
Journal of Machine Learning Research 25 (2024) 1-36 Submitted 10/22; Revised 9/23; Published 1/24

Numerically Stable Sparse Gaussian Processes
via Minimum Separation using Cover Trees

Alexander Terenin∗
University of Cambridge and Imperial College London

David R. Burt∗
University of Cambridge and MIT

Artem Artemev∗
Imperial College London and Secondmind

Seth Flaxman
University of Oxford

Mark van der Wilk
Imperial College London and University of Oxford

Carl Edward Rasmussen
University of Cambridge and Secondmind

Hong Ge
University of Cambridge

Editor: Mohammad Emtiyaz Khan

Abstract
Gaussian processes are frequently deployed as part of larger machine learning and decision-making
systems, for instance in geospatial modeling, Bayesian optimization, or in latent Gaussian models.
Within a system, the Gaussian process model needs to perform in a stable and reliable manner to
ensure it interacts correctly with other parts of the system. In this work, we study the numerical
stability of scalable sparse approximations based on inducing points. To do so, we first review
numerical stability, and illustrate typical situations in which Gaussian process models can be
unstable. Building on stability theory originally developed in the interpolation literature, we derive
sufficient and in certain cases necessary conditions on the inducing points for the computations
performed to be numerically stable. For low-dimensional tasks such as geospatial modeling, we
propose an automated method for computing inducing points satisfying these conditions. This
is done via a modification of the cover tree data structure, which is of independent interest. We
additionally propose an alternative sparse approximation for regression with a Gaussian likelihood
which trades off a small amount of performance to further improve stability. We provide illustrative
examples showing the relationship between stability of calculations and predictive performance of
inducing point methods on spatial tasks.

1. Introduction

Gaussian processes are a flexible framework and model class for learning unknown functions. By
way of being constructed in the language of Bayesian learning, Gaussian process models provide an
ability to incorporate prior information into the model, and assess and propagate uncertainty in a
principled manner. This makes them well-suited for a wide variety of areas where these capabilities

∗Equal contribution.
Code available at: https://github.com/awav/conjugate-gradient-sparse-gp.

c©2024 Alexander Terenin, David R. Burt, Artem Artemev, Seth Flaxman, Mark van der Wilk, Carl Edward Rasmussen,
and Hong Ge.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/22-1170.html.

https://github.com/awav/conjugate-gradient-sparse-gp
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-1170.html

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

are important, including statistical applications such as spatial modeling (Cressie, 1992), and decision-
making applications such as Bayesian optimization (Snoek et al., 2012), sensor placement (Krause
et al., 2008), and active learning (Krause and Guestrin, 2007).

In many settings, the increased availability of data and need to accurately model higher-resolution
phenomena has led to a strong interest in working with Gaussian processes at a larger scale.
Unfortunately, classical Gaussian process models generally scale cubically with training data size due
to the need to solve large linear systems of equations. This mismatch has led to a longstanding and
fruitful line of work on scalable Gaussian processes. In the era of GPUs and automatic differentiation,
two classes of scalable approximations have been deployed within major Gaussian process software
packages, including GPflow (Matthews et al., 2017) and GPyTorch (Gardner et al., 2018): those
based on inducing point methods (Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009; Hensman
et al., 2013), and iterative methods such as the (preconditioned) conjugate gradient algorithm (Gibbs
and Mackay, 1997; Gardner et al., 2018).

Motivated by these advances, in this work we study a complementary question: how can we
guarantee that the above algorithms run successfully, no matter what kind of data they are provided
with? This question is particularly important in areas such as Bayesian optimization where the data
is not available in advance, and in latent variable models, where the data going into the Gaussian
process is reconstructed from auxiliary observations. We focus chiefly on inducing point methods
applied to geospatial or other low-dimensional data, though the techniques we develop also reveal
insights on how the performance of conjugate-gradient-based approaches depends on data.

Our work complements existing analyses of numerical stability in Gaussian processes. Foster
et al. (2009) study the subset of regressors approximation, and describe in detail which numerical
linear algebra routines one should use to implement it in the most stable manner. Basak et al.
(2021) study maximum likelihood estimation, observe that stability of log-determinant computations
is effectively controlled by the same quantities that control stability of linear solves, and describe
practical strategies for initializing and stopping numerical optimization in a stable manner. In
contrast, we describe how different Gaussian process approximations and their hyperparameters affect
the numerical stability of the linear-algebraic routines which need to be implemented, regardless of
the details of how this implementation is done.

Our contributions are as follows. We (i) identify that mathematical tools developed in the
interpolation literature (Narcowich and Ward, 1992; Narcowich et al., 1994; Schaback, 1995; Diederichs
and Iske, 2019) can be used to show, in a large class of Gaussian process priors, that datasets satisfying
a minimum separation criterion lead to linear systems which are provably stable independent of data
size. Using this insight, we (ii) develop a clustering analogy and propose a technique to guarantee
stability in sparse approximations by using a refinement of the cover tree data structure (Beygelzimer
et al., 2006) to automatically select inducing points that satisfy the needed criterion while staying
as close to the true data as possible. This approximation is parameterized by a hyperparameter
called the spatial resolution, which directly controls the tradeoff between approximation accuracy
and computational cost. Following this, we (iii) extend the clustering analogy further, and propose
an alternative, non-variational inducing point approximation which trades off a small amount of
performance to further improve stability. Finally, we (iv) study error and computational complexity
of the proposed methods, and evaluate them on a number of examples.

2. Gaussian Processes

Let X be a set. We say that a random function f : X → R is a Gaussian process if, for any finite
set of points x ∈ XN , the random vector f(x) is multivariate Gaussian. We write f ∼ GP(µ, k),
where µ(x) = E(f(x)) is the mean function, and k(x,x′) = Cov(f(x), f(x′)) is the covariance kernel,
which determine the mean and covariance of the corresponding multivariate Gaussians.

2

Numerically Stable Sparse Gaussian Processes

Define the likelihood y = f(x) + ε where ε ∼ N(0,Σ). Given training data x,y, if we place a
Gaussian process prior f ∼ GP(0, k), then the posterior f | y is a Gaussian process with

E(f | y) = K(·)x(Kxx + Σ)−1y Cov(f | y) = K(·,·′) −K(·)x(Kxx + Σ)−1Kx(·′) (1)

where (·) and (·′) denote arbitrary sets of test locations and for sets a, b we use Kab to denote the
kernel matrix formed by evaluating k at points in a× b. We assume throughout that Σ is diagonal.
It is also possible to express the posterior in the form of pathwise conditioning (Wilson et al., 2020,
2021) as

(f | y)(·) = f(·) + K(·)x(Kxx + Σ)−1(y − f(x)− ε) (2)

where equality holds in distribution. These expressions describe the true posterior, whose computa-
tional costs are, classically, O(N3) owing to the Cholesky decomposition used to handle the matrix
inverse. To alleviate this, we now consider approximations.

2.1 Inducing Points

Many of the most widely-used Gaussian process approximations are based on the idea of inducing
points (Csató and Opper, 2002; Seeger et al., 2003; Quiñonero-Candela and Rasmussen, 2005). We
present the variational formulation of Titsias (2009) and Hensman et al. (2013), using a pathwise
conditioning construction (Wilson et al., 2020, 2021). Let z ∈ XM , and define the variational
posterior

(f | u)(·) = f(·) + K(·)zK
−1
zz (u− f(z)) u ∼ N(m,S) (3)

where m, S and z are approximation parameters. We find these by minimizing the Kullback–Leibler
divergence of the approximation from the true posterior. By the chain rule for Kullback–Leibler
divergences, this quantity reduces to an easy-to-evaluate divergence between finite-dimensional
Gaussians (Matthews et al., 2016). Given z, which one can interpret as a learned set of approximate
x-values, the optimal values for m and S can be solved for analytically in closed form: see Titsias
(2009) for details.

This approximation only requires factorizing a smaller kernel matrix, leading to a cost of O(M3),
a significant improvement if M � N . Following Hensman et al. (2013), the approximation also
inherits variational methods’ compatibility with stochastic optimization and mini-batch methods.

2.2 Gaussian Processes for Geospatial Modelling

Gaussian processes models are widely used in spatial statistics both for interpolation, and to allow
for spatially correlated noise in spatial regression models (Cressie, 1992). In low-dimensional settings,
such as geospatial data, inducing point approximations can lead to provably near-linear computational
scalability, particularly when input points, xi, are sampled from within a bounded region, and the
Gaussian process prior is smooth enough—see Burt et al. (2019, 2020). This makes them a reasonable
choice for many applications.

In geospatial modeling, specialized methods including multi-resolution approaches (Katzfuss,
2017) or sparse-precision approaches (Vecchia, 1988; Lindgren et al., 2011; Katzfuss and Guinness,
2021) often result in accurate approximations, especially when the domain is much larger than the
scale over which the function being modelled varies. See for instance Heaton et al. (2019) for a
comparison of a large number of approaches on problems in this class. In such settings, low-rank
calculations very similar to those used in inducing point methods remain central to the construction
of a number of more tailored approaches, including in particular multi-resolution methods (Katzfuss,
2017) and combinations of low-rank and compactly supported methods (Sang and Huang, 2012). A
better understanding of numerical stability in inducing point methods is therefore an important step
to better understanding when these more sophisticated methods designed specifically for spatial data
will be numerically stable.

3

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

2.3 Numerical Stability

On a computer, the calculations needed to deploy a Gaussian process, whether exact or approximate,
must be performed in floating-point arithmetic. Due to the introduction of roundoff error, algorithms
which solve linear systems A−1b can fail if the system’s solution is too sensitive to the numerical
values of A or b. We assume throughout that A is symmetric positive definite, as will be the case
for the kernel matrices of interest. The key quantity used to understand how numerically stable a
linear system is the associated condition number

cond(A) = lim
ε→0

sup
‖δ‖≤ε‖b‖

∥∥A−1(b+ δ)−A−1b
∥∥

2

ε‖A−1b‖2
=
∥∥A∥∥

2

∥∥A−1
∥∥

2
=
λmax(A)

λmin(A)
(4)

of the matrix defining the system. Here, λmax and λmin are the maximum and minimum eigenvalues,
respectively, and ‖·‖2 denotes the Euclidean norm and the corresponding induced operator norm.
A linear system’s condition number quantifies how difficult it is to solve numerically. For a given
floating-point precision, if cond(A) is small enough and the size of A is not too large, then Cholesky
factorization is guaranteed to succeed and return an accurate matrix square root.

Result 1. Let A be a symmetric positive definite matrix of size N ×N . Assume that N > 10, that

cond(A) ≤ 1

2−t × 3.9N3/2
(5)

where t is the length of the floating point mantissa, and that 3N2−t < 0.1. Then floating point
Cholesky factorization will succeed, producing a matrix L satisfying

LLT = A + E ‖E‖2 ≤ 2−t × 1.38N3/2‖A‖2. (6)

Proof. This follows from Kiełbasiński (1987, Corollary 2), and the relationship between the Euclidean
and Frobenius matrix norms. See also Wilkinson (1966, Theorem 2).

For single precision arithmetic, we have 2−t ≈ 10−7.2, and for double-precision arithmetic, we have
2−t ≈ 10−16. We therefore see that well-conditioned systems of equations lead to numerically stable
Cholesky factorizations. Moreover, when an iterative algorithm is used to solve a well-conditioned
system, the iteration is often guaranteed to converge quickly, leading to computational benefits. In
particular, if one solves the linear system with the conjugate gradient algorithm (Golub and Van Loan,
1996), then the algorithm is guaranteed to converge in logarithmically many steps.

Result 2. Let A be a positive semi-definite matrix of size N ×N , and let ε > 0. Then, in exact
arithmetic, the conjugate gradient algorithm for solving A−1b converges to within ε of the true
solution, with respect to the norm induced by A, in

O
(√

cond(A) log
cond(A)‖b‖

ε

)
(7)

total steps.

Proof. The claim follows from Golub and Van Loan (1996, Theorem 10.2.6) by a direct calculation
given in Appendix A.2.

Working with stable linear systems is therefore crucial for both inducing point methods which
rely on Cholesky factorizations, and for algorithms based on conjugate gradients. In the latter
case, preconditioning is often used to improve stability and accelerate convergence. Preconditioning
can be viewed as a way to partially solve the linear system, resolving its unstable components.
State-of-the-art preconditioners in many areas of applied mathematics, such as multigrid methods for
elliptic partial differential equations (E, 2011; Xu and Zikatanov, 2017), rely on detailed properties
of their respective settings for construction and analysis. A key step in designing provably effective
preconditioners for Gaussian processes is therefore to understand how the model and data influence
their resulting linear systems: we focus on this and defer ideas on preconditioning to future work.

4

Numerically Stable Sparse Gaussian Processes

10−5 10−3 10−1

100

105

1010

r

Condition Number

10−5 10−3 10−1

10−15

10−11

10−7

r

Linear System Error

64 256 1024
102.4

102.5

102.6

n

Condition Number

64 256 1024

10−13

10−12

n

Linear System Error

Figure 1: Here we illustrate the condition numbers and resulting linear system error for the Kac–
Murdock–Szegö matrix, which is the kernel matrix of an exponential kernel on a regularly-spaced
one-dimensional grid. We vary the spacing r and respective correlation ρ = exp(−r) of neighboring
points, and the size n of the matrix, with ρ = 0.999 used in cases where n varies, and n = 256 used
in cases where ρ varies. We plot the condition number, computed numerically using an eigenvalue
factorization, along with its theoretical lower and upper bounds. Then, we generate random vectors
v ∼ N(0, I), compute u = Kxxv, solve for v = K−1

xxu numerically, and plot the median error
norm over 104 samples, along with 25% and 75% quantiles. We observe that condition numbers
asymptotically grow as ρ→ 1, but not as N →∞, and increase hand-in-hand with numerical error.

2.4 Instability in Gaussian Process Models

To begin, we first observe that, generically, condition numbers of kernel matrices need not be
well-behaved. To illustrate what can go wrong, consider the one-dimensional exponential kernel

k(x, x′) = exp(−|x− x′|). (8)

Suppose that x is a time series which lies on a regular one-dimensional grid with spacing r, so that
xi = ri. Then the resulting kernel matrix is a Kac–Murdock–Szegö matrix (Trench, 2001; Dow, 2002),
meaning it takes the form

Kxx =


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

...
...

.
...

ρn−1 ρn−2 ρn−3 . . . 1

 (9)

for ρ = exp(−r). To compute a posterior Gaussian process under exact observations, the condition
number of the matrix we need to invert to compute the posterior satisfies (Trench, 2001, p. 9) the
inequality

(1 + ρ)2

(1− ρ)2
≤ cond(Kxx) ≤ (1 + ρ)2 + 2ρε

(1− ρ)2 − 2ρε
(10)

where ε = π2

(N+1)2 and for the upper bound we have assumed (1− ρ)2 > 2ρε. For large N , the value
ε is small so the upper and lower bounds essentially match. As r → 0, we have ρ → 1, and the
condition number diverges to infinity for any given value of N . On the other hand, if the spread of
the data, r is fixed, then regardless of how much data is collected, ρ and the condition number of
Kxx both remain bounded. In cases where data is observed under a Gaussian likelihood, one instead
needs to invert Kxx + Σ. If Σ is diagonal, the minimum eigenvalue of Kxx + Σ is bounded below by
the minimum diagonal entry of Σ, which we will refer to as σ2 by analogy to the homoscedastic noise
case when Σ = σ2I. Unfortunately, this is not enough to ensure stability: if one samples the time
series more densely, then as r → 0 and N → ∞, the condition number diverges to infinity for all

5

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

values of σ2 due to the growth of the largest eigenvalue of Kxx. We now observe that the behavior
illustrated by this example is neither specific to the exponential kernel, nor to data with algebraic
structure arising from grids, nor limited to one dimension.

Proposition 3. Let k be a continuous stationary kernel, and let the entries in x be independently
sampled from a uniform distribution on some compact subset X ⊆ Rd. Define the covariance operator

K : L2(X)→ L2(X) K : φ 7→
∫
X

φ(x)k(x, ·) dx (11)

acting on the Hilbert space of (equivalence classes of) square-integrable functions. Then the eigenvalues
of K are countable, non-negative, admit a maximum, and can be ordered to form a non-increasing
sequence whose limit is zero. For every n > 0, as N → ∞, the nth largest eigenvalue of 1

NKxx

converges almost surely to the corresponding eigenvalue of K. As a consequence, cond(Kxx)→∞
almost surely.

Proof. This follows from Koltchinskii and Giné (2000, Corollary 3.3), after a bit of technical reformu-
lation and some calculations, which we perform in Appendix A.

Proposition 3 implies that λmax grows linearly with N , while Cauchy’s Interlacing Theorem
together with an elementary argument shows that λmin → 0, causing the condition number of Kxx

to grow without bound. From the one-dimensional example and Proposition 3, we therefore see that
to control the condition numbers of kernel matrices, we need to ensure they are sufficiently far away
from this ill-conditioned limiting case. We conclude that if the data is sampled too closely relative to
the kernel’s length scale, computing a Cholesky factorization of Kxx + Σ numerically is not possible
for large matrices. We proceed to explore this in more general cases in the sequel.

3. Numerical Stability in Scalable Gaussian Process Approximations

To build towards Gaussian process approximations which are numerically stable, we study what
properties of models and data lead to numerical stability of kernel matrices. We focus in particular
on how their condition numbers depend on the number of input points under general regimes.

3.1 Numerical Stability in Sparse Approximations via Minimum Separation

In both exact and sparse Gaussian processes, the linear systems that need to be solved arise from kernel
matrices Kxx and Kzz, which depend on the prior and data. In sparse Gaussian processes, however,
z is not fixed: it is a variational parameter, and is usually selected to maximize approximation
accuracy. We now study whether we can use this freedom to select z in a way that ensures stability,
while maintaining performance. To this end, we introduce the following notion.

Definition 4. Let z be the inducing points. Define the separation radius

sep(z) = min
i 6=j
‖zi − zj‖. (12)

We now show that separation is closely connected with numerical stability. For this, we need a
mild regularity condition on the kernel.

Assumption 5 (Spatial decay). Let k be a kernel on X ⊆ Rd. We say that k has spatial decay
if there is a decreasing function ψ : [0,∞)→ [0,∞) such that for all x, x′ ∈ X we have

|k(x, x′)| ≤ ψ(‖x− x′‖) ψ(m) = O
(

1

md log(m)2

)
. (13)

6

Numerically Stable Sparse Gaussian Processes

In words, spatial decay requires that if we consider points far apart, the covariance between the
function at those points must tend to zero sufficiently quickly with the distance between them. This
assumption is satisfied for a very large set of kernels, including potentially non-stationary kernels, as
well as the squared exponential kernel and all Matérn kernels, whose decay is controlled above and
below by products of an exponential with polynomials. We now state the main results.

Proposition 6. Let X ⊆ Rd, and let k satisfy spatial decay. Then there is a constant Ck,δmax such
that for any M and any z of size M with sep(z) ≥ δ > 0, we have

λmax(Kzz) ≤ Ck,δmax. (14)

Proof. Appendix A, Proposition 24.

From a technical perspective, the claim is proven by combining Gershgorin’s Circle Theorem with
a packing argument. Arguments of this kind have a long history in the interpolation literature—see
for instance Narcowich and Ward (1992), Narcowich et al. (1994), Schaback (1995), and Diederichs
and Iske (2019). In cases where the Gaussian process approximation requires inversion of Kzz + Λ,
from this we can immediately conclude a condition number bound.

Corollary 7. Under the conditions of Proposition 6, for diagonal Λ, letting Λmax and Λmin denote
its respective maximum and minimum entry, we have

cond(Kzz + Λ) ≤ Ck,δmax + Λmax

Λmin
. (15)

Proof. Combine Proposition 6 with the triangle inequality for operator norm, noting that for positive
semi-definite matrices the operator norm is equal to the largest eigenvalue.

This generalizes immediately to the case where Λ is not diagonal, as long as Λmax and Λmin are
replaced with its maximum and minimum eigenvalues. Since in many practical cases Λ is diagonal,
we retain this presentation for simplicity. In the noiseless case, we can also conclude a condition
number bound, but now additionally require stationarity to do so. We will need the following result.

Result 8. Let X ⊆ Rd, and let k be stationary and continuous. Then there is a constant Ck,δmin > 0
such that for any M and any z of size M with sep(z) ≥ δ > 0, we have

λmin(Kzz) ≥ Ck,δmin. (16)

Proof. Wendland (2004, Theorem 12.3). See Appendix A for a sketch of the main argument.

We can combine this the eigenvalue upper bound to bound the condition number, which we
present for completeness.

Corollary 9. Under the conditions of Proposition 6 and Result 8, there is a constant Ck,δcond > 1
such that for any M and any z of size M with sep(z) < δ, we have

cond(Kzz) ≤ Ck,δcond. (17)

Proof. Combine Proposition 6 and Result 8 with cond(Kzz) = λmax(Kzz)
λmin(Kzz) , taking C

k,δ
cond =

Ck,δmax

Ck,δmin

.

These results therefore reveal what properties the set of inducing points z needs to have in order
to yield numerically stable linear systems. Separation distance and spatial decay rule out the bad
behavior shown in Proposition 3, by preventing the limiting covariance operator from controlling
properties of the corresponding kernel matrices. The analysis shown is based on the techniques
presented by Wendland (2004, Ch. 12) for proving Result 8, which originate in the polynomial

7

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

interpolation literature (Narcowich and Ward, 1992; Schaback, 1995). For non-stationary kernels,
mirroring Proposition 6, we conjecture that a similar bound to Result 8 for λmin holds for a wide class
of kernels, but requires a different argument which avoids the use of Fourier analysis. To conclude,
we observe that for most kernels, if one allows for an arbitrarily large number of inducing points and
no noise is added to the kernel matrix, then the minimum separation condition is necessary to ensure
bounded condition numbers.

Proposition 10. Let zm ∈ X, m = 1, ..,∞, be a sequence, and let k be a Lipschitz continuous kernel
on X ×X. Define K

(M)
zz ∈ RM×M to be the kernel matrix formed by evaluating k at z1, .., zM . If

there exists a C > 0 such that for all M , cond(K
(M)
zz) ≤ C, then zm satisfy minimum separation.

Proof. Appendix A.5.

3.2 Inducing Points for Geospatial Data via Cover Trees

To obtain an algorithmic solution that guarantees numerical stability, we study how to construct
inducing points which satisfy a user-specified minimum separation radius. Since separation is defined
purely in terms of the inducing points, we need a second criterion to quantify how well the inducing
points summarize a given dataset. A clear choice is to place the inducing points as close to the data
as possible.

Definition 11. Let x be the data, and z be the inducing points. Define the spatial resolution

resx(z) = max
i=1,..,N

min
j=1,..,M

‖xi − zj‖. (18)

In simple terms, the spatial resolution is the maximum distance from a data point to the closest
inducing point. This notion is closely related to fill distance which appears in the the analysis
of posterior contraction rates (Kanagawa et al., 2018), but instead involves both a dataset x and
inducing points z. Among all sets of inducing points with a given spatial resolution, finding ones
which satisfy separation is always possible. More precisely, if we take the inducing points z to be the
centers of balls which make up a maximal separated subset of radius sep(z) = ε, the resulting choice
automatically has spatial resolution resx(z) = ε. A similar observation applies if one takes z to be
an optimal covering of x—see Appendix A for details. This shows that the notions of separation
distance and spatial resolution are closely connected with optimal covering and packing numbers—see
Vershynin (2018, Section 4.2).

We now study numerical techniques for computing inducing points that simultaneously satisfy
separation and covering guarantees. Our goal is to obtain a practical near-linear-time method
producing a set of inducing points with small spatial resolution, to ensure accurate approximations
of the posterior, and large separation to ensure stability. To achieve this, we propose an approach we
term the R-neighbor cover tree, which is a refinement of the cover tree data structured originally
proposed by Beygelzimer et al. (2006) for efficient nearest neighbor search, and studied further by
Kibriya and Frank (2007) and Izbicki and Shelton (2015). This approach is well-suited to cases
where the inputs are low-dimensional such as geospatial data. We note that the proposed algorithm
will also perform well in cases when the dataset has low intrinsic dimension—see Beygelzimer et al.
(2006)—even if the dataset is embedded in a high dimensional space.

A cover tree is a tree where nodes are points associated with metric balls. The root node is a
ball which covers all of the data x. Each parent node contains the centers of its child nodes, which
consist of balls of smaller radius than the parent. At each level, the tree enforces separation and
covering properties similar to those in Definition 4 and Definition 11, with the separation distance
and spatial resolution proportional to the radius of balls at that depth. Beygelzimer et al. (2006)
present a depth-first algorithm for building such a tree.

Since we are interested in inducing point selection with a fixed spatial resolution ε, rather than
nearest neighbors search, we seek a different set of guarantees than those provided by Beygelzimer

8

Numerically Stable Sparse Gaussian Processes

(a) Place covering nodes (b) Compute R-neighbors (c) Repeat steps (a) and (b) recursively

Figure 2: Two iterations of Algorithm 12 on a tree with L = 3 total levels. Given a region, the
algorithm first (a) computes a covering of the region by picking data points one-by-one from those not
yet covered. Then, it (b) computes the R-neighbors of each node and uses this to efficiently compute
a Voronoi tessellation of the region. Finally, the algorithm (c) repeats the process recursively.

et al. (2006), or by improved versions such as that of Izbicki and Shelton (2015). The most important
difference is that, in the inducing point case, we want separation to hold globally in every level of the
tree, and not only for children with a common parent. To do this, we present a modified breadth-first
construction, which is of independent interest, and conceptually works as follows.

1. Initialize the root node z1,1 at the mean of the data, and assign all data to it.

2. Loop over tree depth `, starting at ` = 0.

(a) Loop over parent nodes z`,p.

i. Select a point z′ from the parent’s assigned data.
ii. Optional: compute the local average of the parent node’s assigned data around z′,

and set z′ to be this average, as long as it is not too close to another node.
iii. Create a child node z`+1,c centered at z′.
iv. Reassign all points near z`+1,c in nodes at level ` to z`+1,c.

(b) Optional: reassign all points at level `+ 1 according to the Voronoi partition of z`+1,c.

A formal description is given in Algorithm 12. The key insight behind this top-down, breadth-first
construction is that, for a dataset with a given intrinsic dimensionality, it can be performed in
near-linear time. The reason for this is that every step is local, and can be computed by searching
only the children of nodes sufficiently close to the current parent node. More precisely, we show that
if the parent node’s radius is at level ` with radius R and the total depth of the tree is L, then only
nodes within a distance of 4(1− 1/2(L−`))R ≤ 4R need to be searched. The number of such nodes is
bounded, can be tracked recursively, and is controlled by the intrinsic dimensionality of the data.

The two optional steps do not alter the algorithm’s complexity or its guarantees, but improve
practical performance. The local averaging step we propose is similar to the Lloyd’s iteration of
K-means, and allows the tree to use fewer nodes by placing them in-between data points, rather
than exactly on top of data points. The Voronoi repartitioning step, originally proposed by Izbicki
and Shelton (2015), makes the tree better-balanced. We now prove the algorithm works as intended.

Theorem 13. For a given target spatial resolution ε > 0, and dataset with x̄ = 1
N

∑N
i=1 xi and

dmax = maxi‖xi − x̄‖, the cover tree inducing point algorithm, with or without the optional steps,
produces a tree with L =

⌈
log2

dmax

ε

⌉
+ 1 levels, terminates in

O
(
P

ext,1/2
B(4)

(
P

ext,1/2
B(1)

)2

N log
dmax

ε

)
(19)

9

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

Algorithm 12 Cover Tree Inducing Points

1: input spatial resolution ε > 0 and dataset x. Define notation Bz(R) = {x ∈ X : ‖z − x‖ ≤ R}.
2: Initialize root node z0,1 = 1

N

∑N
i=1 xi, assigned data A1,1 = x, R-neighbors R1,1 = {1}, as well

as constants dmax = maxi=1,..,N‖z1,1 − xi‖, L =
⌈
log2

dmax

ε

⌉
, M0 = 1, and R0 = 2Lε.

3: for tree depth level ` = 1, .., L do
4: Initialize number of nodes M` = 0, child node index c = 1, and radius R` = 1

2R`−1.
5: for parent node index p = 1, ..,M`−1 do
6: Initialize child nodes C`−1,p = ∅ and, optionally, assigned data copy A′`−1,p = A`−1,p.
7: while assigned data A`−1,p 6= ∅ do
8: Choose an arbitrary data point ζ ∈ A`−1,p.
9: Optional: compute local average ζ ′ = 1

|Z|
∑
z∈Z z, where Z = A`−1,p ∩Bζ(R`).

10: if minz∈Z′‖ζ − z‖ > R` where Z ′ =
⋃
r∈R`−1,p`,c

C`−1,p then set ζ = ζ ′.
11: Create child node z`,c = ζ.
12: for parent R-neighbor index r in R`−1,p do
13: Update assigned data A`,c = A`,c ∪ (A`−1,r ∩Bz`,c(R`)), A`−1,r = A`−1,r \Bz`,c(R`).
14: Update children C`−1,p = C`−1,p ∪ {c}, parent p`,c = p, index c = c+ 1, and M` = M` + 1.
15: for child node index ς = 1, .., c do
16: Compute child R-neighbors R`,ς =

⋃
r∈R`−1,p`,c

C`−1,r ∩Bz`,c(4(1− 1/2(L−`))R`).
17: Optional: recompute A`,ς = {x ∈

⋃
r∈R`−1,p`−1,c

A′`,r : ‖x− zς‖ ≤ ‖x− zς′‖,∀ς ′ 6= ς}.
18: return z = {z`,m : ` = L}.

steps, where B(r) denotes a ball of radius r, and P ext,δ
X is the external packing number, namely the

maximum number of disjoint balls of radius δ that one can choose so that their centers lie in X.
Moreover, the algorithm guarantees that the nodes at each level ` satisfy

resx(z`) ≤ 2L−`ε sep(z`) ≥ 2L−`ε. (20)

Proof. Appendix C.

This gives an efficient and practical algorithm for choosing inducing points which guarantees
the properties needed in Corollary 9 hold. The algorithm’s output is fairly-sharp: compared to an
optimal covering, the cover tree construction may require a slightly larger number of inducing points,
but achieves the same separation guarantee, irrespective of the number of levels. Using this, we
obtain the following numerical stability guarantee.

Corollary 14. Let x be a dataset of size N , and let ε > 0 Let z be a set of inducing points computed
from x by the cover tree algorithm with target spatial resolution ε. Let k be stationary, continuous,
and satisfy spatial decay. Then cond(Kzz) is bounded independently of N .

Proof. Combine Theorem 13 with Corollary 9.

For kernels which possess a length scale parameter, the desired spatial resolution in a given
problem might depend on the value of the length scale. This parameter is often set by training
the model via maximum marginal likelihood, and can therefore change as training progresses. In
such settings, one can use the hierarchical structure of the tree to dynamically adjust the number
of inducing points as the length scale changes. This can be done by switching to inducing points
obtained from an intermediate level of the tree if the length scale becomes coarser, or by computing
an extra level of the tree if it becomes finer. The simplest way to do this is to adjust the model after
initial training is complete, since this avoids non-smooth changes in the inducing point approximation
during training, and fine-tune the model after the update if necessary.

10

Numerically Stable Sparse Gaussian Processes

(a) Original Gaussian process (b) Clustered-data approx. (c) Equivalent sparse process

Figure 3: The idea behind the clustered-data approximation of Proposition 15. To construct this
approximation, we move each data point in x to its nearest cluster, transforming (a) to (b). We can
then reinterpret and represent (b) in a sparse manner by merging repeated data points, replacing y
with the cluster means u, and re-weighting each data point according to cluster size—obtaining (c),
which is equal in distribution to (b).

3.3 Additional Stability via the Clustered-data Inducing Point Approximation

In the preceding sections, we studied properties of data needed to obtain a stability guarantee for
inducing point methods. We now study a complementary question: if selecting z using a cover tree,
can the inducing point approximation be modified to improve stability further? To proceed, we begin
by defining a low-rank analog (Bui et al., 2017; Panos et al., 2018; Adam et al., 2021) of the Opper
and Archambeau (2009) approximation

(f | u)(·) = f(·) + K(·)z(Kzz + Λ)−1(u− f(z)− ε) ε ∼ N(0,Λ) (21)

where z, diagonal noise matrix Λ, and the inducing mean value u are now variational parameters.
Since its optimization objective is non-convex in the variational parameters, this approximation is
generally used with natural gradients (Adam et al., 2021) or stochastic optimization (Panos et al.,
2018; van der Wilk et al., 2022). Similar to the earlier inducing point approximation of Titsias (2009)
and Hensman et al. (2013), it recovers the true posterior when M = N , z = x, Λ = Σ, and u = y.

This approximation is more numerically stable thanks to the diagonal matrix Λ (Panos et al.,
2018; van der Wilk et al., 2022), which lower bounds the minimum eigenvalue of Kzz + Λ by
mini=1,..,M Λii + λmin(Kzz) > 0. For finite datasets, this is a strict improvement in stability over
approximations involving only Kzz. Since Λ effectively controls the width of the posterior error bars,
the degree to which this benefit manifests itself depends on the data, with more uncertainty leading
to more numerically stable linear systems.

Before studying convergence further, we observe that this approximation’s relationship with the
true posterior is deeper than might first meets the eye. For a given set of inducing points z and
dataset x, define the nearest inducing point clustering and cluster size maps

cl(x) = arg min
zj , j=1,..,M

‖x− zj‖ Ncl(x) = |{x′ ∈ x : cl(x) = cl(x′)}|. (22)

With these notions, we show that, under certain choices of the variational parameters, the Opper–
Archambeau approximation is exactly the correct posterior under a perturbed dataset, where x is
replaced with cl(x) and all other data and model parameters are unchanged.

Proposition 15. Let uj = 1
Ncl(zj)

∑
cl(xi)=zj

yi. The Bayesian models defined by f ∼ GP(0, k) and

yi | f ∼ N(f(cl(xi)), σ
2) ui | f ∼ N

(
f(zi),

σ2

Ncl(zi)

)
. (23)

admit respective posterior distributions f | y and f | u which are equal in distribution.

11

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

Proof. Appendix B.

In cases where the spatial resolution of Definition 11 is small—which the cover tree guarantees—we
can use Proposition 15 to accurately estimate the correct variational parameters without needing to
perform optimization. This is done by choosing z to be the clusters, choosing u to be the cluster
mean, and choosing the entries of the heteroskedastic noise matrix Λ to be equal to the original noise
variance divided by the cluster size. We call this the clustered data inducing point approximation,
and illustrate it in Figure 3.

The explicit description of the approximation made by use of inducing points in Proposition 15
enables us to better understand how to select them algorithmically. To develop this line of thought
in more detail, we proceed to study how to choose inducing points to optimize the tradeoff between
approximation error and computational costs using conjugate gradients.

In many applications, employing this approximation involves computing its marginal likelihood
objective, or related quantities such as prior density evaluations or Kullback–Leibler divergences.
One of the noteworthy properties of this approximation is that the Kullback–Leibler divergence
between it and the true prior simplifies into

DKL(q || p) =
1

2
ln
|Kzz + Λ|
|Λ|

− 1

2
tr((Kzz + Λ)−1Kzz) +

1

2
vTKzzv (24)

where v = (Kzz + Λ)−1u, and the minus sign in the trace term appears due to cancellation with
the usual dimension term. The linear systems appearing in this term are more numerically stable
than those in most other variational approximations, owing to the presence of Λ. This applies to all
computations needed to train the Gaussian process, not just the ones for obtaining predictive means
and variances.

4. Experiments

We investigate the performance of the clustered-data inducing point approximation on a series of tests
designed to illustrate both the behavior of its components and the overall picture. Each experiment
focuses on a different aspect of the method, including approximation error, scalability, and behavior
under varying quantities of data and inducing points. Full details regarding the experimental setup
are given in Appendix D.

4.1 Spatial Resolution and Empirical Approximation Error

To better understand how different spatial resolutions resolve the tradeoff between approximation
error and performance, we performed a number of numerical experiments designed to highlight this
tradeoff. To quantify approximation error, we chose the Wasserstein distance, because it is finite in
the setting of interest, is readily estimatable numerically, and controls expectations of a large class of
posterior functionals (Villani, 2008).

To assess these quantities, we generated synthetic data by sampling N = 1000 input points
uniformly on a hypercube of dimension 1, 2, 4 and 8, and then sampling from the prior process,
which uses a squared exponential kernel. We then varied the spatial resolution, computed inducing
points using the cover tree algorithm, and empirically estimated the Wasserstein distance between
the approximate and true Gaussian processes. To better contextualize results, since the cover tree
construction produces a variable number of inducing points, we also recorded the number of inducing
points produced for spaces of different dimension.

Results can be seen in Figure 4. Immediately, we see that behavior of the cover tree depends
on the dimension of the space the data lives on. In higher dimension, more inducing points are
needed to construct a separated covering with the same spatial resolution. On the other hand, we see

12

Numerically Stable Sparse Gaussian Processes

0 1 2 3 4

0

200

400

600

800

1000

Num. Inducing Points

0 1 2 3 4

0

500

1000

1500

2000

Spatial Resolution

Wasserstein Distance
d = 1 d = 2 d = 4 d = 8

0 1 2 3 4

100

101

102

103

104
Condition Number

0 1 2 3 4

0

50

100

150

Conjugate Gradient Iters.

Figure 4: We illustrate how spatial resolution affects approximation accuracy and computational cost.
We see that increasing the spatial resolution leads to using fewer inducing points, dropping rapidly in
low dimension, and slower in higher dimensions. On the other hand, the error in approximation, as
measured by Wasserstein distance between the approximate posterior and exact posterior, increases
as the spatial resolution increases. Computational costs follow the opposite relationship: finer spatial
resolutions are less stable and more expensive to compute, as evidenced by condition numbers and
the number of iterations needed for conjugate gradients to converge.

spatial resolution directly controls approximation accuracy in Wasserstein distance, with finer spatial
resolutions more accurate than coarser ones, and the effect being similar in different dimensions.

Next, to assess the consequence of different spatial resolutions on stability and corresponding
difficulty of solving the resulting linear systems, we assess empirical performance of conjugate
gradients in the settings of interest. We adopt the same data-generation process used in the preceding
variant, but this time focus on the linear systems. We again vary spatial resolution, but now compute
the numerical condition numbers of the resulting kernel matrices, and run the conjugate gradient
algorithm to convergence, obtaining the number of iterations needed for convergence.

In Figure 4, we see that finer spatial resolutions generally result in more expensive-to-solve and
less-stable linear systems. The effect varies according to dimension, and is least pronounced in d = 8:
in high dimensions, when sampling uniformly on a hypercube, the inputs tend to end up far away
from each other, leading to less extreme eigenvalue s. In lower dimensions, where the posterior is
more concentrated, the effect of spatial resolution on condition numbers is more pronounced. In all
cases, higher condition numbers lead to more iterations conjugate gradient iterations needed. In
total, we see that spatial resolution is a directly interpretable quantity which facilitates the tradeoff
between approximation accuracy with stability and computational cost.

4.2 Comparison to Alternative Inducing Point Selection Schemes

Next, to understand how different inducing point selection methods perform, we performed an
experiment to assess the tradeoffs in terms of performance, stability, and computational cost. We
compare five methods for selecting inducing points: the cover tree approach described in Algorithm 12,
the online inducing point selection algorithm proposed by Galy-Fajou and Opper (2021), the partial
pivoted Cholesky approach studied by Foster et al. (2009), along with baselines consisting of ordinary
K-means, K-means++ (Arthur and Vassilvitskii, 2007), optimizing the inducing points directly
by minimizing the respective Kullback–Leibler divergence, and uniform random sampling from the
training data.

To assess performance and stability, we evaluated the methods in terms of their produced kernel
matrix condition numbers, and three sparse Gaussian process regression performance metrics, namely
root mean squared error, negative log predictive density, and the evidence lower bound. Together,
these give a view of both training and test-set performance, as well as variational approximation error.

13

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

101

103

105

107

109

Ea
st

A
fr

ic
a

Condition Number

0.1

0.2

0.3

0.4

0.5

0.6

RMSE

Cover Tree K-means Online
Partial Cholesky K-means++ Optimized Uniform

−0.25

0

0.25

0.5

0.75

1

NLPD

−1

−0.5

0
·106

ELBO

500 2,750 5,000

102

104

106

108

1010

Po
w

er

500 2,750 5,000

0.1

0.15

0.2

0.25

0.3

Number of Inducing Points
500 2,750 5,000

−0.4

−0.2

0

0.2

500 2,750 5,000

−5

−2

1
·104

Figure 5: We compare how different inducing point selection algorithms vary according to performance
and stability, using the geospatial East Africa dataset, and higher-dimensional Power dataset. The
number of inducing points produced by algorithms whose output is variable is shown rounded to the
nearest increment. Note that the computational complexity of these methods differs: cover tree is
O(N logN), online and the K-means variants are O(NM), partial pivoted Cholesky is O(NM2),
and optimizing the inducing points is O(NM2) per optimization iteration. We see that using more
inducing points results in higher performance, but reduced stability, with the precise effect varying
according to dataset, dimensionality, and inducing point selection method.

We chose the sparse approximation of Titsias (2009) owing to its widespread use, working with the
GPFlow, whose linear algebra is implemented in a stable manner using the V -method suggested by
Foster et al. (2009). We use the squared exponential kernel and a jitter value of 10−6. We evaluated
the different methods on two datasets: the two-dimensional East Africa geospatial dataset studied
by Wan et al. (2002), Weiss et al. (2014), and Ton et al. (2018), and the four-dimensional Combined
Cycle Power Plant dataset from the UCI Machine Learning Repository (Tüfekci, 2014; Dua and
Graff, 2017). These give a view of performance in both geospatial and non-geospatial settings, while
ensuring all methods run successfully and can therefore be meaningfully compared.

Results can be seen in Figure 5. Immediately, we see that different methods produce different
tradeoffs between performance and stability. These tradeoffs need not be achieved in an optimal
manner: one might intuitively expect the ordinary K-means baseline to produce inducing points
that are well-separated due to its clustering nature, and therefore result in stable linear systems.
This doesn’t happen: instead, K-means tends to simultaneously achieve the worst performance and
worst numerical stability among all methods except possibly uniform subsampling. In comparison,
K-means++, which uses a sophisticated initialization scheme that promotes separation, produces
much better performance and stability than K-means, though still not as well as methods with
specified separation guarantees. This shows that one must explicitly encourage separation to obtain
good performance-stability tradeoffs via such approaches.

The strongest predictive performance is achieved by optimizing the inducing points directly
by minimizing the respective Kullback–Leibler divergence using gradient descent. The resulting
inducing points, however, can be as numerically unstable as those produced by K-means or uniform

14

Numerically Stable Sparse Gaussian Processes

subsampling. Since optimizing inducing point locations requires one to specify an initialization,
this suggests it may be advantageous to choose this initialization carefully, using one of the stable
inducing point selection algorithms, to minimize potential numerical failures during the optimization
process.

On the geospatial example, again somewhat-surprisingly, all methods with stability guarantees
produced near-identical condition numbers and performance for a given number of inducing points.
The main difference with these methods is therefore their computational cost, which in low dimension
are O(N logN) for the cover tree, O(NM) for the online approach and K-means++, and O(NM2)
for partial pivoted Cholesky. The online method’s complexity can, for some kernels, be improved
to O(N logN) by for instance precomputing a tree-based data structure that enables fast nearest-
neighbor lookups, in which case the resulting variant starts to resemble the final loop of the cover
tree construction algorithm. Overall, we conclude, in this setting, that significant numerical stability
improvements can be obtained without reducing performance—and, using the cover tree, without
paying excessive computational costs.

On the higher-dimensional non-geospatial example, no method of inducing point selection achieves
a clear improvement on top of uniform subsampling of the data in terms of performance. On the other
hand, the cover tree, online method, K-means++, and partial pivoted Cholesky all achieve better
numerical stability compared to K-means, uniform sampling, and optimization, with partial pivoted
Cholesky being the most stable. Due to the curse of dimensionality, the O(NM2) computational
costs of partial pivoted Cholesky are similar or favorable to the other approaches, making this method
competitive. In this setting, we therefore conclude that significant numerical stability improvements
can be obtained—however, unlike in the lower-dimensional setting, the computational costs needed
to do so can become expensive.

In summary, we conclude from the comparisons that different approaches’ strengths are most
effective in different settings. In low-dimensional geospatial problems, among all non-iterative
methods, the cover tree algorithm provides good performance with guaranteed stability, while
running in near-linear time. The online approach performs comparably, and can be more appropriate
for settings where data arrives sequentially. K-means++, which promotes but does not enforce
separation, performs slightly worse. In high-dimensional problems, the partial pivoted Cholesky
algorithm results in strong performance, provided the desired number of inducing points is small
enough that running it is practical. One can obtain the best performance by optimizing the inducing
points directly, at cost of having to run an iterative procedure, and producing worse stability. In
both classes of problems, our experiments suggest that methods with stability guarantees can offer a
better performance-stability tradeoff compared to naïve methods.

4.3 Reliability in Floating Point Precision: Geospatial Illustrative Example

One of the appealing properties of using numerically stable approaches in variational inference is
that, in principle, they can enable one to use a larger set of inducing points than customarily used.
This is for two reasons: (i) the quadratic cost of conjugate gradients and (ii) the ability to save
memory by effectively running in floating point precision. To illustrate that using more inducing
points can improve performance on applied examples, we train the variational approximation of
Titsias (2009) and with the clustered-data approximation of Section 3.3 on the East Africa land
surface temperature dataset (Wan et al., 2002; Weiss et al., 2014; Ton et al., 2018). In both cases,
we use floating-point precision, and the same inducing points obtained using a cover tree.

One of the defining characteristics of this dataset is that it has a relatively small number of data
points per unit length scale ball, due to the fine-scale variation in land surface temperature. This
renders approximations based on a sparse set of inducing points less accurate, unless the number of
inducing points approaches the order of the size of the dataset. By varying the spatial resolution
from relatively long (ε = 0.09) to very short (ε = 0.03) we see both qualitative and quantitative
improvement, shown in Figure 6.

15

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

ε = 0.09
M = 902

ε = 0.06
M = 1934

ε = 0.03
M = 6851

0.03 0.06 0.09

0

0.25

0.5

Spatial Resolution

Test RMSE

CDGP
SGPR

Figure 6: Here we illustrate the effect of spatial resolution ε and resulting number of inducing
points M on the stability and performance of the Gaussian process model for the clustered-data
approximation (blue), and sparse variational Gaussian process baseline (orange). We see that
coarser spatial resolutions result in blurrier predictions and, in turn, higher RMSE. While the sparse
variational Gaussian process baseline achieves better performance on coarser resolutions, its Cholesky
factorization eventually fails, requiring us to increase jitter—this is displayed by the dashed line. The
clustered-data approximation with conjugate gradients, on the other hand, runs reliably in all cases,
achieving slightly worse but overall comparable performance.

When using larger sets of inducing points and running in floating point precision, numerical
stability becomes increasingly crucial for running successfully. For the variational approximation
of Titsias (2009), this manifests itself as Cholesky factorization failure. A common heuristic for
alleviating this in the Gaussian process literature is to add jitter to the kernel matrix: this is done
by replacing Kzz with Kzz + εI for a small value ε > 0. This increases all of the eigenvalues of the
matrix by ε, and ensures that the smallest eigenvalue cannot be arbitrarily close to 0. We found
that using a larger jitter value compared to the GPflow recommended default was necessary when
working with the finest spatial resolution of ε = 0.03, which produced M = 6851 inducing points,
indicating that this separation distance alone was too small to ensure stability in this example.

In comparison, the clustered-data approximation does not require jitter, since it only involves
inversion of the matrices Kzz+Λ which include the diagonal matrix Λ. This makes it a more reliable
approach, but results in slightly worse predictive performance. In settings where the Gaussian process
is trained in an automated manner without human oversight, or where data is collected online and
not available in advance, reliability can be a bigger concern than performance. In such cases, our
results indicate that the clustered-data approximation can be an alternative worth considering.

In this example, numerical stability is first and foremost a consequence of the minimum kernel
matrix eigenvalue λmin(Kzz) being too close to zero. Both introducing jitter and using the clustered-
data approximation can alleviate this, but cannot help with issues arising from the maximum
eigenvalue being too large, which must eventually occur if many inducing points accumulate in a
bounded region. Our experiment indicates that this does not occur on the scales considered, but
might instead occur when working with substantially larger sets of inducing points, for instance in
the presence of sparse or otherwise structured kernel matrices (Durrande et al., 2019), which can
often be inverted at substantially larger scale.

4.4 Numerical Stability and Dataset Size

The preceding sections show that, in the examples considered, numerical stability tends to deteriorate
as approximation accuracy increases, as measured by the number of inducing points. On the other
hand, in many settings, the more data one has, the more inducing points one needs to accurately
represent the true posterior. One can therefore also think of the number of inducing points as
measuring the expressive capacity of the variational family. This naturally raises the question: what

16

Numerically Stable Sparse Gaussian Processes

N
um

be
r

of
In

du
ci

ng
Po

in
ts

0

1000

2000

3000

4000 C
ond.

N
um

.
Cover Tree K-means Online Partial Chol.

100
101
102
103
104+

Optimized

1
10

1
4

1
2

3
4

9
10

0

1000

2000

3000

4000

R
M

SE

1
10

1
4

1
2

3
4

9
10

1
10

1
4

1
2

3
4

9
10

Fraction of Total Data

1
10

1
4

1
2

3
4

9
10

1
10

1
4

1
2

3
4

9
10

0.2
0.3
0.4
0.5
0.6
0.7

Figure 7: We illustrate how numerical stability and performance change when data size and approxi-
mation accuracy are varied simultaneously. Viewing a single plot top-to-bottom, we see that for a
fixed data size, increasing the number of inducing points produces better performance and very slightly
improves stability. Viewing the same plot left-to-right, we see that for a fixed level of variational
approximation expressiveness, using more inducing inducing points produces better performance
but decreases stability. Viewing the plot diagonally, we see that increasing data size and variational
approximation expressiveness simultaneously results in better performance but worse stability, with
different methods choosing tradeoffs in favor of either performance or stability, depending on the
details of how they are designed.

happens to numerical stability when the number of data points grows, and expressive capacity grows
with it?

To understand this, we decided to examine how stability and predictive performance change
depending on data size and the number of inducing points simultaneously. For this, we randomly
sampled subsets from the East Africa dataset used in the preceding illustrative example, and computed
both the respective kernel matrix condition number, and predictive root-mean-squared error.

Results can be seen in Figure 7. For a fixed data size (Figure 7, top-to-bottom), we see that
using more inducing points improves performance, but makes stability worse, with the tradeoff
determined by the individual method: numerically stable methods favor stability, whereas optimizing
the inducing points favors performance but quickly leads to unstable linear algebra. On the other
hand, for a fixed number of inducing points (Figure 7, left-to-right), using more data always improves
performance, and can actually slightly improve stability. In light of Corollary 9, this makes sense,
because using more data provides a larger region within which the algorithms can place a fixed
number of inducing points, allowing them to be spaced further apart from one another.

If we grow both the number of data points and the number of inducing points at the same time
while keeping their ratio approximately fixed (Figure 7, diagonal, bottom-left to top-right), we see that
numerical stability deteriorates as data size and the number of inducing points increase simultaneously.
The severity of the tradeoff depends on the algorithm used: stable methods provide a tradeoff which
favors numerical stability, while optimized inducing points favor performance and become unstable
faster. K-means achieves the worst of both worlds, having a level of performance comparable to
stable methods, and a level of numerical stability comparable to optimizing the inducing points. This
highlights the value of methods designed to produce a favorable performance-stability tradeoff.

17

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

5. Conclusion

We study numerical stability of variational approximations used for Gaussian process models. We
survey and synthesize a number of results which, in total, enable one to conclude that the minimum
separation distance between inducing points controls stability properties of the numerical linear
algebra needed to train variational approximations. We introduce two techniques for ensuring
stability: inducing points constructed by a cover tree, and the clustered-data approximation. We
provide examples illustrating the tradeoff between performance, stability, and dataset size. Compared
to standard inducing point placement methods, we find that approaches that promote minimum
separation produce a favorable performance-stability tradeoff.

Acknowledgments

DRB was supported by the Qualcomm Innovation Fellowship. SF was supported by the EPSRC
(EP/V002910/2). We further acknowledge support from Huawei Research and Development, the
Imperial College COVID-19 Research Fund, and UK Research and Innovation.

References

V. Adam, P. Chang, M. E. E. Khan, and A. Solin. Dual Parameterization of Sparse Variational
Gaussian Processes. In Advances in Neural Information Processing Systems, 2021. Cited on
page 11.

D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In ACM Symposium
on Discrete Algorithms, 2007. Cited on page 13.

S. Basak, S. Petit, J. Bect, and E. Vazquez. Numerical issues in maximum likelihood parameter
estimation for Gaussian process interpolation. In International Conference on Machine Learning,
Optimization, and Data Science, pages 116–131. Springer, 2021. Cited on page 2.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In International
Conference on Machine Learning, pages 97–104, 2006. Cited on pages 2, 8.

T. D. Bui, J. Yan, and R. E. Turner. A unifying framework for Gaussian process pseudo-point
approximations using power expectation propagation. The Journal of Machine Learning Research,
2017. Cited on page 11.

D. R. Burt, C. E. Rasmussen, and M. van der Wilk. Convergence of Sparse Variational Inference in
Gaussian Processes Regression. Journal of Machine Learning Research, 2020. Cited on page 3.

D. R. Burt, C. E. Rasmussen, and M. van der Wilk. Rates of Convergence for Sparse Variational
Gaussian Process Regression. In International Conference on Machine Learning, 2019. Cited on
page 3.

N. Cressie. Statistics for Spatial Data. Wiley, 1992. Cited on pages 2, 3.

L. Csató and M. Opper. Sparse on-line Gaussian processes. Neural Computation, 2002. Cited on
page 3.

B. Diederichs and A. Iske. Improved estimates for condition numbers of radial basis function
interpolation matrices. Journal of Approximation Theory, 2019. Cited on pages 2, 7.

18

Numerically Stable Sparse Gaussian Processes

M. Dow. Explicit inverses of Toeplitz and associated matrices. Australian and New Zealand Industrial
and Applied Mathematics Journal, 2002. Cited on page 5.

D. Dua and C. Graff. UCI Machine Learning Repository, 2017. url: http://archive.ics.uci.edu/
ml. Cited on page 14.

N. Durrande, V. Adam, L. Bordeaux, S. Eleftheriadis, and J. Hensman. Banded Matrix Operators
for Gaussian Markov Models in the Automatic Differentiation Era. In Artificial Intelligence and
Statistics, 2019. Cited on page 16.

W. E. Principles of Multiscale Modeling. Cambridge University Press, 2011. Cited on page 4.

L. Foster, A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, P. Gazis, and
A. Srivastava. Stable and Efficient Gaussian Process Calculations. Journal of Machine Learning
Research, 2009. Cited on pages 2, 13, 14.

T. Galy-Fajou and M. Opper. Adaptive Inducing Points Selection For Gaussian Processes. InWorkshop
on Continual Learning at the International Conference on Machine Learning, 2021. Cited on
page 13.

J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. Gpytorch: Blackbox matrix-
matrix Gaussian process inference with GPU acceleration. Advances in Neural Information
Processing Systems, 2018. Cited on page 2.

M. Gibbs and D. Mackay. Efficient Implementation of Gaussian Processes. Technical report, Cavendish
Laboratory, University of Cambridge, 1997. Cited on pages 2, 31.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1996. Cited
on pages 4, 23.

D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms. Springer, 1990. Cited
on page 33.

M. J. Heaton, A. Datta, A. O. Finley, R. Furrer, J. Guinness, R. Guhaniyogi, F. Gerber, R. B.
Gramacy, D. Hammerling, M. Katzfuss, et al. A case study competition among methods for
analyzing large spatial data. Journal of Agricultural, Biological and Environmental Statistics,
24:398–425, 2019. Cited on page 3.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Uncertainty in Artificial
Intelligence, 2013. Cited on pages 2, 3, 11.

M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics – Simulation and Computation, 1989. Cited on pages 30,
31.

M. Izbicki and C. Shelton. Faster cover trees. In International Conference on Machine Learning,
2015. Cited on pages 8, 9.

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian processes and kernel
methods: A review on connections and equivalences. arXiv:1807.02582, 2018. Cited on page 8.

M. Katzfuss. A multi-resolution approximation for massive spatial datasets. Journal of the American
Statistical Association, 2017. Cited on page 3.

19

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

M. Katzfuss and J. Guinness. A General Framework for Vecchia Approximations of Gaussian Processes.
Statistical Science, 2021. Cited on page 3.

A. M. Kibriya and E. Frank. An empirical comparison of exact nearest neighbour algorithms. In
European Conference on Principles of Data Mining and Knowledge Discovery, 2007. Cited on
page 8.

A. Kiełbasiński. A note on rounding-error analysis of Cholesky factorization. Linear Algebra and its
applications, 88, 1987. Cited on page 4.

V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators. Bernoulli,
2000. Cited on pages 6, 22.

A. Krause and C. Guestrin. Nonmyopic active learning of Gaussian processes: an exploration-
exploitation approach. In International Conference on Machine learning, 2007. Cited on page 2.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory,
efficient algorithms and empirical studies. Journal of Machine Learning Research, 2008. Cited on
page 2.

F. Lindgren, H. Rue, and J. Lindström. An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73(4):423–498, 2011. Cited on page 3.

A. G. d. G. Matthews, J. Hensman, R. Turner, and Z. Ghahramani. On sparse variational methods
and the Kullback–Leibler divergence between stochastic processes. In Artificial Intelligence and
Statistics, 2016. Cited on page 3.

A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,
Z. Ghahramani, and J. Hensman. GPflow: A Gaussian Process Library using TensorFlow. Journal
of Machine Learning Research, 2017. Cited on pages 2, 35.

F. Narcowich, N. Sivakumar, and J. Ward. On Condition Numbers Associated with Radial-Function
Interpolation. Journal of Mathematical Analysis and Applications, 1994. Cited on pages 2, 7.

F. J. Narcowich and J. D. Ward. Norm estimates for the inverses of a general class of scattered-data
radial-function interpolation matrices. Journal of Approximation Theory, 1992. Cited on pages 2,
7, 8, 25, 27.

M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural Computation,
2009. Cited on page 11.

A. Panos, P. Dellaportas, and M. K. Titsias. Fully scalable Gaussian processes using subspace
inducing inputs. arXiv:1807.02537, 2018. Cited on page 11.

J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research, 2005. Cited on pages 2, 3.

H. Sang and J. Z. Huang. A full scale approximation of covariance functions for large spatial data
sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012. Cited on
page 3.

R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Advances
in Computational Mathematics, 1995. Cited on pages 2, 7, 8, 25, 27.

20

Numerically Stable Sparse Gaussian Processes

M. W. Seeger, C. K. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
Gaussian process regression. In Artificial Intelligence and Statistics, 2003. Cited on page 3.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, 2012. Cited on page 2.

M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial
Intelligence and Statistics, 2009. Cited on pages 2, 3, 11, 14–16.

J.-F. Ton, S. Flaxman, D. Sejdinovic, and S. Bhatt. Spatial mapping with Gaussian processes and
nonstationary Fourier features. Spatial Statistics, 28:59–78, 2018. Cited on pages 14, 15.

W. F. Trench. Properties of some generalizations of Kac–Murdock–Szegö matrices. Contemporary
Mathematics, 2001. Cited on page 5.

P. Tüfekci. Prediction of full load electrical power output of a base load operated combined cycle
power plant using machine learning methods. International Journal of Electrical Power and
Energy Systems, 2014. Cited on page 14.

M. van der Wilk, A. Artemev, and J. Hensman. Improved Inverse-Free Variational Bounds for Sparse
Gaussian Processes. In Symposium on Advances in Approximate Bayesian Inference. 2022. Cited
on page 11.

R. van Handel. Probability in high dimension. Princeton University, 2014. Cited on page 25.

A. V. Vecchia. Estimation and Model Identification for Continuous Spatial Processes. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 1988. Cited on page 3.

R. Vershynin. High-dimensional probability. Cambridge University Press, 2018. Cited on pages 8, 25,
34.

C. Villani. Optimal Transport: old and new. Springer, 2008. Cited on page 12.

Z. Wan, Y. Zhang, Q. Zhang, and Z.-l. Li. Validation of the land-surface temperature products
retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of
Environment, 2002. Cited on pages 14, 15.

D. J. Weiss, P. M. Atkinson, S. Bhatt, B. Mappin, S. I. Hay, and P. W. Gething. An effective approach
for gap-filling continental scale remotely sensed time-series. ISPRS Journal of Photogrammetry
and Remote Sensing, 2014. Cited on pages 14, 15.

H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004. Cited on pages 7,
25–27.

J. H. Wilkinson. A Priori Error Analysis of Algebraic Processes. In Proceedings of the International
Congress of Mathematicians, pages 119–129, 1966. Cited on page 4.

J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Efficiently Sampling
Functions from Gaussian Process Posteriors. In International Conference on Machine Learning,
2020. Cited on page 3.

J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Pathwise Conditioning
of Gaussian Processes. Journal of Machine Learning Research, 2021. Cited on page 3.

J. Xu and L. Zikatanov. Algebraic Multigrid Methods. Acta Numerica, 2017. Cited on page 4.

21

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

Appendix A. Eigenvalues and Condition Numbers

Here we analyze the behavior eigenvalues of kernel matrices, and how this affects numerical linear
algebra.

A.1 Covariance Operator Limits

Proposition 3. Let k be a continuous stationary kernel, and let the entries in x be independently
sampled from a uniform distribution on some compact subset X ⊆ Rd. Define the covariance operator

K : L2(X)→ L2(X) K : φ 7→
∫
X

φ(x)k(x, ·) dx (11)

acting on the Hilbert space of (equivalence classes of) square-integrable functions. Then the eigenvalues
of K are countable, non-negative, admit a maximum, and can be ordered to form a non-increasing
sequence whose limit is zero. For every n > 0, as N → ∞, the nth largest eigenvalue of 1

NKxx

converges almost surely to the corresponding eigenvalue of K. As a consequence, cond(Kxx)→∞
almost surely.

Proof. Define the (random) matrix K̃xx to be zero on the diagonal and equal to K̃xx on the off-
diagonal. Let Π denotes the set of all permutations of the natural numbers. For an operator A with
discrete spectrum, we view the spectrum as an element of `p/Π, denoted by λ(A). By convention, we
extend the spectrum of a symmetric, positive definite matrix M to an element of `p/Π by appending
zeros, denoted by λ(M). For p ∈ (1,∞] define the the `p rearrangement distance by,

dp(x, y) = inf
π∈Π

(∞∑
i=1

|xi − yπ(i)|p
)1/p

, (25)

with the unusual convention that p =∞ corresponds to the element-wise supremum. One can show
that dp defines a pseudo-metric on `p and a metric on `p/Π: the only property that is tricky to check
is triangle inequality, which is shown in Koltchinskii and Giné (2000, p. 116), in the case p = 2, which
immediately generalizes to other p. Since k is stationary, K̃xx = Kxx− cI for some c > 0. Therefore,

d∞

(
λ(1

N K̃xx), λ(1
NKxx)

)
=

c

N
→ 0. (26)

Since k is bounded, the conditions of Koltchinskii and Giné (2000, Corollary 3.3) are satisfied, so

d2

(
λ(1

N K̃xx), λ(K)
)
→ 0. (27)

and therefore by the standard (`2, `∞) inequality

d∞

(
λ(1

N K̃xx), λ(K)
)
→ 0 (28)

which implies that by the triangle inequality

d∞

(
λ(1

NKxx), λ(K)
)
→ 0. (29)

We have ∣∣∣λ1(1
NKxx)− λ1(K)

∣∣∣ ≤ d∞(λ(1
NKxx), λ(K)

)
→ 0, (30)

so by the reverse triangle inequality

λ1(Kxx) = Nλ1(K) + o(N). (31)

22

Numerically Stable Sparse Gaussian Processes

As K is not the zero operator and is positive definite, this is Ω(N). On the other hand, there exists
an N0 such that for all n > N0, we have λn(K) ≤ ε/2. Also, there exists an N ′0 such that for all
n ≥ N ′0

d∞(λ(1
NKxx), λ(K)) ≤ ε/2. (32)

Choose M0 = max(N0, N
′
0). Then for all n ≥M0,

1

N
λN (Kxx) ≤ d∞(λ(1

NKxx), λ(K)) + λn(K) ≤ ε (33)

and so λN (Kxx) = o(N). In fact, we can say much more: as the data is compactly supported, for any
ε > 0 and for all N sufficient large there exists a 1 ≤ i, j ≤ N such that k(xi, xj) ≥ (1− ε)k(xi, xi).
By Cauchy’s Interlacing Theorem,

λN (Kxx) ≤ λ2

(
k(xi, xi) k(xi, xj)
k(xj , xi) k(xj , xj)

)
≤ k(xi, xi)ε. (34)

As ε is arbitrary, we conclude λN (Kxx)→ 0.

A.2 Convergence of Conjugate Gradients

Result 16. Let v∗ satisfy Av∗ = b. For any t ∈ N and v0 ∈ Rn and vt denote the solution found
by running conjugate gradients on this system of equations with initial vector v0, then

‖v∗ − vt‖A ≤ 2

(
1− 2√

cond(A) + 1

)t
‖v∗ − v0‖A. (35)

Proof. Golub and Van Loan (1996, Theorem 10.2.6).

Corollary 17. A sufficient condition for ‖v∗ − vt‖A ≤ ε is

t ≥
(

log
(

1 + 2√
cond(A)+1

))−1

log
2‖v∗ − v0‖A

ε
=

(√
cond(A)

2 +O(1)

)
log

2‖v∗ − v0‖A
ε

(36)

where the implicit constant is between 1
2 and 3

2 .

Proof. The first inequality is immediate from inverting the bound in Result 16. The asymptotic
formula can be derived directly from applying the inequalities 1− 1

x ≤ log x ≤ x− 1 to yield√
cond(A) + 1

2
≤
(

log
(

1 + 2√
cond(A)+1

))−1

≤
√

cond(A) + 3

2
. (37)

A.3 Upper Eigenvalue Estimates

Here we prove the eigenvalue upper bound under separation and spatial decay via a packing argument.
We begin with a basic eigenvalue estimate.

Result 18 (Gershgorin’s Circle Theorem). Let K be a positive semi-definite symmetric matrix with
eigenvalues λ(K) = {λi}. Define the Gershgorin radius Ri =

∑
j 6=i |kij | to be the sum of the

off-diagonal entries of K. Then λ(K) ∈
⋃
i[kii −Ri, kii +Ri].

Proof. Golub and Van Loan (1996, Theorem 8.1.3).

23

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

We can use this result to get upper eigenvalue estimates as

λmax ≤ max
i
kii +Ri (38)

given a set of points that are separated and a kernel satisfying spatial decay. We now introduce these
notions.

Definition 19. We say that a set of points x ⊂ Rd are δ-separated if, for every xi 6= xj we have
‖xi − xj‖ ≥ δ > 0.

Definition 20. We define the ball of radius δ-centered at x ∈ Rd to be the open set,

Bx,δ = {x′ ∈ X : ‖x− x′‖ < δ}. (39)

We write Bδ = B0,δ.

Assumption 5 (Spatial decay). Let k be a kernel on X ⊆ Rd. We say that k has spatial decay
if there is a decreasing function ψ : [0,∞)→ [0,∞) such that for all x, x′ ∈ X we have

|k(x, x′)| ≤ ψ(‖x− x′‖) ψ(m) = O
(

1

md log(m)2

)
. (13)

The argument for the maximum eigenvalue bound is essentially that if we have spatial decay and
uniformly bounded variance, then the kernel matrix has bounded diagonal and bounded Gershgorin
radius, both independent of N .

Definition 21 (Covering and packing numbers). Let X ⊂ Rd and let δ > 0. Define the following.

1. A subset C ⊆ C ′ ⊆ Rd is an external cover of X in C ′ if for every x ∈ X there is a c ∈ C
such that ‖x− c‖ ≤ δ.

2. A subset C ⊆ X is an internal cover of X if for every x ∈ X there is a c ∈ C such that
‖x− c‖ ≤ δ.

3. A subset P ⊆ X is an external packing of X if any distinct x, x′ ∈ P satisfy ‖x− x′‖ > δ.

4. A subset P ⊆ X is an internal packing of X if it is an external packing, and moreover
satisfies Bx,δ ⊆ X for all x ∈ P .

Define the internal and external covering numbers C int,δ
X and Cext,δ

X,C′ to be the smallest cardinality of
such sets, and the internal and external packing numbers P int,δ

X and P ext,δ
X to be the largest cardinality

of such sets.

Lemma 22. Let Am,δ = B0,(m+1)δ \B0,mδ = {x ∈ Rd : mδ ≤ ‖x‖ < (m+ 1)δ} be an annulus with
external radius (m+ 1)δ and internal radius mδ. Then we have

vol(Bδ) =
πd/2

Γ(d2 + 1)
δd vol(Am,δ) =

πd/2

Γ(d2 + 1)
((m+ 1)d −md)δd. (40)

We also have for β ≥ 2 as well as β = 1
2 and β = 3

2 that

(β + 2)d − βd ≤ 5dβd−1. (41)

Proof. The first part of the claim is standard. For (41), suppose first that β ≥ 2, and expand
the first term on the left hand side with the Binomial Theorem. The lead term cancels with
the second term on the left hand side, and we are left with a total of 2d − 1 non-negative terms,
among which, using the assumption that β ≥ 2, the largest is 2βd−1. Combining these estimates
gives (β + 2)d − βd ≤ (2d+1 − 2)βd−1, which using 2d+1 − 2 ≤ 5d gives the inequality. We now
handle the remaining cases: for β = 1

2 we have (5
2)d − (1

2)d ≤ 5d(1
2)d−1, and for β = 3

2 , we have
(7

2)d − (3
2)d ≤ 5d(3

2)d−1, both by elementary rearrangement of terms. The claim follows.

24

Numerically Stable Sparse Gaussian Processes

Lemma 23. For an integer m ≥ 1, we have(
1

δ

)d
vol(Am,δ)

vol(Bδ)
≤ Cext,δ

Am,δ
≤ P ext,δ

Am,δ
≤ 5d

(
2

δ

)d(
m− 1

2

)d−1

. (42)

and P ext,δ
A0,δ

= 1.

Proof. The first part of the claim follows immediately from van Handel (2014, Lemma 5.13). To
bound P ext,δ

Am,δ
for m ≥ 1, use Vershynin (2018, Proposition 4.2.12), along with the fact that the

Minkowski sum of an annulus with a ball is another annulus, and the previous lemma, to bound

P ext,δ
Am,δ

≤
vol(B(m+ 3

2)δ \B(m− 1
2)δ)

vol(Bδ/2)
=

(
m+ 3

2

)d − (m− 1
2

)d(
δ
2

)d ≤ 5d
(

2

δ

)d(
m− 1

2

)d−1

. (43)

For the case m = 0, A0,δ = Bδ is non-empty, so P ext,δ
A0,δ

≥ 1. On the other hand, for any x, x′ ∈
Bδ, ‖x− x′‖ < δ, hence they cannot be part of the same δ-packing.

Proposition 24. Let X = Rd, and let k satisfy spatial decay. Then there is a constant Ck,δmax such
that for any N and any δ-separated x of size N we have

λmax(Kxx) ≤ Ck,δmax (44)

Proof. Let ψ be the upper-bounding function. For an arbitrary xi, we have

λmax(Kxx) ≤ kii +Ri ≤
N∑
j=1

ψ(‖xi − xj‖) (45)

so it suffices to bound this sum. For that, we have

N∑
j=1

ψ(‖xi − xj‖) =

∞∑
m=0

∑
xj∈Am,δ

ψ(‖xi − xj‖) ≤
∞∑
m=0

P ext,δ
Am,δ

ψ(mδ). (46)

The first equality uses that {Am,δ}∞m=0 forms a partition of Rd. The second uses that for xj ∈ Am,δ,
we have ψ(‖xi − xj‖) ≤ ψ(mδ), and the maximum number of xj in each Am,δ is bounded by the
external packing number P ext,δ

Am,δ
by the definition of a δ-separated set. By the preceding lemma,

spatial decay, and the integral test for infinite series, we conclude
∞∑
m=0

P ext,δ
Am,δ

ψ(mδ) ≤ ψ(0) + 5d
(

2

δ

)d ∞∑
m=1

(
m− 1

2

)d−1

ψ(mδ) = Ck,δmax <∞. (47)

A.4 Lower Eigenvalue Estimates

For lower bounds, we apply Wendland (2004, Theorem 12.3), which in the stationary case follows
from our assumptions. This argument, which builds on the work of Narcowich and Ward (1992) and
Schaback (1995), is somewhat involved. To aid understanding, rather than simply quote the result,
below we present a sketch of its key steps.

The idea is to invoke the lower estimate given by Gershgorin’s Circle Theorem—Result 18—which
was previously used for the upper bounds. However, applying this estimate directly leads in general
to the inequality λmin(Kxx) ≥ C̃k,δmin where potentially C̃k,δmin ≤ 0, which is vacuous. To overcome this,
the idea is to carefully construct a different covariance kernel φ whose eigenvalues lower-bound those
of k, and which admit better Gershgorin estimates. This is done via the following lemma.

25

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

Lemma 25. Let k and φ be stationary kernels with respective spectral densities ρ and ς. Suppose
that ς ≤ ρ. Then for all x we have

λmin(Φxx) ≤ λmin(Kxx). (48)

Proof. For any v ∈ RN and by Bochner’s Theorem—see Wendland (2004, Theorem 6.6)—we have

vTKxxv =

N∑
i=1

N∑
j=1

vik(0, xi − xj)vj (49)

=

N∑
i=1

N∑
j=1

vivj

∫
Rd
e2πi〈ω,xi−xj〉 dρ(ω) (50)

=

∫
Rd

N∑
i=1

vie
2πi〈ω,xi〉

N∑
j=1

vje
2πi〈ω,xj〉 dρ(ω) (51)

=

∫
Rd

∣∣∣∣∣
N∑
j=1

vje
2πiωxj

∣∣∣∣∣
2

dρ(ω) (52)

≥
∫
Rd

∣∣∣∣∣
N∑
j=1

vje
2πiωxj

∣∣∣∣∣
2

dς(ω) (53)

= vTΦxxv (54)

where, in the third inequality, we use that since vj is real, it is equal to its complex conjugate. Taking
an infimum over v on the unit sphere on the left hand side gives the result.

With this established, we can obtain lower eigenvalue estimates for any kernel φ whose Gershgorin
radius is small enough, by invoking separation and using a packing argument similar to the one used
to prove Proposition 24. This is done as follows.

Lemma 26. Let X = Rd, and let φ decay sufficiently fast. Then there is a constant Cφ,δmin > 0 such
that for any N any any δ-separated x of size N we have

λmin(Φxx) ≥ Cφ,δmin. (55)

Proof. For arbitrary xi, letting Ri be the Gershgorin radius, we have

λmin(Φxx) ≥ Φii −Ri (56)

so it suffices to upper-bound Ri sufficiently tightly. Applying the packing argument of Proposition 6,
we get ∑

j 6=i

φ(xi − xj) ≤ d
(

3

δ

)d ∞∑
m=1

md−1φ(mδ) (57)

where we have substituted the lower-bounding kernel φ in to the argument, modified slightly to
exclude the diagonal part, which corresponds to m = 0. The claim follows, provided

d

(
3

δ

)d ∞∑
m=1

md−1φ(mδ) < φ(0) (58)

which holds provided that φ decays sufficiently fast.

26

Numerically Stable Sparse Gaussian Processes

From here, all that remains is to show that for any stationary kernel k, it is always possible to
choose a φ that decays sufficiently fast. Wendland (2004) shows that for every kernel k there is
a constant 0 < Mk < ∞ for which taking the spectral density ς of φ to be the convolution of an
indicator function of the ball BMk

with itself, namely

ς ∝ 1BMk ∗ 1BMk (59)

with proportionality scaling chosen to ensure the spectral lower-bound needed for Lemma 25 holds,
suffices to yield a non-vacuous bound. The idea behind this choice, which dates back at least to
ideas of Narcowich and Ward (1992) and Schaback (1995) in the polynomial interpolation literature,
is to leverage the uncertainty principle property of the Fourier transform. Specifically, any kernel
concentrated enough to decay sufficiently fast in the spatial domain must possess a sufficiently
diffuse spectral measure. The simplest choice is to take ς ∝ 1BMk , but this fails due to issues with
smoothness, which are fixed by applying a convolution and rescaling appropriately, yielding the
presented choice.

At this point, the main technical work that remains is to calculate the form of the resulting
kernel φ, and deduce how to choose the constant Mk and proportionality scaling to ensure it both
lower-bounds k and gives a non-vacuous estimate. For that, we refer to Wendland (2004, Ch. 12.2).

Result 27. Let X = Rd, and let k be stationary. Then there is a constant Ck,δmin such that for any
N and any δ-separated x of size N we have

λmin(Kxx) ≥ Ck,δmin. (60)

Proof. Wendland (2004, Theorem 12.3).

A.5 Settings where Separation is a Necessary Condition

Let k be a kernel. We say that k is a Lipschitz continuous kernel if k is Lipschitz in both arguments
separately. We extend the notion of minimum separation from finite vectors to infinite sequences in
the obvious pairwise manner.

Proposition 10. Let zm ∈ X, m = 1, ..,∞, be a sequence, and let k be a Lipschitz continuous kernel
on X ×X. Define K

(M)
zz ∈ RM×M to be the kernel matrix formed by evaluating k at z1, .., zM . If

there exists a C > 0 such that for all M , cond(K
(M)
zz) ≤ C, then zm satisfy minimum separation.

Proof. We argue by contradiction: suppose minimum separation does not hold. We will show that
there does not exist a C such that, for all M , cond(K

(M)
zz) ≤ C. By Cauchy’s Interlacing Theorem,

any submatrix of K
(M)
zz has condition number no larger than cond(K

(M)
zz). Hence, it suffices to find a

sequence of submatrices Km, for m = 1, ..,∞, such that the rows and columns of Km are contained
in the rows and columns of K

(m)
zz , and show that this sequence has unbounded condition number.

We therefore consider such sequences, consisting of 2× 2 matrices, in the remainder of the proof.
We now split into two cases. The first case handles when the variance of the kernel can differ

by an arbitrary factor at different points in input space. This is handled as a separate case, as
the technique in the second, arguably more intuitive case, will break down if the variance can be
arbitrarily close to zero.

Case I: for any C > 0, there exists an i, j with k(zi,zi)
k(zj ,zj)

> C. Let Km be the matrix formed by

z
(m)
i = arg max

i′≤m
k(zi′ , zi′) z

(m)
j = arg min

j′≤m
k(zj′ , zj′) (61)

where we take take the smallest such i, j if the maximum and minimum are not unique. Then

cond(Km) ≥ cond

(
k(z

(m)
i , z

(m)
i) 0

0 k(z
(m)
j , z

(m)
j)

)
=
k(z

(m)
i , z

(m)
i)

k(z
(m)
j , z

(m)
j)

. (62)

27

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

The inequality can be verified by inspection using the formula for eigenvalues of a 2× 2 matrix. By
the assumption in this case, this ratio tends to infinity with m, contradicting that the condition
number is bounded.

Case II: there exists a C > 0 such that for all pairs i, j we have k(zi,zi)
k(zj ,zj)

≤ C. By the assumption
in this case, for all i, we have

0 <
1

C
k(z1, z1) ≤ k(zi, zi) ≤ Ck(z1, z1). (63)

Define a = 1
C k(z1, z1). Take z(m)

i , z
(m)
j to be any pair such that ‖z(m)

i − z(m)
j ‖ ≤ ‖zi′ − zj′‖ for any

pair i′, j′ ≤ m, and Km to be the submatrix associated to this pair of points. By Lipschitzness of
the kernel, there exists an L such that

|k(z
(m)
i , z

(m)
i)− k(z

(m)
i , z

(m)
j)| ≤ L sepm |k(z

(m)
i , z

(m)
i)− k(z

(m)
k , z

(m)
j)| ≤ 2L sepm . (64)

where sepm denotes the separation distance of (z1, .., zm). Combining these estimates gives the
Frobenius norm bound ∥∥∥∥ 1

k(zi, zi)
Km − 1

∥∥∥∥
F

≤ L sepm
√

6

k(zi, zi)
≤ L sepm

√
6

a
, (65)

where 1 is the 2× 2 matrix of all ones. As the condition number of 1
k(zi,zi)

Km and Km are the same,
we study the the condition number of 1

k(zi,zi)
Km. The operator norm is less than the Frobenius

norm, so by reverse triangle inequality applied to the operator norm

λ1

(
1

k(zi, zi)
Km

)
≥ 2−

∥∥∥∥ 1

k(zi, zi)
Km − 1

∥∥∥∥
2

≥ 2− L sepm
√

6

a
(66)

and

λ2

(
1

k(zi, zi)
Km

)
≤ L sepm

√
6

a
. (67)

By our assumption that sepm is not bounded below, this ratio of these tends to infinity with m.

A.6 Effect of Dimension on Condition Number

We now consider the simple case of independent inputs in Rd with independent and identically
distributed dimensions. The key observation is that for large d, by concentration of measure, we
should most pairwise distances to concentrate around the average distance. This means that there
will not be many tightly clustered sets of data points. Instead, the data will be automatically
well-separated with high probability in this specific setting.

Let ρ be the distribution of each input. We work with uniformly generated inputs for Figure 4,
specifically ρ = U(−2π, 2π). For any i 6= j we have

‖xi − xj‖22 =

d∑
`=1

∆2
` , (68)

with ∆` = (ξi,` − ξj,`)2 where ξi,` ∼ ρ are all independent, hence ∆` are also all independent.
If we consider the isotropic squared exponential kernel with length scale

√
d, which is used for

generating Figure 4, the off-diagonal entries of the kernel matrix are independently and identically
distributed random variables of the form

kij = exp

(
− 1

2d

d∑
`=1

∆2
`

)
. (69)

28

Numerically Stable Sparse Gaussian Processes

By the Law of Large Numbers, as d→∞, we have

1

2d

d∑
`=1

∆2
` →

1

2
E(∆2

`), (70)

and so by the Continuous Mapping Theorem we get

kij → exp

(
−1

2
E(∆2

`)

)
(71)

for large d. On the other hand, the diagonal entries of the kernel matrix are all surely 1.
In the case of Figure 4, we have (xi)` ∼ U(−2π, 2π). Hence,

E(∆2
`) =

4

3
π2, (72)

so for d large, we have kij → exp
(
− 2π2

3

)
. For fixed N and large d, we have the approximation

Kxx →
(

1− exp

(
−2π2

3

))
I + exp

(
−2π2

3

)
11T . (73)

The spectrum of the matrix on the right hand side is

λ(Kxx) =
(

1 + (N − 1) exp(− 2π2

3), 1− exp(− 2π2

3), .., 1− exp(− 2π2

3)
)
. (74)

Since, in our experiments, exp(− 2π2

3) ≈ 1
N , the condition number of Kxx will be small. Since the

entries of Λ are small, this implies the condition number of Kxx + Λ will be small. While this
argument only holds asymptotically, one might expect the Central Limit Theorem to apply relatively
quickly since the inputs are light-tailed, thus explaining observed behavior for, say, d = 8 in Figure 4.

Appendix B. Inducing Points

Here we develop the inducing-point-specific theory used in the manuscript.

B.1 Clustering-based Inducing Points

Proposition 15. Let uj = 1
Ncl(zj)

∑
cl(xi)=zj

yi. The Bayesian models defined by f ∼ GP(0, k) and

yi | f ∼ N(f(cl(xi)), σ
2) ui | f ∼ N

(
f(zi),

σ2

Ncl(zi)

)
. (23)

admit respective posterior distributions f | y and f | u which are equal in distribution.

Proof. The likelihood can be written

p(yi | f(xi)) ∝ exp

(
−

N∑
i=1

(yi − f(cl(xi)))
2

2σ2

)
= exp

− M∑
j=1

∑
cl(xi)=zj

(yi − f(zj))
2

2σ2

 (75)

and the claim follows by noting that by Gaussianity, each
(
uj ,

1
Ncl(zj)

)
pair is a sufficient statistic

for all yi whose indices satisfy cl(xi) = zj .

29

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

B.2 Stochastic Maximum Marginal Likelihood

We train hyperparameters using maximum marginal likelihood via doubly stochastic gradient descent.
The minimization problem resembles the usual variational inference problem in most inducing point
approaches, and is

arg min
qf∈Q

DKL(qf || πf)− N

2
log(2πσ2)− 1

2σ2
E

f∼qf
(y − f(x))T (y − f(x)) (76)

where Q is the space of all Gaussian processes of the form

(f | u)(·) = f(·) + K(·)z(Kzz + Λ)−1(u− f(z)− ε) (77)

and z = cl(x), uj = 1
Ncl(zj)

∑
cl(xi)=zj

yi, and Λii = σ2

Ncl(zi)
. The only parameters which are minimized

numerically are the kernel hyperparameters. We simplify the variational expectation term using the
identity

E(y − f(x))T (y − f(x)) =

N∑
i=1

E(yi − f(xi))
2 =

N∑
i=1

(yi − E(f(xi)))
2 + Var(f(xi)). (78)

To train the process, we need to do two things: compute the prior Kullback–Leibler divergence, and
compute the likelihood term. For the latter, we sample a mini-batch of data, and use it compute an
unbiased estimator of the sum by evaluating the inner terms on the mini-batch. For a mini-batch x′,
the mean and variance terms are

E(f(x′)) = Kx′z(Kzz + Λ)−1u Var(f(x′)) = Kx′z(Kzz + Λ)−1Kzx′ (79)

which can be computed using matrix-vector products whose cost, in the case of the variance, is
quadratic for each data point in the mini-batch. For the prior term, we have the identity

2DKL(qf || πf) = ln
|Kzz|

|Kzz −Kzz(Kzz + Λ)−1Kzz|
− d (80)

+ tr(K−1
zz (Kzz −Kzz(Kzz + Λ)−1Kzz)) (81)

+ uT (Kzz + Λ)−1KzzK
−1
zzKzz(Kzz + Λ)−1u (82)

= ln
|Kzz + Λ|
|Λ|

− tr((Kzz + Λ)−1Kzz) (83)

+ uT (Kzz + Λ)−1Kzz(Kzz + Λ)−1u. (84)

This means that all linear systems that need to be solved involve the well-conditioned matrix
(Kzz + Λ)−1. Unfortunately, (Kzz + Λ)−1Kzz has a matrix-valued rather than vector-valued
right-hand-side, and thus requires M total matrix-vector products, leading to cubic costs, even with
conjugate gradients. To avoid this, we apply Hutchinson’s trace estimator, which we now describe.

To illustrate Hutchinson’s trace estimator, let A an arbitrary matrix, for instance A = (Kzz +
Λ)−1Kzz. We are interested in evaluating tr(A) in cases where we do not have direct access to A,
but can compute matrix-vector products with A. Hutchinson (1989) observed that for any vector v
such that E(vvT) = I we have

tr(A) = tr(E(vvT)A) = E(vTAv). (85)

This motivates one to employ the unbiased Monte Carlo estimator

1

L

L∑
`=1

vT` Av` (86)

30

Numerically Stable Sparse Gaussian Processes

where the v` are independent and identically distributed. Typically, v` is chosen to be Rademacher
distributed, where each entry of v is independent and takes the values {−1, 1} with equal probability.
This choice of v is leads to the minimum variance—see Hutchinson (1989, Proposition 1).

In the case A = (Kzz + Λ)−1Kzz, we sample the Rademacher random variables, solve the linear
system (Kzz + Λ)−1v, then multiply the result by Kzzv. The complexity of the matrix-vector
products required for both operations is quadratic.

The log-determinant term is handled similarly. Rather than evaluate it directly, we follow Gibbs
and Mackay (1997) and apply stochastic estimation on its gradient. Using that

∂ |Kzz + Λ|
∂θ

= tr

(
∂(Kzz + Λ)

∂θ
(Kzz + Λ)−1

)
(87)

we apply Hutchinson’s trace estimator as in the case of the trace discussed above.

Appendix C. Cover Trees

To prove the key claim, we formalize the cover tree as a labeled rooted tree in the sense of a directed
graph, defined inductively by the steps of the algorithm. We distinguish individual nodes from their
locations in space, which we view as labels.

Definition 28. Let T = (V,E, v0) be a rooted tree, with root node v0 ∈ V . Define the tree order
≺ by v ≺ v′ if the unique path from v0 to v′ passes through v. Define the parent of a node to be

pa : V \ {v0} → V (88)

which maps each v to the unique vertex pa(v) ≺ v for which (v,pa(v)) ∈ E, which is well-defined
because T is a rooted tree. Define the children of a node to be

ch : V → 2V ch(v) = pa−1({v}) (89)

which is the set-theoretic preimage of the parent function. Define the level

lv : V → N0 (90)

of a node to be function which maps each v to the length lv(v) of the path from v0 to v, which is also
well-defined because T is a rooted tree.

With these notions, we can define an intermediate state of the cover tree algorithm.

Definition 29. We say that a cover tree is a tuple (T, z,A), where T is a rooted tree and

z : V → x A : V → 2x (91)

are, respectively, the spatial location and assigned data of each node.

The cover tree algorithm, then, is a function which maps a cover tree into another cover tree,
by constructing the next level. Our goal is to prove that this algorithm terminates in finite time,
producing a rooted tree whose nodes satisfy the desired properties. We analyze a more general form
of the algorithm parameterized by a constant a > 1 and sequence b` > 0, where a determines the
rate at which the radius of each ball decays, and b` determines the size of an R-neighbor ball at level
`, with Algorithm 12 corresponding to a = 2 and b` = 4(1− 1/2`)R0, which will be derived as the
optimal sequence for the given choice of a.

Definition 30. Let V0 = {v0}, E0 = ∅, z0(v0) = 1
N

∑n
i=1 xi, and A0 = x. Let (T`, z`,A`) be the

output of one step of Algorithm 12, defined inductively starting from ` = 0.

31

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

From this, we can define the inducing points produced by the algorithm.

Definition 31. For a given tree T , define the level-` nodes and level-` inducing points

V`(T) = {v ∈ V : lv(v) = `} z`(T) = {z(v) : v ∈ V : lv(v) = `}. (92)

We first verify that the nodes and hence inducing points at a fixed level remain fixed as the
algorithm proceeds.

Lemma 32. For `′ ≥ `, we have

V`(T`′) = V`(T`) sep(z`(T`′)) = sep(z`(T`)) resx(z`(T`′)) = resx(z`(T`)). (93)

Proof. The second and third claims follow from the first one, which is immediate by the construction
of Algorithm 12.

Next, we check that the separation and spatial resolution properties hold at the root node.

Lemma 33. We have

sep(z0(T0)) =∞ resx(z0(T0)) ≤ max
x∈x
‖x− z(v0)‖. (94)

Proof. Because V0 = {v0}, the supremum in the definition of sep is taken over an empty set, and the
first claim follows. For the second claim, recall that z(v0) = 1

x

∑
x′∈x x

′. For any x ∈ x,

∥∥x− z(v0)
∥∥ =

1

|x|

∥∥∥∑
x′∈x

x− x′
∥∥∥ ≤ 1

|x|
∑
x′∈x
‖x− x′‖ ≤ max

x′∈x
‖x− x′‖. (95)

Taking a maximum over x ∈ x completes the proof.

We now define the notion of R-neighbors.

Definition 34. Define R` = R`−1

a inductively, where R0 = maxx∈x‖x− z(v0)‖. For b > 0, define
the R`-neighbors of a node inductively by

R(v0) = {v0} R(v) =

v′ ∈ ⋃
s∈R(pa(v))

ch(s) : ‖z(v)− z(v′)‖ ≤ b`R`

 (96)

The next step is to deduce what sequences b` are valid for a given value of a.

Lemma 35. Let

b` =
2(1 + c(1

a)`)

1− 1
a

. (97)

for c ∈ {−1,−aL}. Then, letting

R′(v) = {v′ ∈ V`(T`) : ‖z(v)− z(v′)‖ ≤ b`R`} (98)

be the set of R`-nearby nodes, we have

R′(v) = R(v). (99)

32

Numerically Stable Sparse Gaussian Processes

Proof. First, note for all v ∈ V`(T`) that R(v) ⊆ R′(v), since⋃
s∈R(pa(v))

ch(s) ⊆ V`(T`) (100)

since the set of children of the parents of a node are contained in the same level as the original node.
It therefore suffices to show R′(v) ⊆ R(v). The proof of this proceeds by induction on depth. In the
base case ` = 0 there is a single node v0, and v0 ∈ R(v0) = {v0}, so the proposition is true. We take
the inductive hypothesis that

R′(v′′) ⊆ R(v′′) (101)

for all v′′ ∈ V`−1(T`−1) = V`−1(T`), where the equality follows from Lemma 32. We now show the
claim holds for v ∈ V`(T`). Let

v′ ∈ R′(v) (102)

for which we would like to show that v′ ∈ R(v). The strategy will be to consider these nodes’ parents,
and show that pa(v′) ∈ R(pa(v)), in which case the result follows from the definition of R. By the
combination of the inductive hypothesis and first part of the proof, we have R′(v′′) = R(v′′) for all
v′′ ∈ V`−1, so it suffices to show

‖z(pa(v′))− z(pa(v))‖ ≤ b`−1R`−1. (103)

We therefore upper bound the distance between the locations of the parents of the nodes in question.
We have

‖z(pa(v′))− z(pa(v))‖ ≤ ‖z(pa(v′))− z(v′)‖+ ‖z(pa(v))− z(v)‖+ ‖z(v′)− z(v)‖ (104)
≤ ‖z(pa(v′))− z(v′)‖+ ‖z(pa(v))− z(v)‖+ b`R` (105)
≤ 2R`−1 + b`R`. (106)

= 2R`−1 +
b`
a
R`−1. (107)

The first inequality by the triangle inequality. The second inequality follows by definition of v′. The
third inequality uses that the locations of the children of a node are contained in the assigned data of
the node, and that all points contained in the assigned data of a node in level `− 1 must be within a
distance of R`−1 of the label, or in equations that for all v′′ ∈ V`−1(T`) and x ∈ A`−1(v) we have

‖z(v′′)− x‖ ≤ R`−1. (108)

Combining (107) and (103) gives non-homogenous linear recurrence relation

2 +
1

a
b` ≤ b`−1. (109)

The solution can be derived using standard results on recurrence relations (Greene and Knuth, 1990,
Chapter 2), which gives

b` =
2(1 + c(1

a)`)

1− 1
a

(110)

for some constant c to be determined by the initial conditions—one can easily check by plugging
in the formula that this satisfies the recurrence. We require that b` ≥ 0 for 1 ≤ ` ≤ L, where L is
the maximum tree depth. The optimal choice of initial conditions given this constraint, in the sense
of minimizing the size of neighborhoods while retaining guarantees, come from selecting b0 = 0 or
bL = 0. The former gives c = −1, while the latter gives c = −aL. This completes the proof.

We now argue that the spatial resolution of the algorithm satisfies the claimed inequality.

33

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

Lemma 36. We have
resx(z`(T`)) ≤ R`. (111)

Proof. By induction on depth, one can show that for every level, {A`(v)}v∈V` is a partition of⋃N
i=1{xi}, where xi are entries of x. For x ∈ X, let vx,` denote the unique v ∈ V` such that

x ∈ A`(vx,`). Then
min
v∈V`
‖x− z(v)‖ ≤ ‖x− z(vx,`)‖ ≤ R`, (112)

where the second inequality uses that the active set is contained in the ball of radius R` centered
at z(vx,`), which holds by definition of Algorithm 12, specifically Line 13. If optional Voronoi
repartitioning is performed, we further upper bound ‖x− z(vx,`)‖ by ‖x − z(v′x,`)‖, where v′x,`
denotes the vertex to which x was assigned prior to the Voronoi step. The results follows from taking
a maximum over x ∈ x.

Next, we argue the separation distance inequality holds.

Lemma 37. We have
sep(z`(T`)) ≥ R`. (113)

Proof. We prove the contrapositive: suppose that there exist a v, v′ ∈ V` such that ‖z(v)− z(v′)‖ ≤
R`. By the reverse triangle inequality, this yields

R` ≥ ‖z(v)− z(v′)‖ (114)
≥ ‖z(pa(v))− z(pa(v′))‖ − ‖z(pa(v))− z(v)‖ − ‖z(pa(v′))− z(v′)‖. (115)

On the other hand, we have,

‖z(pa(v))− z(v)‖ ≤ R`−1 ‖z(pa(v′))− z(v′)‖ ≤ R`−1 (116)

since the assigned data of pa(v) is contained in the ball of radius R`+1 centered at v by Line 13 of
Algorithm 12, and z(v) is in the convex hull of the assigned data. Rearranging, we conclude that

‖z(pa(v))− z(pa(v′))‖ ≤ 2R`−1 +R` = (2 + 1/a)R`−1. (117)

From Lemma 35 and since for a > 1, 2 + 1/a ≤ 2a/(a− 1), we conclude pa(v′) ∈ R(pa(v)). Without
loss of generality, assume that v was added to the tree prior to v′, which is unambiguous because
nodes are added sequentially. Then by Line 13 of Algorithm 12, and since pa(v′) ∈ R(pa(v)), any
node selected in Line 8, and Line 10 if optional Lloyd’s averaging is performed, must satisfy

‖z(v′)− z(v)‖ > R` (118)

which is a contradiction.

Lemma 38. We have
| ch(v)| ≤ P ext,1/a

B1
≤ (2a+ 1)d. (119)

Proof. Suppose v ∈ V`. As A`(v) is contained in the ball of radius R` centered at z(v), for
any w ∈ ch(v), z(w) is contained in this ball. On the other hand, since w ∈ V`+1 and since
sep(z(V`+1)) ≥ R`+1, balls of radius R`+1 centered at ch(v) form a R`+1 (exterior) packing of a
sphere of radius R`+1. Since packing numbers are invariant to rescaling, this is the same as the
packing number of the unit sphere by spheres of radius 1/a. The first inequality then follows from
the definition of an exterior packing, and the second from Vershynin (2018, Corollary 4.2.13).

Lemma 39. We have
| ch(v)| ≤ P ext,1/(4a)

B1
≤ (8a+ 1)d. (120)

34

Numerically Stable Sparse Gaussian Processes

Proof. The proof is identical to Lemma 38, upon noting that R(v) is contained in a ball of radius
4R` centered at z(v), as given in Line 16 of Algorithm 12.

We are now ready to prove the main result.

Theorem 13. For a given target spatial resolution ε > 0, and dataset with x̄ = 1
N

∑N
i=1 xi and

dmax = maxi‖xi − x̄‖, the cover tree inducing point algorithm, with or without the optional steps,
produces a tree with L =

⌈
log2

dmax

ε

⌉
+ 1 levels, terminates in

O
(
P

ext,1/2
B(4)

(
P

ext,1/2
B(1)

)2

N log
dmax

ε

)
(19)

steps, where B(r) denotes a ball of radius r, and P ext,δ
X is the external packing number, namely the

maximum number of disjoint balls of radius δ that one can choose so that their centers lie in X.
Moreover, the algorithm guarantees that the nodes at each level ` satisfy

resx(z`) ≤ 2L−`ε sep(z`) ≥ 2L−`ε. (20)

Proof. The claim follows by combining the above results.

Appendix D. Experimental Details

All experiments were run on a single Nvidia V100 GPU with 32GB RAM in double precision, except
for Figure 6 where floating-point precision was used instead. For the Wasserstein distance and
condition number experiment of Figure 4, the dataset of size N = 1000 was generated by sampling
from a GP prior with squared exponential kernel, where inputs were uniformly sampled on the d
dimensional cube [−5, 5] with d equal to 1, 2, 4 and 8. The length scale of the kernel was set to
0.5
√
d. The parameters of the clustered-data approximation were set via a cover tree with spatial

resolutions 0.05–4.0. Experiments for each d were repeated 20 times to assess variability.
In the surface temperature geospatial data illustrative example shown of Figure 6, we ran

experiments with using the sparse Gaussian process regression (SGPR) implementation from GPflow
(Matthews et al., 2017) and a GPflow-based implementation of the clustered-data Gaussian process
using stochastic maximum marginal likelihood training described in Appendix B.2. For Hutchinson’s
trace estimator, we used 10 probe vectors. For the two-dimensional East Africa land surface
temperature dataset, we split the dataset into training and testing sets of size 55884 and 27525,
respectively. Both Gaussian process models were initialized with 0.1 likelihood noise and configured
with a squared exponential kernel with automatic relevance determination. The length scales of
the kernel were initialized to 1.0. The inducing points were set using a cover tree with the spatial
resolution 0.03–0.09. To facilitate comparisons, in the sparse Gaussian process baseline, the inducing
points were excluded from the trainable parameter set. For both models hyperparameters were
trained using mini-batch stochastic optimization via the Adam optimizer, with constant learning rate
0.01 and batch size 1000. We plot the posterior mean and standard deviation from the clustered-data
Gaussian process in Figure 8.

35

Terenin, Burt, Artemev, Flaxman, van der Wilk, Rasmussen, and Ge

ε
=

0.
0
9,
M

=
90

2
ε

=
0.

0
6,
M

=
19

34
ε

=
0.

03
,M

=
68

51

Mean Standard Deviation

Figure 8: Predictions from the clustered-data Gaussian process approximation, with varied spatial
resolutions ε. For each spatial resolution, we also display the resulting number of inducing points M .

36

	Introduction
	Gaussian Processes
	Inducing Points
	Gaussian Processes for Geospatial Modelling
	Numerical Stability
	Instability in Gaussian Process Models

	Numerical Stability in Scalable Gaussian Process Approximations
	Numerical Stability in Sparse Approximations via Minimum Separation
	Inducing Points for Geospatial Data via Cover Trees
	Additional Stability via the Clustered-data Inducing Point Approximation

	Experiments
	Spatial Resolution and Empirical Approximation Error
	Comparison to Alternative Inducing Point Selection Schemes
	Reliability in Floating Point Precision: Geospatial Illustrative Example
	Numerical Stability and Dataset Size

	Conclusion
	Eigenvalues and Condition Numbers
	Covariance Operator Limits
	Convergence of Conjugate Gradients
	Upper Eigenvalue Estimates
	Lower Eigenvalue Estimates
	Settings where Separation is a Necessary Condition
	Effect of Dimension on Condition Number

	Inducing Points
	Clustering-based Inducing Points
	Stochastic Maximum Marginal Likelihood

	Cover Trees
	Experimental Details

