) notation
can depend on H, X , and other relevant parameters.

Clearly, if H = [k]X then learning H even approximately with non-vanishing probability
requires Ω(|X|) queries. Thus the interesting question is finding useful classes H that can
be learned with O(log n) queries over any n-point set X, possibly in polynomial time. The
present work addresses precisely this question. As a starting point, consider the classic SVM
margin assumption in Rm. For notational convenience, we represent the target classifier
h∗ : X → [k] as a partition C = (C1, . . . , Ck) of X. The SVM margin assumption requires
every class C ∈ C to be separated from X \ C by a hyperplane in Rm with margin γ > 0. In
this case one can learn C with O(log n) queries, where the hidden constants are functions of
m and γ (see Bressan et al., 2020). There are two key ingredients that enable such a query
rate: the convexity of the classes and the margin between them. Inspired by these findings,
in this work we devise novel, general conditions that allow one to attain a query rate of
O(log n), with constants that we can often prove to be near-optimal, and in polynomial time.

1.1 Our contributions

We study two settings. The first one considers the classic Euclidean case, X = Rm, and the
more general case of finite pseudometric spaces (where the triangle inequality holds, but the
distance between distinct points can be zero). The second setting is inspired by algorithms
designed for “dense” classes, such as DBSCAN, and applies to any (finite) semimetric space
(where the distance between distinct points is positive, but the triangle inequality may fail),
including Rm.

1.1.1 Euclidean spaces and pseudometric spaces

For the case X = Rm, we introduce a new notion of margin, called convex hull margin
(Definition 1), enabling the margin of each class to be measured in terms of its own diameter
and according to a “personalized” pseudometric. This notion strictly generalizes the spherical
margin of Ashtiani et al. (2016), the ellipsoidal margin of Bressan et al. (2020), and (as a

2

Margin-Based Active Learning of Classifiers

consequence) the SVM margin. Using the convex hull margin, we develop a technique called
convex hull expansion trick, based on recent results from convex geometry. This technique
recovers a constant fraction of any class, with one-sided error, by sampling roughly

(
1+ 1

γ

)m−1
2

of its points. By a simple boosting argument this yields a polynomial-time algorithm that
learns all classes using roughly k2

(
1 + 1

γ

)m−1
2 log n queries (Theorem 2), without knowing the

pseudometrics that yield the margin for each class.1 The dependence on γ is nearly optimal,
as we prove that roughly

(
1 + 1

γ

)m−1
2 queries are necessary in the worst case (Theorem 3).

For the case of finite pseudometric spaces, we generalize the convex hull margin by
introducing the one-versus-all margin (Definition 11). Interestingly, this notion captures
as special cases standard notions of stability for clustering problems such as k-means or
k-centers. We show that, if a classifier has one-versus-all margin γ, then it can be learned
withM(γ) poly(k) log n queries via a purely learning-theoretic approach (Theorem 12), where
M(γ) measures the dimension of the pseudometric space via packing numbers. We also
show that the dependence on M(γ) is essentially optimal and thus M(γ) characterizes the
learnability of multiclass classifiers in this setting.

Finally, we study the case when the classes are realized by some concept class H over X
(that is, when for each class Ci there is a concept hi ∈ H such that X ∩ hi = Ci). We show
that if a certain combinatorial parameter, the coslicing dimension cosl(H), is bounded, then
one can learn C with cosl(H) poly(k) log n label queries; otherwise, Ω(n) queries are needed
in the worst case (Theorem 21). Moreover we show that, for all concept classes in Rm that
are closed under affine transformations and well-behaved in a natural sense, finite coslicing
dimension and positive one-versus-all margin are equivalent (Theorem 22).

1.1.2 Finite semimetric spaces

The second setting assumes X is a finite set and d is a semimetric over X (that is, a metric
without the triangle inequality). For instance d could be the Wasserstein distance between
images, the Levenshtein distance between strings, the cosine dissimilarity in document
analysis, or the Pearson dissimilarity in bioinformatics. In such a general setting, it is not
clear how to define notions of convexity or margin for the elements of a partition C. We
fill this gap by introducing (β, γ)-convexity (Definition 23), a property of classes based on
the connectivity graph G(ε) where {x, y} ⊆ X is an edge iff d(x, y) ≤ ε. Loosely speaking,
a class C is (β, γ)-convex if the subgraph G(ε)[C] is connected and closed under taking
nearly-shortest paths. When X = Rm and d is the Euclidean distance, (β, γ)-convexity
captures classes that are very far from being convex, but still natural in an intuitive way.

Our main result is that (β, γ)-convex classifiers can be learned deterministically with
O
(
k2
(

log n + (6/βγ)dens(X)
))

queries, provided that we know some point (a “seed”) from
each class (Theorem 24). Here, dens(X) is the density dimension of X (see Gottlieb and
Krauthgamer, 2013), a generalization of the doubling dimension that is used to bound the size
of packings in metric spaces. This dependence of our exponent on dens(X) is asymptotically
optimal, as we prove that Ω(2dens(X)) queries are necessary to learn a (β, γ)-convex classifier
in the worst case. Thus, dens(X) plays a role similar to that of the dimensionality m in

1. Any upper bound B on the query cost of our algorithms should be intended as min(n,B) since obviously
one never needs to query the same point twice. A similar observation holds for our running times, which
are all polynomial in n,m, k.

3

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Euclidean spaces. The algorithm is completely different from those of Section 1.1.1: rather
than sampling and boosting, it computes certain separators between each class C and every
other class in turn. To do so, it carefully exploits the structural properties of (β, γ)-convexity
by analysing shortest paths and edge cuts between different classes in G(ε). The algorithm
runs in time almost linear in the size of the encoding of (X, d) as a weighted graph.

1.1.3 Enriched queries and learning the parameters

Finally, we investigate the use of more powerful queries for learning the model parameters.
In particular we consider a query seed that, given a set U ⊂ X and an index i ∈ [k],
either certifies that Ci ⊆ U or returns some x ∈ Ci \ U . It is easy to see that k seed
queries are sufficient to test whether any given k-partition Ĉ coincides with C; by an easy
halving/guessing argument, this implies one can learn C without knowing γ (in the first
setting) or one of γ and β (in the second setting) by running our algorithms O

(
k log p?

p

)
times where p is the unknown parameter and p? a known upper bound on it. For the second
setting we give several additional results. First we show that, without seed points, any
algorithm needs Ω(n) label queries to learn C in the worst case; and if one allows for a
different semimetric for each cluster, then Ω(n) queries are needed to learn C even if seed is
allowed. Next we show that, with O(k2) additional seed queries, our algorithms can learn
classes that are (β, γ)-convex at different connectivity thresholds ε1, . . . , εk, and thus are
dense at different scales (Theorem 26). Moreover we show that O(k log n) seed queries are
sufficient and Ω(k log n

k) are necessary to learn ε1, . . . , εk (Theorem 46). Finally, we show
how to adapt our algorithms to the case that one or both of β and γ are unknown by using
a small number of additional seed queries and incurring a small computational overhead.
Again, these adapted algorithms run in almost linear time.

2. Related work

Ashtiani et al. (2016) introduced semi-supervised active clustering (SSAC), a setting very
similar to ours where the oracle supports same-cluster queries that reveal whether two given
points are in the same class. They showed how to exactly recover the optimal k-means
clustering with O

(
poly(k) log n

)
queries when each cluster lies inside a sphere centered in the

cluster’s centroid and well separated from the spheres of other clusters. Bressan et al. (2020)
extended these results to clusters separated by arbitrary ellipsoids with arbitrary centers.2

Compared to Bressan et al. (2020), our algorithms for the Euclidean case work under strictly
more general conditions and reduce the queries by a factor of roughly mm(1 + 1/γ)

m−1
2 .

We note that label queries can be simulated (up to a permutation of the classes) with k
same-cluster queries, hence our upper bounds work for cluster recovery with an additional
multiplicative factor of k. As same-cluster queries can be simulated with two label queries,
our lower bounds hold for same-cluster queries as well.

Various notions of margin are central in active learning and cluster recovery (see Xu
et al., 2004; Balcan et al., 2007; Balcan and Long, 2013; Kane et al., 2017; Bressan et al.,
2021a). Our coslicing dimension is similar to the slicing dimension of Kivinen (1995) and

2. Thanks to their stronger notion of margin, the results and bounds of Ashtiani et al. (2016) are dimension-
free, and can also be extended to infinite-dimensional Hilbert spaces.

4

Margin-Based Active Learning of Classifiers

the star number of Hanneke and Yang (2015). Our lower bounds, like many others, are
inspired by a construction by Dasgupta (2005). Our arguments based on packing numbers
are similar to those based on the inference dimension of Kane et al. (2017) or the lossless
sample compression of Hopkins et al. (2021). A query bound similar to the one given by our
convex hull expansion trick, but worse by a factor roughly 2m, can be inferred by adapting
arguments of Hopkins et al. (2020b). Combinatorial characterizations of multiclass learning
have been proposed in the passive case by Ben-David et al. (1995), Rubinstein et al. (2009),
and Daniely and Shalev-Shwartz (2014). Other learning settings related to one-sided and
active learning are RPU learning (Rivest and Sloan, 1988) and perfect selective classification
(El-Yaniv and Wiener, 2012)—see Hopkins et al. (2020a) for a discussion.

Concerning learning on graphs, Dasarathy et al. (2015) develop a probabilistic active
classification algorithm, called S2 (shortest-shortest-path), whose label complexity depends
on the graph’s structure. In particular, the query complexity is linear in the size of the
boundary of the edge cut between nodes with different labels. Unfortunately, even under
(β, γ)-convexity, in GX(ε) this boundary can have size Ω(n). Thiessen and Gärtner (2021)
show a deterministic algorithm with label complexity proportional to the size of the shortest
path cover of the graph (the smallest set of shortest paths that cover all nodes). Again, in
GX(ε) this cover could have size Ω(n) even under (β, γ)-convexity. Active classification on
unweighted graph has been also studied by Afshani et al. (2007), Cesa-Bianchi et al. (2010),
and Guillory and Bilmes (2011), but only for approximate learning; to learn exactly, their
algorithms may need Ω(n) queries.

A number of works studied cluster reconstruction under stochastic models using same-
cluster queries. Mazumdar and Saha (2017a) prove a logarithmic query bound assuming some
latent distribution of similarities between points, while Mazumdar and Saha (2017b) obtain
a linear bound when the oracle can err with a certain probability. Stochastic block models
(Zhang et al., 2014; Gadde et al., 2016) and geometric block models (Chien et al., 2020) have
been also considered as generative models for active clustering on graphs. Finally, there is
a rich stream of research on approximating the optimal solution to clustering optimization
problems using oracles (see Ailon et al., 2018a,b; Gamlath et al., 2018; Mazumdar and Pal,
2017; Saha and Subramanian, 2019).

seed and their variants are motivated and used by Hanneke (2009) as positive example
queries, by Balcan and Hanneke (2012) as conditional class queries, and by Beygelzimer et al.
(2016) and Attenberg and Provost (2010) as search queries. They are also used implicitly
by Tong and Chang (2001), Doyle et al. (2011), and Vikram and Dasgupta (2016). It also
easy to see that seed queries are equivalent to the partial equivalence queries of Maass and
Turán (1992) and to the subset plus superset queries of Angluin (1988).

3. Preliminaries and notation

Let X be a set. A function d : X 2 → R is a metric if for all x, y ∈ X 2 we have (i) d(x, y) = 0 iff
x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X . The function is
a pseudometric if (i) is replaced by d(x, x) = 0, and is a semimetric if (iii) is removed. Let d be
any (pseudo/semi) metric over X . For x ∈ X and r ≥ 0 let B(x, r, d) = {y ∈ X : d(x, y) ≤ r}
denote the closed ball of radius r centered at x. For any S ⊆ X , the packing number
M(S, r, d) of S in X is the maximum size of any A ⊆ S such that d(x, y) > r for all distinct

5

Bressan, Cesa-Bianchi, Lattanzi, Paudice

x, y ∈ A. For any η > 0 let M(η, d) = sup{M
(
B(x, r, d), ηr, d

)
: x ∈ X , r > 0}. This is

the largest packing number of any ball of radius r in X using balls of radius ηr. Note that
M(η, d) ≥ 1 for all η, d. For any A ⊂ X let φd(A) = supx,x′∈A d(x, x′). For any U, S ⊂ X
let d(U, S) = infx∈U,y∈S d(U, S). For any X ⊂ Rm let conv(X) be the convex hull of X. The
unit sphere in Rm is Sm−1 = {x ∈ Rm : ‖x‖2 = 1}. We may omit d if clear from the context.

We recall some learning-theoretic facts. A concept class over X is a family H ⊆ 2X of
measurable sets.3 A set X ⊆ X is shattered by H if for every S ⊆ X there is h ∈ H such
that S = X ∩ h. The Vapnik-Chervonenkis dimension of H, denoted by vc-dim(H,X), is
the size of the largest such set; we write vc-dim(H) when X is clear from the context. The
intersection class of H is I(H) =

⋃
i∈N{h1 ∩ . . . ∩ hi : h1, . . . , hi ∈ H}. For a given X ⊆ X ,

the smallest concept in I(H) consistent with X is
⋂
{h ∈ H : h ∩ X = X}. An algorithm A

learns H with one-sided error ε and confidence δ with r examples if, for any target concept
h? ∈ H and any probability measure P over X , by drawing r independent labeled examples
from P the algorithm outputs a concept h ⊆ h? such that P(h? \ h) ≤ ε with probability at
least 1− δ.

The input to our problem depends on the setting. For the Euclidean setting, the input
set is X ⊂ X where X = Rm. For the finite semimetric setting, the input is a weighted graph
G = (X, E , d) encoding the semimetric d over X. In both cases, the input also contains a
pointer to a labeling oracle OC consistent with a k-partition C = (C1, . . . , Ck) of X, so that
OC(x) = i if and only if x ∈ Ci. In line with previous work we assume k is known and we
allow for empty classes. By “high probability” we mean a probability that, for any a > 0,
can be made higher than 1− n−a by increasing the cost by no more than a multiplicative
factor ca for some universal constant c > 0. Further definitions and notation are given when
needed.

4. Learning classifiers in Euclidean and pseudometric spaces

In this section we consider the problem of learning a k-classifier over a finite input set X
from some space X endowed with a number of metrics or pseudometrics. We start with the
special case X = Rm with pseudometrics induced by seminorms, and then we generalize to
more abstract settings. The input to our problem always contains the pair (X,OC), and
possibly some additional information, such as the margin γ. Depending on the setting, the
algorithm may know or may not know the pseudometrics relevant to the classifier.

4.1 The convex hull margin in Rm

Let X ⊂ Rm and let C be a k-partition of X. We introduce a novel notion of margin, called
convex hull margin, which captures the idea that points not in a certain class should be well
separated from that class in terms of the class’ diameter. Instead of using the Euclidean
metric, however, we allow distances to be measured by any pseudometric in Rm, which the
algorithm may not know, and which may be specific to each class. We only require that the
pseudometric be homogeneous and invariant under translation (that is, that the pseudometric
be induced by a seminorm).

3. We will interchangeably consider hypotheses as functions from X to {0, 1} and as subsets of X .

6

Margin-Based Active Learning of Classifiers

Definition 1 (Convex hull margin) Let D be the family of all pseudometrics induced by
seminorms over Rm, and let X ⊂ Rm be a finite set. A k-partition C = (C1, . . . , Ck) of X
has convex hull margin γ if for every i ∈ [k] there exists di ∈ D such that:

di
(
X \ Ci, conv(Ci)

)
> γ φdi(Ci)

Definition 1 has some interesting properties. First, it generalizes both the ellipsoidal margin
of Bressan et al. (2020) and the spherical margin of Ashtiani et al. (2016), as D contains
the pseudometric induced by ‖Wx‖2 for every positive semidefinite matrix W � 0, and
it generalizes also the classic SVM margin—see Lemma 4 below. Second, pseudometrics
are versatile and can express, for instance, the Euclidean distance after a projection on a
subspace, modeling scenarios where each class only “cares” about a certain subset of the
features.

Our main contribution is the design and analysis of CheatRec (for Convex Hull
ExpAnsion Trick Recovery), a polynomial-time algorithm for actively learning k-classifiers
with positive convex hull margin.

Theorem 2 Let C be a k-partition of X ⊂ Rm with convex hull margin γ > 0. Then
CheatRec(X,OC , γ) outputs C, runs in time poly(k, n,m), and with high probability makes
a number of label queries to OC bounded by k2 2O(m) (1 + 1/γ)

m−1
2 log(1 + 1/γ) log n.

The key ingredient behind CheatRec is the convex hull expansion trick, a technique that
enables one-sided-error learning without knowing the pseudometrics that define the margin.
Section 4.1.1 describes this technique and contains the proof of Theorem 2.

To put Theorem 2 in perspective, consider the algorithm of Bressan et al. (2020). Under
an ellipsoidal margin of γEL, that algorithm achieves a query bound of roughly

(
m
γEL

)m
log n.

One can check that an ellipsoidal margin of γEL implies a convex hull margin of γ ≥ γEL
3 for

all γEL ≤ 1.4 Hence, in this range, our dependence on γ is better by factors (c1m)m(c2/γ)
m+1

2

for some c1, c2 > 0. In fact, our dependence is nearly optimal:

Theorem 3 For some a > 0 the following claim holds. For all γ ∈
(
0, 15
]
, all m ≥ 2, and

every (randomized) algorithm A, there exists an instance (X,OC) with X ⊂ Rm such that:
|X| ≥

(1+γ
6γ

)m−1
2 , |C| = 2, C has convex hull margin γ, and, in order to return C with constant

probability, A must make at least a|X| queries to OC in expectation.

Theorem 3 is proven in Section 4.1.2. Between Theorem 3 and Theorem 2 there is a gap of at
most 2O(m) poly(k) log(1 + 1

γ) log n. We believe removing the 2O(m) factor requires deriving
tight bounds onM(Sm−1, γ). We also note that, while the definition of convex hull margin
could be generalized to arbitrary normed spaces, our algorithm CheatRec relies on several
technical results (Section 4.1.1) whose generalizability beyond Rm is unclear.

Before continuing, we show that the convex hull margin generalizes the SVM margin. For
any two sets C1, C2 ∈ Rm define their multiplicative SVM margin as

supu∈Sm−1(0,1) infx∈C1,y∈C2 | 〈u, x− y〉 |
supx,y∈C1∪C2

‖x− y‖

Note that this is precisely the usual SVM margin after scaling C1 ∪ C2 so to have radius 1.

4. Their definition uses squared distances, so the relationship with our margin is 1 + γ ≥
√
1 + γEL.

7

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Lemma 4 If C1, C2 have multiplicative SVM margin γ, then they have convex hull margin
γ. Moreover, for every η ∈ (0, 1) there exists a partition C = (C1, C2) of a set X ⊂ R2 having
multiplicative SVM margin at most η but convex hull margin γ for all γ > 0.

Proof The first claim is immediate from the definition of multiplicative SVM margin. For
the second claim let X = C1 ∪ C2 where C1 = {(η, 0), (1, 0)} and C2 = {(0, η), (0, 1)}. One
can check that the multiplicative SVM margin between C1 and C2 is precisely η. Now, for any
x, y ∈ C let d1(x, y) = |x2− y2| and d2(x, y) = |x1− y1|. Clearly, both d1 and d2 are induced
by seminorms over R2, and d1(C1, C2) = d2(C1, C2) > 0 while φd1(C1) = φd2(C2) = 0. Hence
d1(C1, C2) > γφd1(C1) and d2(C1, C2) > γφd2(C2) for all γ > 0.

4.1.1 CheatRec and proof of Theorem 2

The idea behind CheatRec is to boost learning with one-sided error. Suppose we draw
a sample SC of points from some class C that has convex hull margin γ with respect to a
pseudometric d. Using SC we would like to find out, say, half of C, by taking all points that
are close to SC under d. If we could to this, then we could learn C exactly by repeating the
process O(k log n) times, since there are k classes with at most n points each. Unfortunately,
this approach has two problems. First, we do not know d. Second, even if we knew d,
there may be very few points close to SC . We show that both problems can be overcome
as follows. Let K = conv(SC), choose any z ∈ K, and let Q be the scaling of K about z
by a factor 1 + γ. Since d is homogeneous and invariant under translation (recall that d is
induced by a seminorm), then any y ∈ X such that d(y,K) ≤ γφd(K) is in C as well, hence
X ∩Q ⊆ C. This solves the first problem. The second problem is less trivial and requires
choosing carefully |SC | and z. We prove that, if |SC | is large enough and z is (approximately)
the center of mass of K, then Q contains half of C with good probability. We call this the
convex hull expansion trick.

Before continuing, we need some more definitions. Without loss of generality assume
K has full rank (otherwise use the subspace spanned by SC , which can be computed in
time O(|SC |m)). Let R ⊆ Rm be any convex body. We denote by µR =

∫
R x dx and ∂R

respectively the center of mass and the boundary of R. We say R is in isotropic position5

if µR = 0 and
∫
R 〈x, u〉

2 dx = 1 for all u ∈ Sm−1. We let ‖ · ‖R = ‖fR(·)‖2 where fR is
the unique invertible affine transformation such that fR(R) is in isotropic position, and let
dR(x, y) = ‖x − y‖R for all x, y ∈ Rm. For any two points x, y ∈ Rm and any α > 0, let
σ(x, y, α) = y + α(x− y) be the scaling of x by a factor of α w.r.t. y, and for any A ⊂ Rm
let σ(A, y, α) = ∪x∈Aσ(x, y, α).

Lemma 5 Suppose C ⊂ Rm has convex hull margin γ > 0. Let SC be a sample of s
independent uniform random points from C for s = 2O(m)

(
1 + 1

γ

)m−1
2 log2

(
1 + 1

γ

)
large

enough, let z ∈ K = conv(SC) be a (random) point such that P
(
dK(z, µK) ≤ 1

2

)
≥ 3

4 , and
let Q = σ(K, z, 1 + γ). Then Q ∩ (X \ C) = ∅ and P

(
|Q ∩ C| ≥ |C|/2

)
≥ 1

2 .

Proof We use the following results (slightly rephrased from their original version):

5. Not to be confused with the definition of Giannopoulos (2003), where the assumption
∫
R
〈x, u〉2 dx = 1 is

replaced by vol(R) = 1.

8

Margin-Based Active Learning of Classifiers

Lemma 6 (Kannan et al. 1995) If R ⊂ Rm is a convex body in isotropic position, then√
m+ 1

m
B(0, 1) ⊆ R ⊆

√
m(m+ 1)B(0, 1)

Theorem 7 (Naszódi et al. 2020) For every convex body R ⊂ Rm and every γ > 0 there
is a polytope P ⊂ Rm on 2O(m)

(
1 + 1

γ

)m−1
2 vertices such that R ⊂ P ⊂ σ(R,µR, 1 + γ).

Theorem 8 (Kupavskii 2020) The VC dimension of the family of t-vertex polytopes in
Rm is at most 8m2t log2 t.

First, let us prove that Q ∩ (X \ C) = ∅. Let d be any pseudometric that is homogeneous
and invariant under translation. Since z ∈ K, then any y ∈ σ(K, z, 1 + γ) ∩ X satisfies
d(y,K) ≤ γ φd(K). But K ⊆ conv(C), therefore φd(K) ≤ φd(C). Hence d(y, conv(C)) ≤
γ φd(C). By the convex hull margin this implies y ∈ C. Hence Q ∩X ⊆ C, which in turn
implies Q ∩ (X \ C) = ∅.

Next we prove that P
(
dK(z, µK) ≤ 1

2

)
≥ 3

4 implies P
(
|Q ∩ C| ≥ |C|/2

)
≥ 1

2 . Let

t = 2O(m)
(
1 + 1

γ

)m−1
2 large enough and let Pt,m be the family of all polytopes on at most t

vertices in Rm. By Theorem 8,

vc-dim(Pt) = 2O(m)

(
1 +

1

γ

)m−1
2

log

(
1 +

1

γ

)

Thus, if s = 2O(m)
(

1 + 1
γ

)m−1
2

log
(

1 + 1
γ

)
is large enough and SC is a sample of s inde-

pendent uniform points from C, then—by standard PAC bounds—any P ∈ Pt,m that is
consistent with SC (i.e., such that P ⊃ SC) satisfies P

(
|P ∩ C| ≥ 1

2 |C|
)
≥ 3

4 . It remains to
show that, if dK(z, µK) ≤ 1

2 , then there exists such a P that satisfies P ⊂ Q; the claim then
follows by a union bound.

By Theorem 7 there is P ∈ Pt,m such that K ⊆ P ⊆ σ
(
K,µK , 1 + γ

2

)
; thus we only need

to prove that σ
(
K,µK , 1 + γ

2

)
⊂ σ(K, z, 1 + γ). Observe that, to this end, it is sufficient to

show that dK
(
∂σ(K, z, 1 + γ), σ(K,µK , 1 + γ

2)
)
> 0, since z ∈ K as implied by Lemma 6

and by dK(z, µK) ≤ 1
2 . Now, by the triangle inequality:

dK

(
∂σ(K, z, 1 + γ), σ

(
K,µK , 1 +

γ

2

))
≥ dK

(
∂σ(K,µK , 1 + γ), σ

(
K,µK , 1 +

γ

2

))
− dK

(
∂σ(K,µK , 1 + γ), ∂σ(K, z, 1 + γ)

)
On the one hand, by standard arguments and by Lemma 6,

dK

(
∂σ(K,µK , 1 + γ), σ

(
K,µK , 1 +

γ

2

))
≥ γ

2
inf
x∈∂K

‖x‖K ≥
γ

2

√
m+ 1

m
>
γ

2

On the other hand, since σ(K, z, 1 + γ) = σ(K,µK , 1 + γ) + γ(z − µK),

dK (∂σ(K,µK , 1 + γ), ∂σ(K, z, 1 + γ)) ≤ γ‖z − µK‖K = γ dK(z, µK)

9

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Therefore

dK

(
∂σ(K, z, 1 + γ), σ(K,µK , 1 +

γ

2
)
)
> γ

(
1

2
− dK(z, µK)

)
which is positive for dK(z, µK) ≤ 1

2 , concluding the proof.

Next, we give a polynomial-time implementation of the convex hull expansion trick
of Lemma 5, see Algorithm 1. The minimum volume enclosing ellipsoid (MVEE) of a set
P ⊂ Rm is an ellipsoid E ⊆ Rm of smallest volume such that P ⊆ E. A convex body P ⊆ Rm
is in near-isotropic position if the ratio between the smallest radius of a ball containing P
and the largest radius of a ball contained in P is at most m. By hit-and-run we mean the
hit-and-run algorithm of Lovász and Vempala 2006.

Algorithm 1 ExpandHull(SC , 1 + γ)

1: let N = Ω(m2) large enough and ε = O(m−1) small enough
2: compute the MVEE of conv(SC) and put conv(SC) in near-isotropic position
3: for i = 1, . . . , N do
4: Xi = output of poly(m/ε) hit-and-run steps over conv(SC) starting from 0

5: let z = 1
N

∑N
i=1Xi

6: return σ(SC , z, 1 + γ)

Lemma 9 ExpandHull(SC , 1 + γ) can be implemented to run in time poly(|SC |,m).
Moreover, its output σ(SC , z, 1 + γ) satisfies P

(
dK(z, µK) ≤ 1

2

)
≥ 3

4 where K = conv(SC).

Proof We start with the running time bound. Let K = conv(SC). Computing the MVEE E
of K takes time |SC |m2

(
lnm+ln ln |SC |

)
, see Khachiyan (1996). Putting K in near-isotropic

position can be done by computing the affine transformation that maps E into the unit ball
B(0, 1), which clearly takes time poly(m). At that point by John’s theorem (John, 1985)
we have B(0, 1/m) ⊆ K, hence 0 is at distance at least 1

m from ∂K. If we then execute
hit-and-run from 0, we have:

Lemma 10 (see Lovász and Vempala 2006, Corollary 1.2) For any ε > 0, the distri-
bution of the random walk after t = Θ

(
m5 ln m

ε

)
steps is ε-uniform over K.

It remains to implement hit-and-run in time poly(|SC |,m). To this end we need to solve the
following problem: given any x ∈ K and any u ∈ Sn−1, determine the intersection of the ray
{x + αu}α≥0 with ∂K. This amounts to finding the maximum α ≥ 0 such that x + αu is
in conv(SC), which can be done via linear programming in time tK = poly(|SC |,m) with
polynomial precision. Summarizing, the total time to draw X1, . . . , XN and compute z is:

O
(
|SC |m2

(
lnm+ ln ln |SC |

)
+NtK m

5 ln
m

ε

)
Setting N = O(m2), ε = O(m−1), and tK = poly(|SC |,m) yields a bound of poly(|SC |,m).

We now prove that σ(SC , z, 1+γ) satisfies P
(
dK(z, µK) ≤ 1

2

)
≥ 3

4 . Recall that the uniform
probability measure U over a bodyK is defined by U(K ′) = vol(K′)

vol(K) for all measurableK ′ ⊆ K.

10

Margin-Based Active Learning of Classifiers

A probability measure P is ε-uniform if |P(K ′)−U(K ′)| ≤ ε for all measurable K ′ ⊆ K. Fix
η > 0, p > 0, ε ≤ η

4(m+1) , and N ≥
16(m+1)2

p2η2
. We show that, if X1, . . . , XN are independent

ε-uniform points from K and X = 1
NXi, then:

P
(
dK
(
X,µK

)
≤ η

)
≥ 1− p (1)

which, for η = 1
2 and p = 1

4 , implies the claim above since—by construction—z = X. To
prove (1) we need two ancillary results. Define RK(K) = supx∈K ‖x‖K . First,

RK(K) ≤ m+ 1 (2)

Consider indeed K in isotropic position, and let K ′ = ϑK where ϑ = vol(K)−1/m, so that
vol(K ′) = 1. Then, K ′ is in isotropic position according to the definition of Giannopoulos
(2003). Define R(K ′) = supx∈K′ ‖x‖. Theorem 1.2.4 of Giannopoulos (2003) implies
R(K ′) ≤ (m+ 1)LK , where LK is the isotropic constant which, for all u ∈ Sm−1, satisfies∫
K′ 〈x, u〉

2 dx = L2
K . Since K ′ = ϑK and

∫
K 〈x, u〉

2 dx = 1 by the isotropy of K, we have
LK = ϑ. Hence R(K ′) ≤ (m+ 1)ϑ, that is, RK(K) ≤ m+ 1.

Second, we claim that if X is ε-uniform over K then ‖EX‖K ≤ 2ε(m+ 1). Indeed, since
X is ε-uniform over K, then there exists a coupling (X,Y) with P(X 6= Y) ≤ ε and Y
uniform over K. Since ‖EY ‖K = 0, we have:

‖EX‖K = ‖E[X − Y]‖K ≤ P(X 6= Y) sup
x,y∈K

dK(x, y) ≤ ε 2RK(K) ≤ 2ε(m+ 1)

where the last inequality is given by (2).
We can now prove (1). ConsiderK in isotropic position; clearly theXi are still independent

and ε-uniform over K, and (1) becomes P
(
‖X‖2 ≤ η

)
≥ 1− p. As ‖X‖2 ≤ ‖EX‖2 + ‖X −

EX‖2, proving that ‖EX‖2 ≤ η
2 and P(‖X − EX‖2 ≤ η

2) ≥ 1− p is sufficient. For the first
part, by the above bound on ‖EX‖K and since ε ≤ η

4(m+1) ,

‖EX‖2 = ‖EXi‖2 ≤ 2ε(m+ 1) ≤ η

2

For the second part, by (2) ‖Xi‖2 ≤ m+ 1 for all i. Therefore, letting Yi = Xi − EXi for all
i, we have ‖Yi‖2 ≤ 2(m+ 1), and thus ‖Yi‖22 ≤ 4(m+ 1)2. Let Y = 1

N

∑N
i=1 Yi. Since the Yi

are independent with EYi = 0, then E 〈Yi, Yj〉 = 0 whenever i 6= j and therefore:

E‖Y ‖22 = E
(

1

N2

N∑
i,j=1

〈Yi, Yj〉
)

=
1

N2

N∑
i=1

E‖Yi‖22 ≤
4(m+ 1)2

N

Using N ≥ 16(m+1)2

p2η2
and Jensen’s inequality yield

(
E‖Y ‖2

)2 ≤ E‖Y ‖22 ≤
p2η2

4 . Therefore
E‖Y ‖2 ≤ pη

2 , which by Markov’s inequality implies P
(
‖Y ‖2 > η

2

)
< p. Substituting Y with

X − EX completes the proof of (1).

We can now prove Theorem 2 by analysing the pseudocode in Algorithm 2. Let a round
be a single iteration of the while loop in CheatRec. For the correctness just note that

11

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Algorithm 2 CheatRec(X,OC , γ)

1: let s = 2O(m)
(
1 + 1

γ

)m−1
2 ln

(
1 + 1

γ

)
large enough

2: while X 6= ∅ do
3: if |X| ≤ ks then query OC to label each point in X and return
4: draw ks i.i.d. uniform random points S from X
5: learn the labels of S by querying OC
6: for i = 1, . . . , k do
7: let Si be the points of S having label i
8: S∗i = ExpandHull(Si, 1 + γ)

9: compute Ĉi = conv(S∗i) ∩X via LP
10: label all points of Ĉi with label i
11: X = X \ Ĉi

Ĉi ⊆ Ci for all i ∈ [k] by Lemma 9. For the query bound, since |S| = ks some i ∈ [k]

satisfies |Si| ≥ s, so by Lemma 9 with probability at least 1
2 we have |Ĉi ∩X| ≥ |Ci|2 . As

shown in Lemma 3 of Bressan et al. (2020), this implies that CheatRec performs more
than 4k log n+ 6a

√
k log n rounds with probability at most n−a for all a > 0. This in turn

implies the query bound by substituting s and noting that each round makes ks queries.
For the running time note that drawing S, asking for all labels, and computing the sets Si
requires time poly(n,m). By Lemma 9, each call to ExpandHull costs time poly(|Si|,m).
Computing conv(S∗i)∩X amounts to solving a polytope membership problem for each x ∈ X,
which takes time poly(|S∗i |,m) via linear programming. Since at each round at least one new
point is labeled, the algorithm makes at most n rounds, proving that CheatRec runs in
time poly(n,m) = poly(n, k,m).

4.1.2 Proof of Theorem 3

Let ε =
√

5γ; clearly ε ∈ (0, 1] by the assumption on γ. Let B ⊂ Rm−1 be the unit (m− 1)-
dimensional ball centered at the origin, and Y be an ε-packing of B of maximum size. It is
well known that |Y | ≥

(
1
ε

)m−1, see Vershynin (2018). With our choice of ε this gives:

|Y | ≥
(

1

5γ

)m−1
2

≥
(

1 + γ

6γ

)m−1
2

where the second inequality comes from γ ≤ 1
5 . Let f : Y → Rm be defined by:

f(y1, . . . , ym−1) = (
√

1− ‖y‖2, y1, . . . , ym−1)

for all y = (y1, . . . , ym−1) ∈ Y . Define X = {f(y) : y ∈ Y }, and let d be the Euclidean
distance. Note that d(f(y), f(y′)) ≥ d(y, y′) for all y, y′ ∈ Y . Thus X ⊆ Sm−1 is an ε-packing
of Sm−1 of size n ≥

(1+γ
6γ

)m−1
2 .

Now choose any x ∈ X. Let C1 = {x}, C2 = X \ C1, and C = (C1, C2). We claim that
both C1 and C2 have convex hull margin γ under d. For C1 this is trivial since φd(C1) = 0
and d(X \ C1, conv(C1)) > 0. For C2, consider any x′ ∈ X \ {x} and let p be the projection

12

Margin-Based Active Learning of Classifiers

of x′ on the subspace span(x) spanned by x. As the hyperplane orthogonal to span(x) and
containing p separates X \ C2 and C2,

d(X \ C2, conv(C2)) ≥ d(x, p)

Let θ be the angle between x and x′. Standard trigonometric arguments show that d(x, p) =
d(x, x′) sin θ

2 , and since θ ≥ d(x, x′) > ε, then d(x, p) > ε sin ε
2 . As sin a > 0.8 a for all

a ∈ (0, 1/2], then d(x, p) > 0.4 ε2. We conclude that d(X \ C2, conv(C2)) > 0.4 ε2 too. Since
φ(C2) < 2, the convex hull margin of C2 is at least 0.2 ε2 = γ.

Now consider an instance (X,OC) obtained by drawing x uniformly at random from X
and letting C = (X \ {x}, {x}) as described above. Clearly, any deterministic algorithm that
returns C with constant probability must make at least a|X| queries to OC for some universal
a > 0. By Yao’s principle (see Motwani and Raghavan 1995) this implies the claim.

4.2 The one-versus-all margin

This section generalizes the setting of Section 4.1 by letting X be a generic set equipped
with a set of pseudometrics. As in Section 4.1, we want a notion of margin between classes.
However, we cannot express the margin in terms of diameter of convex hulls, since we do
not assume X to be a vector space or to have any notion of convexity. Thus, we introduce a
notion called one-versus-all margin. We prove that classifiers with positive one-versus-all
margin can be learned with O(log n) oracle queries. However, we do not provide a running
time analysis; the implementation of our algorithm depends on X and on properties of C,
and in general may take time superpolynomial in the size of the input.

Definition 11 (One-versus-all margin) Fix k pseudometrics d1, . . . , dk over X . A par-
tition C = (C1, . . . , Ck) of a finite set X ⊂ X has one-versus-all margin γ with respect to
d1, . . . , dk if, for all i ∈ [k], we have di(X \ Ci, Ci) > γ φdi(Ci).

Note that, unlike the convex hull margin (Definition 1), here d1, . . . , dk are fixed in advance.
The reason is that, as said above, X may not be a linear space, C1, . . . , Ck may not be
convex, and d1, . . . , dk may not be induced by seminorms. These properties appear to
be crucial for learning C without knowing d1, . . . , dk (see Section 4.1). Note that if a
clustering C in Rm has convex hull margin γ then it has one-versus-all margin γ, too, since
di(X \ Ci, Ci) ≥ di(X \ Ci, conv(Ci)) > γ φdi(Ci). In this sense the one-versus-all margin is
a generalization of the convex hull margin.

Under the one-versus-all margin we prove two main results. First, in Section 4.2.1 we
prove that the one-versus-all margin subsumes well-known notions of stability that yield
polynomial-time algorithms for center-based clusterings, such as k-means or k-medians.
Second, in Section 4.2.2 we give an algorithm, mRec, that learns C with a query rate of
O(log n). Formally, recallingM(γ, ·) from Section 3 and letting M(γ) = maxi∈[k]M(γ, di),
we prove: We prove:

Theorem 12 Let C be a k-partition of X with one-versus-all margin γ > 0 with respect to
d1, . . . , dk. Then mRec(X,OC , γ, d1, . . . , dk) outputs C while making O

(
M(γ) k log k log |X|

)
queries to OC with high probability. Moreover, for some universal b > 0, every (randomized)
algorithm that learns classifiers with one-versus-all margin γ > 0 makes at least bM(2γ)
label queries in the worst case.

13

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Due to the generality of the setting, mRec is based on purely learning-theoretical arguments.
Thus, unlike what we did for CheatRec (Section 4.1), we do not prove running time bounds
for mRec, as they depend on the particular semimetric space at hand.

4.2.1 One-versus-all-margin and stability of center-based clusterings

Fix any pseudometric d over X . A partition C = (C1, . . . , Ck) of X is a center-based clustering
if there exist k points c1, . . . , ck ∈ X , called centers, such that for every i ∈ [k] and every
x ∈ Ci we have d(x, cj) > d(x, ci) for all j 6= i. In words, every point is assigned to the
nearest center. It is well known that computing center-based clusterings that minimize
objective functions such as k-means or k-centers is NP-hard in general (Cohen-Addad and
Srikanta, 2019). However, those problems become polynomial-time solvable if the optimal
solution C meets certain stability properties. We show that two such properties, the α-center
proximity of Awasthi et al. (2012) and the (1 + ε)-perturbation resilience of Bilu and Linial
(2012), imply positive one-versus-all margin. Let us recall these properties. A function d′

(not necessarily a pseudometric) is a (1 + ε)-perturbation of d if d ≤ d′ ≤ (1 + ε)d.

Definition 13 Let C be a center-based clustering.

• C satisfies the α-center proximity property with α > 1 if, for all i ∈ [k], for all x ∈ Ci
and all j 6= i we have d(x, cj) > αd(x, ci).

• C is (1+ε)-perturbation resilient with ε > 0 if it is induced by the same centers c1, . . . , ck
under any (1 + ε)-perturbation of d.

It is known that (1 + ε)-perturbation resilience implies α-center proximity with α = 1 + ε,
see (Awasthi et al., 2012). We show:

Theorem 14 If C satisfies α-center proximity, then it has one-versus-all margin (α−1)2
2(α+1) .

Hence, if C satisfies (1 + ε)-perturbation stability, then it has one-versus-all margin ε2

2(ε+2) .

Proof Consider any cluster Ci with center ci, let x′ = arg maxx∈Ci d(x, ci), and choose any
x ∈ Ci and any y ∈ Cj with j 6= i. If d(x′, ci) = 0 then clearly φd(Ci) = 0, and α-center
proximity implies d(y, x) = d(y, ci) > αd(y, cj) ≥ 0 = γφd(Ci) for all γ > 0. Suppose then
d(x′, ci) > 0; we consider two cases.
Case 1: d(x, ci) = 0. Then d(y, ci) = d(y, x) and d(x′, ci) = φd(Ci). We obtain:

φd(Ci) = d(x′, ci)

<
1

α
d(x′, cj)

≤ 1

α

(
d(x′, ci) + d(ci, y) + d(y, cj)

)
<

1

α

(
φd(Ci) + d(y, x) +

1

α
d(y, ci)

)
=

1

α
φd(Ci) +

1

α
d(y, x) +

1

α2
d(y, x)

from which we infer d(y, x) > α(α−1)
α+1 φd(Ci) >

(α−1)2
2(α+1)φd(Ci).

14

Margin-Based Active Learning of Classifiers

Case 2: d(x, ci) > 0. We start by deriving:

d(y, x) ≥ d(x, cj)− d(y, cj)

> d(x, cj)−
1

α
d(y, ci)

≥ d(x, cj)−
1

α

(
d(y, x) + d(x, ci)

)
= − 1

α
d(y, x) + d(x, cj)−

1

α
d(x, ci)

and thus d(y, x)
(
α+1
α

)
> d(x, cj)− 1

αd(x, ci), which yields

d(y, x) >
α

α+ 1
d(x, cj)−

1

α+ 1
d(x, ci) (3)

Let β = d(x′,ci)
d(x,ci)

. Note that φd(Ci) ≤ 2βd(x, ci), thus d(x, ci) ≥ φd(Ci)
2β . We consider two

cases. First, suppose β ≤ α+1
α−1 . In this case apply d(x, cj) > αd(x, ci) to (3) to obtain:

d(y, x) >
α2

α+ 1
d(x, ci)−

1

α+ 1
d(x, ci)

= d(x, ci)(α− 1)

≥ φd(Ci)

2β
(α− 1)

≥ φd(Ci)
(α− 1)2

2(α+ 1)

Suppose instead β > α+1
α−1 . Since we chose x′ ∈ Ci such that d(x′, ci) = βd(x, ci),

d(x, cj) > d(x′, cj)− d(x, x′)

> αd(x′, ci)−
(
d(x, ci) + d(x′, ci)

)
= αβd(x, ci)−

(
d(x, ci) + βd(x, ci)

)
= d(x, ci)((α− 1)β − 1)

Combining this with (3), we obtain:

d(y, x) > d(x, ci)

(
α

α+ 1
((α− 1)β − 1)− 1

α+ 1

)
= d(x, ci)

(
α(α− 1)β

α+ 1
− 1

)
≥ φd(Ci)

2β

(
α(α− 1)β

α+ 1
− 1

)
= φd(Ci)

(
α(α− 1)

2(α+ 1)
− 1

2β

)
> φd(Ci)

(
α(α− 1)− (α− 1)

2(α+ 1)

)
= φd(Ci)

(α− 1)2

2(α+ 1)

15

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Hence in all cases d(y, x) > φd(Ci)
(α−1)2
2(α+1) . This concludes the proof.

4.2.2 mRec and proof of Theorem 12

The idea behind mRec is a classic one: use the smallest hypothesis consistent with the
labeled sample. To be more formal, we need:

Definition 15 For any finite X ⊂ X , any pseudometric d over X , and any γ > 0, the
effective concept class with one-versus-all margin γ with respect to d over X is:

H(X, d, γ) = {C ⊆ X : d(X \ C,C) > γ φd(C)}

Lemma 16 Let d be any pseudometric over X and H = H(X, d, γ). Then H = I(H).

Proof Let C1, C2 ∈ H and C = C1 ∩ C2. Let y ∈ X \ C; without loss of generality we may
assume y /∈ C1. Since C ⊆ C1, then φd(C1) ≥ φd(C) and d(y, C) ≥ d(y, C1). Moreover,
d(y, C1) > γ φd(C1) since C1 ∈ H. Therefore:

d(y, C) ≥ d(y, C1) > γ φd(C1) ≥ γ φd(C)

Thus C has one-versus-all margin γ. As this holds for all C = C1 ∩ C2, then H = I(H).

Let d1, . . . , dk be the pseudometrics of Definition 11. In each round, mRec draws a uniform
random sample S from X, labels it and partitions it accordingly into S1, . . . , Sk. Then, for
each i ∈ [k], it computes the smallest set Ĉi ∈ H(X, di, γ) consistent with Si and labels all
of Ĉi as i. By “smallest set” we mean the intersection of all elements of H(X, di, γ) that
include S. It is easy to see that all assigned labels are correct. To prove the upper bounds
of Theorem 12 it remains to show that, if S is sufficiently large compared toM(γ), then
every round labels a good fraction of X. To begin with, we prove that vc-dim(H(X, di, γ))
is bounded by 1 +M(γ). Recall that I(H) denotes the intersection class of H.

Algorithm 3 mRec(X,OC , γ, d1, . . . , dk)

1: while X 6= ∅ do
2: draw a sample S of Θ

(
M(γ) k ln k

)
points uniformly at random from X

3: use OC to label S and partition it into S1, . . . , Sk
4: for i ∈ [k] do
5: let Ĉi be the smallest set in H(X, di, γ) such that Si ⊆ Ĉi
6: label every x ∈ Ĉi with i
7: X = X \ ∪i∈[k]Ĉi

Lemma 17 Let d be any pseudometric over X and H = H(X, d, γ). Then vc-dim(H,X) ≤
1 +M(γ, d).

Proof By Lemma 16 vc-dim(H,X) = vc-dim(I(H), X). Now we use the following results:

16

Margin-Based Active Learning of Classifiers

Definition 18 (Kivinen 1995, Definition 5.11) Let X be any set and H ⊆ 2X . We say
that H slices X ⊂ X if, for each x ∈ X, there is h ∈ H such that X ∩ h = X \ {x}. The
slicing dimension of (H,X), denoted by sl(H,X), is the maximum size of a set sliced by H.
If H slices arbitrarily large sets, then we let sl(H,X) =∞.

Lemma 19 (Kivinen 1995, Lemma 5.19) vc-dim(I(H),X) ≤ sl(H,X).

Next, we show that sl(H,X) ≤ 1 +M(γ, d); by Lemma 19 this implies the claim.
Let S ⊆ X be any set sliced by H. We show that |S| ≤ 1 +M(γ, d). The case

|S| ≤ 2 is trivial since M(γ, d) ≥ 1. Suppose then that |S| ≥ 3. Choose a, b ∈ S such
that d(a, b) = φd(S). Since S is sliced by H, for any x ∈ S we have S \ {x} = S ∩ C for
some C ∈ H. Since S \ {x} ⊆ C, we have d

(
S \ {x}, x

)
≥ d(C, x) and φd(C) ≥ φd(S \ {x}).

Moreover, d(C, x) > γ φd(C), since x ∈ X \ C and C ∈ H. Therefore:

d
(
S \ {x}, x

)
≥ d(C, x) > γ φd(C) ≥ γ φd(S \ {x})

Hence, d(S \ {x}, x) > γ φd(S \ {x}) for all x ∈ S.
Now, suppose first that γ ≥ 1. Since |S| ≥ 3, any x ∈ S \ {a, b} yields the absurd:

φd(S) ≥ d(S \ {x}, x)

> φd(S \ {x}) since γ ≥ 1

= d(a, b) since a, b ∈ S \ x
= φd(S) by the choice of a, b

Hence |S| ≤ 2 ≤ 1 +M(γ, d).
Suppose instead that γ < 1. Then, for any two distinct points x, y ∈ S, we have

d(x, y) > γφd(S). This is trivially true if x = a and y = b; otherwise, assuming x /∈ {a, b},
it follows by the fact that d(x, y) ≥ d(S \ {x}, x) > γφd(S \ {x}) = γφd(S), as seen
above. Moreover, S is contained in the closed ball B(x, φd(S)) for any x ∈ S. Therefore,
M(B(x, r), γr, d) ≥ |S| for r = φd(S) and some x ∈ X . By definition ofM(γ, d) this implies
that |S| < 1 +M(γ, d). This concludes the proof.

We can finally prove Theorem 12. First, we prove the lower bound. By definition of
M(2γ), there is a set X of M(2γ) points that, according to some d ∈ {d1, . . . , dk}, lies within
a ball of radius r > 0, and thus has diameter at most 2r, and such that d(x, y) > 2γr for all
distinct x, y ∈ X. Now choose x ∈ X uniformly at random, and define C = ({x}, X \ {x}).
The same argument used in the proof of Lemma 17 shows that d(x,X \{x}) > γ φd(X \{x}),
which implies that C has one-versus-all margin γ. Clearly, in expectation over the distribution
of C, any algorithm that learns C exactly makes b |X| = bM(2γ) queries for some universal
b > 0. By Yao’s principle, then, any such algorithm makes bM(2γ) queries on some instance.

We turn to the upper bounds. Consider a generic iteration of mRec and let i ∈ [k]. By
Lemma 17 and standard generalization bounds, if |S| = Θ

(
1
ε

(
M(γ) log 1

ε + log 1
δ

))
then:

P
(∣∣Ci \ Ĉi∣∣ ≤ ε|X|) ≥ 1− δ

17

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Set ε = 1
2k and δ = 1

2 . This makes |S| = Θ
(
M(γ) k log k

)
, and since |Ci \ Ĉi| = |Ci| − |Ĉi|,

the probability bound above yields:

P
(∣∣Ĉi∣∣ ≥ |Ci| − |X|

2k

)
≥ 1

2

which, since
∣∣Ĉi∣∣ ≥ 0, implies:

E
∣∣Ĉi∣∣ ≥ 1

2

(
|Ci| −

|X|
2k

)
=
|Ci|
2
− |X|

4k

Thus, the expected number of points mRec removes from X at the end of a generic round is:

E
∣∣∣Ĉ1 ∪ . . . ∪ Ĉk

∣∣∣ =

k∑
i=1

E
∣∣Ĉi∣∣ ≥ k∑

i=1

(
|Ci|
2
− |X|

4k

)
=
|X|
2
− |X|

4
=
|X|
4

Standard concentration bounds show that with high probability mRec makes O(log n) rounds
and thus O(M(γ) k log k log n) queries, concluding the proof of Theorem 12.

4.3 One-versus-all classifiers

Let X be any domain, X ⊂ X a finite subset, and C = (C1, . . . , Ck) a partition of X. Let
H be any concept class over X . For example, for the ellipsoidal clusters of Bressan et al.
(2020) X = Rm and H is the set of all ellipsoids in Rm; for the convex classes of Section 4.1,
X = Rm and H is the family of all polytopes in Rm. Recall that C is realized by H if for all
i ∈ [k] there is some hi ∈ H such that Ci = X ∩ hi. We start by introducing the coslicing
dimension, a combinatorial quantity similar to the star number of Hanneke and Yang (2015)
and the slicing dimension of Definition 18.

Definition 20 H coslices X ⊆ X if for all x ∈ X there exist h+x , h−x ∈ H such that
X ∩ h+x = {x} and X ∩ h−x = X \ {x}. The coslicing dimension of H is cosl(H) = sup{|X| :
X is cosliced by H}. If H coslices arbitrarily large sets then we let cosl(H) =∞.

Consider for example X = Rm. If H is the set of linear separators, then cosl(H) = ∞; if
instead H is the set of axis-aligned boxes, it is not hard to see that cosl(H) = 2m.

We give two results. First, we show that C is actively learnable if and only if cosl(H) <∞
(Theorem 21). Second, for a wide family of concept classes in Rm, we show that cosl(H) <∞
is equivalent to a positive one-versus-all margin (Theorem 22).

Theorem 21 Suppose cosl(H) <∞. There is an algorithm that, given (X,OC) such that C
is realized by H, learns C with O(cosl(H) k log k log |X|) queries to OC with high probability;
moreover, any algorithm A makes Ω(cosl(H)) label queries in expectation to learn C. If
instead cosl(H) = ∞, then for any algorithm A that learns C there are instances (X,OC)
with X arbitrarily large where A makes Ω(|X|) queries in expectation in the worst case.

Proof The proof is along the lines of the proof of Theorem 12. For the lower bound, let
X be a set cosliced by H. Let x ∈ X be uniform random and let C = ({x}, X \ {x}). By
definition of cosliced set C is realised by H. The same arguments of the proof of Theorem 12

18

Margin-Based Active Learning of Classifiers

show that any algorithm makes Ω(|X|) queries in the worst case. This implies the lower
bounds for both cosl(H) <∞ and cosl(H) =∞. For the upper bounds, let Pk(X) be the
set of all k-partitions of X that are realised by H. For each i ∈ [k] define:

Hi =
{
C ′ : C ′ = C ′i ∧ (C ′1, . . . , C

′
k) ∈ Pk(X)

}
Adapt mRec (Algorithm 3) by (i) drawing S of size Θ(vc-dim(I(Hi), X) k ln k), (ii) letting Ĉi
be the smallest hypothesis in I(Hi) consistent with Si. If we prove that sl(Hi, X) ≤ cosl(H),
then the proof of Lemma 17 carries on with vc-dim(I(Hi), X) ≤ cosl(H) and yields our
bound. To prove that sl(Hi, X) ≤ cosl(H), suppose that U = {x1, . . . , x`} ⊆ X is sliced by
Hi. By construction of Hi this means that there are ` classes C1, . . . , C`, each one realised by
H, such that Ci = ({xi}, U \ {xi}) for all i ∈ [k]. Thus U is cosliced by H, so |U | ≤ cosl(H),
and sl(Hi, X) ≤ cosl(H). We conclude that the adaptation of mRec learns C by making
with high probability O(cosl(H)k log k log n) queries.

For our second result, let us say that H is non-fractal if there exists h ∈ H such that
both h and X \ h contain some ball of positive radius; this avoids pathological cases such as
H containing only affine transformations of Cantor’s set.

Theorem 22 Let H be a concept class in Rm that is non-fractal and closed under affine
transformations. There is an algorithm that, given any instance (X,OC) where C is realized
by H and has one-versus-all margin γ > 0, learns C by making O

(
(1 + 4/γ)m k log k log |X|

)
queries to OC with high probability. Moreover, for any randomized algorithm A there are
instances (X,OC), with X arbitrarily large and C realized by H with arbitrarily small one-
versus-all margin, where A makes Ω(|X|) label queries in expectation to learn C.

Proof The upper bound follows from Theorem 12, by recalling that in the Euclidean
metric the unit ball has covering number N (B(x, 1), ε) ≤ (1 + 2/ε)m for all ε > 0 and
M(B(x, 1), ε) ≤ N (B(x, 1), ε/2). For ε = γ this yields M(γ) ≤ (1 + 4/γ)m.

We now prove the lower bound. Choose γ > 0 arbitrarily small. Take any h ∈ H such
that both h and h = Rm \h contain a ball of positive radius. Then for any ρ > 0 there exists
a closed ball B with radius r > 0 such that:

B ⊆ h
∃x ∈ h : d(B, x) ≤ ρ

Let c be the center of B. Consider a sphere S of radius r′ that contains x and whose center
c′ lies on the affine subspace x + α(c − x), see Figure 1. Let η = supy∈S\B d(x, y) and let
X be an η-packing of S. By making r′ and η

r′ arbitrarily small we can make X arbitrarily
large. Now consider x′ ∈ X \ {x}. Since by construction d(x′, x) > η, and as r′ < r, then
x′ ∈ B ⊆ h. Hence h satisfies X ∩ h = X \ {x}. Now, for any x′ ∈ X there is an invertible
affine transformation Rx′ (a rotation) such that Rx′(x′) = x. Let then hx′ = R−1x′ hx. Clearly
X ∩ hx′ = X \ {x′}, and since H is closed under affine transformations, then hx′ ∈ H. Thus
for every x ∈ X there exists hx ∈ H such that X ∩ hx = X \ {x}.

Now consider the complement h of h. The argument above applies to h, too, hence
for every x ∈ X there exists an invertible affine transformation Rx′ such that hx := Rx′h

19

Bressan, Cesa-Bianchi, Lattanzi, Paudice

c

B

c′x

X

Figure 1: The η-packing X of S is in B, and thus in h, except for x that lies in h. By taking
B arbitrarily close to x we can make η arbitrarily small and X arbitrarily large.

satisfies X ∩ hx = X \ {x}. The complement hx of hx thus satisfies X ∩ hx = {x}, and since
hx = Rx′h, then hx ∈ H.

We conclude that for every x ∈ X there exist h−x , h+x ∈ H such that X ∩ h−x = X \ {x}
and X ∩ h+x = {x}; thus every 2-clustering C of X in the form C1 = {x}, C2 = X \ {x} is
realized by H. This immediately implies that any algorithm makes Ω(|X|) queries to learn C
on some instance (X,OC). As we can make X arbitrarily large, this completes the proof.

Note that Theorem 22 applies to many fundamental concept classes—for instance linear
separators, ellipsoids, polytopes, and more in general convex bodies (bounded or not, and
possibly degenerate), as well as disjoint unions of those concepts.

5. Learning classifiers in finite semimetric spaces

In this section we consider learning classifiers in (finite) semimetric spaces. The use of
semimetrics is common in domains where the notion of distance is strongly non-Euclidean (see
Gottlieb et al., 2017). Classic examples include the Wasserstein distance in vision, the
Levenshtein distance in string matching, the cosine dissimilarity in document analysis, the
Pearson dissimilarity in bioinformatics. In all these cases, the notions of convexity and
separability with margin are lost, or exist only in certain generalized forms, hence the
techniques of Section 4.1 do not apply anymore. To fill this gap, we introduce a novel
notion of class convexity that can be applied to any finite semimetric space and exploited
algorithmically. Let X be a finite set and d a semimetric over X. We assume that (X, d) is
given as a weighted graph G = (X, E , d) where {x, y} ∈ E if and only if d(x, y) > 0. We would
like to use G to define our abstract notion of convexity. We start by considering geodesic
convexity (Pelayo, 2013), a well-known generalization of Euclidean convexity. A set C ⊆ X
is geodesically convex if every shortest path in G between pairs of vertices of C lies in C.
Unfortunately, this condition is too lax. To see this, let X consist of n distinct points on
a circle with the Euclidean metric. In G, the shortest path between any two points x, y is
the edge {x, y}. Thus, any C ⊆ X will be geodesically convex, hence H = [k]X and Ω(n)
queries are needed to learn C in the worst case. However, a variant of this approach gives a
suitable notion of convexity. For any ε > 0 let Gε be the unit disk graph of

(
X, dε

)
; this is

the simple graph where x, y ∈ X are connected if and only if d(x, y) ≤ ε. For any simple

20

Margin-Based Active Learning of Classifiers

graph G = (V,E) and any x, y ∈ V denote by dG(x, y) the shortest-path distance between x
and y in G.

Figure 2: Left: a set X ⊂ R2. Middle and right: the graphs Gε1 and Gε2 where ε1 < ε2 are
the radii of the “outer” class C1 and the “inner” class C2. The partition is (β, γ)-convex for
β ≤ .5 and γ ≤ .1.

Definition 23 Let β, γ ∈ (0, 1]. A k-partition C = (C1, . . . , Ck) of X is (β, γ)-convex if
there is ε > 0 such that for each i ∈ [k] the following properties hold:

1. connectedness: Gε[Ci] is connected

2. local metric margin: for all x, y ∈ X, if x ∈ Ci and y /∈ Ci then d(x, y) > βε

3. geodesic convexity with margin: if x, y ∈ Ci, then in Gε any simple path between x
and y of length at most (1 + γ)dGε(x, y) lies in Ci

The smallest value of ε satisfying the three properties is called the radius of the classes.6

Figure 3: Left: a toy point set. Right: the graph Gε[X] and a valid (β, γ)-convex partition
for X for any β < 1

2 and γ > 0 (classes encoded by the color of the points).

Although definition 23 might seem artificial at first sight, it captures pretty interesting
scenarios. Indeed, (β, γ)-convex classes can be strongly non-convex in Rm, see Figure 3.
Section 5.3 gives a more elaborate version of Definition 23 allowing for classes with different
radii, as in Figure 2. These examples suggest that one can view (β, γ)-convexity as a way of
translating density into convexity.

Moreover, we can show that (β, γ)-convexity becomes uninteresting if we drop any one of
the conditions of Definition 23. Let indeed X = R2, let k = 2, and let d be the Euclidean
distance. We use Figure 4 for reference.

6. Actually, our algorithm in Section 5.2 works with any such ε; we use the minimum to disambiguate.

21

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Figure 4: Example of classes that sastisfy all properties of Definition 23 except: connectivity
(top), local metric margin (middle), geodesic convexity with margin (bottom). Empty nodes
are in C1, filled nodes are in C2. The edges shown are those of Gε[X].

Removing connectivity. Choose any β, γ ≤ 1. Let X consist of disjoint subsets, each one
with diameter ≤ ε, and sufficiently far from each other. Label any subsets as C1 and the rest
as C2. Note that the second and third property in Definition 23 are satisfied.
Removing local metric margin. Choose any γ ≤ 1. Let C1 consist of collinear points spaced
by ε, and the same for C2, so that two extremal points of C1 and C2 are at arbitrarily small
distance δ < ε. Note that the first and third property in Definition 23 are satisfied.
Removing geodesic convexity with margin. Choose any β < 1

2 . Let X consist of collinear
points spaced by ε

2 , with the points of C1 and C2 interleaved. Note that the first and second
property in Definition 23 are satisfied, but the third one is violated for any γ = ω(1/n): take
the two extreme nodes of C1 and change their shortest path to use a point of C2.

Our main result is LearnBGC (Algorithm 4 in Section 5.2), an efficient active learning
algorithm for (β, γ)-convex classifiers.

Theorem 24 Let C = (C1, . . . , Ck) be a (β, γ)-convex partition of X with radius ε and let
s = (s1, . . . , sk) where si ∈ Ci for each i. Then LearnBGC(G, β, γ, ε, s, OC) learns C exactly
in time O(k2(n+m)) using O

(
k2 log n+k2M

(βγ
2+γ

))
= O

(
k2 log n+k2(6/βγ)dens(X)

)
queries.

In many aspects, Theorem 24 cannot be significantly improved: as we show in Section 5.6,
the dependence onM and dens is essentially tight, and any algorithm needs Ω(n) queries if
the seed nodes s1, . . . , sk are not available or if one changes the definition of (β, γ)-convexity
to allow for a different semimetric for each class.

To relax the assumptions of Theorem 24, we introduce seed queries. For any S ⊆ X and
i ∈ [k], seed(S, i) returns an arbitrary point si ∈ Ci ∩S, or nil if Ci ∩S = ∅. We show that,
at the price of some seed queries, one can learn C without knowing ε or s1, . . . , sk. In fact,
if we adopt a “hereditary” version of the geodesic convexity property, then we can even allow
each class Ci to have its own radius εi, which captures classes that are dense at a different
scale, as in Figure 2. Formally:

Definition 25 Let β, γ ∈ (0, 1]. A partition C = (C1, . . . , Ck) of X is hereditary (β, γ)-
convex if for some εεε = (ε1, . . . , εk) ∈ Rk≥0 the following properties hold for all i ∈ [k]:
1. connectedness: Gεi [Ci] is connected
2. local metric margin: for all x, y ∈ X, if x ∈ Ci and y /∈ Ci, then d(x, y) > βεi

3. hereditary geodesic convexity with margin: for any ε ≤ εi, if x, y ∈ Ci and dGε(x, y) <∞,
then in Gε any simple path between x and y of length at most (1 + γ)dGε(x, y) lies in Ci

22

Margin-Based Active Learning of Classifiers

Our main result is LearnHBGC (Algorithm 10 in Section 5.3), an efficient algorithm based
on label and seed queries to learn hereditary (β, γ)-convex classifiers.

Theorem 26 Let C be hereditary (β, γ)-convex. Then LearnHBGC(G, β, γ,εεε,OC) learns C
exactly, has the same runtime as LearnBGC, and uses the same number of label queries as
LearnBGC plus O(k2) seed queries.

Next, we investigate the cost of learning C when the model parameters are unknown.
First we show how, when β and/or γ are unknown, one can learn a (hereditary) (β, γ)-convex
classifier C for a small overhead in terms of queries and running time. Formally, we prove:

Theorem 27 Suppose C is (hereditary) (β, γ)-convex. If only one of β, γ is unknown then
one can learn C in time O

((
k2 + log 2

p

)
(n + m)

)
using O

(
k2 log n +

(
k2+log 2

p

)
M
(βγ

2

))
label queries and

(
3k2 + 2 log 2

p

)
seed queries, where p ∈ {β, γ} is the unknown parameter.

If both β, γ are unknown then one can learn C in time O
((
k2 + log2 2

βγ

)
(n + m)

)
using

O
(
k2 log n+

(
k2 + log2 2

βγ

)
M
(βγ

2

))
label queries and

(
3k2 + 2 log 2

βγ

)
seed queries.

Finally, we show one can efficiently learn the radii of a hereditary (β, γ)-convex classifier.

Theorem 28 The radii ε1, . . . , εk can be learned using O(k log n) seed queries in time
O(mα(m,n) + kn log n), where m = |E| and α(m,n) is the functional inverse of the Acker-
mann function.7 Moreover, any (randomized) algorithm needs Ω(k log n

k) seed and/or label
queries to learn the radii of all classes with constant probability.

5.1 Additional notation

We denote by G = (V,E) a generic unweighted graph. We denote by ρ(G) the number of
connected components of G; for any U ⊆ V we denote by G[U] the subgraph of G induced
by U , and by ΓG(U) the set of edges of G with exactly one endpoint in U . An edge in ΓG(U)
is called a cut edge of U . We often treat such edges as oriented by writing (x, y) ∈ ΓG(U) to
specify that x ∈ U and y /∈ U . We assume the algorithm is given a vector s = (s1, . . . , sk) of
seed nodes si ∈ Ci for each i ∈ [k] and that the radius ε is known. Without s any algorithm
needs Ω(n) queries, see Section 5.6. These assumptions may be avoided by introducing seed
queries : for any S ⊆ X and i ∈ [k], seed(S, i) returns an arbitrary point si ∈ Ci ∩ S, or nil
if Ci ∩ S = ∅. Given a bipartition (S,X \ S) of X and i ∈ [k], with two seed queries one
can check whether Ci is cut by the partition, yielding a kind of separation oracle.

Recall M(η) from Section 3. Following Gottlieb et al. (2017), we define the density
constant of X as µ(X) =M(1/2) and the density dimension of X as dens(X) = log2 µ(X).8

It is easy to see thatM(η) ≤ µ(X)dlog2 1/ηe ≤ (2/η)dens(X) for every η > 0.

5.2 LearnBGC and proof of Theorem 24

This section describes LearnBGC and proves the correctness and query bounds of Theorem 24.
The proofs of the running time bounds require some care, and are deferred to Section 5.4.
To simplify the notation we omit G, β, γ,OC from the parameters passed to the algorithms

7. For all practical purposes, α can be considered constant. For instance, α(m,m) ≤ 4 for all m ≤ 1
8
22

22
65536

.
8. While Gottlieb et al. (2017) uses open balls, we use closed balls.

23

Bressan, Cesa-Bianchi, Lattanzi, Paudice

and their subroutines. LearnBGC first computes the graph Gε and then invokes a second
algorithm, LearnClass, which provides:

Lemma 29 LearnClass(Gε, ε, s, i) returns Ci using O
(
k log n+ kM

(βγ
2+γ

))
queries.

The correctness and query bounds of Theorem 24 follow immediately from Lemma 29 and
the pseudocode of LearnBGC below. Hence the rest the section deals with LearnClass and
the proof of Lemma 29.

Algorithm 4 LearnBGC(ε, s)
1: compute Gε
2: for i = 1, . . . , k do
3: Ci := LearnClass(Gε, ε, s, i)

return (C1, . . . , Ck)

5.2.1 Margin-based separation, and binary search on shortest paths.

We begin with a simple routine MBS (for Margin-Based Separator) that is useful for learning
the labels of any set of small radius.

Algorithm 5 MBS(Z, ε)

1: Z1 := · · · := Zk := ∅
2: for each connected component H of Gβε[Z] do
3: query OC for the label i of any x ∈ V (H)
4: add V (H) to Zi

return (Z1, . . . , Zk)

Lemma 30 For any Z ⊆ X such that Z ⊆ B(z, r) for some z ∈ X and r <∞, MBS(Z, ε)
returns (Z ∩ C1, . . . , Z ∩ Ck) using at mostM

(βε
r

)
queries.

Proof If H is a connected component of Gβε[Z] then d(x, y) ≤ βε for all {x, y} ∈ E(H),
hence by the local metric margin V (H) ⊆ Ci for some i. This proves the correctness. For
the query bound, note that the vertices queried at line 4 form a set P independent in Gβε[Z],
thus d(x, y) > βε for all distinct x, y ∈ P . By definition ofM(·) then |P | ≤ M

(βε
r

)
.

Next, we give a condition for finding efficiently a cut edge of Ci. A path π = (x1, . . . , x|π|) is
Ci-prefixed if there exists j∗ ∈

[
|π|
]
such that xj ∈ Ci if and only if j ∈ {1, . . . , j∗}.

Lemma 31 Let Ci ⊆ R ⊆ X such that Gε[R] is connected. Then in Gε[R] any shortest path
between any si ∈ Ci and any s ∈ R \ Ci is Ci-prefixed.

Proof Suppose Gε[R] contains a shortest path π between si ∈ Ci and s ∈ R \ Ci that is not
Ci-prefixed. Then some prefix π′ of π is a shortest path between si ∈ Ci and s′i ∈ Ci that
intersects R \ Ci. Now observe that π′ is a shortest path in G, too. This holds because any
shortest path between si and s′i in Gε lies in Gε[Ci] by geodesic convexity, and thus in Gε[R]
as Ci ⊆ R. By geodesic convexity this implies π′ ⊆ Gε[Ci], a contradiction.

24

Margin-Based Active Learning of Classifiers

Finally, in a Ci-prefixed simple path, a cut edge of Ci can be found via binary search, yielding
a routine FindCutEdge with the following guarantees whose proof is straightforward:

Lemma 32 Given a simple Ci-prefixed path π, FindCutEdge(π) returns the unique cut edge
of Ci in π using O(log n) queries.

Algorithm 6 FindCutEdge(π(si, sh))

1: if |π(si, sh)| = 1 then return π(si, sh)

2: choose a median node x in π(si, sh)
3: if OC(x) = i then return FindCutEdge(π(x, sh)) else return FindCutEdge(π(si, x))

5.2.2 Class separators

We introduce the notion of class separator, which is at the heart of LearnClass.

Definition 33 Let R ⊆ X and Ci, Cj ∈ C. A partition (Si, Sj) of R is an (i, j)-separator
of R if Si ∩ Cj = Sj ∩ Ci = ∅.

A class separator is similar to half-spaces in abstract closure systems (Seiffarth et al., 2019),
which require Ci ⊆ Si and Cj ⊆ Sj . We use the weaker condition Si ∩ Cj = Sj ∩ Ci = ∅
because in some of our algorithms R (X and thus Cj ⊆ R might not hold. However we
will always ensure that Ci ⊆ R, and thus Ci ⊆ Si, where Ci is the class we are learning.
Therefore, if we could compute an (i, j)-separator for all j 6= i, then we could compute
Ci as a simple intersection. To compute (Si, Sj) efficiently, suppose we know a cut edge
(ui, uj) between Ci and Cj . First, we compute Z = {x ∈ R : dGε(x, ui) <

1
γ } and learn

Z ∩ Ci using MBS (Algorithm 5). For every x ∈ R \ Z, instead, we show that the condition
dGε(x, ui) ≤ dGε(x, uj) tells whether to place x in Si or Sj without making queries:

Lemma 34 Let (ui, uj) ∈ Gε be a cut edge between Ci and Cj and suppose 1
γ ≤ dGε(ui, x) <

∞. If dGε(ui, x) ≤ dGε(uj , x) then x /∈ Cj, and if dGε(ui, x) ≥ dGε(uj , x) then x /∈ Ci.

Proof Assume dGε(ui, x) ≤ dGε(uj , x) and x ∈ Cj ; we show this leads to a contradiction.
Consider the path π = π(x, ui)+(ui, uj). First, π is a simple path, as otherwise uj ∈ π(x, ui),
which implies dGε(uj , x) ≤ dGε(ui, x)− 1, contradicting the assumption. Second:

|π| = dGε(x, ui) + 1

≤ dGε(x, uj) + 1 since dGε(ui, x) ≤ dGε(uj , x)

≤ dGε(x, uj) (1 + γ) since dGε(x, uj) ≥ dGε(x, ui) ≥ 1/γ

Thus, π is a simple path between two points of Cj , with length at most (1 + γ) times their
distance in Gε, and containing a point of Ci. This violates the geodesic convexity of Cj . We
conclude that x /∈ Cj . The other case is symmetric.

We can now introduce FindSeparator (Algorithm 7), a routine for computing an (i, j)-
separator given a cut edge between Ci and Cj .

25

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Algorithm 7 FindSeparator(Gε, ui, uj)

1: Z := {x ∈ V (Gε) : dG(ui, x) < 1/γ}
2: (Z1, . . . , Zk) := MBS(Z, ε)
3: Ui := ∅, Uj := ∅
4: for each x ∈ V (Gε) \ Z do
5: if dGε(x, ui) ≤ dGε(x, uj) then add x to Ui else add x to Uj
6: return (Zi ∪ Ui, (Z \ Zi) ∪ Uj)

Lemma 35 Let (ui, uj) ∈ Gε be a cut edge between Ci and Cj. FindSeparator(Gε, ui, uj)
returns an (i, j)-separator (Si, Sj) of V (Gε) using at mostM(βγ) queries.

Proof The query bound follows from Lemma 30 by observing that Z ⊆ B(ui, ε/γ). For the cor-
rectness, we show that (Zi, Z \Zi) is an (i, j)-separator of Z and (Ui, Uj) is an (i, j)-separator
of V (Gε) \Z. For Z, Lemma 30 guarantees that Zi = Ci ∩Z. So Zi ∩Cj = (Z \Zi)∩Ci = ∅,
and (Zi, Z \ Zi) is an (i, j)-separator of Z. Consider now any x ∈ V (Gε) \ Z. By definition
of Z, we have dGε(x, ui) ≥ 1

γ . Therefore, by Lemma 34, if the algorithm assigns x to Ui then
x /∈ Cj , and if the algorithm assigns x to Uj then x /∈ Ci. Therefore Ui ∩ Cj = Uj ∩ Ci = ∅,
and (Ui, Uj) is an (i, j)-separator of V (Gε) \ Z.

5.2.3 Learning a single class with LearnClass

We can finally introduce LearnClass (Algorithm 8) and prove Lemma 29. LearnClass starts
by computing the set of vertices Ri reachable from si in Gε, and the induced subgraph
Gε,i = Gε[Ri]. Note that, by the connectedness of the classes, Ri is simply the union of Ci
and possibly other classes. Now, consider a seed node sh ∈ s such that sh ∈ Ri \ {si}. If
no such sh exists, then Ri = Ci and we are done. Otherwise, compute the shortest path
π between sh and si in Gε,i. By Lemma 31, π is Ci-prefixed, and so by Lemma 32 we can
find a cut edge (ui, uj) of Ci with O(log n) queries. Using (ui, uj) we can then compute an
(i, j)-separator (Si, Sj) of X = V (Gε) using FindSeparator. Finally, we update Gε,i to be
the connected component of si in Gε[Ri ∩Si], and Ri to be V (Gε,i). By definition of (Si, Sj),
this removes from Gε,i all vertices of Cj , so we have reduced by at least one the number of
classes other than Ci intersected by Ri. After at most k− 1 of these rounds we have Ri = Ci.

This process has an issue: it can run out of seeds. Indeed, by taking Ri ∩ Si we could
remove every seed node sh, even if Ri ∩ Si still contains points of Ch. If this is the case
then LearnClass would be stuck, that is, unable to compute a new cut edge. One is tempted
to ignore that sh /∈ Ri, and compute the shortest path between sh and si for all h 6= i
nonetheless. This however does not work, as the only cut edge on all those shortest paths
could be (ui, uj). We bypass this obstacle by exploiting the separators found by LearnClass.
By carefully analysing the cuts of those separators we devise an algorithm, FindNewSeed,
that either finds some new seed sh ∈ Ri \ Ci or certifies that Ri = Ci. FindNewSeed is
invoked by LearnClass at the beginning of each round and is described below.

26

Margin-Based Active Learning of Classifiers

Algorithm 8 LearnClass(Gε, ε, s, i)

1: Gε,i := {the connected component of si in Gε}, Ri := V (Gε,i)
2: u := an empty vector
3: while true do
4: sh := FindNewSeed(Gε, Ri, ε, s,u, i)
5: if sh = nil then return Ri
6: π(si, sh) := ShortestPath(Gε[Ri], si, sh)
7: (ui, uj) := FindCutEdge(π(si, sh))
8: add ui to u
9: (Si, Sj) := FindSeparator(Gε, ui, uj)

10: Gε,i := {the connected component of si in Gε,i[Ri ∩ Si]}, Ri := V (Gε,i)

Proof [of Lemma 29] For each ` = 1, 2, . . ., denote by R`i the set Ri at the beginning of the
`-th iteration, and by κ(R`i) the number of distinct classes that R`i intersects. We show that,
at the beginning of the `-th iteration, the following invariants hold:
I1. Gε[R`i] is connected
I2. Ci ⊆ R`i
I3. κ(R`i) ≤ κ(R1

i)− (`− 1)

Note that I2 and I3 imply that the algorithm stops and returns Ci (line 5) after at most k
iterations. Invariant I1 holds by the construction of R`i , so we focus on proving I2 and I3.

Suppose first ` = 1. Then, I2 holds by the assumptions of the lemma, and I3 is trivial.
Suppose then I1, I2, I3 hold for some ` ≥ 1, and that iteration `+ 1 exists; we show that
I2, I3 hold at iteration `+ 1 as well. First, if iteration `+ 1 exists, then Ci (R`i . Then, by
Lemma 36, FindNewSeed returns sh ∈ R`i \ Ci. As Gε[R`i] is connected by I1, the shortest
path π(si, sh) exists in Gε[R

`
i], and is Ci-prefixed by Lemma 31 applied to R`i . Then by

Lemma 32 FindCutEdge(π(si, sh)) returns a cut edge (ui, uj) of Ci in π(si, sh). At this
point the hypotheses of Lemma 35 are satisfied, so FindSeparator(Gε, ui, uj) returns an
(i, j)-separator (Si, Sj) of V (Gε), hence Ci ⊆ R`i ∩ Si. This implies that the connected
component of si in Gε[R`i ∩ Si] still contains Ci. The vertex set of this connected component
is precisely R`+1

i (line 10), hence I2 holds. Moreover uj ∈ R`i , since uj ∈ π(si, sh) ⊆ R`i .
Therefore R`i ∩ Cj 6= ∅. However, by construction, R`+1

i ⊆ R`i ∩ Si and Si ∩ Cj = ∅ since
(Si, Sj) is an (i, j)-separator of V (Gε). Therefore κ(R`+1

i) ≤ κ(R`i) − 1. As I3 holds at
iteration `, then κ(R`+1

i) ≤ κ(R1
i)− (`− 1)− 1 = κ(R1

i)− ((`+ 1)− 1). So I3 holds too.
Finally, we bound the number of queries. By Lemma 36 (see below), FindNewSeed makes

at most kM
(βγ
2+γ

)
scq in total across all iterations. By Lemma 32, FindCutEdge makes

O(log n) queries at each iteration. By Lemma 35, FindSeparator makes at most M(βγ)
queries at each iteration. Summing the three terms yields the bound.

Finding new seed nodes with FindNewSeed. We describe the routine FindNewSeed
(Algorithm 9) that, given Ri ⊇ Ci, either decides that Ri = Ci or finds a node sh ∈ Ri \ Ci.
The key idea behind FindNewSeed is this: if Ri does not contain any seed sh ∈ s other
than si, then for each h 6= i either Ch ∩Ri = ∅ or, by the connectedness of Gε[Ch], the cut

27

Bressan, Cesa-Bianchi, Lattanzi, Paudice

ΓGε(Ri) must contain some edge of Gε[Ch]. Therefore the task boils down to finding such an
edge, or deciding that there is none. Clearly, checking all edges in ΓGε(Ri) would require too
many queries. Fortunately, the following approach works: for all those edges that are close to
cut edges previously used, we perform an explicit search using MBS(Algorithm 5). For the
remaining edges, geodesic convexity tells whether a cut edge exists without making queries.

Algorithm 9 FindNewSeed(Gε, Ri, ε, s,u, i)

1: if s ∩Ri 6= {si} then return any s ∈ s ∩Ri \ {si}
2: for each u ∈ u do
3: Z = {x ∈ Ri : dGε(u, x) < 2/γ + 1}
4: (Z1, . . . , Zk) := MBS(Z, ε)
5: if Z \ Zi 6= ∅ then return any x ∈ Z \ Zi
6: if ∃ (x, y) ∈ ΓGε(Ri) such that ∀u ∈ u : dGε(u, x) ≥ 2/γ + 1 then return any such x
7: else return nil

Lemma 36 Consider the beginning of any iteration of LearnClass(Gε, ε, s, i). Then, the call
to FindNewSeed(Gε, Ri, ε, s,u) returns a point x ∈ Ri \ Ci if Ri 6= Ci, or nil if Ri = Ci,
using at most kM

(βγ
2+γ

)
queries. Moreover, FindNewSeed can be adapted so as to make at

most kM
(βγ
2+γ

)
queries over the entire execution of LearnClass.

In order to prove Lemma 36 we need to two ancillary results, Lemma 37 and Lemma 38.

Lemma 37 Let (Si, Sj) be an (i, j)-separator for V (Gε) obtained from FindSeparator(V (Gε),
ui, uj). If (x, y) ∈ ΓGε(Si) and dG(ui, x) ≥ 2

γ + 1 then x /∈ Ci.
Proof We show that x ∈ Ci violates the geodesic convexity of Ci. First (x, y) ∈ ΓGε(Si)
implies y ∈ Sj . Moreover, dGε(ui, y) ≥ dGε(ui, x) − 1 > 1

γ . Now recall the code of
FindSeparator. Since dGε(ui, y) > 1

γ , then y /∈ Zj . But y ∈ Sj = Zj ∪ Uj , and therefore
y ∈ Uj . This means that FindSeparator executed line 5, which happens only if:

dGε(uj , y) < dGε(ui, y) (4)

Now consider the path π = (ui, uj)+π(uj , y)+(y, x) from ui to x where π(uj , y) has length
dGε(uj , y). First, we show that π is a simple path. Suppose indeed that π was not simple.
Since π(uj , y) is simple (it is a shortest path), and since ui 6= x (because dGε(ui, x) ≥ 1 by
assumption), then ui ∈ π(uj , y) or x ∈ π(uj , y). If ui ∈ π(uj , y), then dGε(uj , y) > dGε(ui, y),
which contradicts (4). If instead x ∈ π(uj , y), then dGε(uj , y) > dGε(uj , x), which gives:

dGε(uj , y) > dGε(uj , x)

≥ dGε(ui, x) since x ∈ Si
≥ dGε(ui, y)− 1 since (x, y) ∈ E(Gε)

which, since dGε is integral, implies dGε(uj , y) ≥ dGε(ui, y). This contradicts again (4). Thus,
π is a simple path. Next, we show that |π| ≤ dGε(ui, x) (1 + γ). From (4):

dGε(uj , y) ≤ dGε(ui, y)− 1 since dGε ∈ N
≤ dGε(ui, x) + dGε(x, y)− 1 since (x, y) ∈ E(Gε)

= dGε(ui, x)

28

Margin-Based Active Learning of Classifiers

And therefore:

|π| = dGε(uj , y) + 2

≤ dGε(ui, x) + 2 since dGε(uj , y) ≤ dGε(ui, x)

≤ dGε(ui, x) (1 + γ) since dGε(ui, x) ≥ 2

γ

Hence π is a simple path violating the geodesic convexity of Ci. So x /∈ Ci, as claimed.

Recall LearnClass(Gε, ε, s, i) in Algorithm 8. Let R`i be the value of Ri at the beginning of
the `-th iteration, and let (S`i , Sj`) be the separator computed by FindSeparator at the `-th
iteration.

Lemma 38 Let ` ≥ 2. If (x, y) ∈ ΓGε(R
`
i), then (x, y) ∈ Γ(Sτi) for some τ ∈ {1, . . . , `− 1}.

Proof Let τ = min
{

1 ≤ t ≤ `− 1 : (x, y) ∈ ΓGε(R
t+1
i)

}
. First, x ∈ Sτi . Indeed x ∈ Rτ+1

i ,
and by construction Rτ+1

i ⊆ Rτi ∩ Sτi . Second, y /∈ Sτi . Suppose indeed by contradiction
that y ∈ Sτi . Since x ∈ Rτi and (x, y) /∈ ΓGε(R

τ
i), then y ∈ Rτi . Thus y ∈ Sτi ∩ Rτi . So y is

adjacent to x in Gε[Sτi ∩ Rτi], and therefore y ∈ Rτ+1
i as well, by construction of Rτ+1

i as
a connected component. But then (x, y) /∈ ΓGε(R

τ+1
i), which contradicts our hypothesis.

Therefore x ∈ Sτi and y /∈ Sτi . We conclude that (x, y) ∈ ΓGε(S
τ
i).

Proof [of Lemma 36] The query bound holds by Lemma 30 noting that Z ⊆ B
(
u, ε
(
2
γ +1

))
=

B
(
u, ε2+γγ

)
. Let us now prove the correctness. In the first iteration of LearnClass Ri is the

union of Ci and zero or more other classes, ΓGε(Ri) = ∅, and u = ∅. In that case, if Ri = Ci
then FindNewSeed returns nil, otherwise it returns some s ∈ s ∩Ri \ {si}. Consider now
any subsequent iteration of LearnClass. Suppose first that Ri = Ci. Then s ∩ Ri = {si}.
Moreover, at each for iteration, by Lemma 30 Zi = Z, so Z \ Zi = ∅. Finally, note that no
edge (x, y) ∈ ΓGε(Ri) exists such that dGε(u, x) ≥ 2

γ +1 for all u ∈ u. Indeed, if such an edge
existed, Lemma 38 would imply (x, y) ∈ ΓGε(Si) in some previous round of LearnClass, which
by Lemma 37 implies x /∈ Ci—a contradiction, since x ∈ Ri = Ci. Hence, FindNewSeed
reaches line 7 and returns nil. Now suppose that Ri 6= Ci. If sh ∈ Ri for some sh 6= si,
then FindNewSeed returns sh at line 1. Otherwise, we must have Ch ∩Ri 6= ∅ but Ch * Ri
for some h 6= i. By the connectedness of Ch in Gε this implies the existence of an edge
(x, y) ∈ ΓGε(Ri) with x ∈ Ch. If any such edge exists with dGε(u, x) < 2

γ + 1 for some u ∈ u,
then line 5 finds x and returns it. Otherwise, any such edge has dGε(u, x) ≥ 2

γ + 1 for all
u ∈ u. In this case, line 6 returns x such that (x, y) ∈ ΓGε(Ri) and dGε(u, x) ≥ 2

γ + 1 for all
u ∈ u, in which case x /∈ Ci by Lemma 38 and Lemma 37.

To make FindNewSeed use at most kM
(βγ
2+γ

)
queries over the execution of LearnClass, we

keep track of Z \Zi. At each invocation compute the set Zu = {x ∈ Ri : dGε(u, x) < 2
γ + 1},

where u is the last node added to u. Invoke MBS on Zu, retrieve Zui , and add Zu \ Zui
to Z \ Zi. Finally, remove from Z \ Zi all points not in Ri. This sequence of operations
costs M

(βγ
2+γ

)
queries, and the resulting set is exactly the Z \ Zi computed at line 5 of

FindNewSeed. Hence the behavior of LearnClass is unchanged, but the total number of
queries is at most kM

(βγ
2+γ

)
.

29

Bressan, Cesa-Bianchi, Lattanzi, Paudice

5.3 LearnHBGC and proof of Theorem 26

This section describes LearnHBGC (Algorithm 10) and proves Theorem 26. We start by
noting that, if the conditions of Definition 25 hold, then they hold for the smallest εi such
that Ci is connected in Gεi ,9 so without loss of generality we can use such an εi.

Lemma 39 Let C be a hereditary (β, γ)-convex partition of X, and for i ∈ [k] let:

ζi = min{ζ : ∀x, y ∈ Ci : dGζ (x, y) <∞} (5)

ζ∗i = min{ζ : ρ(Gζ [Ci]) = 1} (6)

Then ζi = ζ∗i , and all properties of Definition 25 hold when εi = ζi = ζ∗i .

Proof First, note that ζi ≤ ζ∗i , since ρ(Gζ [Ci]) = 1 implies ∀x, y ∈ Ci : dGζ (x, y) <∞, and
so the minimum in (5) is taken over a superset of that of (6). Now consider the graph Gζi .
For x, y ∈ Ci, since ζi ≤ ζ∗i and dGζi (x, y) < ∞, the geodesic convexity implies that any
shortest path in Gζi between x and y lies in Ci. Thus the subgraph induced by Ci in Gζi is
connected. By definition of ζ∗i this implies ζ∗i ≤ ζi, so ζi = ζ∗i .

For the second claim, let εi = ζ∗i . The connectedness of Gζ∗i [Ci] holds by definition of
ζ∗i . Now let ζ be any value such that the three properties hold when εi = ζ. Then ζ ≥ ζ∗i ,
because for εi < ζ∗i the connectedness fails, by definition of ζ∗i . The hereditarity implies that
the local metric margin and the geodesic convexity with margin hold for εi = ζ∗i , since they
hold for εi = ζ ≥ ζ∗i .

We now turn to LearnHBGC (Algorithm 10). The basic idea is to learn each Ci separately
by invoking LearnClass (Algorithm 8) on the graph Gεi [X]. Unfortunately, this does not
work: any Cj with εj < εi may not satisfy geodesic convexity in Gεi , so LearnClass may fail.
However, we can make things work under the following precautions. First, recover the classes
in nondecreasing order of radius. Second, when recovering Ci, restrict Gεi to the connected
component of si. Third, after recovering Ci, delete it from X. Note that this procedure
learns each Ci on a graph thresholded at a different radius and with only a subset of the
original vertices. Thus, its correctness is not be obvious. In particular, it is not obvious that
the partition induced by the sub-instance used at the i-th iteration is (β, γ)-convex, which
is necessary for LearnClass to work. We show that it is: at every iteration, the residual
instance is (β, γ)-convex, and the guarantees of Lemma 29 hold. In all this, the role of seed
queries is to find a seed node for each class in the connected component of Gεi containing si,
as required by LearnClass.

After one last technical lemma, we can describe LearnHBGC and prove Theorem 26.

Lemma 40 Let C be a hereditary (β, γ)-convex partition of X. Let ε∗ be the smallest radius
of any class and let X∗ be the vertex set of any connected component of Gε∗ that contains a
class with radius ε∗. Finally, let C∗ =

(
C1 ∩X∗, . . . , Cκ ∩X∗

)
. Then C∗ is a (β, γ)-convex

partition of X∗ with radius ε∗ in in Gε∗ [X∗].

9. Note that this is different from requiring that Gεi [Ci] is connected; here we are only requiring that any
two points of Ci have a connecting path in Gεi . Lemma 39 however shows that the smallest εi that
satisfies either condition is actually the same.

30

Margin-Based Active Learning of Classifiers

Proof We verify that the three properties of Definition 23 hold with radius ε∗. This implies
that ε∗ is also the smallest such value, since the corresponding classes becomes disconnected
in Gε[X∗] for any ε < ε∗. Let C∗i = Ci ∩ X∗ for all i ∈ [κ]. To simplify the notation let
G∗ = Gε∗ [X

∗].
Connectivity: the subgraph induced by C∗i in G∗ is connected. Consider two points x, y ∈
C∗i ; obviously x, y ∈ Ci. Since G∗ is connected, dG∗(x, y) < ∞. Moreover, dG∗(x, y) =
dGε∗ (x, y), since by construction G∗ is the connected component of Gε∗ containing x, y. Thus,
dGε∗ (x, y) <∞. Moreover, ε∗ ≤ εi by assumption. Thus, x, y ∈ Ci, and dGε∗ (x, y) <∞ with
ε∗ ≤ εi. Then, by the hereditary geodesic convexity of C on X, any shortest path π between
x and y in Gε∗ lies in Ci. Since again G∗ is the connected component of Gε∗ containing x, y,
then π lies in X∗. We conclude that π ∈ Ci ∩X∗ = C∗i . This holds for any choice of x, y.
Therefore, G∗[C∗i] is connected.
Local metric margin: for all x, y ∈ X∗, if x ∈ C∗i and y /∈ C∗i , then d(x, y) > βε∗. Since
x ∈ C∗i and y /∈ C∗i , then x ∈ Ci and y /∈ Ci. By the local metric margin of C, and since
εi ≥ ε∗, we have d(x, y) > βεi ≥ βε∗.
Geodesic convexity with margin: if x, y ∈ C∗i , then in G∗ any simple path between x and
y of length at most (1 + γ)dG∗(x, y) lies in C∗i . By the same argument of connectivity, we
invoke the hereditary geodesic convexity for x, y ∈ Ci, for ε = ε∗ ≤ εi. We obtain that Gε∗
contains no simple path of length at most (1 + γ)dGε∗ (x, y) between x and y that leaves
Ci. This implies that no such path exists in G∗ as well, since G∗ ⊆ Gε∗ . Moreover, since
C∗i = Ci ∩ X∗, no such path exists in G∗ that leaves C∗i (otherwise it would leave Ci).
Recalling that (1 + γ)dGε∗ (x, y) = (1 + γ)dG∗(x, y), we deduce that in G∗ there is no path of
length at most (1 + γ)dG∗(x, y) between x and y that leaves C∗i .

Algorithm 10 LearnHBGC(X,εεε, s)
1: assume ε1 ≤ . . . ≤ εk
2: for i = 1, . . . , k do
3: G∗ := the connected component of si in Gεi [X], X∗ := V (G∗)
4: for j = i+ 1, . . . , k do s∗j := seed(X∗, j)
5: s∗ := (si, s

∗
i+1, . . . , s

∗
k)

6: Ĉi := LearnClass(G∗, εi, s
∗, i)

7: output Ĉi
8: X := X \ Ĉi

Proof [of Theorem 26] For each i = 1, . . . , k let Xi be the value of X at the beginning of
the i-th iteration of LearnHBGC(X,εεε, s). We prove the following three invariants:

I1. Xi = Ci ∪ . . . ∪ Ck
I2. (Ci, . . . , Ck) is a hereditary (β, γ)-convex partition of Xi

I3. if i > 1 then the algorithm has output C1, . . . , Ci−1 so far.

For i = 1 we have Xi = X and I1-I3 clearly hold. Now assume I1-I3 hold at the beginning
of the i-th iteration for some i ≥ 1. Observe that if LearnHBGC sets Ĉi = Ci then I1-I3

31

Bressan, Cesa-Bianchi, Lattanzi, Paudice

hold at iteration i+ 1. For I1 and I3 this is trivial; for I2, note that deleting a class never
invalidates the properties of Definition 25, thus, (Ci+1, . . . , Ck) will be a hereditary (β, γ)-
convex partition of Xi+1 = Ci+1 ∪ . . . ∪ Ck. Hence, we prove that LearnHBGC sets Ĉi = Ci.
Consider the subgraph G∗ and its node set V ∗ computed at line 3. Let Ci = (Ci, . . . , Ck),
and let C∗i = (Ci ∩X∗, . . . , Ck ∩X∗). Since εi is the smallest radius of all classes in Ci, then
by Lemma 40 C∗i is a hereditary (β, γ)-convex partition of Xi with radius εi. Furthermore,
by construction s∗ contains one seed for each nonempty class in C∗. Thus by Lemma 29,
LearnClass(G∗, ε, s∗, i) returns Ci, so Ĉi = Ci. The query bound is straightforward.

5.4 Bounds on the running time of LearnBGC and LearnHBGC

We show how to implement our algorithms in time linear or essentially linear in the size of G.
Without loss of generality assume that, for any graph G and any x ∈ V (G), the edges incident
with x can be listed in constant time per edge. The following claim is straightforward:

Claim 1 For every ε ≥ 0 the graph Gε can be computed in time O(n+m). This holds more
in general for thresholding any subgraph of G.

By Claim 1 we can implement LearnClass in time O(k2(n+m)): essentially, for O(k2) times
the algorithm computes the distances of all nodes of Gε[X] from some given node u, which
takes time O(n+m) via breadth-first search. Since LearnClass is invoked once per each class,
this would give a total running time of O(k3(n+m)) for both LearnBGC and LearnHBGC.
With some extra effort, however, we show how to adapt LearnClass so that it runs in time
O(k(n+m)), by amortizing the cost of FindNewSeed. In the end, we obtain a running time
of O(k2(n+m)) for both LearnBGC and LearnHBGC.

Lemma 41 MBS(Z, ε) and FindSeparator(G, ui, uj) both run in time O(n+m).

Proof For MBS(Z, ε), computing Gβε takes time O(n + m) by Claim 1, and thereafter
computing Gβε[Z] and listing its connected components takes again time O(n+m). Consider
now FindSeparator(Gε, ui, uj). Computing dGε(ui, x) and dGε(uj , x) for all x ∈ Gε takes
time O(n + m) using a BFS from ui and uj . Computing Z takes time O(n). MBS(Z, ε)
takes time O(n+m) as said, and the loop at line 4 takes time O(n).

Lemma 42 In LearnClass(Gε, ε, s, i), each call to FindNewSeed(Gε, Ri, ε, s,u, i) takes time
O(k(n+m)). By adapting both algorithms, this can be reduced to O(n+m) while adding at
most an additive O(n+m) to the running time of each iteration of LearnClass.

Proof Let us start with the O(k(n + m)) bound given by a “naive” implementation of
FindNewSeed. Line 1 computes s ∩Ri in time O(k|Ri|) = O(kn) and performs the check in
constant time. Line 2 makes |u| ≤ k iterations. Each iteration computes Z in time O(n+m)
with a BFS from u, runs MBS(Z, ε) in time O(n+m) by Lemma 41, and possibly searches
for x ∈ Z \Zi in time O(n). Hence the entire loop of line 2 takes time O(k(n+m)). Finally,
line 6 computes {(x, y) ∈ Γ(Ri) : ∀u ∈ u : dGε(u, x) ≥ 2

γ + 1}. To this end, first compute

32

Margin-Based Active Learning of Classifiers

the set {x ∈ Ri : ∀u ∈ u : dGε(u, x) ≥ 2
γ + 1} in time O(k(n + m)) using a BFS from u.

For each x in that set list all its edges (x, y) ∈ E(Gε); if some edge satisfies y /∈ Ri then
return y, otherwise return nil. Thus, this part takes time O(k(n+m)). Therefore a single
call to FindNewSeed takes time O(k(n+m)). Since FindNewSeed is called at most k times,
the total running time is O(k2(n+m)).

Let us now see how to reduce to O(n+m) the running time of FindNewSeed by adding
at most O(n+m) to each iteration of LearnClass. First, consider line 1 of FindNewSeed.
We keep s updated so that s ∩Ri = s \ {si}; in this way we can run line 1 in constant time.
To this end modify LearnClass as follows. First, we store si separately from s. Second, after
updating Gε,i and Ri at line 10 of LearnClass, we replace s with s ∩Ri. To this end encode
Ri as a bitmap of size O(n), for every x ∈ bs check if x ∈ Ri, and if so then append x to a
new vector s′; then replace s with s′. Summarizing, we spend an additional O(n) time at
each iteration of LearnClass, and line 1 of FindNewSeed will run in constant time.

Now consider the loop at line 2 of FindNewSeed. Let Z(u) be the value of Z computed
for u ∈ u at line 3, and Zi(u) the corresponding value of Zi computed by MBS. Define:

Zi(u) :=

{
x ∈ Ri \ Ci : ∃u ∈ u : dGε(u, x) <

2

γ
+ 1

}
Note that Zi(u) = ∪u∈uZ(u) \ Zi(u); thus the loop detects precisely if Zi(u) 6= ∅, in which
case it returns some x ∈ Zi(u). We adapt LearnClass so as to maintain Zi(u) as a linked
list across subsequent invocations of FindNewSeed; we can then replace the loop of line 2
with O(1) elementary operations (checking Zi(u) 6= ∅ and returning, say, its first element).
Start by initializing Zi(u) to an empty list. After updating Gε,i and Ri at line 10, perform
the following operations. First, make LearnClass compute Z(ui). Second, run MBS(Z(ui), ε)
to obtain Zi(ui) = Z(ui) ∩ Ci. Third, compute Zi(ui) = Z(ui) \ Zi(ui). Fourth, add Zi(ui)
to Z(u). Finally, replace Z(u) with Z(u) ∩Ri. The last two steps can be performed in time
O(n) by encoding the sets as bitmaps, and every other step requires time O(n+m); thus,
overall the running time of each iteration of LearnClass increases by O(n+m).

Finally, consider line 6 of FindNewSeed. At the beginning of the first iteration of Learn-
Class mark all nodes of Ri as active. At each iteration of LearnClass, after computing (ui, uj),
mark as inactive every x ∈ Ri such that dGε(ui, x) < 2

γ + 1; this takes time O(n + m) by
running a BFS from ui. Finally, for every active x ∈ Ri list all its edges (x, y), until finding
y /∈ Ri or concluding that no such y exists (the check y /∈ Ri takes time O(1) by again
encoding Ri as a bitmap). This makes line 6 run in time O(n+m) while making the running
time of each iteration of LearnClass increase by O(n+m).

Lemma 43 LearnClass(Gε, ε, s, i) runs in time O(k(n+m)).

Proof At every instant, computing Gε,i and Ri takes time O(n+m). Now consider each
iteration of the main loop. By Lemma 42, we can make FindNewSeed(Gε, Ri, ε, s,u, i) run in
time O(n+m) while increasing the overall running time of the iteration of LearnClass by O(n+
m). ShortestPath(Gε[Ri], si, sh) takes time O(n+m) via BFS, and FindCutEdge(π(si, sh))
clearly runs in time O(log n). Adding ui to u takes constant time. FindSeparator(G, ui, uj)
runs in time O(n+m), see Lemma 41. Hence each iteration takes time O(n+m) overall.

33

Bressan, Cesa-Bianchi, Lattanzi, Paudice

To conclude, note that at most k iterations are made.

We can finally prove the running time bounds of Theorem 24 and Theorem 26. First,
consider LearnBGC(G, ε, s). By Claim 1, computing Gε takes time O(n+m). Each call to
LearnClass(Gε, ε, s, i) takes time O(k(n + m)) by Lemma 43. As there are k classes, the
O(k2(n+m)) bound of Theorem 24 follows. Now consider LearnHBGC. At every iteration,
computing G∗ takes time O(n+m) via a BFS. The seed part takes time O(k) = O(n), as
does the construction of s∗. The call to LearnClass takes time O(k(n+m)) by Lemma 43.
Writing out Ĉi takes time O(n). This proves the bounds of Theorem 26.

5.5 Learning the radii and the convexity parameters

In this section we show how to use seed queries to learn the radii of the classes and to adapt
our algorithms when β or γ are unknown.

5.5.1 Learning the radii

This section proves Theorem 28.

Upper bounds. The upper bounds of Theorem 28 hinge on three observations. First, εi
is actually the smallest ε such that all nodes of Ci belong to a single connected component
of Gε[X], see above. Second, with O(1) seed queries we can test whether Ci belongs to a
single connected component of G for any given G. Third, if T is a minimum spanning tree
of G, then the connected components of Gε[X] are exactly the connected components of Tε.
Our algorithm starts by computing T ; for each i ∈ [k] it then performs a binary search to
find the smallest edge weight ε such that Ci is connected in Tε.

We start with a simple routine for checking if Ci ⊆ V is connected in a graph G = (V,E).

Algorithm 11 IsConnected(G, i)

1: u := seed(V (G), i)
2: U := the connected component of u in G, or ∅ if u = nil
3: return (seed(V (G) \ U, i) = nil)

Claim 2 IsConnected(G, i) returns true if and only if dG(x, y) <∞ for all x, y ∈ Ci.

Now let T be a minimum spanning tree of G = (X, E , d). For ε > 0 let Tε be the forest
formed by the edges (x, y) of T such that d(x, y) ≤ ε. Observe the following basic fact:

Claim 3 The connected components of Tε are the connected components of Gε.

As a consequence, we have:

Claim 4 IsConnected(Tε, i) = IsConnected(Gε, i), for any i ∈ [k] and any ε > 0.

We can now give the algorithm for learning the radius of a single class.

Lemma 44 If T is a MST of G = (X, E , d), then GetEpsilon(T, i) returns εi in time
O(n log n) using O(log n) seed queries where n = |X|.

34

Margin-Based Active Learning of Classifiers

Algorithm 12 GetEpsilon(T, i)

1: www := (w1, . . . , w`), the distinct edge weights of T in increasing order
2: lo := 1, hi := `
3: while lo < hi do
4: mid := b lo+hi2 c
5: if IsConnected(Twmid , i) then hi := mid else lo := mid+ 1

6: return whi

Proof Clearly GetEpsilon(T, i) makes O(log n) iterations, since www has length O(n2). More-
over, since T has O(n) edges, every call to IsConnected(Twmid , i) takes time O(|T |) = O(n).
This gives the time bound of O(n log n). Next we show that GetEpsilon(T, i) returns εi, or
equivalently by Lemma 39, w∗ = min{w ∈ www : Ci is connected in Gw[X]}. Consider the test
lo < hi at beginning of each iteration. We claim that w∗ ≤ whi. Indeed, Ci is connected in
Gwhi [X] before the while loop starts, when whi = w`, and at each iteration hi is set to mid
only if IsConnected(Twmid , i) = true. We claim that w∗ ≥ wlo, too. Indeed w∗ ≥ w0 at the
first iteration, and at each iteration lo is set to mid+1 only if IsConnected(Twmid , i) = false.
Therefore at return time wlo = whi = w∗, hence GetEpsilon(T, i) returns w∗.

We conclude with the algorithm to learn the radii and with the upper bounds of Theorem 28.

Algorithm 13 GetEpsilons(G = (X, E , d), k)

1: T := MST(G)
2: for i = 1, . . . , k do ε̂i := GetEpsilon(T, i)
3: return ε̂1, . . . , ε̂k

Lemma 45 GetEpsilons(G, k) returns the radii ε1, . . . , εk in time O(mα(m,n) + kn log n)
using O(k log n) seed queries, where α(m,m) is the functional inverse of Ackermann’s
function (Chazelle, 2000).

Proof One can compute MST(G) in time O(mα(m,n)), see (Chazelle, 2000), and by
Lemma 44 GetEpsilon(T, i) returns εi in time O(n log n) using O(log n) seed queries.

Lower bounds. The lower bounds of Theorem 28 are given by:

Theorem 46 For any k ≥ 2 and any sufficiently large n there exists a distribution of
(hereditary) (1/2, 1)-convex classifiers on n points such that any (randomized) algorithm needs
Ω(k log n

k) seed and/or label queries to learn the radii of all classes with constant probability.

Proof Suppose first k = 2. Let G = (X, E , d) be a path with increasing edge weights.
Formally, let X = [n], let E = {{j, j + 1} : j ∈ [n− 1]}, and let d(j, j + 1) = 1 + βj

n for each
j ∈ [n− 1]. Draw j∗ uniformly at random in {2, . . . , n− 1}, let C1 = {1, . . . , j∗ − 1}, and
C2 = {j∗, . . . , n}.

35

Bressan, Cesa-Bianchi, Lattanzi, Paudice

First, we prove that C1 and C2 are (β, γ)-convex with radii respectively ε1 = d(j∗− 1, j∗)
and ε2 = d(n − 1, n). For the connectivity, clearly ρ(Gε1 [C1]) = ρ(Gε2 [C2]) = 1. For the
local metric margin note that the choice of β and d ensure d ≥ 1 and ε1, ε2 ≤ 3

2 . Thus
d(x, y) > βmax(ε1, ε2) for any two distinct x, y ∈ X. Therefore the local metric margin is
satisfied. For geodesic convexity, note that there is only one edge between C1 and C2 in G,
thus no simple path between two points of one class intersects the other class. Thus, the
properties of Definition 23 are satisfied by ε1, ε2. To show that Definition 25 is satisfied
as well, we show ε1, ε2 are the smallest such values, see Lemma 39. To this end, simply
note that ε1 = min{ζ : ρ(Gζ [C1]) = 1}, since d(j∗ − 1, j∗) = ε1 and d(j, j + 1) ≤ ε1 for
all j = 1, . . . , j∗ − 1. Similarly, ε2 = min{ζ : ρ(Gζ [C2]) = 1}, since d(n − 1, n) = ε2 and
d(j, j + 1) ≤ ε1 for all j = j∗, . . . , n− 1.

Finally, we show that any algorithm needs Ω(log n) queries to learn ε1. Clearly, if the
algorithm learns ε1 then it can also output the index j∗, which is a function of ε1. Therefore,
we show that finding j∗ requires Ω(log n) queries. First, we observe that seed queries can be
emulated by label queries. Consider indeed any U ⊆ X, and recall that if U ∩ Ci 6= ∅ then
seed(U, i) may return any x ∈ U∩Ci. We then let seed(U, i) return min(U∩Ci) if i = 1, and
max(U ∩ Ci) if i = 2. Now, observe that min(U ∩ C1) = minU and max(U ∩ C1) = maxU .
Therefore seed(U, i) can be emulated by asking the labels of min(U) and max(U). Since
every label query reveals at most one bit of information and j∗ is uniform over Ω(n) elements,
learning j∗ with constant probability requires Ω(log n) label queries.

To extend the construction to k > 2, take K = k
2 disjoint weighted paths on n

K nodes
each (without loss of generality we can assume k is even). Each such path is weighted as in
the construction above, with the weights of the h-th path all smaller than the weights of the
(h+ 1)-th path. For each path, we draw j∗ uniformly at random like above, and form two
classes. The same proof used above shows that any algorithm needs Ω(k log n

k) queries to
learn the radii of all classes with constant probability.

5.5.2 Learning β and γ

We adapt our algorithms, using seed queries, to the case where β and/or γ are unknown
(that is, it is known only that β, γ ≤ 1). We begin with an alternative implementation
of FindNewSeed, see Algorithm 14. It is easy to see that it has the same guarantees as
FindNewSeed.

Algorithm 14 FindNewSeed-2(Ri, c, i)
1: for each j ∈ c do
2: sj = seed(Ri, j)
3: if sj 6= nil then return c, sj
4: c := c \ {j}
5: return c,nil

Next, we describe LearnClass-2, an alternative implementation of LearnClass that learns
one or both β, γ along the way. The subroutine UpdateParameters is described in the proofs
below; it depends on whether one knows β, γ, or neither. It is crucial to observe that if

36

Margin-Based Active Learning of Classifiers

a classifier C is (hereditary) (β, γ)-convex then it is also (hereditary) (β̂, γ̂)-convex for all
β̂ ≤ β and γ̂ ≤ γ. This implies that if we run our algorithms with β̂, γ̂ in place of β, γ then
the output will be correct (and this holds for subroutines too).

Algorithm 15 LearnClass-2(Gε, ε, i)

1: si := seed(V, i)
2: Gε,i := {the connected component of si in Gε}, Ri := V (Gε,i)
3: c := [k]
4: while true do
5: c, sh := FindNewSeed-2(Ri, c, i)
6: if sh = nil then return Ri
7: π(si, sh) := ShortestPath(Gε[Ri], si, sh)
8: (ui, uj) := FindCutEdge(π(si, sh))
9: while true do

10: (Si, Sj) := FindSeparator(Gε, ui, uj)
11: if seed(Si, j) = seed(Sj , i) = nil then break
12: UpdateParameters()
13: Gε,i := {the connected component of si in Gε[Ri ∩ Si]}, Ri := V (Gε,i)
14: c := c \ {j}

We start by proving correctness and bounds for LearnClass-2 when only one of β, γ is
unknown; when both are unknown we will only need to adapt UpdateParameters.

Lemma 47 Let C be (β, γ)-convex. Suppose LearnClass-2 and its subroutines use γ̂ in place
of γ and that each call to UpdateParameters halves γ̂. Then LearnClass-2(Gε, ε, i) returns Ci
in time O

((
k + log γ0

γ1

)
(n+m)

)
using O

(
k log n+

(
k + log γ0

γ1

)
M(βγ1)

)
label queries and

at most 3k + 2 log γ0
γ1

seed queries, where γ0, γ1 are the values of γ̂ at the beginning and at
the end of the execution. The same holds with β, β̂, β0, β1 in place of γ, γ̂, γ0, γ1.

Proof For the correctness, note that FindNewSeed-2 behaves exactly as FindNewSeed (see
Lemma 36) and that when line 13 is executed (Si, Sj) is an (i, j)-separator. The running
time bounds follow by the analysis of Section 5.4, noting that FindNewSeed-2 runs in time
O(k) = O(n+m) and that lines 10–11 are repeated at most log γ0

γ1
times.

For the label query bound, FindCutEdge is called at most k times and by Lemma 32
each call uses O(log n) queries, while FindSeparator is called at most k + log γ0

γ1
times and

by Lemma 35 every call uses at mostM(βγ̂) ≤M(βγ1) queries. For the seed query bound,
note that LearnClass-2 makes at most 2k + 2 log γ0

γ1
queries at line 11, while FindNewSeed-2

makes at most k queries overall as after each query some element is deleted from c (either
by FindNewSeed-2 itself or by LearnClass-2 at line 14).

Finally, note that all arguments hold with β, β̂, β0, β1 in place of γ, γ̂, γ0, γ1.

We can now prove Theorem 27. First, assume C is (β, γ)-convex. The first claim follows by
Lemma 47 when calling LearnClass-2(Gε, ε, i) for each i ∈ [k]. For the second claim, for every
j = 0, 1, . . . let δ = 2−j and consider the j + 1 pairs of values (δ, 1), (2δ, 12), . . . , (1, δ). This

37

Bressan, Cesa-Bianchi, Lattanzi, Paudice

yields a succession of values for (β̂, γ̂). Starting with β̂ = γ̂ = 1, each call to UpdateParameters
updates β̂ and γ̂ by moving to the next term in the succession. The claim follows by the same
argument as above. Suppose now C is hereditary (β, γ)-convex. Consider LearnHBGC-2, see
Algorithm 16; it is an adaptation of LearnHBGC that uses LearnClass-2 in place of LearnClass.
Note that LearnHBGC-2 does not need to receive or compute the list of seed vertices; any
necessary seed is found already by LearnClass-2. The correctness of LearnHBGC-2 follows
by the same arguments used for LearnHBGC, see the proof of Theorem 26. The bounds
on the number of queries follow by the same arguments of Theorem 27 (note that seed is
used only by LearnClass-2; the O(k2) seed queries appearing in Theorem 26 are not used
anymore). The claim on the running time holds again by Theorem 27.

Algorithm 16 LearnHBGC-2(X,εεε)
1: assume ε1 ≤ . . . ≤ εk
2: for i = 1, . . . , k do
3: G∗ := the connected component of si in Gεi [X], X∗ := V (G∗)

4: Ĉi := LearnClass-2(G∗, εi, i)

5: output Ĉi
6: X := X \ Ĉi

5.6 Lower bounds

In this section we show that some of our parameters and assumptions are necessary.

Theorem 48 (Dependence on dens(X)) Choose any β, γ ∈ (0, 1). There is a distribution
of (hereditary) (β, γ)-convex classifiers C, where n = |X| = µ(X) = 2dens(X) is arbitrarily
large, such that any (randomized) algorithm needs Ω(µ(X)) = Ω(2dens(X)) label and/or seed
queries to learn C with constant probability. This holds even if β, γ, ε are known.

Proof Let G = (X, E , d) where (X, E) is the complete graph on n nodes and d = 1, and
let C = (C1, C2) be a uniform random partition of X. We claim that C is (hereditary)
(β, γ)-convex for ε = 1. The connectivity of Gε[C1] and Gε[C2] holds trivially. The local
metric margin holds as well, since any two distinct points x, y ∈ X satisfy d(x, y) = d > βd,
as β < 1. To see that geodesic convexity holds, too, note that for any x, y ∈ C1 we have
dGε(x, y) ≤ 1 and any (simple) path between x and y that contains a point in X \ C1 has
length at least 2 > (1 + γ)dGε(x, y). Finally, note that Gε′ is an independent set for any
ε′ < ε. Hence C satisfies both Definition 23 and Definition 25.

Since C is chosen uniformly at random among all bipartitions of X, then Ω(n) label
and/or seed queries are needed to learn C exactly with non-vanishing probability. Noting
that µ(X) = n and recalling that dens(X) = log2 µ(X) completes the proof.

Theorem 49 (Necessity of seeds) Choose any β, γ ∈ (0, 1]. There is a distribution of
(hereditary) (β, γ)-convex classifiers C, with n = |X| arbitrarily large, such that any (ran-
domized) algorithm needs Ω(n) label queries to learn C with non-vanishing probability if no
seed nodes are given. This holds even if γ, β, ε are known.

38

Margin-Based Active Learning of Classifiers

Proof Let X = UP ∪ LOW ⊂ R2 where (see Figure 5):

UP =

n/3⋃
j=1

{(2j, 1)}, LOW =

2n/3⋃
j=1

{(j, 0)}

Moreover let G = (X, E , d) where E =
(
X
2

)
and d is the Euclidean distance.

Figure 5: the graph Gε for ε = 1. All points are in C1, save for the filled point in C2, chosen
uniformly at random in UP.

Choose a point z uniformly at random from UP, and let C1 = X \ {z} and C2 = {z}.
One can check that all properties of Definition 23 and Definition 25 hold for ε = 1. In
particular, in Gε no simple path between two points of C1 contains z. Hence C is (hereditary)
(β, γ)-convex. Learning C requires finding z, and finding z with constant probability requires
Ω(n) queries in expectation even if γ, β and ε are known.

Next, we show that relaxing our notion of (β, γ)-convexity by allowing a different semi-
metric for each class leads to an Ω(n) query lower bound. To this end, for each i ∈ [k]
let Gi = (X, E i, di) be the weighted graph encoding the semimetric di. The notation and
definitions formulated for G apply to Gi with the obvious modifications.

Definition 50 Let β, γ ∈ (0, 1]. A k-partition C = (C1, . . . , Ck) of X is personalized
(β, γ)-convex if there is ε > 0 such that for each i ∈ [k] the following properties hold:

1. connectedness: Giε[Ci] is connected

2. local metric margin: for all x, y ∈ X, if x ∈ Ci and y /∈ Ci, then di(x, y) > βε

3. geodesic convexity with margin: if x, y ∈ Ci, then in Giε any simple path between x
and y of length at most (1 + γ)dGiε(x, y) lies in Ci

The smallest value of ε satisfying the three properties is called the radius of the classes.

We prove:

Theorem 51 (Necessity of a universal semimetric) Choose any β, γ ∈ (0, 1). There
is a distribution of personalized (β, γ)-convex 2-class classifiers C, with n = |X| arbitrarily
large, such that any (randomized) algorithm needs Ω(n) seed and/or label queries to learn C
with non-vanishing probability, even if γ, β, ε are known.

Proof Let ε > 0, let X = {a1, a2} ∪M where M = [n], and for i = 1, 2 and all x, y ∈ X let:

di(x, y) =

{
ε x ∈M,y = ai
2ε otherwise

Note that Giε is the union of an isolated vertex and a star centered in ai with M as leaves.
Note also that for any X ′ ⊆ X the set Ci = {ai} ∪X ′ satisfies all properties of Definition 50.

39

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Thus any bipartition (C1, C2) of X such that ai ∈ Ci for i = 1, 2 is personalized (β, γ)-convex.
Taking the distribution of classifiers where ai ∈ Ci and every x ∈M is independently assigned
to Ci with probability 1

2 proves the claim.

6. Conclusions and future work

We have shown that, in very different settings, one can devise meaningful notions of margins
that allow for efficient and exact active learning of multiclass classifiers. Interestingly, this
can be achieved with very different techniques, from boosting learners with one-sided errors
through expansion of convex hull, to computing abstract separators that play the role of
halfspaces in vector spaces. Our work also shows that exact learning of multiclass classifiers
requires an inevitable exponential dependence on the dimensionality of the space. There
are two main natural questions that our work leaves open. The first one is to what extent
these results can be adapted to the non-realizable case, that is, to noisy oracles. The second
one is whether a parsimonious use of more powerful queries, such as seed, can remove the
exponential dependence on the dimensionality of the ambient space while keeping the running
time polynomial.

Acknowledgments

The authors gratefully acknowledge partial support by the Google Focused Award “Algo-
rithms and Learning for AI” (ALL4AI). Nicolò Cesa-Bianchi acknowledges the financial
support from the FAIR (Future Artificial Intelligence Research) project, funded by the
NextGenerationEU program within the PNRR-PE-AI scheme (M4C2, investment 1.3, line on
Artificial Intelligence) and the EU Horizon CL4-2022-HUMAN-02 research and innovation
action under grant agreement 101120237, project ELIAS (European Lighthouse of AI for
Sustainability).

References

Peyman Afshani, Ehsan Chiniforooshan, Reza Dorrigiv, Arash Farzan, Mehdi Mirzazadeh,
Narges Simjour, and Hamid Zarrabi-Zadeh. On the complexity of finding an unknown
cut via vertex queries. In Proceedings of the International Computing and Combinatorics
Conference (COCOON), pages 459–469, 2007. doi: 10.1007/978-3-540-73545-8_45.

Nir Ailon, Anup Bhattacharya, and Ragesh Jaiswal. Approximate correlation clustering using
same-cluster queries. In Proceedings of the Latin American Symposium on Theoretical
Informatics (LATIN), pages 14–27, 2018a. doi: 10.1007/978-3-319-77404-6_2.

Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering
with same-cluster queries. In Proceedings of Innovations in Theoretical Computer Science
(ITCS), pages 40:1–40:21, 2018b. doi: 10.4230/LIPIcs.ITCS.2018.40.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988. doi:
10.1023/A:1022821128753.

40

Margin-Based Active Learning of Classifiers

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries.
In Advances in Neural Information Processing Systems (NeurIPS), pages 3216–3224, 2016.

Josh Attenberg and Foster Provost. Why label when you can search? Alternatives to active
learning for applying human resources to build classification models under extreme class
imbalance. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), page 423–432, 2010. doi: 10.1145/1835804.1835859.

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1):49–54, 2012. doi: 10.1016/j.ipl.2011.10.006.

Maria Florina Balcan and Steve Hanneke. Robust interactive learning. In Proceedings of the
Annual Conference Computational Learning Theory (COLT), pages 20.1–20.34, 2012.

Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators under
log-concave distributions. In Proceedings of the Annual Conference Computational Learning
Theory (COLT), pages 288–316, 2013.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In
Proceedings of the Annual Conference Computational Learning Theory (COLT), pages
35–50, 2007.

Shai Ben-David, Nicolo Cesa-Bianchi, David Haussler, and Philip Long. Characterizations
of learnability for classes of {0, ..., n}-valued functions. Journal of Computer and System
Sciences, 50(1):74–86, 1995. doi: 10.1006/jcss.1995.1008.

Alina Beygelzimer, Daniel J Hsu, John Langford, and Chicheng Zhang. Search improves label
for active learning. In Advances in Neural Information Processing Systems (NeurIPS),
page 3350–3358, 2016.

Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability and
Computing, 21(5):643–660, 2012. doi: 10.1017/S0963548312000193.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. Exact recovery of
mangled clusters with same-cluster queries. In Advances in Neural Information Processing
Systems (NeurIPS), pages 9324–9334, 2020.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. Exact recovery of
clusters in finite metric spaces using oracle queries. In Proceedings of the Annual Conference
Computational Learning Theory (COLT), pages 775–803, 2021a.

Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, and Andrea Paudice. On margin-based
cluster recovery with oracle queries. In Advances in Neural Information Processing Systems
(NeurIPS), pages 25231–25243, 2021b.

Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, and Giovanni Zappella. Active learning
on trees and graphs. In Proceedings of the Annual Conference Computational Learning
Theory (COLT), pages 320–332, 2010.

41

Bressan, Cesa-Bianchi, Lattanzi, Paudice

Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type
complexity. Journal of the ACM, 47(6):1028–1047, 2000. doi: 10.1145/355541.355562.

Eli Chien, Antonia Tulino, and Jaime Llorca. Active learning in the geometric block model.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 3641–3648,
2020.

Vincent Cohen-Addad and Karthik Srikanta. Inapproximability of clustering in L-p metrics.
In Proceedings of the IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 519–539, 2019. doi: 10.1109/FOCS.2019.00040.

Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In
Proceedings of the Annual Conference Computational Learning Theory (COLT), pages
287–316, 2014.

Gautam Dasarathy, Robert Nowak, and Xiaojin Zhu. S2: An efficient graph based active
learning algorithm with application to nonparametric classification. In Proceedings of the
Annual Conference Computational Learning Theory (COLT), pages 503–522, 2015.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural
Information Processing Systems (NeurIPS), pages 337–344, 2005.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of Perceptron-based
active learning. In Proceedings of the Annual Conference Computational Learning Theory
(COLT), pages 249–263, 2005.

Scott Doyle, James Monaco, Michael Feldman, John Tomaszewski, and Anant Madabhushi.
An active learning based classification strategy for the minority class problem: application
to histopathology annotation. BMC Bioinformatics, 12(1), 2011.

Ran El-Yaniv and Yair Wiener. Active learning via perfect selective classification. Journal
of Machine Learning Research, 13(2), 2012.

Akshay Gadde, Eyal En Gad, Salman Avestimehr, and Antonio Ortega. Active learning for
community detection in stochastic block models. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT), pages 1889–1893, 2016. doi: 10.1109/ISIT.2016.
7541627.

Buddhima Gamlath, Sangxia Huang, and Ola Svensson. Semi-supervised algorithms for
approximately optimal and accurate clustering. In Proceedings of the International Collo-
quium on Automata, Languages and Programming (ICALP), pages 57:1–57:14, 2018. doi:
10.4230/LIPIcs.ICALP.2018.57.

Apostolos Giannopoulos. Notes on isotropic convex bodies, 2003. URL http://users.uoa.
gr/~apgiannop/isotropic-bodies.pdf.

Alon Gonen, Sivan Sabato, and Shai Shalev-Shwartz. Efficient active learning of halfspaces:
an aggressive approach. Journal of Machine Learning Research, 14(1):2583–2615, 2013.

42

http://users.uoa.gr/~apgiannop/isotropic-bodies.pdf
http://users.uoa.gr/~apgiannop/isotropic-bodies.pdf

Margin-Based Active Learning of Classifiers

Lee-Ad Gottlieb and Robert Krauthgamer. Proximity algorithms for nearly doubling spaces.
SIAM Journal on Discrete Mathematics, 27(4):1759–1769, 2013. doi: 10.1137/120874242.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Nearly optimal classification
for semimetrics. The Journal of Machine Learning Research, 18(1):1233–1254, 2017.

Andrew Guillory and Jeff Bilmes. Active semi-supervised learning using submodular functions.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pages
274–282, 2011.

Steve Hanneke. Theoretical Foundations of Active Learning. PhD thesis, Carnegie Mel-
lon University, 2009. URL http://reports-archive.adm.cs.cmu.edu/anon/ml2009/
CMU-ML-09-106.pdf. AAI3362265.

Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends in
Machine Learning, 7(2-3):131–309, 2014. doi: 10.1561/2200000037.

Steve Hanneke and Liu Yang. Minimax analysis of active learning. The Journal of Machine
Learning Research, 16(1):3487–3602, 2015.

Max Hopkins, Daniel Kane, and Shachar Lovett. The power of comparisons for actively
learning linear classifiers. In Advances in Neural Information Processing Systems (NeurIPS),
pages 6342–6353, 2020a.

Max Hopkins, Daniel Kane, Shachar Lovett, and Gaurav Mahajan. Noise-tolerant, reliable
active classification with comparison queries. In Proceedings of the Annual Conference
Computational Learning Theory (COLT), pages 1957–2006, 2020b.

Max Hopkins, Daniel Kane, Shachar Lovett, and Michal Moshkovitz. Bounded memory active
learning through enriched queries. In Proceedings of the Annual Conference Computational
Learning Theory (COLT), pages 2358–2387, 2021.

Fritz John. Extremum problems with inequalities as subsidiary conditions. Birkhäuser
Boston eBooks, Jan 1985. doi: 10.1007/978-1-4612-5412-6_25.

Daniel Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active classification with
comparison queries. In Proceedings of the IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 355–366, 2017. doi: 10.1109/FOCS.2017.40.

Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems for convex
bodies and a localization lemma. Discrete & Computational Geometry, 13(3):541–559,
1995. doi: 10.1007/BF02574061.

Leonid G Khachiyan. Rounding of polytopes in the real number model of computation.
Mathematics of Operations Research, 21(2):307–320, 1996. doi: 10.1287/moor.21.2.307.

J. Kivinen. Learning reliably and with one-sided error. Mathematical Systems Theory, 28(2):
141–172, 1995. doi: 10.1007/BF01191474.

Andrey Kupavskii. The VC-dimension of k-vertex d-polytopes. Combinatorica, 40(6):869–874,
2020. doi: 10.1007/s00493-020-4475-4.

43

http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-106.pdf
http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-106.pdf

Bressan, Cesa-Bianchi, Lattanzi, Paudice

László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM Journal on Computing,
35(4):985–1005, 2006. doi: 10.1137/S009753970544727X.

Wolfgang Maass and György Turán. Lower bound methods and separation results for on-line
learning models. Machine Learning, 9(2):107–145, 1992. doi: 10.1007/BF00992674.

Arya Mazumdar and Soumyabrata Pal. Semisupervised clustering, and-queries and locally
encodable source coding. In Advances in Neural Information Processing Systems (NeurIPS),
pages 6489–6499, 2017.

Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. In
Advances in Neural Information Processing Systems (NeurIPS), pages 4682–4693, 2017a.

Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in Neural
Information Processing Systems (NeurIPS), pages 5788–5799, 2017b.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, USA, 1995. ISBN 0521474655. doi: 10.1017/CBO9780511814075.

Márton Naszódi, Fedor Nazarov, and Dmitry Ryabogin. Fine approximation of convex
bodies by polytopes. American Journal of Mathematics, 142(3):809–820, 2020. doi:
10.1353/ajm.2020.0018.

Ignacio M. Pelayo. Geodesic convexity in graphs. Springer-Verlag New York, 2013. doi:
10.1007/978-1-4614-8699-2.

Ronald L. Rivest and Robert Sloan. Learning complicated concepts reliably and usefully.
In Proceedings of the Annual Conference Computational Learning Theory (COLT), pages
69–79, 1988.

Benjamin I. P. Rubinstein, Peter L. Bartlett, and J. Hyam Rubinstein. Shifting: One-inclusion
mistake bounds and sample compression. Journal of Computer and System Sciences, 75
(1):37–59, 2009. doi: 10.1016/j.jcss.2008.07.005.

Barna Saha and Sanjay Subramanian. Correlation clustering with same-cluster queries
bounded by optimal cost. In Proceedings of the European Symposium on Algorithms (ESA),
pages 81:1–81:17, 2019. doi: 10.4230/LIPIcs.ESA.2019.81.

Florian Seiffarth, Tamás Horváth, and Stefan Wrobel. Maximal closed set and half-space
separations in finite closure systems. In Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pages 21–37,
2019.

Burr Settles. Active learning. Technical report, University of Wisconsin-Madison, 2012. URL
http://digital.library.wisc.edu/1793/60660.

Maximilian Thiessen and Thomas Gärtner. Active learning of convex halfspaces on graphs.
In Advances in Neural Information Processing Systems (NeurIPS), pages 23413–23425,
2021.

44

http://digital.library.wisc.edu/1793/60660

Margin-Based Active Learning of Classifiers

Simon Tong and Edward Chang. Support vector machine active learning for image retrieval.
In Proceedings of the ACM international conference on Multimedia (ICM), page 107–118,
2001. doi: 10.1145/500141.500159.

Roman Vershynin. High-dimensional probability: An introduction with applications in
data science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2018. doi: 10.1017/9781108231596.

Sharad Vikram and Sanjoy Dasgupta. Interactive Bayesian hierarchical clustering. In
Proceedings of the International Conference on Machine Learning (ICML), volume 48,
pages 2081–2090, 2016.

Yair Wiener, Steve Hanneke, and Ran El-Yaniv. A compression technique for analyzing
disagreement-based active learning. Journal of Machine Learning Research, 16:713–745,
2015.

Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin clustering.
In Advances in Neural Information Processing Systems (NeurIPS), pages 1537–1544, 2004.

Pan Zhang, Cristopher Moore, and Lenka Zdeborová. Phase transitions in semisupervised
clustering of sparse networks. Physical Review E, 90(5):052802, 2014. doi: 10.1103/
PhysRevE.90.052802.

45

	Introduction
	Our contributions
	Euclidean spaces and pseudometric spaces
	Finite semimetric spaces
	Enriched queries and learning the parameters

	Related work
	Preliminaries and notation
	Learning classifiers in Euclidean and pseudometric spaces
	The convex hull margin in Rm
	CheatRec and proof of Theorem 2
	Proof of Theorem 3

	The one-versus-all margin
	One-versus-all-margin and stability of center-based clusterings
	mRec and proof of Theorem 12

	One-versus-all classifiers

	Learning classifiers in finite semimetric spaces
	Additional notation
	LearnBGC and proof of Theorem 24
	Margin-based separation, and binary search on shortest paths.
	Class separators
	Learning a single class with LearnClass

	LearnHBGC and proof of Theorem 26
	Bounds on the running time of LearnBGC and LearnHBGC
	Learning the radii and the convexity parameters
	Learning the radii
	Learning and

	Lower bounds

	Conclusions and future work

