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Abstract

Recent works have demonstrated a double descent phenomenon in over-parameterized learn-

ing. Although this phenomenon has been investigated by recent works, it has not been fully

understood in theory. In this paper, we investigate the multiple descent phenomenon in a

class of multi-component prediction models. We first consider a “double random feature

model” (DRFM) concatenating two types of random features, and study the excess risk

achieved by the DRFM in ridge regression. We calculate the precise limit of the excess

risk under the high dimensional framework where the training sample size, the dimension

of data, and the dimension of random features tend to infinity proportionally. Based on

the calculation, we further theoretically demonstrate that the risk curves of DRFMs can

exhibit triple descent. We then provide a thorough experimental study to verify our theory.

At last, we extend our study to the “multiple random feature model” (MRFM), and show

that MRFMs ensembling K types of random features may exhibit (K + 1)-fold descent.

Our analysis points out that risk curves with a specific number of descent generally exist

in learning multi-component prediction models.

Keywords: Over-parameterization, excess risk, multiple descent, double random feature

model, multiple random feature model

1. Introduction

Modern machine learning models such as deep neural networks are usually highly over-

parameterized so that they can be trained to exactly fit the training data. Such over-

parameterized models have gained immense popularity and achieved state-of-the-art per-

formance in various learning tasks. However, in classical statistical learning theory, over-

parameterized models are believed to have high excess risks due to overfitting, and hence

their success has not been fully explained in theory. This gap between theory and practice

has motivated a number of recent works to study the success of over-parameterized models.
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Recent works have pointed out a double/multiple descent phenomenon in over-parameterized

learning: as the number of parameters in a model increases, the excess risk may increase

and decrease multiple times (see Figure 1 for some examples). The double descent phe-

nomenon was first demonstrated experimentally by Belkin et al. (2019) in random feature

models, random forests and neural networks, and then studied theoretically by a series of

works under different settings. Specifically, Belkin et al. (2020) theoretically demonstrated

the double descent shape of the risk curve of the minimum norm predictor in learning linear

models and Fourier series models. Wu and Xu (2020); Mel and Ganguli (2021); Hastie et al.

(2022) studied the excess risk in linear regression under the setting where the dimension and

sample size go to infinity preserving a fixed ratio, and showed that the risk decreases with

respect to this ratio in the over-parameterized setting. Mei and Montanari (2022); Liao

et al. (2020) further studied double descent in random feature models when the sample

size, data dimension and the number of random features have fixed ratios and Adlam et al.

(2022) extended the model by adding bias terms. Deng et al. (2022) studied double descent

under logistic model. Emami et al. (2020) studied the asymptotic generalization error of

generalized linear models. Liu et al. (2021) provided a precise characterization of general-

ization properties of high dimensional kernel ridge regression in both under-parameterized

and over-parameterized regimes. Several recent works have also studied other learning set-

tings under which the risk curves exhibit triple descent or multiple descent. Specifically,

Mai et al. (2019) evaluated the asymptotic distribution of the logistic regression classifier in

high dimension setting, and then provided the associated classification performance. Liang

et al. (2020) gave an upper bound on the risk of the minimum-norm interpolants in a repro-

ducing kernel Hilbert space and showed that it has a multiple descent shape with infinitely

many peaks. Chen et al. (2021) showed that with different and well-designed data distribu-

tions in linear regression, the risk curve can have an arbitrary number of peaks at arbitrary

locations as the data dimension increases. Mel and Ganguli (2021); Li and Wei (2021)

showed that the risk curve of linear regression can exhibit multiple descent when learning

anisotropic data. Adlam and Pennington (2020b) demonstrated triple descent for a specific

random feature model associated with an over-parameterized two-layer neural network in

the so-called “neural tangent kernel” (Jacot et al., 2018) regime. Misiakiewicz (2022); Xiao

et al. (2022) showed that the risk curve of certain kernel predictors can exhibit multiple

descent concerning the sample size and data dimension.

While recent works have provided valuable insights, the double, triple and multiple

descent phenomena have not been fully understood in theory. Specifically, we note that

various modern learning methods utilize multi-component predictors of a general form

f(x) = f1(x) + f2(x) + · · ·+ fK(x), (1.1)

where f1(x), . . . , fK(x) are individual prediction models. Such a multi-component formu-

lation covers different learning methods. For example, ensemble methods (Hansen and

Salamon, 1990; Dietterich, 2000; Krogh and Vedelsby, 1994) can naturally be formulated

as (1.1); two-layer neural networks utilizing feature concatenation is also a summation of

multiple components defined by different features; two-layer ResNet (He et al., 2016) models
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can be formulated as (1.1) by treating the feedforward part and the skip-connection part

of the model as two components; a class of semi-parametric methods consider a parametric

component and a non-parametric component in the model (Zhao et al., 2016; Chernozhukov

et al., 2018); Neural network models with the exact form of (1.1) can also be applied to

solve partial differential equations (Liu, 2020).

In this work, we aim to study the double/multiple descent phenomenon in learning

multi-component predictors. We theoretically demonstrate that

There exists a learning problem, such that for any K ∈ N+, there exists a K-component

prediction model whose risk curve exhibits (K + 1)-fold descent.

The learning problem mentioned in the claim above is the same learning problem where re-

cent works have demonstrated double descent for random feature models Mei and Montanari

(2022), and is also essentially the same learning problem (with slight modification) studied

in Hastie et al. (2022) analyzing double descent in linear regression. Therefore, demonstrat-

ing this claim provides new insights into how complicated prediction model structures can

affect the risk curve.

This paper aims to study the double/multiple descent phenomena in learning multi-

component predictors of the form (1.1) through the lens of random feature models. Specif-

ically, we introduce double and multiple random feature models (DRFMs and MRFMs),

which ensemble two or more types of random features defined by different nonlinear activa-

tion functions. Under the setting where the training sample size, the dimension of data, and

the dimension of random features tend to infinity proportionally, we establish an asymp-

totic limit of the excess risk achieved by DRFMs and MRFMs, and demonstrate that the

risk curve of a DRFM can exhibit triple descent: an example for the DRFM with different

activation functions is given in Figure 1. More generally, we also show that the risk curve

of an MRFM with K types of random features can exhibit (K + 1)-fold descent.

We summarize the contributions of this paper as follows.

1. Our first contribution is to demonstrate the existence of multiple descent in learning cer-

tain multi-component predictors. Specifically, we demonstrate that DRFMs may exhibit

triple descent, and then extend the analysis to MRFMs and show that MRFMs consisting

of K types of random features may have a risk curve with (K + 1)-fold descent. To the

best of our knowledge, such multiple descent risk curves with a specific number of peaks

have not been well understood in random feature models or other multi-component learn-

ing models, and therefore we believe that DRFMs and MRFMs can serve as important

examples in the literature of multiple descent.

2. We provide a natural and intuitive explanation of multiple descent in DRFMs and

MRFMs. For example, for DRFMs, we point out that the existence of triple descent

risk curves is predictable by considering the two extreme cases: (i) the DRFM uses two

random features of the same type and scale, and (ii) one type of random feature in the

DRFM has a very small scale and is thus negligible. This scale difference refers to a

large gap in magnitude between the two random features, such as the activation pair

(σ1(x), c0σ2(x)) where the constant c0 is small. We point out that these two cases both

lead to double descent but with different peak locations. Therefore, for DRFMs where
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(a) (b) (c)

Figure 1: Examples of double and triple descent. (a) gives the excess risk of a random
feature model with ReLU activation function; (b) shows the excess risk of a double
random feature model with ReLU and sigmoid activation functions; (c) shows
the excess risk of a double random feature model with ELU and ReLU activation
functions. The x-axis is the model complexity (number of parameters/sample
size) and the y-axis is the excess risk. The curve gives our theoretical predictions,
and the dots are our numerical results.

the scale difference between the two parts of random features is neither too big nor too

small, we can expect triple descent to appear. Following this intuition, we successfully

anticipate multiple descent in various simulations, and correctly predict the number of

peaks in the risk curves and the locations of all peaks in the risk curves.

3. We also establish comprehensive theoretical results to back up our intuitive explanation.

We calculate the precise limit of the excess risk achieved by DRFMs and MRFMs. This

is an extension of the study of Mei and Montanari (2022) which analyzed the vanilla

random feature model with a single activation function. We also establish a novel type

of theoretical proof of multiple descent which is based on the comparison between excess

risk values at different over-parameterization levels.

Our calculation of the theoretical limit of the excess risks of DRFMs and MRFMs follow

the blueprint of Mei and Montanari (2022) and expand upon it by constructing new linear

pencil matrices and giving new calculation for the related Stieltjes transforms. In essence,

Mei and Montanari (2022) accomplished the following:

1. introduced a risk function decomposition and proved convergence in L1 distance;

2. used a linear pencil matrix and its partial derivatives of logarithmic potential to

express the decomposed terms;

3. provided an asymptotic approximation of the logarithmic potential and proved that

partial derivatives are also approximated in L1 distance;

4. calculated theoretical values from the asymptotic approximation.

Our theoretical analysis of the excess risk follow the decomposition method in 1, but due

to the increased complexity of our model, we develop several new technical lemmas to over-

come this higher complexity; such examples include Proposition A.2 in the Appendix and
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Lemma I.3 in Online Supplementary. Moreover, the increased complexity in the main terms

of the decomposition necessitates a more complex linear pencil matrix, as defined in Defini-

tion A.3 and C.3. Although the construction of the linear pencil matrices is inspired by Item

2 above, the higher complexity of our model results in a more intricate construction and a

more complex calculation of the related Stieltjes transforms and their logarithmic potentials

than in 3. Specifically, Proposition A.6 provides the calculation of the Stieltjes transforms

in DRFM and serves as the inspiration for the calculation of the Stieltjes transforms in

MRFM. In MRFM, we utilize mathematical induction to complete this calculation.

Besides the calculation of the theoretical limits of excess risks, this paper also presents

a novel theory in the demonstration of multiple descent (given in Propositions 4.1 and 4.2).

Instead of directly investigating the theoretical limits, our approach focuses on taking limits

within specific parameter ranges to observe the resulting behavior. Specifically, we employ

the following steps:

1. We give a fixed ratio between the number of training parameters and the sample size.

2. Within this ratio, we set the regularization parameter λ to approach zero, which

allows us to approximate the implicit ν-system introduced later. We then replace the

approximate solution with the theoretical limits.

3. To assess the impact of scale differences, we let one of the activation function scales

tend towards zero, and examine the resulting theoretical limits.

By employing this method, we successfully utilize the ε − δ language to accurately depict

the presence of two peaks and determine their precise locations.

The remaining of the paper is organized as follows. We first give some additional refer-

ences and notations below. Section 2 introduces the problem settings. Section 3 establishes

the theoretical limits of the excess risks of double random feature models. Section 4 gives

theoretical analyses and simulations to demonstrate triple descent in some DRFMs. Sec-

tion 5 extends the results to multiple random feature models and gives numerical simulations

to demonstrate multiple descent. Finally, Section 6 concludes the paper and discusses some

related questions for future investigation. Proofs of the main results and some additional

experiments are presented in the appendix.

An online supplementary document (Meng et al.) is also available which gives some

additional technical details of the proofs of the paper (with its sections numbered as I, II,

III...).

1.1 Additional related works

Besides the works we previously discussed, a series of recent works have also studied the

double and triple descent phenomena. Adlam and Pennington (2020a) developed a novel

bias-variance decomposition, and utilized the decomposition to show double descent in

random feature regression. d’Ascoli et al. (2020) developed a quantitative theory for the

double descent phenomenon in the lazy learning regime of two-layer neural networks, and

showed that overfitting is beneficial when the noise level in the data is low. Geiger et al.

(2020) utilized the intuition of double descent to show that the smallest generalization error

can sometimes be achieved by the ensemble of several neural networks of intermediate sizes.
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Nakkiran et al. (2020); Patil et al. (2022) studied how an appropriately chosen parameters or

suitable cross validation procedure can mitigate multiple descent in the prediction models.

d’Ascoli et al. (2020) investigated the parameter-wise double descent and sample-wise triple

descent phenomena in random feature regression. Deng et al. (2021) showed double descent

phenomenon in logistic regression. Montanari and Zhong (2022) considered a two-layer

neural network in the neural tangent regime, showed an interpolation phase transition,

and gave a characterization of the generalization error which decreases with the number of

training parameters.

Our paper is also closely related to the recent studies of the “benign overfitting” phe-

nomenon. Tsigler and Bartlett (2023) showed that for certain regression problems, the risk

achieved by the minimum norm linear interpolator can be asymptotically optimal. Bartlett

et al. (2020) further extended the results in Tsigler and Bartlett (2023) to the setting of

linear ridge regression. Chatterji and Long (2021) studied the risk of the maximum mar-

gin linear classifier in learning sub-Gaussian mixtures with additional label-flipping noises.

Cao et al. (2021) established matching upper and lower bounds of the risk achieved by the

maximum margin linear classifier. Frei et al. (2022) showed that fully-connected two-layer

networks trained to achieve a zero training error can still achieve an asymptotically opti-

mal test error. Cao et al. (2022) studied signal learning and noise memorization during

the training of a two-layer convolutional neural network and revealed a phase transition be-

tween benign and harmful overfitting. Meng et al. (2023) further studied signal learning and

noise memorization by two-layer convolutional neural networks when learning XOR data.

Note that most studies along this line of research focus on the setting where the number

of parameters N is much larger than the sample size n (e.g., N = Ω(n2)). In comparison,

our work considers the setting where N and n go to infinity in comparable magnitudes, and

studies how the excess risk changes with respect to their ratio.

1.2 Notations

We use lower case letters to denote scalars, and use bold face letters to denote vectors and

matrices. For functions f, g and a probability measure ν, we denote 〈f, g〉ν =
∫
f(x)g(x)ν(dx).

The `2-norm of a vector v is ‖v‖2. For a matrix A, we use ‖A‖?, ‖A‖max, ‖A‖op and ‖A‖F
to denote its nuclear norm, maximum norm, operator norm, and Frobinuous norm, respec-

tively, and use tr(A) to denote its trace. A sub-matrix of A with row indices in I and

column indices in J is denoted by AI,J , and trI(A) = tr(AI,I) is the trace of the square

sub-matrix with indices in I.

The sets of natural, real and complex numbers are denoted by N, R and C, respectively.

For z ∈ C, we use <(z) and =(z) to denote its real and imaginary part. C+ = {z ∈ C :

=(z) > 0} denotes the upper half complex plane with positive imaginary part. Let i =
√
−1

be the imaginary unit. The unit sphere of Rd is denoted by Sd−1 = {x ∈ Rd : ‖x‖2 = 1}
and c · Sd−1 denotes the sphere with radius c > 0. The set of integers from n1 to n2 is

denoted by [n1 : n2] = {n1, . . . , n2} and [n] = [1 : n] = {1, . . . , n}. Moreover, 1q ∈ Rq
denotes q-dimensional all-one vectors.
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We use the standard asymptotic notations Θd(·), Od(·), od(·) and Ωd(·), where the

subscript d emphasizes the asymptotic variable. We write X1(d) = OP(X2(d)) if for any

ε > 0, there exists C > 0 such that P(|X1(d)/X2(d)| > C) ≤ ε for all d. Similarly, we

denote X1(d) = oP(X2(d)) if {X1(d)/X2(d)}d converges to 0 in probability.

2. The double random feature model

We consider regression problems where, for a data pair (x, y), the goal is to predict the

scalar response y using the input vector x ∈ Rd. We analyze the prediction performance of

a double random feature model, or DRFM, constructed as follows. The random features are

based on two nonlinear activation functions σ1, σ2 and N random feature parameter vectors

θi ∼ Unif(
√
d · Sd−1), i ∈ [N ]. We let ai ∈ R, i ∈ [N ] be the linear combination coefficients

of the random features, and denote Θ = [θ1, . . . ,θN ]> ∈ RN×d, a = [a1, . . . , aN ]> ∈ RN .

Then a DRFM predictor has the form

ŷ = f(x; a,Θ) =

N1∑
i=1

aiσ1

(
〈θi,x〉/

√
d
)

+

N∑
i=N1+1

aiσ2

(
〈θi,x〉/

√
d
)
. (2.1)

In (2.1), the first N1 units use the activation function σ1 and the first part of the random

feature parameters Θ1 = [θ1, . . . ,θN1 ]>, while the remaining N2 = N − N1 units use

the second activation function σ2 and the second part of the random feature parameters

Θ2 = [θN1+1, . . . ,θN ]>. Note that the coefficients a1, . . . , aN are the trainable parameters,

while θ1, . . . ,θN are randomly generated parameters to define the random features.

Note that in our definition of f(x; a,Θ), we have introduced the factor 1/
√
d inside

the activation functions σj(·). This normalization facilitates our analysis using random

matrix theory. Note also that the random feature parameters θi are imposed to both have

a fixed length
√
d, but the setting covers a more general situation where the parameters can

have different lengths, say c1

√
d and c2

√
d, respectively. Indeed, if ‖θi‖2 = cj

√
d, we can

introduce σ̃j(z) = σj(cjz) so that σj
(
〈θi,x〉/

√
d
)

= σ̃j
(
〈τi,x〉/

√
d
)

where τj = θj/cj has

length
√
d.

To go further, we specify the data we aim to learn with double random feature models.

We assume the data are generated from a distribution defined as follows.

Definition 2.1 (Data generation model). The distribution of the data pair (x, y) is given

as follows:

1. The input vector x follows the uniform distribution on the sphere
√
d ·Sd−1 of raidus

√
d.

2. The output is y = 〈β1,d,x〉+F0+ε, where β1,d ∈ Rd, F0 ∈ R, and ε is a noise independent

of x. We assume that E(ε) = 0, E(ε2) = τ2, and E(ε4) < +∞.

The parameters of the data generation model are βd = [F0,β
>
1,d]
> and we hereafter denote

by D(βd) the probability distribution of the pair (x, y).

This data generation model is standard in recent literature on double descent. Simi-

lar settings have been studied in a number of recent works (Hamsici and Martinez, 2007;

Marinucci and Peccati, 2011; Di Marzio et al., 2014; Mei and Montanari, 2022).
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Given a training data set S = {(xi, yi)}ni=1 consisting of n independent samples from the

data generation model in Definition 2.1, we denote the data matrix by X = [x1, ...,xn]> ∈
Rn×d, the label vector by y = [y1, ..., yn]> and the noise vector by ε = [ε1, . . . , εn]>. Then

we fit a DRFM predictor f(·; a,Θ) based on the training data set S via the principle of ridge

regression. Specifically, we learn the coefficient vector a by minimizing the `2-regularized

square loss:

â = argmin
a

{
1

n

n∑
i=1

(
yi − f(xi; a,Θ)

)2
+
d

n
λ‖a‖22

}
, (2.2)

where λ > 0 is the regularization parameter. We here use the factor d/n in the regularization

term to simplify our analysis. Removing the factor does not affect the results in this paper,

because we consider the setting where d/n has a positive limit. This fact will be formally

clarified in Section 3.

The excess risk of the predictor f(·; â,Θ) can be written as

Rd(X,Θ, λ,βd, ε) = Ex∼Unif(
√
d·Sd−1)

[
F0 + x>β1,d − f(x; â,Θ)

]2
. (2.3)

This notation of the excess risk specifically highlights the dependency of the risk on X,Θ, λ,βd, ε.

Note that we do not take average over the randomness of the training data X, the noise

vector ε or the random features Θ, but aim to show the convergence of the risk towards a

fixed value as d,N, n→∞ in an appropriate manner.

3. Excess risks of double random feature models

In this section we present our main results on the excess risks of DRFMs. We first give a

definition.

Definition 3.1. The spherical moments of the activation functions σj (j = 1, 2) are

µj,0 , E{σj(G)}, µj,1 , E{Gσj(G)}, µ2
j,2 , E{σj(G)2} − µ2

j,0 − µ2
j,1,

where G ∼ N(0, 1) is standard normal. We collect the six constants µj,0, µj,1, µ
2
j,2, j = 1, 2

in a vector µ.

In Definition 3.1, the first index j points out the corresponding activation function, and

the second index k links to the specific spherical moment. We now introduce the main

assumptions in this paper.

Assumption 3.2. The nonlinear activation functions σj : R → R (j = 1, 2) are weakly

differentiable, with weak derivative σ′j. Moreover, for some constants 0 < C0, C1 < +∞,

|σj(u)| ∨ |σ′j(u)| ≤ C0e
C1|u|, u ∈ R.

It is easy to see that commonly used activation functions such as ReLU, sigmoid, and

hyperbolic tangent functions all satisfy Assumption 3.2. Therefore this is a mild assumption.
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Assumption 3.3. The data dimension d, random feature dimensions N1, N2, and sample

size n are such that d → ∞, N1 = N1(d) → ∞, N2 = N2(d) → ∞, n = n(d) → ∞.

Moreover, when d→∞, the following limits exist:

lim
d→+∞

N1/d = ψ1 > 0, lim
d→+∞

N2/d = ψ2 > 0, lim
d→+∞

n/d = ψ3 > 0.

Assumption 3.3 defines the asymptotic framework for our analysis where N1, N2, n, d go

to infinity proportionally to each other. We let ψ = ψ1 + ψ2 and ψ = [ψ1, ψ2, ψ3].

Assumption 3.4. Let F1,d = ‖β1,d‖2. Then lim
d→+∞

F1,d = F1 > 0. Moreover, if F0 6= 0,

then µ2
1,0 + µ2

2,0 > 0.

The condition F1 > 0 fixes the asymptotic scale of β1,d. The second condition means

that when F0 = E(y) 6= 0, we need either µ2
1,0 > 0 or µ2

2,0 > 0 so that the predictor

f(x; â,Θ) can approximate the response y well when d→∞.

The statement of the main results needs some further preparation. For any ξ ∈ C+, we

consider the following system of equations for the unknowns ν1, ν2, ν3:

ν1 ·
(
− ξ − µ2

1,2ν3 −
µ2

1,1ν3

1− µ2
2,1ν2ν3 − µ2

1,1ν1ν3

)
= ψ1,

ν2 ·
(
− ξ − µ2

2,2ν3 −
µ2

2,1ν3

1− µ2
1,1ν1ν3 − µ2

2,1ν2ν3

)
= ψ2,

ν3 ·
(
− ξ − µ2

1,2ν1 − µ2
2,2ν2 −

µ2
1,1ν1 + µ2

2,1ν2

1− µ2
1,1ν1ν3 − µ2

2,1ν2ν3

)
= ψ3.

(3.1)

This system will be hereafter referred as the ν-system. For different values of ξ ∈ C+, the so-

lutions of the above system can be viewed as functions of ξ. We let ν(ξ) = [ν1, ν2, ν3]>(ξ) : C+ →
C3

+ be the analytic function defined on C+ satisfying (i) for any ξ ∈ C+, ν(ξ) is a solution to

ν-system (3.1), (ii) there exists a sufficiently large constant ξ0, such that |νj(ξ)| ≤ 2ψj/ξ0,

for all ξ with =(ξ) ≥ ξ0 and j = 1, 2, 3. It can be shown that such a function ν exists and is

unique, and therefore our definition of ν is valid. The details are given in Proposition A.8.

We hereafter denote ν = ν(ξ,µ) to emphasize the dependence in µ.

Definition 3.5 (Auxiliary matrices). Define ξ∗ =
√
λ · i, and

ν∗j , νj(ξ
∗;µ), j = 1, 2, 3.

Here, νj is the solution of ν-system (3.1). Moreover, let MN , ν∗1µ
2
1,1 + ν∗2µ

2
2,1, MD ,

ν∗3MN − 1, and define the matrices

H ,


−ν∗23 µ41,1

M2
D

+ ψ1

ν∗21
−ν∗23 µ21,1µ

2
2,1

M2
D

−µ21,1
M2

D
− µ2

1,2

∗ −ν∗23 µ42,1
M2

D
+ ψ2

ν∗22
−µ22,1
M2

D
− µ2

2,2

∗ ∗ −M2
N

M2
D

+ ψ3

ν∗23

 , V ,


µ2

1,2 0
µ21,1
M2

D

ν∗23 µ21,1
M2

D

µ2
2,2 0

µ22,1
M2

D

ν∗23 µ22,1
M2

D

0 1
M2

N

M2
D

1
M2

D

 ,
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(H is symmetric). Finally, let L , V>H−1V.

See Proposition A.4 for the reason of selecting ξ =
√
λ · i. We are now in the position to

state our main theorem which establishes the theoretical risk curve for the double random

feature model.

Theorem 3.6. Let the data matrix X, noise vector ε, and the DRFM model f(·; a,Θ) with

random feature parameter matrix Θ be defined as in Section 2. Moreover, let MD and L be

defined in Definition 3.5. Then under Assumptions 3.2, 3.3 and 3.4, for any regularization

parameter λ > 0, the asymptotic excess risk Rd(X,Θ, λ,βd, ε) of the DRFM defined in (2.3)

satisfies

EX,Θ,ε

∣∣Rd(X,Θ, λ,βd, ε)−R(λ,ψ,µ, F1, τ)
∣∣ = od(1),

where

R(λ,ψ,µ, F1, τ) =F 2
1

(
1

M2
D

+ L3,4 + L1,4

)
+ τ2

(
L2,3 + L1,2

)
, (3.2)

and Li,j are the elements in the matrix L which is defined in Definition 3.5.

The proof of Theorem 3.6 is given in Appendix A. In Theorem 3.6, the regularization

parameter λ is treated as a constant that does not depend on d, n, p. Note that the first three

terms in (3.2) correspond to the estimation bias, and the last two terms are the variance

terms. It can be checked that the values in ν∗ = [ν∗1 , ν
∗
2 , ν
∗
3 ]> are all purely imaginary

numbers in C+. As the matrices H and V only depend on ν∗2j (which are all negative),

their elements are real-valued, so do the elements of the matrix L. Moreover, given ν∗j ,

j = 1, 2, 3, the terms L3,4,L1,4,L2,3,L1,2 in (3.2) all have closed form solutions. Due to the

complexity of the solutions, we defer the calculation to Appendix A.

Remark 3.7. By inspecting the expressions of the matrices H, V and L, we see that

the dependence of the asymptotic excess risk (3.2) on the activation functions is expressed

through their spherical moments µj,1 and µj,2, j = 1, 2. In particular, if we let µ1,1 = µ2,1

and µ1,2 = µ2,2, we are led to the case of a single activation function, and the asymptotic

excess risk (3.2) coincides with the one found in Mei and Montanari (2022) for vanilla

random feature models.

Remark 3.8. Theorem 3.6 shows that the excess risk converges to R(λ,ψ,µ, F1, τ) in L1

distance, which is a type of strong convergence. It directly implies convergence in probability:

for any ρ, δ > 0, there exists d0 ∈ N such that for all d ≥ d0, P
(∣∣Rd(X,Θ, λ,βd, ε) −

R(λ,ψ,µ, F1, τ)
∣∣ ≤ ρ) ≥ 1− δ.

4. The phenomenon of triple descent in DRFMs

In this section we establish theoretical results showing the existence of DRFMs with triple

descent risk curves and use simulations to verify our results.

Before we propose the detailed results, we first explain our intuition by considering the

two extreme cases below:

10
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• Case 1 (no scale difference): As discussed in Remark 3.7, if the two activation functions

have identical spherical moments, that is, µ1,1 = µ2,1 and µ1,2 = µ2,2, the risk curve

should be identical to that of a vanilla (single) random feature model. Hence, according

to the study of vanilla random feature models in Mei and Montanari (2022), the risk

curve commonly has a double descent shape, with the peak at the interpolation threshold

(N1 +N2)/n = 1.

• Case 2 (large scale difference): If one of the two types of random features is too small

in scale compared to the other, then we can expect that this small-scale part of random

features is almost negligible. For example, under the extreme case that N1 = N2 and

σ2(·) ≡ 0, the second type of random features can never contribute to the learned pre-

dictor, and this case also reduces to a vanilla random feature model. Therefore we can

expect the risk curve to reach the peak at N1/n = 1, that is, (N1 +N2)/n = 2.

We can see that the two extreme cases above both lead to double descent. However, in

the first case, the peak is at (N1 + N2)/n = 1, while in the second case, the peak is at

(N1 + N2)/n = 2. When the scales of the two parts of random features are neither too

similar nor too different, we can expect the risk curve to exhibit certain characteristics from

both extreme cases, possibly having two peaks at (N1 + N2)/n = 1 and (N1 + N2)/n = 2

respectively – this is exactly triple descent. This motivates us to conjecture that triple

descent can occur when the two parts of random features have appropriate scale differences.

4.1 Triple descent: theoretical results

The asymptotic excess risk function R(λ,ψ,µ, F1, τ) established in Theorem 3.6 can imply

the existence of triple descent in double random feature models. Note that this risk function

depends on several parameters including the smoothing parameter λ, the number of features

in the model and some spherical moments of the involved activation functions. Here we

focus on the “ridgeless regression” setting where λ → 0, and we aim to construct specific

configurations of µ such that for any fixed values of F1 and τ , the risk function exhibits (at

least) triple descent as (ψ1 + ψ2)/ψ3 increases.

For convenience, we use in this section the shorthand R := R(λ,ψ,µ, F1, τ). The

following proposition demonstrates triple descent by considering the asymptotic regime

where λ → 0 and µ2,1, µ2,2 → 0: the former points to a limiting ridgeless regression model

and the latter signifies the scale differences between two activation functions by shrinking

the second activation to 0.

Proposition 4.1 (λ → 0). Consider the same assumptions as in Theorem 3.6 and the

asymptotic excess risk function R := R(λ,ψ,µ, F1, τ). For fixed 0 < ψ1, ψ2, ψ3 < +∞ we

have:

1. When (ψ1 + ψ2)/ψ3 = c1 < 1, lim
λ→0
R < +∞;

2. When (ψ1 + ψ2)/ψ3 = 1, lim
λ→0
R = +∞;

3. When 1 < (ψ1 + ψ2)/ψ3 = c2 < 1 + ψ2/ψ1, lim
µ2,1,µ2,2→0

lim
λ→0
R < +∞;

4. When (ψ1 + ψ2)/ψ3 = 1 + ψ2/ψ1, lim
µ2,1,µ2,2→0

lim
λ→0
R = +∞.

11
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The proof of Proposition 4.1 is given in Appendix B. This proposition theoretically

demonstrate the existence of triple descent for certain DRFMs. Note that the risk function

R depends on ψ1, ψ2, ψ3. To simplify and standardize the setting, we specifically consider

the case where ψ3 and the ratio ψ1/ψ2 are both fixed. In this case, the change of model

complexity has a single degree of freedom, which can be characterized by c := (ψ1 +ψ2)/ψ3.

Now we can investigate the curve of the risk function with respect to c and see if the shape

exhibits triple descent.

To see how Proposition 4.1 demonstrates triple descent, we pick two fixed “reference

points” 0 < c1 < 1 and 1 < c2 < 1+ψ2/ψ1 (recall that we are considering the setting where

ψ2/ψ1 is fixed.) By the third and fourth conclusions above, we can choose a large enough

constant M1 > 0 (Not related to ψ1, ψ2 and ψ3), for which there exist µ2,1 and µ2,2 such

that

lim
λ→0
R > M1 when (ψ1 + ψ2)/ψ3 = 1 + ψ2/ψ1, and lim

λ→0
R < M1 when (ψ1 + ψ2)/ψ3 = c2.

For these chosen spectral moments µ2,1 and µ2,2 and by the first and second conclusions of

the proposition, one can find a large constant M2 > M1 such that

lim
λ→0
R > M2 when (ψ1 + ψ2)/ψ3 = 1, and lim

λ→0
R < M2 when (ψ1 + ψ2)/ψ3 = c1.

Recall that ψ1 ∼ N1/d, ψ2 ∼ N2/d and ψ3 ∼ n/d in the limits. It is customary to consider

the asymptotic excess risk function R with respect to the “model complexity parameter”

c = limd→+∞(N1 + N2)/n = (ψ1 + ψ2)/ψ3. Based on this analysis, we are able to find

constants 0 < M1 < M2 and µ2,1, µ2,2 that do not depend on ψ1, ψ2, ψ3, so that the

following four results hold:

1. c = c1, lim
λ→0
R < M2;

2. c = 1, lim
λ→0
R > M2;

3. c = c2, lim
λ→0
R < M1;

4. c = 1 + ψ2/ψ1, lim
λ→0
R > M1.

These four cases above correspond to four situations with different model complexities: each

case is for a specific value of c = (ψ1+ψ2)/ψ3 = limd→+∞(N1+N2)/n. The next proposition

shows that the risk function has a finite limit when the model complexity parameter c tends

to infinity, or in other words, in the infinitely over-parameterized regime.

Proposition 4.2 (ψ1, ψ2 → +∞). Consider the same assumptions as in Theorem 3.6 and

the asymptotic excess risk function R := R(λ,ψ,µ, F1, τ) with non-degenerate activation

functions. For fixed ψ3 and r1, r2 > 0, we have

lim
ψ1,ψ2→+∞
ψ1/r1=ψ2/r2

R =
F 2

1ψ3 + τ2χ2
0

(χ0 + 1)2ψ3 − χ2
0

,

12
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c1 1 c2 1 + ψ2/ψ1 ∞

M2

M1

As
ym

pt
ot

ic
 R

is
k

Model Complexity Parameter c

Figure 2: Existence of triple descent in a double random feature model: the four points c1

to 1 + ψ2/ψ1 for the model complexity parameter c = (ψ1 + ψ2)/ψ3 are found
in Proposition 4.1 and the last point depicts the limit found in Proposition 4.2
when c→∞.

where

χ0 =
(r1µ

2
1,1 + r2µ

2
2,1)χ1

2
2∑

i,j=1
rirjµ2

i,1µ
2
j,2

,

χ1 = (ψ3 − 1)
2∑
i=1

riµ
2
i,1 −

2∑
i=1

riµ
2
i,2 +

√√√√((ψ3 − 1)
2∑
i=1

riµ2
i,1 −

2∑
i=1

riµ2
i,2

)2
+ 4ψ3

2∑
i,j=1

rirjµ2
i,1µ

2
j,2.

The proof of Proposition 4.2 can be found in Appendix B. By combining the derived lim-

iting risk value from Proposition 4.2, where c tends to infinity, with the summary provided

after Proposition 4.1, we can observe that the asymptotic excess risk function R exhibits (at

least) triple descent with the chosen parameter values. This behavior occurs as the model

complexity parameter c increases from 0 to c1, 1, c2, 1 + ψ2/ψ1, and eventually tends to

infinity. A visual representation of this phenomenon can be seen in Figure 2. Furthermore,

when the model complexity is c < 1, the asymptotic risk takes the form of a U shape, which

aligns with classical theory.

Remark 4.3. We can also consider the case where ψ1, ψ2 goes to zero, and this case corre-

sponds to the setting where random feature model is almost reduced to a constant predictor.

In this case, it is easy to show that lim
ψ1,ψ2→0

R = F 2
1 . In classical statistical theory, the first

descent occurs here when the model complexity gradually increases: as the predictor becomes

more complicated than a constant predictor, the asymptotic risk will first decrease below F 2
1 .
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(a) (b) (c) (d)

Figure 3: Triple descent in double random feature models with different activation
functions. The plots show both the asymptotic excess risks (curves) and
empirical excess risks (dots). From (a) to (d), the activation functions
are

(
ReLU(x),Sigmoid(x)

)
,
(

cos(π2x), sin(0.3π
2 x)

)
,
(

ELU(3x),ReLU(x/4)
)

and(
ReLU′(x),ReLU(x/10)

)
.

4.2 Triple descent: empirical evidence

In this subsection, we empirically demonstrate the triple descent phenomenon in double

random feature models. The simulation design is as follows.

• Training data {(xi, yi)}ni=1 are generated independently following Definition 2.1 with τ =

0.1: each xi is uniformly generated from the sphere
√
d · Sd−1, and the corresponding

response is given as yi = 〈β1,xi〉+ F0 + εi, where β1 is a randomly chosen unit vector;

• F0 = 0.2, λ = 10−5;

• Training sample size n = 1000, data dimension d = 300 and N1 = N2 varying from 0 to

1.6n.

As we gradually increase the dimensions of random features N1 = N2 from 0 to 1.6n,

the model complexity parameter c(d) = (N1 + N2)/n varies from 0 to 3.2. The empirical

and finite-horizon values for the limiting excess risk R(λ,ψ,µ, F1, τ) in Theorem 3.6 are

obtained on a test data set of size 700 and averaged from 30 independent replications.

The results are given in Figure 3. In this figure (and all other figures of this section), the

values of the asymptotic risk R(λ,ψ,µ, F1, τ) are shown as continuous curves while empiri-

cal risk values are plotted using black dots. We consider activation functions ReLU(x) = x+,

ReLU′(x) = 1{x > 0}, Sigmoid(x) = 1/(1 + e−x), ELU(x) = x+ − (1 − ex)−, as well as

trigonometric functions cos(x) and sin(x). We slightly scale the activation functions to

show clearer shapes of triple descent: the four plots in Figure 3 represent DRFMs with ac-

tivation pairs
(

ReLU(x), Sigmoid(x)
)
,
(

cos(π2x), sin(0.3π
2 x)

)
,
(

ELU(3x),ReLU(x/4)
)

and(
ReLU′(x),ReLU(x/10)

)
, respectively.

Clearly, the empirical risk values well match their theoretical counterparts in all the

examined settings, which empirically validates the asymptotic risks established in Theo-

rem 3.6. More importantly, these risk curves all exhibit triple descent as predicted by

Propositions 4.1 and 4.2 (see also Figure 2), where the four critical constants have the
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(a) (b) (c) (d)

Figure 4: Risk curves of DRFMs with scaled ReLU and ELU activation functions. The
plots show both the asymptotic excess risks (curves) and empirical excess risks
(dots). From (a) to (d), the activation functions are (ELU(3x),ReLU(x)),
(ELU(3x),ReLU(x/3)), (ELU(3x),ReLU(x/4)) and (ELU(3x),ReLU(x/40)) re-
spectively.

following values under the present experimental design:

c1 < 1, c2 = 1, 1 < c3 < 2, c4 = 2.

4.3 Impact of scale difference on triple descent

As demonstrated in Propositions 4.1 and 4.2, when the magnitude of a random feature is of

a smaller order than the other feature, triple descent appears in a DRFM. In this section, we

use our theoretical predictions as well as simulations to verify this result. The experiment

setups are the same as the experiments in Section 4.2, except that here we use different pairs

of activation functions. For two activation functions σ1, σ2, we gradually decrease the scale

of σ2 by using activation pairs (σ1(x), c0σ2(x)) with a smaller and smaller factor c0. Results

for activation pairs (ELU,ReLU) and (ReLU,ReLU′) are reported in Figure 4 and Figure 5,

respectively. Clearly, in both figures, the empirical errors (dots) well match their theoretical

counterparts (curves). Moreover, In Figure 4 (a) and Figure 5 (a), we present the result

when we appropriately balance the two activation functions such that the two parts of the

random features have similar scales, and the resulting risk curves exhibit double descent

with a peak at (N1 +N2)/n = 1. As the scale of the second random feature decreases, the

risk curves transit from double descent curves to triple descent curves in Figure 4 (b), (c)

and Figure 5 (b), (c). Finally, in Figure 4 (d) and Figure 5 (d) when the scale differences

are large, the risk curves have a large peak near c = 2 but only a very small peak near

c = 1. Clearly, these results perfectly match Proposition 4.1, and thus backs up the triple

descent phenomena in DRFMs.

4.4 Impact of the ratio between random feature dimensions

Our previous experiments are all under the setting where N1 = N2, which corresponds to

the case where the two parts of the random features have the same dimensions. In fact, we
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(a) (b) (c) (d)

Figure 5: Risk curves of DRFMs with scaled ReLU and ReLU′ activation functions. The
plots show both the asymptotic excess risks (curves) and empirical excess risks
(dots). From (a) to (d), the activation functions are (ReLU(x),ReLU′(x)),
(ReLU(x),ReLU′(x)/4), (ReLU(x),ReLU′(x)/10) and (ReLU(x),ReLU′(x)/40)
respectively.

(a) (b) (c) (d)

Figure 6: Risk curves of DRFMs with different ratios between random feature dimensions.
The plots show both the asymptotic excess risks (curves) and empirical excess
risks (dots). From (a) to (d), the ratios N1/N2 are 0.5, 0.8, 1.2 and 2, respectively.
The activation functions are chosen as σ1(x) = ELU(3x) and σ2(x) = ReLU(x/4).

can study more general settings where N1 and N2 hold a ratio other than 1. Specifically,

suppose that σ1 has larger scale compared to σ2. Then based on Proposition 4.1, it is

clear that the first peak should be around c = 1, while the second peak should be around

c = 1 + ψ2/ψ1.

We now consider the same experiment setup as in Section 4.2, except that here we focus

on the activation pair
(

ELU(3x),ReLU(x/4)
)
, and no longer require N1 = N2. Instead, we

consider the ratios N1/N2 ∈ {0.5, 0.8, 1.2, 2} and plot the corresponding risk curves. Note

that the coordinates in the first part of random features are about 10 times those in the

second part (in magnitude), and the second peak in the risk curve is expected to be around

the position 1 + (N1/N2)−1.

The simulation results are reported in Figure 6. It can be seen that the second peaks

in Figure 6 (a), (b), (c), (d) are around c = 1 + (N1/N2)−1 = 3, 9/4, 11/6, 3/2, respectively.
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This further verifies Proposition 4.1, and shows how one can design double random feature

models with specific peak locations. We have also studied other key factors affecting the

risk curve, such as the regularization parameter and the signal-to-noise ratio. Details of

experimental results are reported in Appendix D.

4.5 Further discussion

Due to the complexity of the theoretical expressions involving almost 10 variables, it is

difficult to provide a precise characterization such as under what conditions is the 2nd

descent is lower than the 1st descent, or under what conditions is the peak of the second

descent lower than the bottom of the 1st descent. While we have found empirically that the

second peak tends to appear when the scale of σ2 is small enough, it is hard to make a formal

statement on the general conditions that guarantee this fact. We would also like to note that

Appendix D provides some analysis on the effects of SNR and regularization on the multiple

descent phenomenon. Specifically, we have observed that SNR affects the trend of the risks

in the under-parameterized regime ((N1 + N2)/n < 1) and the highly over-parameterized

regime ((N1 + N2)/n > 2, while λ affects the existence of the peak. Additionally, benign

overfitting tends to occur when the SNR is high, while optimal regularization can help

mitigate the multiple descent, as has been shown in previous literature (Nakkiran et al.,

2020; Mei and Montanari, 2022).

5. The multiple random feature model

In the previous sections, we have studied double random feature models based on two

activation functions. In this section, we extend our results to the case with K activation

functions (K ∈ N+).

Suppose that for j ∈ [K], there are Nj random feature units using activation function σj .

Then we let N = N1 + · · ·+NK be the total dimension of the random features. Moreover,

we define the index set of the random feature units using the activation function σj as

Nj =

{
i ∈ [N ] : 1 +

j−1∑
r=1

Nr ≤ i ≤
j∑
r=1

Nr

}
, j ∈ [K].

Let θi ∼ Unif(
√
d · Sd−1), i ∈ [N ] be the random feature parameter vectors and ai ∈ R,

i ∈ [N ] be the linear combination coefficients of the random features. Then we denote

Θ = [θ1, . . . ,θN ]> ∈ RN×d, a = [a1, . . . , aN ]> ∈ RN . A multiple random feature model

(MRFM) predictor is defined as

f(x; a,Θ) =
K∑
j=1

∑
i∈Nj

aiσj
(
〈θi,x〉/

√
d
)
.

We also denote by Θj = [θNj ]
> ∈ RNj×d the collection of the random feature parameter

vectors using the activation function σj . We learn the same data model in Definition 2.1
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by fitting a training data set S = {(xi, yi)}ni=1 with the function f(x; a,Θ) using ridge

regression. Similar to Section 2, we learn the coefficient vector a by minimizing the `2-

regularized square loss function:

â = argmin
a

 1

n

n∑
j=1

(
yj − f(xj ; a,Θ)

)2
+
d

n
λ‖a‖22

 .

The excess risk is denoted by Rd(X,Θ, λ,βd, ε) highlighting its dependence on X,Θ, λ,βd
and ε:

Rd(X,Θ, λ,βd, ε) = Ex∼Unif(
√
d·Sd−1)

[
F0 + x>β1,d − f(x; â,Θ)

]2
. (5.1)

5.1 Excess risks of MRFMs

The definitions and assumptions below are similar to those previously used for DRFMs in

Section 3.

Definition 5.1. For j = 1, 2, . . . ,K and G ∼ N(0, 1), define

µj,0 , Eσj(G), µj,1 , EGσj(G), µ2
j,2 , E{σ2

j (G)} − µ2
j,0 − µ2

j,1.

These spherical moments are collected into a vector µ.

Assumption 5.2. Let σj : R → R (j = 1, 2, . . . ,K) be weakly differentiable, with weak

derivative σ′j. Assume |σj(u)| ∨ |σ′j(u)| ≤ C0e
C1|u| for some constants C0, C1 < +∞.

Assumption 5.3. We consider sequences of parameters N1, N2, . . . , NK , n, d that go to

infinity proportionally to each other. Without loss of generality, let the sequences be indexed

by d, and assume for j = 1, . . . ,K, the following limits exist:

lim
d→+∞

Nj/d = ψj ∈ (0,∞), lim
d→+∞

n/d = ψK+1 ∈ (0,∞).

These limits are collected into the vector ψ = [ψ1, . . . , ψK , ψK+1].

Assumption 5.4. Let F1,d = ‖β1,d‖2. Then lim
d→+∞

F1,d = F1 > 0. Moreover, if F0 6= 0,

then
K∑
j=1

µ2
j,0 > 0.

All these assumptions are natural, and parallel Assumptions 3.2-3.4 in Section 3, respec-

tively. The presentation of the results for the MRFM also relies on a system of self-consistent

equations as follows. For ξ ∈ C+, consider the following system of equations with unknown
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functions (ν1, . . . , νK+1): C+ → CK+1
+ (as functions of the complex variable ξ):

νj ·
(
− ξ − µ2

j,2νK+1 −
µ2
j,1νK+1

1−
∑K

j=1 µ
2
j,1νjνK+1

)
= ψj , j = 1, . . . ,K

νK+1 ·

(
− ξ −

K∑
j=1

µ2
j,2νj −

∑K
j=1 µ

2
j,1νj

1−
∑K

j=1 µ
2
j,1νjνK+1

)
= ψK+1.

(5.2)

We let ν = [ν1, . . . , νK+1]> : C+ → CK+1
+ be the analytic function defined on C+ satisfying

(i) for any ξ ∈ C+, ν(ξ) is a solution to ν-system (5.2), (ii) there exists a sufficiently large

constant ξ0, such that |νj(ξ)| ≤ 2ψj/ξ0 for all ξ with =(ξ) ≥ ξ0 and j ∈ [K]. It can be shown

that such a function ν exists and is unique, and therefore our definition of ν is valid. The

full justification is given in Proposition C.9 in the appendix. We also denote ν = ν(ξ,µ)

to emphasize the dependence on µ.

Definition 5.5 (Auxiliary matrices). Define ξ∗ =
√
λ · i,

ν∗ = [ν∗1 , . . . , ν
∗
K+1]> =

[
ν1, . . . , νK+1

]>
(ξ∗;µ)

where νj is the solution of ν-system (5.2), and let

MN =
K∑
j=1

µ2
j,1ν
∗
j , MD = ν∗K+1MN − 1.

We then let H ∈ R(K+1)×(K+1) be a real symmetric matrix whose (i, j)-th entry (i ≤ j) is

Hi,j =



−
ν∗2K+1µ

4
i,1

M2
D

+
ψi
ν∗2i

, 1 ≤ i = j ≤ K,

−
ν∗2K+1µ

2
i,1µ

2
j,1

M2
D

, 1 ≤ i < j ≤ K,

−
µ2
i,1

M2
D

− µ2
i,2, 1 ≤ i ≤ K, j = K + 1,

−
M2
N

M2
D

+
ψK+1

ν∗2K+1

, i = j = K + 1.

Moreover, define V = [v1,v2,v3,v4] ∈ R(K+1)×4, where

v1 =
[
µ2

1,2, µ
2
2,2, . . . , µ

2
K,2, 0

]>
, v2 =

[
0, . . . , 0, 1

]>
,

v3 =
[µ2

1,1

M2
D

, . . . ,
µ2
K,1

M2
D

,
M2
N

M2
D

]>
, v4 =

[
ν∗2K+1

µ2
1,1

M2
D

, . . . , ν∗2K+1

µ2
K,1

M2
D

,
1

M2
D

]>
.

Finally, let L = V>H−1V ∈ R4×4.
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It is clear that the above definitions are consistent with Definition 3.5 for the case of

K = 2. Based on these definitions, the asymptotic limit of the excess risk can be expressed

as function of the elements of the matrix L. Our main result for MRFMs is given in the

following theorem.

Theorem 5.6. Let the data matrix X and the noise vector ε be generated as in Defini-

tion 2.1. Then under Assumptions 5.2, 5.3 and 5.4, for any regularization parameter λ > 0,

the asymptotic excess risk Rd(X,Θ, λ,βd, ε) of the MRFM defined in (5.1) satisfies

EX,Θ,ε

∣∣Rd(X,Θ, λ,βd, ε)−R(λ,ψ,µ, F1, τ)
∣∣ = od(1),

where, with MD and the matrix L defined in Definition 5.5,

R(λ,ψ,µ, F1, τ) =F 2
1

(
1

M2
D

+ L3,4 + L1,4

)
+ τ2

(
L2,3 + L1,2

)
. (5.3)

Here, Li,j are the elements in the matrix L which is defined in Definition 5.5.

Theorem 5.6 is proved in Appendix C. The asymptotic excess risk for the MRFM given

in Equation (5.3) is similar to (3.2) for the DRFM. It is clear that Theorem 5.6 covers

Theorem 3.6 and the results in Mei and Montanari (2022) as special cases with K = 2 and

K = 1, respectively.

5.2 Multiple descent in MRFMs

We now demonstrate the existence of multiple descent in MRFMs. The experimental setting

is similar to the previous experiments reported in Section 4. We set d = 300, n = 1000,

and λ = 10−4. In simulation, the training data {(xi, yi)}ni=1 are generated independently

according to Definition 2.1: each xi is uniformly generated from the sphere
√
d · Sd−1, and

the corresponding response is given as yi = 〈β1,xi〉+F0 +εi, where β1 is a randomly chosen

unit vector, F0 = 0.2 and τ = 0.1. We estimate the excess risks of the MRFMs with a test

data set of size 700, and take average over 30 independent runs. We consider two MRFMs

with K = 3 and K = 4, respectively. For the case K = 3, we consider three activation

functions σ1(x) = ReLU(9x), σ2(x) = ReLU(x) and σ3(x) = ReLU(0.1x), and set the ratios

between dimensions of random features as N1 = N2 = N3/3. For the case K = 4, we use

four activation functions σ1(x) = ReLU(80x), σ2(x) = ReLU(9x), σ3(x) = ReLU(x) and

σ4(x) = ReLU(0.1x), and keep the ratios N1 = N2 = N3 = N4/3.

The results are given in Figure 7. We can see that the simulation results (dots) well

match the theoretically derived risks (curves), which validates our results in Theorem 5.6.

Moreover, Figure 7 (a) (where we use three different activation functions) shows quadruple

descent, while Figure 7 (b) (where we use four different activation functions) shows quintuple

descent. With these observations, we believe an MRFM using K activation functions may

exhibit (K + 1)-fold descent.

Following a similar analysis as in Section 4, we can also study the locations of each

peak in the risk curves as follows. First consider the experiment with K = 3. Clearly,
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(a) (b)

Figure 7: Multiple descent in multiple random feature models. (a) gives the risk curve for
the MRFM with three activation functions, which exhibits quadruple descent; (b)
shows the risk curve for the MRFM with four activation functions, which exhibits
quintuple descent.

the first peak always locates around (N1 + N2 + N3)/n = 1. Regarding the second peak,

note that the scales of the activation functions are set in descending order. Under this

case, the first two types of random features will mainly contribute to the predictor and the

third type of random features is negligible, therefore we have (N1 +N2)/n = 1 around the

second peak. Since N1 = N2 = N3/3, we have N1 = N2 = n/2 and N3 = 3n/2. Hence

we conclude that the second peak should be around (N1 + N2 + N3)/n = 2.5. Similarly,

regarding the third peak, we have N1/n = 1, which indicates that the peak locates around

(N1+N2+N3)/n = 5. These predicted locations clearly match the results shown in Figure 7

(a). For the case K = 4, with a similar argument, we can expect that the four peaks are

located around 1, 2, 3, 6, respectively. This also matches the result in Figure 7 (b).

6. Conclusion

This paper considers the learning of double random feature models and multiple random

feature models. We give the explicit formulas for the asymptotic excess risks achieved

by DRFMs and MRFMs. These theoretical results are further well confirmed by empirical

simulations in various settings. We provide an explanation of the triple descent and multiple

descent phenomena based on the scale difference between activation functions, and discuss

how the ratio between random feature dimensions control the location of the second peaks

in the risk curves. By showing that MRFMs with K types of random features may exhibit

(K + 1)-fold descent, we demonstrate that risk curves with a specific number of descent

generally exist in random feature based regression.

An immediate future work direction is to study ridge-less regression where λ = 0. More-

over, our result can help future studies on the advantages and disadvantages of overfitting

by quantitatively comparing the risks achieved by over-parameterized/under-parameterized

models with different regularization levels. Extending our findings to deep learning is an-

other important future direction.
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Appendix A. Proof of Theorem 3.6

The proof is presented in the following four steps.

1. We first develop a decomposition of the risk and find an asymptotic approximation whose

main terms are expressed as traces of several random matrices, see Proposition A.2;

2. We then create a new random matrix called the linear pencil matrix, which includes all

the fundamental random matrices involved in the asymptotic approximation found in

the first step, so that the needed traces are all functions of the limiting spectrum of the

linear pencil matrix, see Proposition A.4;

3. Next, we find the key limiting spectral functions of the linear pencil matrix including its

Stieltjes transform and logarithmic potential, and show that the needed traces converge

to some specific partial derivatives of the limiting logarithmic potential, see Proposi-

tions A.6 and A.7.

4. The last step collects the results of the previous three steps and establishes the limit of

the excess risk (with respect to the L1 distance).

The four steps are given in the following subsections, respectively. A few technical lemmas

and propositions used in these steps are stated without proofs; these proofs are deferred to

the online supplementary material (Meng et al.). Before proceeding further, we remind the

reader the following notations: X = [x1, ...,xn]> ∈ Rn×d with (xi)i∈[n] ∼ Unif(
√
d · Sd−1),

y = [y1, ..., yn]>, Θ = [Θ>1 ,Θ
>
2 ]> = [θ1, ...,θN ]> ∈ RN×d with (θi)i∈[N ] ∼ Unif(

√
d · Sd−1).

Some new notations are given in the following definition.

Definition A.1. Define

Zj = σ1

(
XΘ>j /

√
d
)
/
√
d ∈ Rn×Nj , j = 1, 2, Z = (Z1,Z2) ∈ Rn×N ,

Υ = (Z>Z + λIN )−1; σ(x) =
(
σ1(x>Θ>1 /

√
d), σ2(x>Θ>2 /

√
d)
)> ∈ RN ;

M1 = diag
(
µ1,1IN1 , µ2,1IN2

)
, M2 = diag

(
µ1,2IN1 , µ2,2IN2

)
.

Furthermore, for any matrix W ∈ RN×N , we define a bracket [W]Z , ZΥWΥZ>.

A.1 Step 1: bias-variance decomposition of the excess risk

By the definition of â in (2.2), we have

â = argmin
a

 1

n

n∑
j=1

(
yj − f(xj ; a,Θ)

)2
+
d

n
λ‖a‖22

 =
1√
d
ΥZ>y. (A.1)
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The excess risk is then of the form

Rd(X,Θ, λ,βd, ε) =Ex

[
x>β1,d + F0 − â>σ(x)

]2
.

The goal of Theorem 3.6 is to calculate this risk. One of the major challenges in this

calculation is the nonlinearities of the activation functions. To overcome this challenge, we

introduce a decomposition of the risk in the proposition below. We remind readers that

F1,d = ‖β1,d‖2.

Proposition A.2. For any λ > 0, let

Rd(X,Θ, λ, F1,d, τ) = F 2
1,d −

2F 2
1,d

d
tr

(
M1

ΘX>

d
ZΥ

)
+
F 2

1,d

d
tr

([
Ũ
]
Z

XX>

d

)
+
τ2

d
tr(
[
Ũ
]
Z

),

where Ũ = M1ΘΘ>M1/d+ M2M2. Then under the same conditions as Theorem 3.6,

EX,Θ,ε

∣∣∣Rd(X,Θ, λ,βd, ε)−Rd(X,Θ, λ, F1,d, τ)
∣∣∣ = od(1).

The proof of Proposition A.2 is given in Section I in the online supplementary material

(Meng et al.). It presents the bias-variance decomposition as the sum of four terms: the

first three terms with F 2
1,d together give the bias in the asymptotic excess risk, while the

last term with τ2 is the variance.

A.2 Step 2: approximation of the risk decomposition via a linear pencil matrix

The approximating function Rd(X,Θ, λ, F1,d, τ) found in Proposition A.2 depends on three

traces of certain random matrices. In this step, we calculate these traces via a special

random matrix, namely the linear pencil matrix defined as follows.

Definition A.3. (1) Let

Q := {q = [q1, q2, q3, q4, q5] ∈ R5
+ : q4, q5 ≤ (1 + q1)/2, ‖q‖2 ≤ 1}.

Depending on q ∈ Q and µ, the linear pencil matrix A(q,µ) is

A(q,µ) =

q2µ
2
1,2IN1 + q4µ

2
1,1

Θ1Θ>1
d q4µ1,1µ2,1

Θ1Θ>2
d Z>1 + q1Z̃

>
1

q4µ1,1µ2,1
Θ2Θ>1
d q2µ

2
2,2IN2 + q4µ

2
2,1

Θ2Θ>2
d Z>2 + q1Z̃

>
2

Z1 + q1Z̃1 Z2 + q1Z̃2 q3In + q5
XX>

d

 ∈ RP×P ,

where P = N + n, and Z̃j =
µj,1
d XΘ>j for j = 1, 2.

(2) The Stieltjes transform of the empirical eigenvalue distribution of A = A(q,µ) (up

to the factor P/d) is

Md(ξ; q,µ) =
1

d
tr
[
(A− ξIP )−1

]
, ξ ∈ C+,
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and its logarithmic potential is

Gd(ξ; q,µ) =
1

d
log det(A− ξIP ) =

1

d

P∑
i=1

log(λi(A)− ξ), ξ ∈ C+.

Here λ1(A) ≥ · · · ≥ λP (A) are the eigenvalues of A, and log(z) := log(|z|) + i arg(z), for

z ∈ C, −π < arg(z) ≤ π is the principal value of a complex logarithmic function.

We assume that q ∈ Q throughout the paper. The three traces in the definition of

Rd(X,Θ, λ, F1,d, τ) in Proposition A.2 are now expressed as partial derivatives of the loga-

rithmic potential Gd as shown in the proposition below.

Proposition A.4. Let Ũ be defined in Proposition A.2. Then we have

1

d
tr

(
M1

ΘX>

d
ZΥ

)
=

1

2
∂q1Gd(ξ

∗; q,µ)|q=0,

1

d
tr

([
Ũ
]
Z

XX>

d

)
= −∂2

q4,q5Gd(ξ
∗; q,µ)|q=0 − ∂2

q5,q2Gd(ξ
∗; q,µ)|q=0,

1

d
tr(
[
Ũ
]
Z

) = −∂2
q4,q3Gd(ξ

∗; q,µ)|q=0 − ∂2
q2,q3Gd(ξ

∗; q,µ)|q=0.

We remind readers that ξ∗ =
√
λ · i. The proof of Proposition A.4 is given in Section II

in the online supplementary material (Meng et al.).

A.3 Step 3: key limiting spectral functions of the linear pencil matrix

Proposition A.4 shows that the excess risk can be calculated based on Gd(ξ
∗; q,µ). More-

over, by Definition A.3, we have d
dξGd(ξ; q,µ) = −Md(ξ; q,µ), which shows that Gd(ξ; q,µ)

is related to Md(ξ; q,µ). Therefore, we study the Stieltjes transform Md(ξ; q,µ) and cal-

culate its limit as d, n,N →∞. To do so, we define the following system of equations.

Definition A.5. For ξ ∈ C+, define a function F(·; ξ,q,µ) from C3 to C3 by

m = [m1,m2,m3] 7−→ F(m; ξ,q,µ) =


ψ1

{
− ξ + q2µ

2
1,2 − µ2

1,2m3 + H1
HD

}−1

ψ2

{
− ξ + q2µ

2
2,2 − µ2

2,2m3 + H2
HD

}−1

ψ3

{
− ξ + q3 − µ2

1,2m1 − µ2
2,2m2 + H3

HD

}−1

 ,
where

H1 =µ2
1,1q4(1 +m3q5)− µ2

1,1(1 + q1)2m3,

H2 =µ2
2,1q4(1 +m3q5)− µ2

2,1(1 + q1)2m3,

H3 =q5(1 + µ2
1,1m1q4 + µ2

2,1m2q4)− µ2
2,1(1 + q1)2m2 − µ2

1,1(1 + q1)2m1,

HD =(1 + µ2
1,1m1q4 + µ2

2,1m2q4)(1 +m3q5)− µ2
2,1(1 + q1)2m2m3 − µ2

1,1(1 + q1)2m1m3.

We write the three coordinates of F as F(m; ξ,q,µ) = [F1,F2,F3]>(m; ξ,q,µ).
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We give in Section III in the online supplementary material (Meng et al.) some properties

of the function F. In particular, we show that there exists a constant ξ0 > 0, such that

for all ξ with =(ξ) > ξ0 and q ∈ Q, F(·; ξ,q,µ) has a unique fixed point m(ξ; q,µ) =

[m1,m2,m3]>(ξ; q,µ) satisfying |mj(ξ)| ≤ 2ψj/ξ0 for j = 1, 2, 3. Note that this fixed point

result only defines m(ξ; q,µ) on {ξ : =(ξ) > ξ0}. To extend its definition to C+, we aim to

show that m is an analytic function on {ξ : =(ξ) > ξ0}, and its analytic continuation to C+

is still a fixed point of F(·; ξ,q,µ), i.e.,

m(ξ; q,µ) ≡ F[m(ξ; q,µ); ξ,q,µ] (A.2)

for all ξ ∈ C+. More importantly, by using random matrix theory, we also aim to show that

the limiting spectral distribution (LSD) of the matrix A exists and its Stieltjes transform

is

m(ξ; q,µ) =
3∑
i=1

mi(ξ; q,µ).

These results are formally given in the following proposition.

Proposition A.6. Under Assumptions 3.2 and 3.3, m(ξ; q,µ) is analytic on {ξ : =(ξ) >

ξ0}, and has a unique analytic continuation to C+. Moreover, this analytic continuation

(still denoted as m(ξ; q,µ)) satisfies the following properties:

1. m(ξ; q,µ) ∈ C3
+ for all ξ ∈ C+.

2. m(ξ,q,µ) ≡ F[m(ξ,q,µ); ξ,q,µ] for all ξ ∈ C+.

3. Let Md(ξ; q,µ) be defined in Definition A.3. Then for any compact set Ω ⊂ C+,

lim
d→+∞

E
[

sup
ξ∈Ω

∣∣Md(ξ; q,µ)−m(ξ; q,µ)
∣∣] = 0.

The proof of Proposition A.6 is given in Section IV in the online supplementary material

(Meng et al.). It shows that Md(ξ; q,µ) has a deterministic limit equal to m(ξ; q,µ). This

result, together with the connection between Md(ξ; q,µ) and the logarithmic potential

Gd(ξ; q,µ) in Definition A.3, further indicates that Gd may also have a deterministic limit,

and its deterministic limit can possibly be expressed as a function of m(ξ; q,µ). In fact,

this limit is found to be

g(ξ; q,µ) , L(ξ,m1(ξ; q,µ),m2(ξ; q,µ),m3(ξ; q,µ); q,µ), (A.3)

where

L(ξ, z1, z2, z3; q,µ) ,

log
[
(1 + µ2

1,1z1q4 + µ2
2,1z2q4)(1 + z3q5)− µ2

1,1(1 + q1)2z1z3 − µ2
2,1(1 + q1)2z2z3

]
− µ2

1,2z1z3 − µ2
2,2z2z3 + q2µ

2
1,2z1 + q2µ

2
2,2z2 + q3z3 − ξ(z1 + z2 + z3)

− ψ1 log(z1/ψ1)− ψ2 log(z2/ψ2)− ψ3 log(z3/ψ3)− ψ1 − ψ2 − ψ3.

(A.4)
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The following proposition formally shows that g(ξ; q,µ) and its partial derivatives are the

deterministic limit of the Gd and the partial derivatives of Gd, respectively.

Proposition A.7. Let Gd(ξ; q,µ) be defined in Definition A.3 and g(ξ; q,µ) defined in

(A.3). Then for any fixed ξ ∈ C+, q ∈ Q and u ∈ R+,

lim
d→+∞

E[|Gd(ξ; q,µ)− g(ξ; q,µ)|] = 0,

lim
d→+∞

E[‖∇qGd(iu; q,µ)|q=0 −∇qg(iu; q,µ)|q=0‖2] = 0,

lim
d→+∞

E[‖∇2
qGd(iu; q,µ)|q=0 −∇2

qg(iu; q,µ)|q=0‖op] = 0.

Proposition A.7 is proved in Section V in the online supplementary material (Meng

et al.).

A.4 Step 4: completion of the proof

According to Propositions A.2, A.4, and A.7, the key terms in the excess risk can be

calculated as the partial derivatives of the function g(ξ; q,µ) at q = 0. However, g(ξ; q,µ)

is based on m(ξ; q,µ), and the calculation of the partial derivatives of g(ξ; q,µ) is non-

trivial: m(ξ; q,µ) is originally defined on {ξ : =(ξ) > ξ0} as the fixed point of F, and its

definition is then extended to C+ in Proposition A.6. To finalize the proof, we first present

the following proposition relating m(ξ; q,µ) to the function ν(ξ;µ) defined in Section 3.

Proposition A.8. There exists a unique analytic function ν = [ν1, ν2, ν3]> : C+ → C3
+

such that:

1. For any ξ ∈ C+, ν(ξ;µ) is a solution to ν-system (3.1).

2. There exists ξ0 > 0, such that |νj(ξ;µ)| ≤ 2ψj/ξ0, for all ξ with =(ξ) ≥ ξ0 and j = 1, 2, 3.

Moreover, it holds that ν(ξ;µ) = m(ξ; 0,µ) for all ξ ∈ C+.

3. ν∗ = ν(
√
λ · i;µ) in Definition 3.5 satisfies ν∗j = bj · i with bj > 0 for all j = 1, 2, 3.

The proof of Proposition A.8 is given in Section VI in the online supplementary mate-

rial (Meng et al.). The proposition thus justifies the definition of ν(ξ;µ) in Section 3 by

demonstrating its existence and uniqueness. Moreover, it also relates ν(ξ;µ) to the function

m(ξ; q,µ) introduced in step 3 of the proof. With this result, we can finalize the proof of

Theorem 3.6 as follows.

Proof [Proof of Theorem 3.6] Let

R(λ,ψ,µ, F1, τ) = F 2
1 ·
[
1− ∂q1g(ξ∗; q,µ)− ∂2

q4,q5g(ξ∗; q,µ)− ∂2
q2,q5g(ξ∗; q,µ)

]∣∣
q=0

− τ2 ·
[
∂2
q3,q4g(ξ∗; q,µ) + ∂2

q2,q3g(ξ∗; q,µ)
]∣∣

q=0
, (A.5)

where g is defined in (A.3), and ξ∗ =
√
λ · i is given in Definition A.1. Then by Proposi-

tions A.2, A.4 and A.7, we have

EX,Θ,ε

∣∣∣Rd(X,Θ, λ,βd, ε)−R(λ,ψ,µ, F1, τ)
∣∣∣ = od(1).
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Therefore to complete the proof, it suffices to calculate the partial derivative terms of

g(ξ∗; q,µ) at q = 0. For this calculation, we first note that by the definition of L(ξ, z; q,µ)

in (A.4) and the definition of m in (A.2) as the fixed point of F(·; ξ,q,µ), we have that

∇zL(ξ, z; q,µ)|z=m ≡ 0. (A.6)

Readers can refer to Lemma V.3 and its proof in the online supplementary material (Meng

et al.) for the detailed derivation of (A.6). Let m∗(q,µ) = [m1(ξ∗; q,µ),m2(ξ∗; q,µ),m3(ξ∗; q,µ)]>.

Then by Proposition A.8, we have ν∗ = m∗(0,µ). Therefore,

∂q1g(ξ∗; q,µ)
∣∣
q=0

= ∂q1
[
L(ξ∗,m∗(q,µ); q,µ)

]∣∣
q=0

=
[〈
∇zL(ξ∗, z; q,µ)|z=m∗ , ∂q1m

∗〉+ ∂q1L(ξ∗, z; q,µ)|z=m∗
]∣∣

q=0

= 0 + ∂q1L(ξ∗, z; q,µ)|q=0,z=ν∗ =
2ν∗3MN

MD
, (A.7)

where the first equality is by the definition of g, the second equality follows by the chain

rule, the third equality follows by (A.6), and the last equality is by direct calculation and

the definition that MN = ν∗1µ
2
1,1 + ν∗2µ

2
2,1, MD = ν∗3MN − 1.

For the second order derivatives, let qi qj be the ith and jth element in q for i, j =

2, 3, 4, 5. Then by (A.6), with similar calculation as (A.7), we have

∂2g(ξ∗; q,µ)

∂qi∂qj
=
∂2L(ξ∗, z; q,µ)

∂qi∂qj

∣∣∣∣
z=m∗

+

〈
∇z

[
∂L(ξ∗, z; q,µ)

∂qi

]∣∣∣∣
z=m∗

,
∂m∗

∂qi

〉
. (A.8)

Moreover, by (A.6) and the formula for implicit differentiation, we have

∂m∗

∂qi
= −

[(
∇2

zL(ξ∗, z; q,µ)
)∣∣

z=m∗

]−1∂
[
∇zL(ξ∗, z; q,µ)

]
∂qi

∣∣∣∣
z=m∗

. (A.9)

In addition, we let u = [q2, q3, q4, q5, z1, z2, z3]>, and define the symmetric matrix

W = W(ν∗,µ) = ∇2
uL(ξ, z; q,µ)|z=ν∗,q=0

=



0 0 0 0 µ2
1,2 µ2

2,2 0

∗ 0 0 0 0 0 1

∗ ∗ −M2
N

M2
D
−ν23M

2
N

M2
D

µ21,1
M2

D

µ22,1
M2

D

M2
N

M2
D

∗ ∗ ∗ − ν23
M2

D

ν23µ
2
1,1

M2
D

ν23µ
2
2,1

M2
D

1
M2

D

∗ ∗ ∗ ∗ −ν23µ
4
1,1

M2
D

+ ψ1

ν21
−ν23µ

2
1,1µ

2
2,1

M2
D

−µ21,1
M2

D
− µ2

1,2

∗ ∗ ∗ ∗ ∗ −ν23µ
4
2,1

M2
D

+ ψ2

ν22
−µ22,1
M2

D
− µ2

2,2

∗ ∗ ∗ ∗ ∗ ∗ −M2
N

M2
D

+ ψ3

ν23


.(A.10)
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Then by (A.8), (A.9) and (A.10), we have

∂2g(ξ∗; q,µ)

∂q2∂q5

∣∣∣
q=0

= W1,4 −W1,[5:7]

(
W[5:7],[5:7]

)−1
W[5:7],4, (A.11)

∂2g(ξ∗; q,µ)

∂q3∂q4

∣∣∣
q=0

= W2,3 −W2,[5:7]

(
W[5:7],[5:7]

)−1
W[5:7],3, (A.12)

∂2g(ξ∗; q,µ)

∂q2∂q3

∣∣∣
q=0

= W1,2 −W1,[5:7]

(
W[5:7],[5:7]

)−1
W[5:7],2, (A.13)

∂2g(ξ∗; q,µ)

∂q4∂q5

∣∣∣
q=0

= W3,4 −W3,[5:7]

(
W[5:7],[5:7]

)−1
W[5:7],4. (A.14)

Now the terms on the right hand side above can be directly calculated: (recalling V,H

given in Definition 3.5, and ν∗j is the solution of ν-system (3.1) given ξ =
√
λ · i) we have

W1,4 = W2,3 = W1,2 = 0, W3,4 = −
ν∗23 M2

N

M2
D

,

W[5:7],[1:4] = W>
[1:4],[5:7] = V, and W[5:7],[5:7] = H.

Plugging (A.7) and (A.11)-(A.14) into (A.5) completes the proof of Theorem 3.6.

Finally, recall L = V>H−1V, we give the closed form expression for the terms L1,4,L2,3,L1,2,L3,4

in Theorem 3.6. Let [ν∗1 , ν
∗
2 , ν
∗
3 ], MN and MD be defined in Definition 3.5, and

S =ν∗43

(
ν∗22 M2

Nµ
4
2,1ψ1 + ν∗21 M2

Nµ
4
1,1ψ2 + ν∗21 ν∗22 M2

D

(
µ2

1,2µ
2
2,1 − µ2

1,1µ
2
2,2

)2)
− ν∗23 ν∗22 ψ1

(
2M2

Dµ
2
2,1µ

2
2,2 +M4

Dµ
4
2,2 + µ4

2,1(1 +M2
Dψ3)

)
− ν∗23 ν∗21 ψ2

(
2M2

Dµ
2
1,1µ

2
1,2 +M4

Dµ
4
1,2 + µ4

1,1(1 +M2
Dψ3)

)
− ν∗23 ψ1ψ2M

2
DM

2
N +M4

Dψ1ψ2ψ3.

(A.15)
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Then by direct calculation, the terms L1,4,L2,3,L1,2,L3,4 satisfy the following equations:

S · L1,4

ν∗23

=− ν∗23 M2
N

(
ν∗22 µ2

2,1µ
2
2,2ψ1 + ν∗21 µ2

1,1µ
2
1,2ψ2

)
+ ν∗21 µ2

1,2ψ2

(
M2
Dµ

2
1,2 + µ2

1,1

(
1 +M2

Dψ3

))
+ ν∗22 µ2

2,2ψ1

(
M2
Dµ

2
2,2 + µ2

2,1

(
1 +M2

Dψ3

))
,

S · L2,3

ν∗23

=ν∗22 µ2
2,1

(
µ2

2,1 +M2
Dµ

2
2,2

)
ψ1 + ν∗21 µ2

1,1

(
µ2

1,1 +M2
Dµ

2
1,2

)
ψ2

− ν∗23 M2
N

(
ν∗22 µ4

2,1ψ1 + ν∗21 µ4
1,1ψ2

)
+M2

DM
2
Nψ1ψ2,

S · L1,2

ν∗23

=M2
D

(
ν∗22 µ2

2,2

(
µ2

2,1 +M2
Dµ

2
2,2

)
ψ1 + ν∗21 µ2

1,2

(
µ2

1,1 +M2
Dµ

2
1,2

)
ψ2

− ν∗21 ν∗22 ν∗23

(
µ2

1,2µ
2
2,1 − µ2

1,1µ
2
2,2

)2)
,

M2
DS · L3,4

ν∗23

=ν∗23

(
ν∗22 M2

Nµ
2
2,1

(
M2
Dµ

2
2,2 − µ2

2,1

)
ψ1 + ν∗21 M2

Nµ
2
1,1

(
M2
Dµ

2
1,2 − µ2

1,1

)
ψ2

)
+ ψ1ψ2M

2
DM

2
N − ν∗21 ν∗22 ν∗23 M2

D

(
µ2

1,2µ
2
2,1 − µ2

1,1µ
2
2,2

)2
+ ν∗22 µ2

2,1ψ1

(
M2
Dµ

2
2,2 + µ2

2,1 +M2
Dµ

2
2,1ψ3

)
+ ν∗21 µ2

1,1ψ2

(
M2
Dµ

2
1,2 + µ2

1,1 +M2
Dµ

2
1,1ψ3

)
.

(A.16)

Clearly, the equations above give explicit calculations of L1,4,L2,3,L1,2,L3,4 given the so-

lution [ν∗1 , ν
∗
2 , ν
∗
3 ] of the self consistent system ν-system (3.1). Readers may keep in mind

that ν∗2j is negative since ν∗j is purely imaginary.

A.5 Discussion on the proof of Theorem 3.6

In this section, we briefly discuss the proof of Theorem 3.6 and highlight the novel challenges

we encountered in our own proof and setting compared to Mei and Montanari (2022). We

compare the differences in the various steps of the proof to better understand the unique

aspects of our extension.

1. The first step in our proof is to directly calculate the excess risk according to its definition,

and identify key terms which require further analysis. To do so, we perform a bias-

variance decomposition of the risk and find an asymptotic approximation whose main

terms are expressed as traces of several random matrices, as detailed in Proposition A.2.

Compared to Mei and Montanari (2022), our analysis on the DRFM addresses the impact

of different activation functions. As shown in Lemma I.3, the terms become more complex

for DRFMs, and it requires additional treatment and careful justification to prove the

specific negligible terms. Furthermore, the decomposition in Proposition A.2 includes

additional diagonal matrices M1 and M2, whereas in Mei and Montanari (2022), it is

only a scalar. To address this difference, we have extended several technical lemmas to

accommodate the inclusion of M1 and M2. For further details, please refer to Section I

in the online supplementary material (Meng et al.).
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2. The second step involves the construction of a new random matrix, known as the linear

pencil matrix. While a similar technique is also used in Mei and Montanari (2022), the

linear pencil matrix is more intricate in our setting, see Definition A.3, due to the greater

complexity of the terms involving M1 and M2. Specifically, the linear pencil matrix in

our case is a 3 by 3 block matrix with a more complicated structure than the matrix

proposed in Mei and Montanari (2022).

3. The third step is a standard procedure that involves identifying the critical limiting spec-

tral functions of the linear pencil matrix, including its Stieltjes transform and logarithmic

potential. However, in our case, these calculations differ from the reference and require

additional investigation due to the increased complexity of the linear pencil matrix and

the more intricate formula of the related implicit equations. Furthermore, these new

calculations of the Stieltjes transform and logarithmic potential provide inspiration for

the study of the multiple random feature models and we find a mathematical induction

method to complete the study.

Appendix B. Proof of Propositions 4.1 and 4.2

In this section we present the detailed proofs of Propositions 4.1 and 4.2. We denote by

ν∗ = ν(
√
λ · i;µ) = m(

√
λ · i; 0,µ), Proposition A.8 shows that the three numbers ν∗j ,

j = 1, 2, 3, are all purely imaginary with positive imaginary parts, that is, ν∗j = iνj where

νj > 0. Moreover by ν-system (3.1), we also have the following self-consistent equations:

√
λν1 + µ2

1,2ν1ν3 +
µ2

1,1ν1ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
= ψ1,

√
λν2 + µ2

2,2ν2ν3 +
µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
= ψ2,

√
λν3 + µ2

1,2ν1ν3 + µ2
2,2ν2ν3 +

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
= ψ3.

(B.1)

The system (B.1) can be further rewritten as

λν1ν3 =

(
ψ1 − µ2

1,2ν1ν3 −
µ2

1,1ν1ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
·
(
ψ3 − µ2

1,2ν1ν3 − µ2
2,2ν2ν3 −

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
,

λν2ν3 =

(
ψ2 − µ2

2,2ν2ν3 −
µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
·
(
ψ3 − µ2

1,2ν1ν3 − µ2
2,2ν2ν3 −

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
,

√
λ(ν1 + ν2 − ν3) = ψ1 + ψ2 − ψ3.

(B.2)
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Our proofs of Propositions 4.1 and 4.2 mainly study the asymptotic properties of ν1ν3 and

ν2ν3 based on (B.2). Specifically, we define

χ1(µ) = lim
λ→0

ν1ν3, χ2(µ) = lim
λ→0

ν2ν3.

Note that the existence of these limits with values in [0,+∞) ∪ {+∞} is guaranteed by

the property of Stieltjes transform, and the limit value χ1(µ), χ2(µ) are related with the

moment vector µ. In the following proof, we drop the argument µ in χ1, χ2 for simplicity.

B.1 Proof of Proposition 4.1

We first prove the second and fourth conclusions of Proposition 4.1 where the excess risk

tends to infinity, and then we prove its first and third conclusions. Readers may keep in

mind that when we let λ→ 0, the moment vector µ is fixed.

Proof [Second conclusion] If ψ3 = ψ1 +ψ2, then by (B.2) we have ν1 + ν2 = ν3. We first

use a proof by contradiction to show that χ1 = limλ→0 ν1ν3 > 0. It is obvious by definition

that χ1 ≥ 0. If χ1 = 0, then from the first equation in (B.2) we have

0 = lim
λ→0

λν1ν3 = lim
λ→0

(
ψ1 − µ2

1,2ν1ν3 −
µ2

1,1ν1ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
·
(
ψ3 − µ2

1,2ν1ν3 − µ2
2,2ν2ν3 −

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
,

= ψ1 · lim
λ→0

(ψ1 +
√
λν2) ≥ ψ2

1.

This is impossible and hence we have χ1 > 0. Moreover, if χ1 = +∞, we have

0 = lim
λ→0

λ = lim
λ→0

(
ψ1/(ν1ν3)− µ2

1,2 −
µ2

1,1

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
·
(
ψ3 − µ2

1,2ν1ν3 − µ2
2,2ν2ν3 −

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
� 0,

which is also a contradiction. Therefore 0 < χ1 <∞. Similarly we conclude that 0 < χ2 <

∞.

Furthermore, the relation ν1 + ν2 = ν3 implies that ν1, ν2 < ν3. Then we have

lim
λ→0

ν1, ν2 < +∞ and
√
λν1,
√
λν2 → 0 when λ → 0. Therefore (B.1) gives us the fol-

lowing equations when λ→ 0:
µ2

1,2χ1 +
µ2

1,1χ1

1 + µ2
1,1χ1 + µ2

2,1χ2
= ψ1,

µ2
2,2χ2 +

µ2
2,1χ2

1 + µ2
1,1χ1 + µ2

2,1χ2
= ψ2.

(B.3)
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By (B.3), we can express ψ1, ψ2 and ψ3 = ψ1 +ψ2 by χ1 and χ2. Moreover, note that when

λ→ 0,

ν∗1ν
∗
3 = −χ1, ν

∗
2ν
∗
3 = −χ2, MNν

∗
3 = −µ2

1,1χ1 − µ2
2,1χ2, MD = −µ2

1,1χ1 − µ2
2,1χ2 − 1.

(B.4)

Therefore S and Li,j in (A.15) and (A.16) can also be expressed by χ1 and χ2 when λ→ 0.

With direct algebraic calculations, we obtain

lim
λ→0

S = 0, lim
λ→0

S · (L3,4 + L1,4) 6= 0, lim
λ→0

S · (L2,3 + L1,2) 6= 0.

This implies that L3,4 + L1,4 →∞ and L2,3 + L1,2 →∞ when λ→ 0. Since R ≥ 0, we have

lim
λ→0
R(λ,ψ,µ, F1, τ) = lim

λ→0
F 2

1

(
1

M2
D

+ L3,4 + L1,4

)
+ τ2(L2,3 + L1,2) = +∞.

This gives the second conclusion in Proposition 4.1.

Proof [Fourth conclusion] If (ψ1 + ψ2)/ψ3 = 1 + ψ2/ψ1, then ψ1 = ψ3, and (B.2) gives√
λ(ν1 + ν2 − ν3) = ψ2. By substitution of

√
λ(ν1 + ν2 − ν3) = ψ2 into the second equation

in (B.1) we obtain

√
λν3 + µ2

2,2ν2ν3 +
µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
=
√
λν1.

Thus ν3 < ν1. Moreover, if χ1 = limλ→0 ν1ν3 = +∞, then the first equation in (B.2)

indicates that

0 = lim
λ→0

λ = lim
λ→0

(
ψ1/(ν1ν3)− µ2

1,2 −
µ2

1,1

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
·
(
ψ3 − µ2

1,2ν1ν3 − µ2
2,2ν2ν3 −

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
� 0,

which is impossible. Therefore χ1 < +∞. Similarly, the second equation in (B.2) gives

χ2 = limλ→0 ν2ν3 < +∞. Here, χ1, χ2 < +∞ is obtained under a given moment vector

µ. Combined χ1 < +∞ with ν3 < ν1, we get
√
λν3 → 0 as λ → 0. Therefore the third

equation in (B.1) gives us

ψ3 = µ2
1,2χ1 + µ2

2,2χ2 +
µ2

1,1χ1 + µ2
2,1χ2

1 + µ2
1,1χ1 + µ2

2,1χ2
. (B.5)

We remind the readers that we aim at proving

lim
µ2,1,µ2,2→0

lim
λ→0
R(λ,ψ,µ, F1, τ) = +∞. (B.6)
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To show this, we rely on the following claim (recall that χ2 depends on µ2,1, µ2,2):

lim
µ2,1,µ2,2→0

µ2
2,2χ2 + µ2

2,1χ2 = 0. (B.7)

In the following, we first explain how (B.7) can be used to show (B.6), then give the proof

of (B.7).

Proof of (B.6) based on (B.7). By (B.5) and (B.7), we have

ψ3 = lim
µ2,1,µ2,2→0

µ2
1,2χ1 +

µ2
1,1χ1

1 + µ2
1,1χ1

. (B.8)

Recall that in Theorem 3.6, R(λ,ψ,µ, F1, τ) is defined based on the quantities S and Li,j ,

i, j = 1, . . . , 4. The analytical expressions of these quantities are given in (A.15) and (A.16)

respectively. We replace the terms ψ and ν∗ in (A.15) and (A.16) with terms consisting of

χ1 and χ2 by using equations (B.4), (B.7), (B.8), and then get that

lim
µ2,1,µ2,2→0

lim
λ→0

S = 0, lim
µ2,1,µ2,2→0

lim
λ→0

S · (L3,4 + L1,4) 6= 0, lim
µ2,1,µ2,2→0

lim
λ→0

S · (L2,3 + L1,2) 6= 0.

Therefore the limits L3,4 + L1,4 = ∞ and L2,3 + L1,2 = ∞ when λ → 0 and µ2,1, µ2,2 → 0.

Since R > 0, we have

lim
µ2,1,µ2,2→0

lim
λ→0
R(λ,ψ,µ, F1, τ)

= lim
µ2,1,µ2,2→0

lim
λ→0

F 2
1

(
1

M2
D

+ L3,4 + L1,4

)
+ τ2(L2,3 + L1,2) = +∞.

Proof of (B.7). We first show that lim
λ→0

ν3 = 0. From the analysis above, we have lim
λ→0

ν3 <

+∞ due to ν3 < ν1 and χ1 = lim
λ→0

ν1ν3 < +∞. If lim
λ→0

ν3 > 0, then combined with

lim
λ→0

ν1ν3 < +∞ we have
√
λν1,

√
λν2 → 0, the first and second equations in (B.1) give us


µ2

1,2χ1 +
µ2

1,1χ1

1 + µ2
1,1χ1 + µ2

2,1χ2
= ψ1,

µ2
2,2χ2 +

µ2
2,1χ2

1 + µ2
1,1χ1 + µ2

2,1χ2
= ψ2.

Combining the equations above with (B.5), we have ψ1 +ψ2 = ψ3, which is a contradiction

to the condition ψ1 = ψ3. Therefore lim
λ→0

ν3 = 0.

Combining the limit lim
λ→0

ν3 = 0 with (B.2) yields that lim
λ→0

√
λ(ν1 + ν2) = ψ2. (B.1)

further indicates the existence of lim
λ→0

√
λν1 and lim

λ→0

√
λν2 respectively due to the existence

of χ1 and χ2 (The existence can also be guaranteed by the property of Stieltjes transform).

Next we show that lim
λ→0

√
λν1, lim

λ→0

√
λν2 > 0. We use a proof by contradiction:
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• If lim
λ→0

√
λν1 = 0, then it holds that lim

λ→0

√
λν2 = ψ2, then we conclude that ν2 � ν1, and

lim
λ→0

ν1ν3 > 0, lim
λ→0

ν2ν3 = 0 from (B.1). This is a contradiction because lim
λ→0

ν1ν3 > 0 and

lim
λ→0

ν2ν3 = 0 indicate ν1 � ν2.

• If lim
λ→0

√
λν2 = 0, we have lim

λ→0

√
λν1 = ψ2, then the second equation in (B.1) indicates

that lim
λ→0

ν2ν3 > 0. Moreover, lim
λ→0

√
λν2 = 0 and lim

λ→0

√
λν1 = ψ2 indicate that ν1 � ν2,

therefore lim
λ→0

ν1ν3 = +∞, which contradicts to the conclusion χ1 = lim
λ→0

ν1ν3 < +∞
above.

From the analysis above we prove that ν1 and ν2 have the same order when λ → 0. If

χ1 = lim
λ→0

ν1ν3 = 0, then χ2 = lim
λ→0

ν2ν3 = 0. The first and second equations in (B.1)

give us lim
λ→0

√
λ(ν1 + ν2) → ψ1 + ψ2 which contradicts the third equation in (B.2) which

indicates that lim
λ→0

√
λ(ν1 + ν2) → ψ2. Therefore we have χ1, χ2 > 0. Here, we utilize the

fact lim
λ→0

ν3 = 0. Finally we have

ν1 = Θ

(
1√
λ

)
, ν2 = Θ

(
1√
λ

)
, ν3 = Θ(

√
λ).

Then we can assume that

lim
λ→0

√
λν1 = ψ1 − n1, lim

λ→0

√
λν2 = ψ2 − n2, lim

λ→0
ν3/
√
λ = k,

where 0 ≤ n1 < ψ1, 0 ≤ n2 < min(ψ1, ψ2), k > 0 and n1, n2, k satisfy

µ2
1,2(ψ1 − n1)k +

µ2
1,1(ψ1 − n1)k

1 + µ2
1,1(ψ1 − n1)k + µ2

2,1(ψ2 − n2)k
= n1,

µ2
2,2(ψ2 − n2)k +

µ2
2,1(ψ2 − n2)k

1 + µ2
1,1(ψ1 − n1)k + µ2

2,1(ψ2 − n2)k
= n2,

n1 + n2 = ψ3 = ψ1.

(B.9)

It is easy to see that χ1 = (ψ1 − n1) · k and χ2 = (ψ2 − n2) · k. We can also show that

lim
µ2,1,µ2,2→0

n2 = 0. Indeed if lim sup
µ2,1,µ2,2→0

n2 > 0, the second equation in (B.9) gives k → +∞.

However, n2 · k → +∞ leads to a contradiction to the first equation in (B.9). Next, using

the second equation in (B.9), we have lim
µ2,1,µ2,2→0

µ2
2,2χ2 = 0.

As for lim
µ2,1,µ2,2→0

µ2
2,1χ2, note that χ1 is bounded by the inequality χ1 < ψ3/µ

2
1,2 due to

the first equation in (B.9), thus we have

0 = lim
µ2,1,µ2,2→0

µ2
2,1(ψ2 − n2)k

1 + µ2
1,1(ψ1 − n1)k + µ2

2,1(ψ2 − n2)k
= lim

µ2,1,µ2,2→0

µ2
2,1χ2

1 + µ2
1,1χ1 + µ2

2,1χ2
,
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which indicates that lim
µ2,1,µ2,2→0

µ2
2,1χ2 = 0. Hence the claim (B.7) holds and the proof is

complete.

Proof [Third conclusion] Let r = 1 − (c2 − 1)ψ3/ψ2, then ψ3 = ψ1 + rψ2 with 0 <

r < 1. An analysis similar to the previous case of ψ3 = ψ1 leads to ν3 < ν1 + ν2, and

ν1 = Θ( 1√
λ

), ν2 = Θ( 1√
λ

), and ν3 = Θ(
√
λ). We still assume that

lim
λ→0

√
λν1 = ψ1 − n1, lim

λ→0

√
λν2 = ψ2 − n2, lim

λ→0
ν3/
√
λ = k,

where 0 ≤ n1 < ψ1, rψ2 ≤ n2 < ψ2, k > 0 and n1, n2, k satisfy

µ2
1,2(ψ1 − n1)k +

µ2
1,1(ψ1 − n1)k

1 + µ2
1,1(ψ1 − n1)k + µ2

2,1(ψ2 − n2)k
= n1,

µ2
2,2(ψ2 − n2)k +

µ2
2,1(ψ2 − n2)k

1 + µ2
1,1(ψ1 − n1)k + µ2

2,1(ψ2 − n2)k
= n2,

n1 + n2 = ψ3 = ψ1 + rψ2.

(B.10)

It is easy to see that χ1 = (ψ1 − n1) · k and χ2 = (ψ2 − n2) · k. Let µ2,1, µ2,2 → 0 and note

that n2 ≥ rψ2. We must have k → +∞ by the second equation in (B.10). Therefore the

first equation in (B.10) indicates that n1 = ψ1 and n2 = rψ2 as µ2,1, µ2,2 → 0. Now it is

easy to prove the third conclusion in Proposition 4.1 if we further assume that µ2,1/µ2,2 → 0

due to

lim
µ2,1,µ2,2→0

lim
λ→0
R(λ,ψ,µ, F1, τ) ≤ lim

µ2,1,µ2,2→0
µ2,1/µ2,2→0

R(λ,ψ,µ, F1, τ).

Define χ̄1 = lim
µ2,1,µ2,2→0
µ2,1/µ2,2→0

χ1. Then we have

lim
µ2,1,µ2,2→0
µ2,1/µ2,2→0

µ2
2,2χ2 = rψ2, µ

2
1,2χ̄1 +

µ2
1,1χ̄1

1 + µ2
1,1χ̄1

= ψ1.

Combining the expression of S and Li,j in (A.15) and (A.16) gives us

lim
µ2,1,µ2,2→0
µ2,1/µ2,2→0

lim
λ→0

S = (1− r)rχ̄1(ψ2 + µ2
1,1ψ2χ̄1)2(µ2

1,2 + µ4
1,1µ

2
1,2χ̄

2
1 + µ2

1,1(1 + 2µ2
1,2χ̄1)) > 0,

lim
µ2,1,µ2,2→0
µ2,1/µ2,2→0

lim
λ→0
|S · (L3,4M

2
D + L1,4)| < +∞, lim

µ2,1,µ2,2→0
µ2,1/µ2,2→0

lim
λ→0
|S · (L2,3 + L1,2)| < +∞.

Therefore lim
µ2,1,µ2,2→0

lim
λ→0
R(λ,ψ,µ, F1, τ) ≤ lim

µ2,1,µ2,2→0
µ2,1/µ2,2→0

R(λ,ψ,µ, F1, τ) < +∞. This com-

pletes the proof of the third conclusion in Proposition 4.1.
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Proof [First conclusion] Let r = 1 + (1 − c1)ψ3/ψ2, then we have ψ3 = ψ1 + rψ2 with

r > 1. Similarly to the previous arguments, we obtain ν1ν3 = Θλ(1) and ν2ν3 = Θλ(1).

Also note that ν1 + ν2 < ν3, therefore it holds that
√
λν1 → 0 and

√
λν1 → 0. Recall that

we defined χ1 = limλ→0 ν1ν3 and χ2 = limλ→0 ν2ν3, and the system (B.3) still holds in the

current case. Substituting (B.3) into (A.15) and (A.16), and after some simple calculation,

we obtain

lim
λ→0

S > (r − 1)µ4
1,1µ

2
2,1(1 + µ2

2,2χ2)χ2
1χ

2
2 > 0, lim

λ→0
S · (L3,4M

2
D + L1,4) < +∞, lim

λ→0
S · (L2,3 + L1,2) < +∞.

Therefore when ψ3 = ψ1 + rψ2, r > 1, lim
λ→0
R(λ,ψ,µ, F1, τ) < +∞. This completes the

proof of the first conclusion in Proposition 4.1.

B.2 Proof of Proposition 4.2

For this proposition, we let ψ0 = ψ1/r1 = ψ2/r2 → +∞. By the system (B.1) we have

√
λν3 = ψ3 − µ2

1,2ν1ν3 − µ2
2,2ν2ν3 −

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
. (B.11)

Therefore ν3 < ψ3/
√
λ with fixed ψ3. Then from the first and second equations in (B.1) we

easily get that lim
ψ0→+∞

ν1, lim
ψ0→+∞

ν2 = +∞. If lim
ψ0→+∞

ν3 > 0, further from (B.11) we will

get

lim
ψ0→+∞

√
λ

(
ν3 + µ2

1,2ν1ν3 + µ2
2,2ν2ν3 +

µ2
1,1ν1ν3 + µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3

)
= ψ3.

This is a contradiction because the left hand side of the equation above tends to infinity

while the right hand side is fixed. Therefore we have lim
ψ0→+∞

ν3 = 0. Combining this result

with

√
λν1 + µ2

1,2ν1ν3 +
µ2

1,1ν1ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
= ψ1,

√
λν2 + µ2

2,2ν2ν3 +
µ2

2,1ν2ν3

1 + µ2
1,1ν1ν3 + µ2

2,1ν2ν3
= ψ2,

we conclude that

lim
ψ0→+∞

ν1/ψ0 = r1/
√
λ, lim

ψ0→+∞
ν2/ψ0 = r2/

√
λ.
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We further define

lim
ψ0→+∞

ν3ψ0 = χ, lim
ψ0→+∞

ν3ψ0 = χ.

Then we have

lim
ψ0→+∞

ν1ν3 = r1χ, lim
ψ0→+∞

ν2ν3 = r2χ, lim
ψ0→+∞

ν1ν3 = r1χ, lim
ψ0→+∞

ν2ν3 = r2χ.

Taking the superior and inferior limit when ψ0 → +∞ in the third equation of (B.1), we

have 
ψ3 = µ2

1,2r1χ+ µ2
2,2r2χ+

µ2
1,1r1χ+ µ2

2,1r2χ

1 + µ2
1,1r1χ+ µ2

2,1r2χ
,

ψ3 = µ2
1,2r1χ+ µ2

2,2r2χ+
µ2

1,1r1χ+ µ2
2,1r2χ

1 + µ2
1,1r1χ+ µ2

2,1r2χ
.

Therefore χ and χ are both the solution of the equation

ψ3(1 + µ2
1,1r1x+ µ2

2,1r2x) = (µ2
1,2r1x+ µ2

2,2r2x)(1 + µ2
1,1r1x+ µ2

2,1r2x) + µ2
1,1r1x+ µ2

2,1r2x.

(B.12)

Note that χ and χ are both positive, and the equation above only has one positive root.

Therefore we conclude that χ = χ, and we can write χ := χ = χ. By calculating the

positive root of (B.12), we easily see that (r1µ
2
1,1 + r2µ

2
2,1)χ = χ0 where χ0 is defined in

Proposition 4.2. Plugging the limits ν1ν3 → r1χ and ν2ν3 → r2χ into MD and MN in (A.15)

and (A.16), we obtain MD → −χ0 − 1, ν∗3MN → −χ0 when ψ0 → +∞. Direct algebraic

calculation then gives

L2,3 →
χ2

0

(χ0 + 1)2ψ3 − χ2
0

, L3,4 →
χ2

0

(χ0 + 1)4ψ3 − χ2
0(χ0 + 1)2

, L1,2,L1,4 → 0

when ψ0 → +∞. Then we have

lim
ψ0→∞

R(λ,ψ,µ, F1, τ) = lim
ψ0→∞

F 2
1

(
1

M2
D

+ L3,4 + L1,4

)
+ τ2(L2,3 + L1,2)

= F 2
1

(
1

(χ0 + 1)2
+

χ2
0

(χ0 + 1)4ψ3 − χ2
0(χ0 + 1)2

)
+ τ2

(
χ2

0

(χ0 + 1)2ψ3 − χ2
0

)
=

F 2
1ψ3 + τ2χ2

0

(χ0 + 1)2ψ3 − χ2
0

.

This proves Proposition 4.2.

Appendix C. Proof of Theorem 5.6
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Here, we provide the proof of Theorem 5.6 for the MRFM. The proof for MRFM bears

significant resemblance to the previous proof of Theorem 3.6. In this section, we offer a

brief overview of the proof for MRFM, highlighting the key distinctions between these two

theorems. Here we will focus on several key steps in the proof that are significantly different

from the proof of DRFMs.

C.1 Step 1: bias-variance decomposition of the excess risk

We first give some notations as follows.

Definition C.1. Define

Zj = σj

(
XΘ>j /

√
d
)
/
√
d ∈ Rn×Nj , Z =

[
Z1, . . . ,ZK

]
,

σ(x) =
[
σ1(x>Θ>1 /

√
d), . . . , σK(x>Θ>K/

√
d)
]> ∈ RN , Υ = (Z>Z + λIN )−1,

V0(F0) = Ex

[
σ(x)F0

]
∈ RN×1, V(β1,d) = Ex

[
σ(x)x>β1,d

]
∈ RN×1,U = Ex

[
σ(x)σ(x)>

]
∈ RN×N .

Clearly, these notations are consistent with Definition A.1 and Proposition A.2. Based

on these notations with direct calculation, we can express the excess risk Rd(X,Θ, λ,βd, ε)

as

Rd(X,Θ, λ,βd, ε) = F 2
0 + F 2

1,d − 2y>ZΥ[V(β1,d) + V0(F0)]/
√
d+ y>

[
U
]
Z
y/d. (C.1)

To continue the calculation, we consider the Gegenbauer decompositions of the activation

functions. Suppose that the Gegenbauer decompositions of σj(·), j = 1, . . . ,K, are

σj(x) =
+∞∑
k=0

λd,k
(
σj
)
B(d, k) ·Q(d)

k (
√
d · x), j = 1, . . . ,K,

where λd,k(σj) are the decomposition coefficients, Q
(d)
k , k ∈ N are the Gegenbauer polyno-

mials, and B(d, 0) = 1, B(d, k) = k−1(2k + d− 2)
(
k+d−3
k−1

)
for k ≥ 1. Let

Λd,k = diag
(
λd,k(σ1)IN1 , . . . , λd,k(σK)INK

)
, k ∈ N = {0, 1, ...}, (C.2)

M1 = diag
(
µ1,1IN1 , . . . , µK,1INK

)
, M2 = diag

(
µ1,2IN1 , . . . , µK,2INK

)
. (C.3)

Now we present Proposition C.2 below, which is the counterpart of Proposition A.2.

Proposition C.2. For any given λ, let

Rd(X,Θ, λ, F1,d, τ) = F 2
1,d −

2F 2
1,d

d
trM1

ΘX>

d
ZΥ +

F 2
1,d

d
tr
([

Ũ
]
Z

XX>

d

)
+
τ2

d
tr(
[
Ũ
]
Z

),

where Ũ = M1ΘΘ>M1/d+ M2M2. Then under the same conditions as Theorem 5.6,

EX,Θ,ε

∣∣∣Rd(X,Θ, λ,βd, ε)−Rd(X,Θ, λ, F1,d, τ)
∣∣∣ = od(1).
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The proof for Proposition C.2 is exactly the same as the proof for Proposition A.2, except

the definitions of Λd,k, M1 and M2 are changed. We therefore omit the proof details.

C.2 Step 2: approximation of the risk decomposition via a linear pencil matrix

The approximating function Rd(X,Θ, λ, F1,d, τ) established in Proposition C.2 again de-

pends on traces of several random matrices. These traces are next evaluated using a new

linear pencil matrix, which is a bit more involved compared with the linear pencil matrix

for DRFMs.

Definition C.3. (1) Let Q := {q = [q1, q2, q3, q4, q5] ∈ R5
+ : q4, q5 ≤ (1 + q1)/2, ‖q‖2 ≤ 1}.

Depending on q ∈ Q and µ, the linear pencil matrix A(q,µ) ∈ RP×P (P = N + n) is

A(q,µ) =

[
q2M2M2 + q4M1

ΘΘ>

d M1 Z> + q1Z̃
>

Z + q1Z̃ q3In + q5
XX>

d

]

=


q2µ

2
1,2IN1 + q4µ

2
1,1

Θ1Θ>1
d · · · q4µ1,1µK,1

Θ1Θ>K
d Z>1 + q1Z̃

>
1

...
. . .

...
...

q4µK,1µ1,1
ΘKΘ>1

d · · · q2µ
2
K,2INK

+ q4µ
2
K,1

ΘKΘ>K
d Z>K + q1Z̃

>
K

Z1 + q1Z̃1 · · · ZK + q1Z̃K q3In + q5
XX>

d

 ,

where Z̃j =
µj,1
d XΘ>j , j = 1, . . . ,K + 1.

(2) The Stieltjes transform of the empirical eigenvalue distribution of A (up to a P/d

factor) is

Md(ξ; q,µ) =
1

d
tr
[
(A− ξIP )−1

]
, ξ ∈ C+,

and its logarithmic potential is

Gd(ξ; q,µ) =
1

d
log det(A− ξIP ) =

1

d

P∑
i=1

log(λi(A)− ξ), ξ ∈ C+.

Here {λi(A)}i∈[P ] are the eigenvalues of A in decreasing order, and log(z) := log(|z|) +

i arg(z), for z ∈ C, −π < arg(z) ≤ π is the principal value of a complex logarithmic

function.

The three traces appearing in the definition of Rd(X,Θ, λ, F1,d, τ) in Proposition C.2

are now expressed as partial derivatives of the logarithmic potential Gd as shown in the

proposition below.
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Proposition C.4. Let ξ∗ be defined in Definition C.1 and Ũ be defined in Proposition C.2.

Then

1

d
trM1

ΘX>

d
ZΥ =

1

2
∂q1Gd(ξ

∗; q,µ)|q=0,

1

d
tr(
[
Ũ
]
Z

XX>

d
) = −∂2

q4,q5Gd(ξ
∗; q,µ)|q=0 − ∂2

q2,q5Gd(ξ
∗; q,µ)|q=0,

1

d
tr(
[
Ũ
]
Z

) = −∂2
q3,q4Gd(ξ

∗; q,µ)|q=0 − ∂2
q2,q3Gd(ξ

∗; q,µ)|q=0.

The proof for Proposition C.4 is the same as the proof for Proposition A.4. We omit

the details for simplicity.

C.3 Step 3: key limiting spectral functions of the linear pencil matrix

Proposition C.4 shows that the excess risk depends on the limiting spectral properties of

the linear pencil matrix A. Therefore we study the Stieltjes transform Md(ξ; q,µ) of the

empirical eigenvalue distribution of A and calculate its limit as d, n,N →∞. We first give

the following definition.

Definition C.5. Define F(·; ξ,q,µ) = [F1(·; ξ,q,µ), · · · ,FK+1(·; ξ,q,µ)]> : CK+1 → CK+1

as

Fj(m; ξ,q,µ) = ψj

{
− ξ + q2µ

2
j,2 − µ2

j,2mK+1 +
Hj

HD

}−1

, j = 1, . . . ,K,

FK+1(m; ξ,q,µ) = ψK+1

{
− ξ + q3 −

K∑
j=1

µ2
j,2mj +

HK+1

HD

}−1

,

where ξ ∈ C+, m = [m1, . . . ,mK+1] ∈ CK+1, and

Hj = µ2
j,1q4(1 +mK+1q5)− µ2

j,1(1 + q1)2mK+1, j = 1, . . . ,K,

HK+1 = q5

(
1 +

K∑
j=1

µ2
j,1mjq4

)
− (1 + q1)2

K∑
j=1

µ2
j,1mj ,

HD =
(

1 +

K∑
j=1

µ2
j,1mjq4

)
(1 +mK+1q5)− (1 + q1)2

K∑
j=1

µ2
j,1mjmK+1.

Note that the function F(m; ξ,q,µ) in Definition C.5 above is not related to d. Lemma C.6

below ensures the existence and uniqueness of the fixed point of F(m; ξ,q,µ) for ξ ∈ {ξ ∈
C : =(ξ) > ξ0} with some sufficiently large constant ξ0.

Lemma C.6. For F(m; ξ,q,µ) in Definition C.5, there exists ξ0 > 0 such that, for any ξ ∈
C+ with =(ξ) > ξ0, the equation m = F(m; ξ,q,µ) admits a unique solution in D(2ψ1/ξ0)×
. . .× D(2ψK+1/ξ0).

40



Multiple Descent in the Multiple Random Feature Model

The proof of Lemma C.6 is given in Section VII.1 in the online supplementary material

(Meng et al.). Define the fixed point of F(m; ξ,q,µ) as the function of ξ on {ξ : =(ξ) > ξ0}:

m(ξ; q,µ) =

 m1(ξ; q,µ)
...

mK+1(ξ; q,µ)

 (C.4)

The following proposition shows that m is an analytic function on {ξ : =(ξ) > ξ0}, and its

analytic continuation to C+ is still a fixed point of F(·; ξ,q,µ).

Proposition C.7. Under Assumptions 5.2 and 5.3, m(ξ; q,µ) is analytic on {ξ : =(ξ) >

ξ0}, and has a unique analytic continuation to C+. Moreover, this analytic continuation

(still denoted as m(ξ; q,µ)) satisfies the following properties:

1. m(ξ; q,µ) ∈ CK+1
+ for all ξ ∈ C+.

2. m(ξ,q,µ) ≡ F[m(ξ,q,µ); ξ,q,µ] for all ξ ∈ C+.

3. Let Md(ξ; q,µ) be defined in Definition C.3. Then for any compact set Ω ⊂ C+,

lim
d→+∞

E
[

sup
ξ∈Ω

∣∣Md(ξ; q,µ)−
K+1∑
j=1

mj(ξ; q,µ)
∣∣] = 0.

The proof of Proposition C.7 is given in Section VII.2 in the online supplementary

material (Meng et al.). The study of the limiting spectral distribution also leads to a

deterministic limit for the logarithmic potential Gd. This limit logarithmic potential is

found to be

g(ξ; q,µ) , L(ξ,m1(ξ; q,µ), . . . ,mK+1(ξ; q,µ); q,µ), (C.5)

where the function L is

L(ξ, z1, . . . , zK+1; q,µ) ,

log

[(
1 + q4

K∑
j=1

µ2
j,1zj

)
(1 + zK+1q5)−

K∑
j=1

µ2
j,1(1 + q1)2zjzK+1

]
−

K∑
j=1

µ2
j,2zjzK+1

+ q2

K∑
j=1

µ2
j,2zj + q3zK+1 −

K+1∑
j=1

ψj log(zj/ψj)− ξ
(K+1∑

j=1

zj

)
−
K+1∑
j=1

ψj .

(C.6)

This convergence, together with those of the partial derivatives of our interest, are formally

established in the following proposition.

Proposition C.8. Let Gd(ξ; q,µ) be defined in Definition C.3, and g(ξ; q,µ) be defined in

equation (C.5). For any fixed q ∈ Q, ξ ∈ C+ and u ∈ R+,

lim
d→+∞

E[|Gd(ξ; q,µ)− g(ξ; q,µ)|] = 0,

lim
d→+∞

E[‖∇qGd(iu; q,µ)|q=0 −∇qg(iu; q,µ)|q=0‖2] = 0,
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lim
d→+∞

E[‖∇2
qGd(iu; q,µ)|q=0 −∇2

qg(iu; q,µ)|q=0‖op] = 0.

The proof of Proposition C.8 utilizes the key observation that ∇zL(ξ, z; q,µ)|z=m ≡ 0.

We omit the details here since it is similar to the proof of Proposition A.7.

C.4 Step 4: complete the proof

Similar to the previous proof of Theorem 3.6, we give the following proposition to ensure

the existence and uniqueness of ν defined in Section 5.

Proposition C.9. There exists a unique analytic function ν = [ν1, . . . , νK+1]> : C+ →
CK+1

+ such that:

1. For any ξ ∈ C+, ν(ξ;µ) is a solution to ν-system (5.2).

2. There exists ξ0 > 0, such that |νj(ξ;µ)| ≤ 2ψj/ξ0, for all ξ with =(ξ) ≥ ξ0 and j =

1, . . . ,K + 1.

Moreover, it holds that ν(ξ;µ) = m(ξ; 0,µ) for all ξ ∈ C+.

Proof [Proof of Proposition C.9] By Proposition C.7, the existence is directly verified as

m(ξ; 0,µ) is a solution. For the uniqueness of ν, note that ν(ξ;µ) and m(ξ; 0,µ) are

analytic. By Lemma C.6, they are identical on {ξ : =(ξ) > ξ0} with some sufficiently large

ξ0. The uniqueness of ν thus results from the uniqueness of the analytic continuation.

Proposition C.9 justifies the definition of ν(ξ;µ) in Section 5 by demonstrating its existence

and uniqueness. Moreover, it also relates ν(ξ;µ) to the function m(ξ; q,µ) introduced in

step 3 of the proof. With this result, we can finalize the proof of Theorem 5.6 as follows.

Proof [Proof of Theorem 5.6] Let

R(λ,ψ,µ, F1, τ) = F 2
1 ·
[
1− ∂q1g(ξ∗; q,µ)− ∂2

q4,q5g(ξ∗; q,µ)− ∂2
q2,q5g(ξ∗; q,µ)

]∣∣
q=0

− τ2 ·
[
∂2
q3,q4g(ξ∗; q,µ) + ∂2

q2,q3g(ξ∗; q,µ)
]∣∣

q=0
,

(C.7)

where g is defined in (C.5). Then by Propositions C.2, C.4 and C.8, we have

EX,Θ,ε

∣∣∣Rd(X,Θ, λ,βd, ε)−R(λ,ψ,µ, F1, τ)
∣∣∣ = od(1).

Recall equations (C.5) and (C.6), for any ξ ∈ C+ we have

∇zL(ξ, z; q,µ)|z=m = 0.

Here z = [z1, . . . , zK+1]>. Then from the formula for implicit differentiation, we have

∂q1g(ξ∗; q,µ)|q=0 = ∂q1L(ξ∗, z; q,µ)|z=ν∗,q=0 =
2ν∗K+1MN

MD
. (C.8)

We remind readers that MN =
K∑
j=1

ν∗j µ
2
j,1, MD = ν∗K+1MN−1 and ν∗ = m(ξ∗; 0,µ). Denote

u = (q2, q3, q4, q5, z), and construct the matrix W(ν∗,µ) = ∇2
uL(ξ∗, z; q,µ)|z=ν∗,q=0. Note
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that (A.8) and (A.9) in our proof of DRFMs still hold for the case of MRFMs. Therefore
we have (to simplify the writing, we drop the arguments in the matrix W):

∂2g(ξ∗; q,µ)

∂q2∂q5

∣∣∣
q=0

= W1,4 −W1,[5:(K+5)]

(
W[5:(K+5)],[5:(K+5)]

)−1

W[5:(K+5)],4, (C.9)

∂2g(ξ∗; q,µ)

∂q3∂q4

∣∣∣
q=0

= W2,3 −W2,[5:(K+5)]

(
W[5:(K+5)],[5:(K+5)]

)−1

W[5:(K+5)],3, (C.10)

∂2g(ξ∗; q,µ)

∂q2∂q3

∣∣∣
q=0

= W1,2 −W1,[5:(K+5)]

(
W[5:(K+5)],[5:(K+5)]

)−1

W[5:(K+5)],2, (C.11)

∂2g(ξ∗; q,µ)

∂q4∂q5

∣∣∣
q=0

= W3,4 −W3,[5:(K+5)]

(
W[5:(K+5)],[5:(K+5)]

)−1

W[5:(K+5)],4. (C.12)

Similar to the case of DRFMs, we have

W1,4 = W2,3 = W1,2 = 0, W3,4 = −
ν∗2K+1M

2
N

M2
D

,

V = W[5:(K+5)],[1:4] = W>
[1:4],[5:(K+5)], and H =

(
W[5:(K+5)],[5:(K+5)]

)
.

Plugging (C.8) and (C.9)-(C.12) into (C.7) proves Theorem 5.6.

Appendix D. Other key factors affecting the risk curve

Here we investigate several other factors that affect the shape of the risk curve. By study-

ing how these factors affect the risk, we aim to provide a clearer understanding of Proposi-

tion 4.1, Proposition 4.2 and the triple descent phenomena. Our analysis also shows how we

can design DRFMs to achieve a specific risk curve shape. Unlike Chen et al. (2021) which

requires designing a specific data distribution, our study shows that various risk curves can

be achieved by different random feature models on a fixed data distribution.

The regularization parameter λ. We investigate how the regularization parameter λ

affect the shape of the risk curve. We again use the same experiment setup as in Section 4.2,

expect that we focus on activation functions ELU(3x) and ReLU(x/4), and calculate the

risk curves w.r.t. different regularization parameters λ = 10−1, 10−2, 10−3 and 10−4.

The results are given in Figure 8. Note that Proposition 4.1 holds under the condition λ

tends to 0. When the regularization parameter λ is large, the risk decreases with the model

complexity parameter c ∼ (N1 +N2)/n. As λ decreases, the peak at c = 2 first appears, and

then the peak at c = 1 also appears when λ = 10−3. Finally when λ = 10−4, the risk around

c = 1 becomes very high. From these experiments, we can conclude that (i) Double/triple

descent happens particularly when there is no regularization or when the regularization is

very weak. (ii) the risk value of the first peak around c = 1 is more sensitive to λ then that

of the second peak.

Signal-to-noise ratio. We also study how the signal-to-noise ratio (SNR) in the data,

which we define as ‖β1‖2/τ , affects the shape of the risk curve. We again use the same ex-

perimental setup as in Section 4.2, except that (i) we focus on activation functions (ELU(3x)
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(a) (b) (c) (d)

Figure 8: Risk curves of DRFMs trained with different regularization parameters. The
plots show both the asymptotic excess risks (curves) and empirical excess risks
(dots). From (a) to (d), we set λ = 10−1, 10−2, 10−3 and 10−4, respectively. The
activation functions are chosen as σ1(x) = ELU(3x) and σ2(x) = ReLU(x/4) in
all these experiments.

and ReLU(x/4)), and (ii) we perform experiments with different values of ‖β1‖2 = F1 and

τ .

The results are given in Figure 9. We first see that the risk curves in each column

have the same shapes. This matches our theoretical result that the risk has the form R =

τ2(a·SNR+b) for some positive functions a, b depending on the other parameters. Moreover,

the SNR has a particularly high impact on the trend of the risks in the under-parameterized

regime ((N1 + N2)/n < 1) and the highly over-parameterized regime ((N1 + N2)/n > 2,

shown in Proposition 4.2). Specifically, in column (a) when the SNR is large, we can see

that the lowest risk is achieved in the highly over-parameterized regime; on the other hand,

in columns (c) and (d) when the SNR is relatively small, the lowest risk is achieved in the

under-parameterized regime.
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(a) (b) (c) (d)

Figure 9: Risk curves of DRFMs under different SNRs. The plots show both the asymptotic
excess risks (curves) and empirical excess risks (dots). In the top row, we set
‖β1‖2 = 1 and τ = 0.1, 0.6, 1.2 and 1.8 (from (a) to (d)). In the bottom row, we
set τ = 0.1 and ‖β1‖2 = 1, 1/6, 1/12 and 1/18 (from (a) to (d)). The parameter
values are chosen such that the two figures in each column have the same SNR.
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