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Abstract

Applying a stochastic gradient descent (SGD) method for minimizing an objective gives
rise to a discrete-time process of estimated parameter values. In order to better understand
the dynamics of the estimated values, many authors have considered continuous-time ap-
proximations of SGD. We refine existing results on the weak error of first-order ODE and
SDE approximations to SGD for non-infinitesimal learning rates. In particular, we ex-
plicitly compute the linear term in the error expansion of gradient flow and two of its
stochastic counterparts, with respect to a discretization parameter h. In the example of
linear regression, we demonstrate the general inferiority of the deterministic gradient flow
approximation in comparison to the stochastic ones, for batch sizes which are not too
large. Further, we demonstrate that for Gaussian features an SDE approximation with
state-independent noise (CC) is preferred over using a state-dependent coefficient (NCC).
The same comparison holds true for features of low kurtosis or large batch sizes. However,
the relationship reverses for highly leptokurtic features or small batch sizes.

Keywords: stochastic gradient descent, gradient flow, stochastic differential equation,
weak approximation, Talay-Tubaro expansion

1. Introduction

Consider a d-dimensional discrete-time stochastic process χ = (χn)n∈N0 with dynamics

χn+1 = χn − h∇Rγ(n)(χn), n ∈ N0, (1)

where (Rr)r is a family of differentiable functions from Rd to R, h is a positive real number,
and (γ(n))n∈N0 is an i.i.d. sequence of random variables. We interpret (χh

n)n∈N0 as the se-
quence of estimated parameters when applying a stochastic gradient descent (SGD) method
for minimizing the function R(x) = E[Rγ(0)(x)]. The function R itself can be interpreted
as empirical risk (that is training error) or population risk. We refer to h as the learning
rate and Rγ(n) as the risk due to the n-th data point or mini batch. In the following we
simply call χ a SGD process.
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To make the SGD process tractable with methods from mathematical analysis one fre-
quently approximates the SGD dynamics with an ODE, usually referred to as gradient flow
(GF), given by

dX0
t = b(X0

t ) dt, X0
0 = χ0, (2)

where b = −∇R. One can show that (2) is then a first-order approximation of SGD in the
learning rate, that is for all T > 0 and nice test functions g we have

|Eg(χh
⌊T/h⌋)− Eg(X0

T )| = O(h),

as h ↓ 0.
GF dynamics are deterministic and hence ignore the randomness in SGD. Therefore, in

recent years analytic approximations in terms of stochastic differential equations (SDEs)
have become common. In particular, SDE approximations have been used to optimize
hyperparameters (see Mandt et al., 2015, 2017; Li et al., 2017; Malladi et al., 2022), to
analyze the long-term behavior of SGD processes (see Cao and Guo, 2020; Kunin et al.,
2022; Wojtowytsch, 2024), to study the impact of normalization schemes (see Li et al.,
2020)), to analyze the runtime until convergence (see Hu and Zhang, 2020), to study the
transition between stationary points (see Yang et al., 2021; Zhou et al., 2020; Xie et al.,
2020; Hu et al., 2017), to study the implicit bias and regularization properties of SGD (see
Ali et al., 2020; Pesme et al., 2021; Li et al., 2022) and to study the effect of running SGD
in parallel (see An et al., 2019; Boffi and Slotine, 2020).

Following Ali et al. (2020) we refer to solutions of SDEs approximating SGD as stochastic
gradient flow (SGF). SGF dynamics are usually obtained by adding to the GF dynamics a
diffusion term, typically driven by a Brownian motion W , and take the form

dXh
t = b(Xh

t ) dt+
√
hσ(Xh

t ) dWt. (3)

Here, σ(x) ∈ Rd×d denotes a symmetric positive semi-definite matrix. Two choices for σ
are common: first, σ is constant, that is independent of the state (see Mandt et al., 2015);
second, σ(x)2 is equal to the covariance matrix of the sample gradient ∇Rγ(0)(x) (see Li
et al., 2017). We refer to a solution of (3) with constant σ as constant covariance stochastic
gradient flow (CC-SGF), and a process with the second type of σ as non-constant covariance
stochastic gradient flow (NCC-SGF).

However, without an additional modification of the drift coefficient b in Equation (3) the
SGF dynamics are still merely a first-order approximation. In fact, by choosing any smooth
σ of linear growth with bounded derivatives in (3), one obtains a weak approximation of
order 1. Given that the order of approximation is not improved, does it make sense at all
to add a diffusion term to the gradient flow dynamics? And if it does, how can one quantify
the benefit?

To answer these questions, in this paper we expand the approximation errors of GF and
(N)CC-SGF in h and compare their linear error terms, that is the constants in front of the
linear term in the error expansion. It turns out that the linear error terms for GF, CC-SGF
and NCC-SGF are generally all different. We can thus confirm a conjecture proposed in
Feng et al. (2018, Remark 2.3.).

We characterize the linear error terms as integrals of functions applied to GF, hence our
results bear similarities with the formulas of the leading weak error term when approximat-
ing SDEs with an Euler or Milstein scheme (see Talay and Tubaro, 1990). Indeed, Theorems
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1, 2 and 3 can be seen as describing the leading term in the Talay-Tubaro expansion of the
weak error. We remark, however, that the error estimate in the second and third theorem is
given with respect to a family of SDEs, whereas the error considered by Talay and Tubaro
(1990) refers to a single SDE.

Moreover, under a symmetry assumption and using the objective function as test func-
tion, we simplify these error terms further. This allows us to derive a bound on the linear
error terms indicating that they tend to decrease as the curvature around the gradient flow
trajectory increases.

Finally, we show that for linear regression models and constant learning rates, the linear
error terms for the objective function can be calculated in closed form. A comparison
then reveals that any of three continuous-time approximations can be the best, depending
on the batch size. However, there is a notable caveat for the case of gradient flow being
the best approximation. Note that the dynamics of learning a linear model using SGD
with constant learning rate can be roughly separated into the initial descent phase and
the final fluctuation phase, where SGD, due to the variance of the stochastic gradients,
is mostly fluctuating around the global minimum. The batch size at which gradient flow
becomes the best approximation increases as the duration of the fluctuation phase increases,
relative to the time horizon. On the other hand, the approximation quality of the stochastic
approximations is unaffected by the relative duration of the fluctuation phase.

1.1 Summary of Contributions

Below we provide a summary of the main contributions of this paper.

• We show that gradient flow (GF), stochastic gradient flow with constant covariance
(CC-SGF) and stochastic gradient flow with non-constant covariance (NCC-SGF)
are first-order approximations of SGD and related algorithms, with respect to the
learning rate. In addition to previous works, we allow non-constant learning rates
schedules which lead to time-inhomogeneous approximations. Furthermore, we derive
an explicit expression for the linear error term in the error expansion with respect to
the learning rate.

• For constant learning rates we express the three linear error terms using the first
derivative ∇X0 and second derivative ∇2X0 of the gradient flow with respect to its
initial condition, as well as the first, second and third derivative of the objective func-
tion. We do this under the assumption that ∇X0 is a symmetric matrix everywhere
and that the test function g is the objective function to be minimized by SGD. As a
consequence we obtain a natural bound on the linear error terms depending on the
curvature along the gradient flow trajectory, the third derivative and the choice of
diffusion coefficient.

• Using the linear error term expansion we study the example of linear regression with
non-zero residuals, that is data noise, using population risk as test function. We show
that there are two special batch sizes BEq and BGF, such that for batch sizes B < BEq

the NCC approximation is the best, followed by CC-SGF for BEq < B < BGF and
GF for B > BGF. However, we also observe that BGF increases with the duration of
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the fluctation phase of SGD. On the other hand, BEq only depends on the kurtosis of
the features.

1.2 Related Work

The idea to use stochastic differential equations for approximating SGD processes was first
considered by Mandt et al. (2015) and Li et al. (2017, 2019). Mandt et al. (2015) heuristically
use CC-SGF for approximating and analyzing the SGD process. Li et al. derived NCC-SGF
(Li et al., 2017) and rigorously proved that it is a first-order approximation of SGD (Li et al.,
2019). The approximation result is shown for constant learning rates and hence only for
families of SDEs that are time-homogeneous. In contrast, our approximation results allow
for time-dependent learning rates and give the linear error term explicitly.

Further results for the NCC-SGF approximation are derived by Lanconelli and Lauria
(2022); Chen et al. (2020); Fontaine et al. (2021). Lanconelli and Lauria (2022) justifies the
NCC-SGF dynamics with a general Markov chain convergence theorem. Theorem 3.5. by
Chen et al. (2020) provides an estimate of the Wasserstein-1 distance between SGD pro-
cesses and NCC-SGF. Fontaine et al. (2021) also considers NCC-SGF with time-dependent
learning rates, assuming that the sequence of learning rates given by γ(n + 1)−α for some
γ ∈ (0,∞) and α ∈ [0, 1). Further, they provide an asymptotic estimate of the weak error
as γ converges to zero (see Fontaine et al., 2021, Proposition 25). It is remarkable, that the
same article also contains a strong approximation result (see Fontaine et al., 2021, Theorem
1) based on a coupling technique. In contrast to Fontaine et al. (2021), we provide explicit
formulas for the linear error terms and we suppose less specific assumptions on the learning
rate schedule u.

Moreover, the literature comprises articles considering weak approximations of order 2
for SGD processess (see Li et al., 2019; Feng et al., 2018, 2019; Gu et al., 2023).

Finally, we remark that our approximation results are asymptotic results, proving that
(S)GF and SGD converge to each other as the learning rate converges to zero. The results
do not provide any estimate of the actual error for fixed learning rates. That (S)GF may
not be a good approximation of SGD if the learning rate is not sufficiently small is pointed
out by Li et al. (2021).

2. General Results on Linear Error Terms

Let d ∈ N and T > 0. Given a subset D of Euclidean space, we write g ∈ G(D) if g : D → R
has (at most) polynomial growth, that is there exists a constant C > 0 and κ ∈ N0, such
that

|g(x)| ≤ C(1 + |x|κ) (4)

for all x in the domain D of g. Typically, D = Rd or D = [0, T ] × Rd. The infimum of
all such C’s for a given κ will be denoted by 󰀂g󰀂Gκ . We also sometimes write g ∈ Gκ(D)
if 󰀂g󰀂Gκ < ∞, especially for κ = 1. We write g ∈ Gl(D) if g ∈ C l(D) and all its partial
derivatives up to order l are in G(D).

Now, let (Ω,FΩ,P) be a complete probability space, Γ be a measurable space and
(γ(n))n∈N0 be a sequence of i.i.d. Γ-valued random variables. We can view γ(n) as the data
point or mini-batch chosen in the n-th iteration of stochastic gradient descent (SGD). Also
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let F = (Ft)t≥0 be a filtration on (Ω,FΩ,P) independent of γ satisfying the usual conditions
and let W be an Rd-valued F-Brownian motion.

Let u : [0, T ] → [0, 1] be a function.

Assumption (A1) We have u ∈ C∞, such that u is constant or strictly decreasing.

The function u is a learning rate schedule and represents the change of the learning
rate over time. For all h ∈ (0, 1) the sequence of learning rates is given by (hunh)n∈N0 .
The parameter h ∈ (0, 1) acts as discretization parameter. If supt∈[0,T ] ut = 1, then h can
be interpreted as the maximal learning rate. Following Li et al. (2017) we have chosen to
decompose the learning rate into h and u, because this makes the approximation results
analogous to the autonomous (that is constant learning rate) case.

Recall that γ takes values in Γ. Let H : Γ × Rd → Rd. Now, given an initial value
x ∈ Rd, define (generalized) stochastic gradient descent by

χh
n+1 = χh

n + hunhHγ(n)(χ
h
n), χh

0 = x. (5)

Assumption (A2) The function H satisfies H ∈ G1(Rd) uniformly in r ∈ Γ, that is there
exists a constant C > 0, such that

|Hr(x)| ≤ C(1 + |x|),

for all r ∈ Γ and x ∈ Rd.

Example 1 The prototypical example to keep in mind is online SGD with replacement.
Given a sequence of differentiable error functions R1, . . . , RM : Rd → R, where M is the
sample size of our data set, we set Hγ(n)(x) := −∇Rγ(n)(x) and choose γ(n) to be uniformly
distributed on {1, . . . ,M}.

Finally, set

H̄ := EHγ(0) : Rd → Rd,

and

Σ := E[(Hγ(0) − H̄)⊗2] : Rd → Rd×d.

Here z⊗2 = zz† ∈ Rd×d for any z ∈ Rd. By Assumption (A2) we have H̄ ∈ G1(Rd).

Since Σ is symmetric and positive semi-definite, a unique matrix square root
√
Σ exists.

Assumption (A3) The functions H̄ and
√
Σ are Lipschitz continuous and in C∞, such

that all their partial derivatives are bounded.

Next, we introduce three different (families of) differential equations, the solutions of
which approximate the SGD iterations. Assumptions (A1) and (A3) guarantee that the
coefficients of those equations are Lipschitz continuous. This assumption is standard in
the literature on stochastic differential equations (SDEs) since it implies the existence and
uniqueness of a solution. Assumptions (A1) and (A3) further imply the coefficients to be
smooth with bounded partial derivatives. This property in turn implies smoothness of the
SDE solutions with respect to the initial condition (see Theorem 27 in the Appendix or
Kunita, 2004). Finally, Assumption (A2) yields linear growth and uniform integrability
conditions on SGD and its increments (see Lemma 7 below).
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2.1 Gradient Flow

Consider the ordinary differential equation

dX0
t = utH̄(X0

t ) dt. (6)

We will refer to equation (6) as (generalized) gradient flow, or GF for short.

The appearance of the learning rate schedule u in (6) may surprise. We are essentially
considering the equidistant time grid {h, 2h, . . . , T} in continuous-time. The discretization
parameter h and the learning rate schedule u take on different roles, because the time grid
is not affected by u. Let

H := {h ∈ (0, 1) : T/h ∈ N} (7)

be the set of acceptable learning rates and g ∈ G∞(Rd). For all (t, x) ∈ [0, T ]×Rd we define

vt(x) = g(X0,t
T (x)), (8)

where X0,t(x) denotes the solution of (6) on [t, T ] with initial condition Xt
t (x) = x. Note

that X0,t
T (x) = X0

T−t(x). We write vgt if we want to emphasize the dependence of v on g.

One can show that v ∈ C∞([0, T ]×Rd). Moreover, the partial derivatives of v with respect
to time and space have polynomial growth in the space variable, uniformly in time. Hence,
v ∈ G∞([0, T ] × Rd) in the sense that for every k ∈ N0 and multi-index1 α ⊆ {1, . . . , d}
there exist constants C ∈ (0,∞) and κ ∈ N0 such that

|∂k
t ∂αvt(x)| ≤ C(1 + |x|κ), (9)

for all t ∈ [0, T ] and x ∈ Rd. Then, we define the function2

ϕt(x) =
1

2
u2t tr[∇2vt(x)H̄(x)⊗2] + ut∂t∇vt(x)

†H̄(x) +
1

2
∂2
t vt(x), (10)

with (t, x) ∈ [0, T ] × Rd. Whenever we want to stress the dependence of ϕ on g we write
ϕg.

Theorem 1 Assume (A1), (A2) and (A3). Denote by X the solution of (6) with initial
condition X0 = x. Then for all g ∈ G∞(Rd),

Eg(χh
T/h)− g(X0

T ) = h

󰁝 T

0
ϕg
t (X

0
t ) +

1

2
u2t tr[∇2vgt (X

0
t )Σ(X

0
t )] dt+O(h2), (11)

for all h ∈ H, that is all discretization parameters h such that T
h is an integer.

The parts of Assumption (A3) concerning
√
Σ are superfluous for the proof of this theorem.

1. See the appendix before Theorem 27 for a definition of (unordered) multi-indices.
2. Here, ∇ denotes the gradient and ∇2 the Hessian matrix with respect to x.
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2.2 First-Order Stochastic Gradient Flow with Non-Constant Covariance

For all h ∈ H∪{0} we consider the following family of stochastic differential equations, first
introduced by Li et al. (2017),

dXNCC,h
t = utH̄(XNCC,h

t ) dt+ ut

󰁴
hΣ(XNCC,h

t ) dWt. (12)

We refer to a process solving (12) as (generalized, first-order) stochastic gradient flow with
non-constant covariance or NCC-SGF for short (in accordance with the terminology used
by Ali et al., 2020). Notice that, as h ↓ 0, the diffusion term in (12) vanishes and hence
(12) becomes the ODE (6).

Theorem 2 Assume (A1), (A2) and (A3). For all h ∈ H denote by Xh the solution of
(12) with initial condition Xh

0 = x. Then for all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(XNCC,h

T ) = h

󰁝 T

0
ϕg
t (X

0
t ) dt+O(h2), (13)

where ϕ is defined in (10).

Note that the process X0 is the same as gradient flow defined in (6).

2.3 First-Order Stochastic Gradient Flow with Constant Covariance

Finally, we consider an approximation to SGD with constant diffusion coefficient. Here, we
have to make a choice on how to approximate Σ by a constant. Frequently one is interested
in the behavior of SGD around a stationary point. In fact, suppose gradient flow converges
to a, necessarily stationary, point X0

∞ ∈ Rd. Then for every h ∈ H ∪ {0} we consider the
SDE

dXCC,h
t = utH̄(XCC,h

t ) dt+ ut
󰁳

hΣ(X0
∞) dWt. (14)

We refer to this approximation as (generalized, first-order) stochastic gradient flow with
constant covariance or CC-SGF for short (again, in accordance with the terminology used
by Ali et al., 2020). In the case u = 1 this is essentially the continuous-time approximation
introduced by Mandt et al. (2015). Note that the diffusion coefficient may depend on the
initial condition, since X0

∞ may already depend on it.
Notice again that as h ↓ 0 the diffusion term in (14) vanishes and hence (14) becomes

the ODE (6).

Theorem 3 Assume (A1), (A2), (A3) and that gradient flow converges to a stationary
point X0

∞. For all h ∈ H denote by XCC,h the solution of (14) with initial condition

XCC,h
0 = x. Then for all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(XCC,h

T ) =h

󰁝 T

0
ϕg
t (X

0
t ) +

1

2
u2t tr[∇2vgt (X

0
t )(Σ(X

0
t )− Σ(X0

∞))] dt

+O(h2), (15)

where v is defined in (8) and ϕ in (10).
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2.4 Linear Error Terms for Minimization Problems

In specific settings we can give more explicit formulas for the linear error terms, building
on top of Theorems 1, 2 and 3. In particular we consider SGD with H̄ = −∇R, where R is
some objective function to be minimized. For simplicity we consider only constant learning
rates.

Note that (A3) implies X0 ∈ C2([0, T ]×Rd) if we consider gradient flow as a function of
time and its initial condition. Therefore, we can consider the first and second derivative of
gradient flow with respect to its initial condition. That is ∇X0

t (x) ∈ Rd×d and ∇2X0
t (x) ∈

Rd×d×d, where

∇X0
t (x)i,j = ∂jX

0
t (x)i, ∇2X0

t (x)i,j,k = ∂j,kX
0
t (x)i, i, j, k ∈ {1, . . . , d},

for all t ∈ [0, T ] and x ∈ Rd. More generally, if a function f : Rd → Rd is C2, then we write
∇2f : Rd → Rd×d×d where

(∇2f)i,j,k = ∂j,kfi.

Similarly we define ∇3f = ∇2(∇f) for f : Rd → R. For k ∈ N0 we write

d×k = d× · · ·× d󰁿 󰁾󰁽 󰂀
k times

.

Given k, l ∈ N0 as well as tensors A ∈ Rd×(k+l)
and B ∈ Rd×l

, we define 〈A,B〉 ∈ Rd×k
by

summing over the common indices, that is

〈A,B〉i1,...,ik :=
󰁛

j1,...,jl

Ai1,...,ik,j1,...,jlBj1,...,jl .

In particular, given vectors u, v ∈ Rd and matrices A,B ∈ Rd×d we have

〈u, v〉 = u†v, 〈A,B〉 = tr(A†B) ∈ R.

The quantity 〈A,B〉 is also known as the Frobenius inner product of A and B. The inner

product 〈·, ·〉 on Rd×k
induces the Frobenius norm, given by 󰀂A󰀂F =

󰁳
〈A,A〉 for all A ∈

Rd×k
.

Given a continuous-time (stochastic) approximation Y = (Y h
t )t∈[0,T ],h∈H of SGD we

define the linear error term (with respect to R) by

LE(Y ) := lim
h↓0

ER(χh
T/h)− ER(Y h

T )

h
,

where the limit is taken in H.

Theorem 4 Assume u = 1, (A2) and (A3). Further, assume we are given R ∈ C∞(Rd),
such that H̄ = −∇R and ∇X0

t is a symmetric matrix for all t ≥ 0 and initial values.
Let x ∈ Rd, D ∈ {0,Σ(X0

∞),Σ} and3 consider the solution X to the family of stochastic
differential equations

dXh
t = −∇R(Xh

t ) dt+
󰁴

hD(Xh
t ) dWt, Xh

0 = x, t ∈ [0, T ], h ∈ (0, 1).

3. In the case D = Σ(X0
∞) we implicitly assume that the limit X0

∞ exists.
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Then we have

LE(X) =
1

2
〈∇2R(X0

T ),α
D
T − T∇R(X0

T )
⊗2〉+ 1

2
〈∇R(X0

T ),β
D
T 〉, (16)

where

αD
T =

󰁝 T

0
∇X0,t

T (X0
t )(Σ(X

0
t )−D(X0

t ))∇X0,t
T (X0

t ) dt ∈ Rd×d,

βD
T =

󰁝 T

0
〈∇2X0,t

T (X0
t ),∇R(X0

t )
⊗2 + Σ(X0

t )−D(X0
t )〉 dt ∈ Rd.

Moreover,

2|LE(X)| ≤dTM2
T |∇R(x)|2(󰀂∇2R(X0

T )󰀂F + d3/2|∇R(x)|ζT )
+ dξDT (󰀂∇2R(X0

T )󰀂F +
√
d|∇R(x)|ζT ), (17)

where

Mt = exp

󰀕
−
󰁝 t

0
λmin(∇2R(X0

s )) ds

󰀖
, ζt =

󰁝 t

0
Ms󰀂∇3R(X0

s )󰀂F ds,

ξDt = M2
t

󰁝 t

0

󰀂Σ(X0
s )−D(X0

s )󰀂F
M2

s

ds, t ∈ [0, T ].

Note that in the case of the NCC approximation we have ξDT = ξΣT = 0. The term MT

goes to 0, as the curvature, that is the smallest eigenvalue of the Hessian matrix, along the
gradient flow trajectory becomes large. Thus, as long as ζT does not grow too rapidly as
curvature increases, the linear error term of NCC-SGF vanishes as curvature becomes large.
This observation is analogous to a result by Elkabetz and Cohen (2021) suggesting that “the
“more convex” the objective function is around the gradient flow trajectory, the better the
match between gradient flow and gradient descent is guaranteed to be.” However, they only
consider deterministic gradient descent and the gradient flow approximation. Curiously, the
third derivative of the objective function (and by extension ζT ) also does not seem to play
a role in their theory.

We can also make rough statements to compare the three approximations in general.
Note that either the first or second summand in (16) dominates the other in size. In any
case, by considering D = Σ(X0

∞) we can see that the absolute linear error term for the
CC-SGF approximation becomes large as F (x) = Σ(x)− Σ(X0

∞), that is the noise outside
of the stationary point, becomes large. Therefore, for large F the NCC approximation is
better than CC-SGF. By considering D = 0 and writing Σ(x) = F (x) +Σ(X0

∞) we also see
that NCC-SGF is better than gradient flow for large F . Moreover, for large noise around
the stationary point that gradient flow approaches, that is large Σ(X0

∞), Theorem 4 further
indicates that the stochastic approximations are preferable to gradient flow.

In the next section we will use Theorem 4 to analyze and compare the three continuous-
time approximation more precisely in the setting of linear regression.
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3. A Comparison of Continuous-Time Approximations to SGD for Linear
Regression

In this section we compare gradient flow and the two stochastic gradient flow approximations
(NCC and CC) in the setting of linear regression using mini-batch SGD. For simplicity we
only consider constant learning rates in this section, that is u = 1.

Firstly, we provide a theoretical comparison using Theorems 1, 2 and 3 (see Theorem
6). We will see that the comparison highly depends on the batch size and on the kurtosis of
the features (also called independent variables). Secondly, we substantiate the theoretical
findings using a numerical example.

In a fairly general, parametric, statistical learning setting we are given an unknown
measure ν, called population, on a measurable space Z, a set of parameters Θ ⊆ Rd and a
family of risk functions (Rz(θ))θ∈Θ,z∈Z . The general goal of statistical learning is then to
minimize over Θ the population risk, that is the mean risk of the data under the measure ν

R(θ) := Ez∼ν [Rz(θ)].

Accordingly, we focus on comparing the weak error of the continuous-time approximations
of SGD for the population risk function R associated with a linear regression task.

In terms of our interpretation and in our examples we focus on this “population setting”,
where we are essentially performing SGD without replacement for an infinite sequence4 of
i.i.d. data.

3.1 The Statistical Learning Setting

In this subsection we introduce the statistical learning setting in the case of linear regression.
Suppose we are given an Rd-valued random variable x and an R-valued random variable ε
defined on a probability space (Ω,F ,P), such that x and ε are independent, Eε = 0,σ2

ε :=
Eε2 < ∞, the covariance matrix κ of x is positive definite, and x has finite joint fourth
moments

E|xixjxkxl| < ∞, i, j, k, l ∈ {1, . . . , d}.

Let θ∗ ∈ Rd. We define the R-valued random variable y by

y = 〈θ∗,x〉+ ε.

Denote the distribution of (x,y) by ν. We call ν the population. We consider data drawn
from ν, which follows a linear model. The population is considered unknown to us.

Note that in this section we follow the convention from statistics and denote the features
(explanatory variables) by x (or x if they are random). The initial condition of SGD and
its approximations is here denoted by θ (and not by x in contrast to the previous sections).

Let ℓ be the square loss, given by ℓ(y, y′) = 1
2(y− y′)2. The goal is to fit the data drawn

from ν using a linear predictor θ 󰀁→ 〈θ, x〉. Thus, for any data point (x, y) ∈ Rd × R we
consider the squared risk

Rx,y(θ) = ℓ(〈θ, x〉, y) = 1

2
(〈θ, x〉 − y)2.

4. Only finitely many samples are used, since we are given fixed time horizon.
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We define the population risk by

R(θ) := E[Rx,y(θ)].

We stress that the bold letters x,y denote random variables, while x, y represent realiza-
tions. The minimum of R, that is the best possible fit, is given by the population parameter
θ∗. Fix a batch size B ∈ N. We can determine an estimate of θ∗ using mini-batch stochastic
gradient descent

χh
n+1 =χh

n − h

B

B−1󰁛

k=0

∇θRxk+Bn,yk+Bn
(χh

n)

=χh
n − h

B

B−1󰁛

k=0

(〈χh
n,xk+Bn〉 − yk+Bn)xk+Bn, (18)

where (xn,yn)n∈N0 is an i.i.d.sequence with (x0,y0) ∼ ν. We calculate

R(θ) =
1

2
E[(〈θ − θ∗,x〉 − ε)2] =

1

2
〈κ, (θ − θ∗)⊗2〉+ σ2

ε

2
.

Hence, R is a quadratic form with minimum at θ∗. Now, consider D ∈ {0,Σ(θ∗),Σ} and

dXh
t = −∇R(Xh

t ) +
󰁴

hD(Xh
t ) dWt, t ∈ [0, T ], h ∈ (0, 1).

One can show (see Section 6.1) the linear error term is given by

LE(X) = −1

2
T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉+ 1

2
〈κ,αD

T 〉,

where

αD
T =

󰁝 T

0
e−(T−t)κ(Σ(X0

t )−D(X0
t ))e

−(T−t)κ dt.

To calculate αT we will start with the covariance matrix of the gradient noise at batch size
1, which is given by

S(θ) := Cov[∇θRx,y(θ)] = 〈µ4
x − κ⊗2, (θ − θ∗)⊗2〉+ σ2

εκ

where µ4
x ∈ Rd×d×d×d with

(µ4
x)i,j,k,l = E[xixjxkxl], i, j, k, l ∈ {1, . . . , d}.

Note that the covariance matrix of the gradient noise is given by Σ(θ) = 1
BS(θ).

In the next subsection we add a natural assumption on S that allows for computation
of explicit linear error terms not involving any integrals.

11
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3.2 Theoretical Comparison of the Linear Error Terms

In this subsection we will give a comparison of the linear error terms of the three continuous-
time approximations of SGD for linear regression. We will see that the comparison depends
on the batch size B and the kurtosis of the features. Before we start we narrow down the
assumptions further to two particular settings in order to simplify the covariance matrix S.

Example 2 We study in detail the following two specific settings.

(a) We assume that the features are centered Gaussian, that is x ∼ N (0,κ). Then we can
simplify the covariance matrix of the gradient noise for batch size 1 to

S(θ) = 2κ(θ − θ∗)⊗2κ+ σ2
εκ.

(b) We assume that d = 1, but not that x is Gaussian. Then, we can write

S(θ) = κ2(Kurtx− 1)(θ − θ∗)2 + κσ2
ε ,

where Kurtx := E[x4]/κ2 is the kurtosis of x (see Section A in the appendix for more
information about kurtosis).

From now on, assume that there exists a constant BEq > 0, such that

S(θ) = 2BEqκ(θ − θ∗)⊗2κ+ σ2
εκ, θ ∈ Rd.

In particular, in Example 2 (a) we have BEq = 1 and for (b) we have BEq = 1
2(Kurtx− 1).

Proposition 5 below implies that if BEq ∈ N, then it is the batch size B where the NCC
and CC approximation have the same error, up to flipping the sign.

Now, the three continuous-time approximations (6), (12) and (14) take the form

dX0
t =− κ(X0

t − θ∗) dt

dXNCC,h
t =− κ(XNCC,h

t − θ∗) dt+

󰁵
h

B

󰁴
2BEqκ(XNCC,h

t − θ∗)⊗2κ+ σ2
εκ dWt

dXCC,h
t =− κ(XCC,h

t − θ∗) dt+

󰁵
h

B
σ2
εκ dWt. (19)

Note that the process with constant covariance dynamics (19) is an Ornstein-Uhlenbeck
process. Using (42) we can derive the following expressions for the linear error terms of the
three continuous-time approximations of SGD.

Proposition 5 Suppose χh
0 = X0

0 = XNCC,h
0 = XCC,h

0 = θ ∈ Rd for all h ∈ H. Then, we
have

ER(χh
T/h)− ER(Xh

T ) =− h

2
T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉+O(h2),

ER(χh
T/h)− ER(XCC,h

T ) =h

󰀕
BEq

B
− 1

2

󰀖
T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉+O(h2),

ER(χh
T/h)− ER(X0

T ) =h

󰀕
BEq

B
− 1

2

󰀖
T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉

+
h

4B
σ2
ε〈κ, 1d×d − e−2κT 〉+O(h2). (20)

as h ↓ 0, with T/h an integer.
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We introduce some additional notation to succinctly state the following theorem. Given
two continuous-time approximations Y, Z we write Y ≼ Z if |LE(Y )| ≥ |LE(Z)|, that is
if the approximation of SGD with Y has (in absolute terms) a greater linear error term
than the one using Z. More briefly it means that Z is not worse than Y . Evidently ≼ is a
reflexive and transitive relation. We write Y ≍ Z if Y ≼ Z and Z ≼ Y , that is if Y and Z
are equally good approximations. Further, we write Y ≺ Z if Y ≼ Z and Z ⋠ Y , that is if
Z is strictly a better approximation than Y .

Theorem 6 Suppose BEq > 0 and we are given an initial value θ ∕= θ∗. Define

BGF = 2BEq +
σ2
ε〈κ, 1− e−2Tκ〉

4T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉 .

Then, we have the following

(i) X0 ≺ XCC ≺ XNCC, if B < BEq,

(ii) X0 ≺ XCC ≍ XNCC, if B = BEq,

(iii) X0 ≺ XNCC ≺ XCC, if BEq < B < BGF −BEq,

(iv) XNCC ≺ X0 ≺ XCC, if BGF −BEq < B < BGF,

(v) XNCC ≺ XCC ≺ X0, if B > BGF,

(vi) LE(XCC) = 0, if B = 2BEq.

In other words, for small batch sizes the best approximation is NCC-SGF, followed by CC-
SGF and then gradient flow. If we increase the batch size, then NCC and CC switch places.
After that NCC and GF switch places. Finally, for large batch sizes GF becomes the best
approximation. Somewhere in between CC is not only the best approximation among the
three, but also has a linear error of 0.

Even though the gradient flow approximation can be the best approximation for large
batch sizes, the lower bound BGF for this to occur diverges to ∞ as

T → ∞, or σε → ∞, or κ → ∞ (for d = 1), or θ − θ∗ → 0 (for d = 1). (21)

In fact, one can summarize (21) by saying τ → ∞, where τ is the time that SGD spends
fluctuating around the global minimum θ∗. Therefore, for large τ the SGF approximations
are preferable to gradient flow, for all reasonably large batch sizes.

When it comes to deciding between NCC and CC-SGF, the important quantity is BEq.
This quantity only depends on the distribution of x and not on T,κ,σε or θ − θ∗. For x
Gaussian we have BEq = 1, so the CC-SGF approximation is, perhaps surprisingly, almost
always preferred over the NCC approximation. We also consider the case where d = 1 and
BEq = 1

2(Kurtx − 1). In this case we observe for batch sizes that are small, relative to
the kurtosis of the features x, the NCC approximation can still be the best one (see also
Section A in the appendix for more information on kurtosis).

Overall, one can also say that for highly leptokurtic features, the NCC approximation
is the best across a large range of batch sizes. On the other hand, for lower kurtosis the CC
approximation is best.

Figure 1 below provides a visual comparison of the three approximations in terms of
kurtosis and batch size in two specific examples.

13
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Figure 1: The best continuous-time approximation of SGD for linear regression in dimension
1 in terms of the kurtosis of the features and the batch size. Here κ = 1, (θ−θ∗)2 =
1 and T = 0.5 (T = 2.0) in the left (right) plot. In the lower part of the middle
region, where CC-SGF is the best approximation, gradient flow is worse than
NCC-SGF. In the upper part of the middle region, gradient flow is better than
NCC-SGF.

3.2.1 The Case of Batch Size 1

Here, we specifically study the case B = 1. Firstly, we have

X0 ≺ XCC ≍ XNCC, if x is Gaussian.

Secondly, if d = 1 and so BEq = 1
2(Kurtx− 1), then

(i) X0 ≺ XCC ≺ XNCC, if Kurtx > 3,

(ii) X0 ≺ XCC ≍ XNCC, if Kurtx = 3,

(iii) XNCC ≺ XCC, if Kurtx ∈ (1, 3),

(iv) XNCC = XCC, if Kurtx = 1,

(v) LE(XCC) = 0, if Kurtx = 2.

Note that distributions with kurtosis < 3 / = 3 / > 3 are also called platykurtic / mesokurtic
/ leptokurtic (see also Section A)

Gradient flow is always the worst approximation for Kurtx ≥ 3. Assume we are in the
platykurtic setting Kurtx ∈ (1, 3). Then gradient flow is the worst / second-best / best
approximation if

1 < BGF −BEq / BGF −BEq < 1 < BGF / BGF < 1.

3.3 A Numerical Example

In this subsection we present results from a numerical experiment confirming the theoretical
results presented in Theorem 6. We also compare the three approximations to yet another

14
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continuous-time approximation to SGD, which we call second-order stochastic gradient flow,
or SGF2 for short. The corresponding family of stochastic differential equations is given by

dX2,h
t =−R′(X2,h

t )− h

2
R′′(X2,h

t )R′(X2,h
t ) dt+

󰁴
hΣ(X2,h

t ) dWt (22)

=− κ

󰀕
1d×d +

h

2
κ

󰀖
(Xh

t − θ∗) dt+

󰁵
h

B

󰁴
2BEqκ(X2,h

t − θ∗)⊗2κ+ σ2
εκ dWt

with X2,h
0 = χ0. Then the following holds: for every T > 0 and g ∈ G∞(R) there exists a

C > 0, such that (see Li et al., 2019)

|Eg(χh
⌊T/h⌋)− Eg(X2,h

T )| ≤ Ch2. (23)

In other words, the linear error term is 0 (regardless of whether g = R or not). In this
sense SGF2 is the best approximation we have seen so far. To achieve this improvement we
use the same diffusion coefficient Σ as NCC-SGF, while making the drift coefficient more
complicated.

For the remainder of this section we exclusively work in setting (b) from Example 2.

3.3.1 Experimental Setup

We consider using SGD for fitting the particular one-dimensional linear model

y = −x+ ε (24)

with x, ε independent, centered and of variance 1, where ε is Gaussian. Note that in this
case we have θ∗ = −1. We compare the weak errors of the population risk R for different
continuous-time approximations of SGD. Here we use time horizons T = 0.5 and T = 2.0,
varying distributions of x and initial values θ. We use a Monte Carlo approximation to
estimate ER(χh

T/h), that is

ER(χh
T/h) ≈

1

M

M󰁛

i=1

ER(χ̂i,h
T/h)

where χ̂1, . . . , χ̂M are independent copies of χ. More precisely, to compute one copy χ̂i

we draw BT/h i.i.d. samples from the data-generating model (24) and then perform SGD
for T/h steps using a batch of B samples in each step, never using any sample twice.
Thus, every copy of χ̂ uses a different (pseudo-) data set. For the experiments we have
chosen M large enough (between 108 and 2 · 109) so that the variance of the Monte Carlo
estimator is negligible compared to the weak error. Moreover, to reduce the computational
burden significantly, we determine ERe(Y h

T ) for Y = X0, XNCCh,XCC,h, X2,h using explicit
formulas, which can be derived in this example (see Proposition 25 in Section 6.3). We
consider the learning rates h = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001. Notice that T/h is an integer
in each case, where T ∈ {0.5, 2.0}. Plotted is the dependence of the weak error

1

κ
|ER(χh

T/h)− ER(Y h
T )|,

divided by κ (!), on the learning rate h.
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3.3.2 Results

In the following νx denotes any distribution with expectation m, such that x + m ∼ νx.
That is x has distribution νx, but shifted to have expectation zero. Figure 2 depicts the
weak error’s dependence on the learning rate in the following settings:

Nr T θ νx κ Kurtx B BEq BGF −BEq BGF

(1) 0.5 0 Exp(0.1) 10 9 1 4 114.127 118.127
(2) 0.5 0 N (0, 1) 1 3 1 1 1.85914 2.85914
(3) 2.0 0 N (0, 1) 1 3 4 1 7.69977 8.69977
(4) 0.5 0 Exp(1) 1 9 8 4 4.85914 8.85914
(5) 0.5 0 N (0, 1) 1 3 4 1 1.85914 2.85914
(6) 0.5 −0.9 N (0, 1) 1 3 2 1 86.9141 87.9141

Aside from minor deviations stemming from the Monte Carlo estimation, the empirical
results in Figure 2 confirm the theoretical results in the last subsection. In particular, we
observe:

(i) The experimental settings (1)—(5) correspond exactly to the settings (i)—(v) in The-
orem 6. Note that instead of merely varying the batch size B we also varied BEq and
BGF by choosing different T and distributions of x.

(ii) As indicated by Proposition 5, the experimental setting (6) shows that for θ ≈ θ∗ and
only moderately small learning rates there is little difference between the NCC- and
the CC-SGF approximations, while gradient flow is lagging behind by neglecting to
model the variance of the residuals σ2

ε .

(iii) For B = BEq, NCC- and CC-SGF are equally good (setting (2)).

(iv) For B = 2BEq the CC-SGF approximation is of second order5 (settings (4) and (6)).

(v) The SGF2 approximation is always best, irrespective of batch size.

We remark that the theoretical rates of convergence are difficult to observe without using
a high number of Monte Carlo samples. Moreover, note that in the experiments we always
plotted the weak error while Theorem 6 only applies to the linear error term. The results
indicate that the higher order error terms have negligible impact on the total error.

3.4 Generalizations

One may wonder how much the results from this section generalize beyond the particular
setting of linear regression using SGD without replacement. For example, a more commonly
studied example is that of SGD with replacement, where the randomness stems from the
sampling procedure and not from the underlying population measure. Then the objective
function R is the empirical risk, also called training error. In this case the covariance matrix
is still, in some sense, given by a quadratic form (of matrices). Proposition 5 still holds true,

5. More precisely, the approximation is of order 2 for the chosen test function R. This is a weaker property
than (23).
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(1) (2)

(3) (4)

(5) (6)

Figure 2: The weak error’s dependence on the learning rate for several continuous-time
approximations to SGD, in various settings. The plots (1)-(5) correspond to the
settings (i)-(v) in Theorem 6. Further, (4) and (6) also correspond to (vi). Finally,
(6) depicts a situation where XCC ∕≍ XNCC, but the weak errors are close to each
other since the common initial value is close to the minimum.
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albeit with somewhat less simplified terms. However, in this case the minimum6 of Σ may
be different from the minimizer θ∗ of the objective function R. In contrast, we assumed

that Σ is minimized at θ∗. If this is not the case, then it is possible for α
Σ(θ∗)
T in Theorem

4 to have negative eigenvalues. Hence, we may have

LE(XCC) = LE(XNCC) +
b

B

for some b with b < 0 (instead of b > 0). Thus, Theorem 6 does not easily generalize to this
setting.

Disregarding this issue let us consider more general non-quadratic objective functions R
with convergent gradient flow X0 and Σ which is minimized at θ∗. By assumption ∇3R ∕= 0,
so ∇2X0 ∕= 0 and βT ∕= 0 (see Theorem 4). In general, neither the sign nor the relative
size of 〈∇R(X0

T ),βT 〉 in Equation (16) is known. Unfortunately, this means that Theorem
6 cannot be generalized to this setting either. We leave it to future work to study this term
in other practically relevant settings.

4. Proof of Theorems 1, 2 and 3

In this section we give proofs of Theorems 1, 2 and 3. However, before doing that we need
to establish a few preliminaries.

4.1 Preliminaries

Let I be a set and X = (Xi
t)i∈I,t≥0 be an I-indexed family of continuous-time stochastic

processes. Given p ∈ [1,∞) we define

󰀂X󰀂p,t = sup
i∈I

󰀕
E
󰁝 t

0
|Xi

s|p ds
󰀖1/p

, 󰀂X∗󰀂p,t = sup
i∈I

󰀣
E sup

s∈[0,t]
|Xi

s|p
󰀤1/p

.

Although usually X will be Rd-valued and then | · | refers to the Euclidean norm, these
definitions naturally extend to Rd1×···×dr -valued processes as well. Similarly, given an I-
indexed family of discrete-time stochastic processes X we define

󰀂X∗󰀂p,n = sup
i∈I

󰀕
E max

n′∈{0,...,n}
|Xi

n′ |p
󰀖1/p

.

Given an I-indexed family of random variables Y = (Y i)i∈I we also let

󰀂Y 󰀂p := sup
i∈I

(E|Y i|p)1/p.

Recall the definition of χ in (5), as well as Assumptions (A1) and (A2). We shall prove
growth results concerning stochastic gradient descent. Denote the SGD iterations starting

6. Here, we mean minimum in the sense of the Loewner order. In particular, Σ is minimal at θ∗ if Σ(θ)−
Σ(θ∗) is positive semi-definite, for all θ ∈ Rd.
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at time k with initial value x ∈ Rd and maximal learning rate h ∈ (0, 1) by χh,k(x). Given
a discrete process Y indexed by h ∈ (0, 1), for example Y = χ, we write

∆Y h,k
n (x) := Y h,k

n+1(x)− Y h,k
n (x), (25)

for all h ∈ (0, 1), k, n ∈ N0 with k ≤ n and initial values x ∈ Rd. We let ∆Y h
n := ∆Y h,0

n .

Observe that ∆Y h,n
n (x) = Y h,n

n+1(x)− x.

In order to simplify notation, in this section we often omit the initial condition from χ
or the solution X of a given SDE and formulate statements for the mapping from the set
of initial conditions Rd to the collection of random variables (χn)n or (Xt)t.

Lemma 7 The following estimates hold true:

(i) For every T > 0 and p ≥ 1 there exists a constant C > 0, such that

sup
h∈(0,1)

󰀂χh(x)∗󰀂p,⌊T
h ⌋ ≤ C(1 + |x|),

for x ∈ Rd.

(ii) There exists a constant C > 0, such that

󰀂∆χh,n
n (x)󰀂p ≤ hC(1 + |x|),

for all h ∈ (0, 1), n ∈ N and x ∈ Rd.

Proof

(i) Let p ∈ N. For every h ∈ (0, 1) and n ∈ N0,

󰀂(χh)∗󰀂p,n =

󰀕
E max

n′∈{−1,...,n−1}
|χh

n′+1|p
󰀖1/p

.

If we let χ−1 = 0, then

|χh
n+1|p ≤|χh

n + hunhHγ(n)(χ
h
n)|p

≤|χh
n|p +

p󰁛

i=1

󰀕
p

i

󰀖
|χh

n|p−i(hunh)
i|Hγ(n)(χ

h
n)|i.

Now, for i ∈ {1, . . . p}, h ∈ (0, 1) and n ∈ N0,

󰀂(|χh|p−i|Hγ(0)(χ
h)|i)∗󰀂1,n ≤ 󰀂(|χh|p−i󰀂H󰀂iG1

(1 + |χh|)i)∗󰀂1,n

≤ 1

2
ci󰀂(|χh|p−i + |χh|i+p−i)∗󰀂1,n

≤ ci(1 + 󰀂(χh)∗󰀂pp,n),
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with c := 2󰀂H󰀂G1 and using the inequalities yp + yq ≤ 2(1 + yq) for 0 < p ≤ q and
y ≥ 0. Therefore,

󰀂(χh)∗󰀂pp,n+1 ≤E max
n′∈{−1,...,n}

|χh
n′ |p

+ E max
n′∈{−1,...,n}

p󰁛

i=1

󰀕
p

i

󰀖
(hun′h)

i|χh
n′ |p−i|Hh

γ(n′)(χ
h
n′)|i

≤󰀂(χh)∗󰀂pp,n +

p󰁛

i=1

󰀕
p

i

󰀖
󰀂((hun′h)

i|χh
n′ |p−i|Hh

γ(n′)(χ
h
n′)|i)∗󰀂1,n

≤󰀂(χh)∗󰀂pp,n + Ch(1 + 󰀂(χh)∗󰀂pp,n)
=(1 + Ch)󰀂(χh)∗󰀂pp,n + Ch,

where C :=
󰁓p

i=1

󰀃
p
i

󰀄
ci. By induction over n,

󰀂(χh)∗󰀂pp,n ≤ (1 + Ch)n󰀂(χh)∗󰀂pp,0 + Ch

󰀣
n−1󰁛

i=0

(1 + Ch)i

󰀤
,

for all h ∈ (0, 1) and n ∈ N. Consequently,

󰀂χh(x)∗󰀂p
p,⌊T

h ⌋
≤ (1 + Ch)⌊

T
h ⌋|x|p + Ch

⌊T
h ⌋󰁛

i=0

(1 + Ch)i

≤ (1 + Ch)
T
h |x|p + Ch

T

h
(1 + Ch)

T
h

= (CT + |x|p)elog(1+Ch)T
h

≤ (CT + |x|p)eCT ,

for all h ∈ (0, T ) and x ∈ Rd, since log(1 + y) ≤ y for all y > −1. Now, the inclusion
follows for p ∈ N. For arbitrary p ≥ 1 we have 󰀂Y ∗󰀂p ≤ 󰀂Y ∗󰀂⌈p⌉ and thus the result is
proven.

(ii) We have
󰀂∆χh,n

n (x)󰀂p = 󰀂hunhH(x)󰀂p ≤ h󰀂H󰀂G1(1 + |x|),

for all x ∈ Rd and h ∈ (0, 1).

We shall now consider moments and growth conditions for solutions of (families of) stochas-
tic differential equations that will act as approximations to SGD. Let l ∈ N0. We write
f ∈ Lipl if f ∈ C l([0, T ]× Rd) and there exists a C > 0 such that

|∂αft(x)− ∂αft(y)| ≤ C|x− y|,

for all t ≥ 0 and multi-indices α with size #α ≤ l. Also set Lip := Lip0. Given an index
set I, these conditions extend to I-indexed families of functions (fi)i∈I in a uniform sense.
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Further, we extend the use of the notation G to families of functions. More precisely,
given a family of functions

f : I × Rd → R, (i, x) 󰀁→ fi(x),

we write f ∈ G(Rd) whenever there exists a constant C > 0 and κ ∈ N such that

|fi(x)| ≤ C(1 + |x|κ), (26)

for all x ∈ Rd and i ∈ I. Again, we define 󰀂g󰀂Gκ as the infimum of all C’s in (26).
Notice that the index set may comprise the time interval [0, T ]. Usually, we have I = H

or or I = H× [0, T ] or I = (0, 1).
Similarly we extend the use of the notations Gl to families of functions. In particular,

for an I-indexed family of functions f : I × [0, T ] × Rd → R we write f ∈ G∞([0, T ] × Rd)
if each fi is infinitely continuously differentiable in time and space, and all derivatives have
at most polynomial growth, uniformly in i ∈ I. Finally, all the definitions extend naturally
to other codomains such as Rd or Rd×d.

We shall consider stochastic differential equations with (families of) coefficients

b : I × [0, T ]× Rd → Rd,σ : I × [0, T ]× Rd → Rd×d.

Proposition 8 Let l ∈ N, p ≥ 1 and b,σ ∈ G1(Rd)∩Lipl, such that b is Rd-valued and σ is
Rd×d-valued. Let X be the unique solution to the family of stochastic differential equations

dXi,s
t (x) = bit(X

i,s
t (x)) dt+ σi

t(X
i,s
t (x)) dWt, Xi,s

s (x) = x.

and g : I × Rd → R ∈ Gl(Rd). Define

vi,st (x) := Egi(Xi,s
t (x)).

Then v ∈ Gl(Rd).

Note that the polynomial growth of v and its partial derivatives up to order l is considered
uniformly in i ∈ I and s, t ∈ [0, T ].
Proof Let α be a multi-index. By induction one can show E∂αg(X) = ∂αEg(X) using
Theorem 27 in the Appendix. By the higher chain rule,

|∂αvi,st | =E|∂αgi(Xi,s
t )| ≤

#α󰁛

j=1

󰀂∇jgi(X)∗󰀂2
󰁛

B∈Sα
j

N(α,B)
󰁜

β∈B
󰀂∂βX∗󰀂2#B,

where Sα
i is the set of all partitions of α into i multi-set multi-indices (each partition

being a multi-set as well), N(α,B) ∈ N, #B is the size of the partition and the product󰁔
β∈B respects the multiplicities of β ∈ B. From g ∈ Gl(Rd) and Theorem 27 we conclude

∂αv ∈ G(Rd).
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Remark 9 Assume now we are given an SDE with separable coefficients, specifically

dXt = utB(Xt) dt+ utS(Xt) dWt,

where B,S ∈ Lip∩G∞. Further, suppose Assumption (A1) holds. Given g ∈ G∞(Rd) we
want to show that v defined by

vi,ht := Egi(Xh,t
T )

satisfies v ∈ G∞([0, T ]× Rd).

To this end let U be a map from the image of u to R, such that

U =

󰀫
u̇ ◦ u−1, u strictly monotone,

0, u constant.

Then U is continuous, bounded and

dut = U(ut) dt, t ≥ 0.

Consider the system

dZt = b(Zt) dt+ Σ(Zt) dWt,

with

Zt =

󰀕
Xt

ut

󰀖
, b

󰀕
x
y

󰀖
=

󰀕
yB(x)
U(y)

󰀖
,Σ

󰀕
x
y

󰀖
=

󰀕
yS(x)

0

󰀖
.

Then b,Σ ∈ G(Rd). If the coefficients of an autonomous SDE

dZt = b(Zt) dt+ Σ(Zt) dWt

are in G∞ and g ∈ G∞(Rd), then clearly also LZg ∈ G∞([0, T ] × Rd), where LZ is the
infinitesimal generator of Z. By Proposition 8 then ELZg(Z) ∈ G∞([0, T ] × Rd). If g ∈
G∞(Rd), then vi,ht := Egi(Xh,t

T ) satisfies the Feynman-Kac equation7

∂tvt + LXvt = 0, vT = g,

where Lh
X is the infinitesimal generator of Xh. In particular,

∂tEg(Xt
T ) = ∂tEg(Zt

T ) = ∂tEg(Z0
T−t) = LZ(Eg(Z0

T−t)) ∈ G([0, T ]× Rd),

with the understanding that g(x, y) := g(x). Inductively,

∂α∂
k
t Eg(Xt

T ) = ∂αL
k
ZE(g(Z0

T−t)) ∈ G([0, T ]× Rd).

All in all we have v ∈ G∞([0, T ] × Rd), that is v is smooth in time and space, and all its
derivatives have polynomial growth (uniformly in time).

7. See, for example, the book by Graham and Talay (2013, Theorem 7.14 and Remark 7.6).
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Next we shall consider families of stochastic differential equations

dXh
t = bht (X

h
t ) dt+

√
hσh

t (X
h
t ) dWt,

indexed by a discretization parameter h ∈ (0, 1). Given the family of solutions X of an h-
indexed family of stochastic differential equations we define the family of discrete processes

X̃h
n(x) := Xh

nh(x), (27)

with h ∈ (0, 1), x ∈ Rd and n ∈ {0, . . . , ⌊T/h⌋}. Then,

∆X̃h,n
n (x) = Xh

nh(x)− x.

Lemma 10 Let

b : (0, 1)× [0, T ]× Rd → Rd,σ : [0, T ]× Rd → Rd×d ∈ G1(Rd) ∩ Lip

and X be the unique solution to family of stochastic differential equations

dXh
t = bht (X

h
t ) dt+

√
hσt(X

h
t ) dWt, Xh

0 (x) = x ∈ Rd, h ∈ (0, 1).

Then for all p ≥ 2 there exists a C ∈ G(Rd), such that

󰀂∆X̃h,n
n 󰀂p ≤ hC,

for all h ∈ (0, 1) and n ∈ {0, . . . , ⌊T/h⌋}.

Proof We have

󰀂∆X̃h,n
n 󰀂p ≤ 󰀂

󰁝 (n+1)h

nh
bhs (Xs)ds󰀂p +

√
h󰀂

󰁝 (n+1)h

nh
σ(Xh

s ) dWs󰀂p.

On the one hand

󰀂
󰁝 (n+1)h

nh
bht (X

h
t )dt󰀂p ≤h

1− 1
p

󰀣󰁝 (n+1)h

nh
E|bht (Xt)|p dt

󰀤1/p

≤h

󰀣
E sup

t,h
|bht (Xt)|p

󰀤1/p

=h󰀂b(X)∗󰀂p,

and x 󰀁→ 󰀂b(X(x))∗󰀂p ∈ G(Rd) by Theorem 26 and since b ∈ G1(Rd). On the other hand,

√
h󰀂

󰁝 (n+1)h

nh
σt(X

h
t ) dWt󰀂p ≤

󰁵
p(p− 1)

2
h
1− 1

p 󰀂σ(Xh)󰀂p

≤c1h󰀂σ(X)∗󰀂p,

where we have used Itô’s isometry and Jensen’s inequality.
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Lemma 11 Let b,σ ∈ G1([0,∞)× Rd) ∩G∞([0,∞)× Rd), such that b is Rd-valued and σ
is Rd×d-valued. Let h ∈ (0, 1), s ≥ 0 and consider the stochastic differential equation

dXh
t = bt(X

h
t ) dt+

√
hσt(X

h
t ) dWt, Xs = x,

with t ∈ [s, s+ h]. Then there exists a function C ∈ G(Rd), such that

E[∆Xh
s ] = hbs + h2C, E[(∆Xh

s )
⊗2] = h2C, (28)

for all h ∈ (0, 1), where ∆Xh
s := Xh

s+h −Xh
s .

Proof For any multi-index α define

mα(z) := (z − x)α =

d󰁜

j=1

(zj − xj)
α(j).

Then for any other multi-index β,

∂βmα(z) =

d󰁜

j=1

β(j)󰁜

k=1

(α(j)− k + 1)(z − x)α−β , z ∈ Rd,

where it is understood that yα−β = 0 if α(j) < β(j) for any j ∈ {1, . . . , d}. Further,
(∆Xh

s )
α = mα(X

h
s+h). Write

AXg = ∂tg + b†∇g +
h

2
tr[σ†σ∇2g], g ∈ G∞,

and A2
X = AX ◦ AX . Observe that AXg already depends on time even if g does not. An

Itô-Taylor expansion implies (see Theorem 30)

E(∆Xh
s (x))

α = hAXmα(s, x) +

󰁝 s+h

s

󰁝 t

s
EA2

Xmα(u,X
h
u (x)) du dt, x ∈ Rd, h ∈ (0, 1).

We have

AX(mj)(s, x) =bs(x)j .

Moreover, by Lemma 31, A2
Xmj ∈ G([0, T ]× Rd), so Theorem 26 implies

󰀂(A2
Xmj(s,X

h
s (x)))󰀂1 ≤ C(1 + 󰀂|Xh

s (x)|κ󰀂1) ≤ C(1 + |x|κ), x ∈ Rd, h ∈ (0, 1),

for some constant C > 0. Hence,

E[∆Xh
s ] =hbs + h2C,

for some C ∈ G(Rd). Now, let us consider a multi-index α = {j1, j2}. Then,

AX(mα)(s, x) =
h

2
(σ†σ)s(xj1xj2),

with σ ∈ G. Again using Lemma 31 we can estimate the remainder term to arrive at

E[(∆Xh
s )

⊗2] = h2C,

for some C ∈ G(Rd), for all h ∈ (0, 1).
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4.2 Proof of the Gradient Flow Approximation

We shall give a proof of Theorem 1. Fix g ∈ G∞(Rd) and define once more vt(x) :=
g(X0,t

T (x)), where X0 is the solution to the gradient flow equation (6),

dX0
t = utH̄(X0

t ) dt.

We then have v ∈ G∞([0, T ] × Rd) by Proposition 8 and Remark 9 and since we have
H̄ ∈ G∞(Rd) by Assumption (A3). Further, v satisfies the Feynman-Kac equation

∂tvt(x) +∇vt(x)
†utH̄(x) = 0, vT (x) = g(x). (29)

From now on let χh and X0 denote the solutions of (5) and (6), respectively, with the same
fixed initial condition χ0 ∈ Rd.

Recall the definition of ϕ in (10) and the statement of Theorem 1. We define

ϕGF
t (x) = ϕt(x) +

1

2
u2t tr[∇2vt(x)Σ(x)],

for all x ∈ Rd and t ∈ [0, T ].

Lemma 12 Let ξ : H → R be the function such that for all h ∈ H

Eg(χh
T/h)− g(X0

T ) = h2

T
h
−1󰁛

k=0

EϕGF
kh (χh

k) + h2ξ(h).

Then ξ is bounded.

Proof By Taylor’s theorem,

vt+h(x+ δ)− vt(x) =h∂tvt(x) +∇vt(x)
†δ +

h2

2
∂2
t vt(x)

+ h∂t∇vt(x)
†δ +

1

2
tr[∇2vt(x)δ

⊗2]

+ rh(δ),

where

rh(δ) :=

3󰁛

k=0

󰁛

#β=3−k

1

β!k!
∂k
t ∂βvt+θh(x+ θδ)hkδβ

for some θ ∈ (0, 1), all h ∈ (0, 1) and δ ∈ Rd. By choosing t = kh, x = χh
k , δ = ∆χh

k and
applying expectation we get

Ev(k+1)h(χ
h
k+1)− Evkh(χh

k) = hAh
1 + h2(Ah

2 +Ah
3 +Ah

4) + Erh(∆χh
k),

where

Ah
1 := E[∂tvkh(χh

k) + h−1∇vkh(χ
h
k)

†∆χh
k ],

Ah
2 :=

1

2
u2khE tr[∇2vkh(χ

h
k)((H̄(χh

k) + (Hγ(0) − H̄)(χh
k))

⊗2)],

=
1

2
u2khE tr[∇2vkh(χ

h
k)(H̄

⊗2 + Σ)(χh
k)]

Ah
3 := ukhE[∂t∇vkh(χ

h
k)

†H̄(χh
k)],

Ah
4 :=

1

2
E[∂2

t vkh(χ
h
k)].
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Using the Feynman-Kac equation (29) we can simplify

Ah
1 =E[E(∂tvkh(χh

k) +∇vkh(χ
h
k)

†ukhH̄(χh
k)|χh

k)] = 0.

We want to show that the remainder satisfies Erh(∆χh
n) = O(h3). For k ∈ {0, . . . , 3} and

#β = 3− k,
E[hk(∆χh

n)
β ] = hkh3−k(unh)

3−kEH̄(χh
n)

β = O(h3),

since u ≤ 1 and

E[|H̄(χh
n)

β |]1/#β ≤ sup
h∈(0,1)

󰀂H̄(χh)∗󰀂#β,⌊T
h ⌋

≤󰀂H̄󰀂G1

󰀣
1 + sup

h∈(0,1)
󰀂(χh)∗󰀂#β,⌊T

h ⌋

󰀤

≤c(1 + |χ0|),

by Lemma 7. Since ∂k
t ∂

2−k
α v ∈ G([0, T ] × Rd) for all k ∈ {0, 1, 2}, we have Erh(∆χh

n) =
O(h3). Therefore,

Eg(χh
T/h)− g(X0

T ) =EvT (χh
T/h)− Ev0(χ0)

=

T
h
−1󰁛

k=0

Ev(k+1)h(χ
h
k+1)− Evkh(χh

k)

=h2

T
h
−1󰁛

k=0

EϕGF
kh (χh

k) +O(h2),

for all h ∈ H.

The bound on the function ξ in Lemma 12 only depends on the growth of g and its deriva-
tives, as well as H̄, Σ and T . We use this fact in the next step, where we apply Lemma 12
to the family of functions (ϕGF

nh )h∈H,n≤T/h.
For all h ∈ H and n ∈ {0, . . . , T/h}, let ξn(h) ∈ R be, such that

EϕGF
nh (χ

h
n)− ϕGF

nh (X
h
nh) = h2

n−1󰁛

k=0

Eψnh,kh(χ
h
k) + h2ξn(h) (30)

with

ψs,t(x) :=
1

2
u2t tr[∇2zs,t(x)(H̄

⊗2 + Σ)(x)] + ut∂t∇zs,t(x)H̄(x)

+
1

2
∂2
t zs,t(x),

zs,t :=ϕGF
s (X0,t

s ).

Now choose a constant B ∈ [0,∞) such that for all n and h we have

|ξn(h)| ≤ B. (31)

Using this estimate we can bound the differences of the form EϕGF
nh (χ

h
n)− ϕGF

nh (Xnh).
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Lemma 13 There exists a constant C > 0 such that

T
h
−1󰁛

n=0

|EϕGF
nh (χ

h
n)− ϕGF

nh (X
0
nh)| ≤ C

for all h ∈ H.

Proof By (30) and (31)

T
h
−1󰁛

n=0

|EϕGF
nh (χ

h
n)− ϕGF

nh (X
0
nh)| ≤h2

T
h
−1󰁛

n=0

n−1󰁛

k=0

E|ψnh,kh(χ
h
k)|+Bh

≤C

󰀕
1 + max

n,k
E|ψnh,kh(χ

h
k)|

󰀖
,

for some C > 0 and all h ∈ (0, 1).

Because ∂k
t ∂

2−k
α v ∈ G([0, T ] × Rd) for all k ∈ {0, 1, 2}, g ∈ G(Rd), u is bounded and

H̄,Σ ∈ G(Rd), we have ϕGF ∈ G([0, T ]× Rd). With Lemma 7,

max
n,k

E|ψnh,kh(χ
h
n)| ≤󰀂ϕGF󰀂Gκ

󰀣
1 + sup

h∈(0,1)
󰀂(χh)∗󰀂κ1

󰀤

≤C(1 + |χ0|κ),

for some C > 0,κ ∈ N and all h ∈ (0, 1).

Proof of Theorem 1 Let g ∈ G∞(Rd) and h ∈ H. Then Lemma 12 implies

Eg(χh
T/h)− g(X0

T ) = h

T
h
−1󰁛

n=0

hEϕGF
nh (χ

h
n) +O(h2),

We can then write the linear error term as follows.

T
h
−1󰁛

n=0

hEϕGF
nh (χ

h
n) =

󰁝 T

0
ϕGF
t (X0

t ) dt+ h

T
h
−1󰁛

n=0

EϕGF
nh (χ

h
n)− ϕGF

nh (X
0
nh)

+

T
h
−1󰁛

n=0

hϕGF
nh (X

0
nh)−

󰁝 T

0
ϕGF
t (X0

t ) dt,

Using Lemma 13, we then have

h

T
h
−1󰁛

n=0

|EϕGF
nh (χ

h
n)− ϕGF

nh (X
0
nh)| ≤hC.
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Further, approximating the integral
󰁕
ϕGF by a left Riemann sum yields

󰀏󰀏󰀏󰀏󰀏󰀏

T
h
−1󰁛

n=0

hϕGF
nh (X

0
nh)−

󰁝 T

0
ϕGF
t (X0

t ) dt

󰀏󰀏󰀏󰀏󰀏󰀏
≤hC ′.

Hence,

Eg(χh
T/h)− g(X0

T ) = h

󰁝 T

0
ϕGF
t (X0

t ) dt+O(h2),

for all h ∈ H.

4.3 Proof of the Stochastic Gradient Flow Approximations

The first part of the proofs of Theorems 2 and 3 are somewhat analogous to the ODE case.
We focus on proving Theorem 2 while omitting the proof of 3 since it is completely analogous.
One notable difference to the GF case comes from the newly acquired dependence of the
solution X := XNCC of (12) on h ∈ H. This carries over to v and by extension to the
function

ϕh
t (x) :=

1

2
u2t tr[∇2vht (x)H̄

⊗2(x)] + ut∂t∇vht (x)H̄(x) +
1

2
∂2
t v

h
t (x).

Note the absence of the Σ term compared to the ODE case. By using arguments as in
Section 4.2, we arrive at an approximation of the form

Eg(χh
T/h)− Eg(Xh

T ) = h

󰁝 T

0
Eϕh

t (X
h
t ) dt+O(h2). (32)

We then need to improve the estimate to

Eg(χh
T/h)− Eg(Xh

T ) = h

󰁝 T

0
ϕ0
t (X

0
t ) dt+O(h2).

This requires an additional estimation of the difference ϕh
t (X

h
t )− ϕ0

t (X
0
t ). Let us be more

specific now. Let g ∈ G∞(Rd) and define, for all h ∈ [0, 1), t ∈ [0, T ] and x ∈ Rd,

vht (x) := Eg(Xh,t
T (x)),

where Xh,t(x) denotes the solution of (12) on [t, T ] with initial condition Xh,t
t (x) = x.

Then v ∈ G∞([0, T ]×Rd), as defined in (26) with I = H, and it satisfies the Feynman-Kac
equation

∂tvt(x) +∇y†t (x)utH̄(x) +
1

2
hu2t tr[∇2vt(x)Σ(x)] = 0, vT (x) = g(x). (33)

Given a family (fh
t )h∈(0,1),t≥0 of continuous-time stochastic processes (or merely functions)

we define for every h ∈ (0, 1) the discrete-time process

f̃h
n := fh

nh, n ∈ N.

From now on let χh and Xh denote the solutions of (5) and (12), respectively, with the
same fixed initial condition χ0 ∈ Rd and h ∈ H. Then we have the following.

28



A Comparison of Continuous-Time Approximations to Stochastic Gradient Descent

Lemma 14 We have

Eg(χh
T/h)− Eg(Xh

T ) = h2

T
h
−1󰁛

k=0

EΦh
k(χ

h
k) +O(h2),

for all h ∈ H, where Φh := ϕ̃h.

Proof Follow the proof of Lemma 12. A Taylor expansion of v yields

Eṽhk+1(χ
h
k+1)− Eṽhk (χh

k) = hAh
1 + h2(Ah

2 +Ah
3 +Ah

4) + Erh(∆χh
k),

as before, except with

Ah
1 :=E[∂tṽhk (χh

k) + h−1∇ṽhk (χ
h
k)

†∆χh
k +

1

2
hu2kh tr[∇2ṽhk (χ

h
k)Σ(χ

h
k)]]

=0

by (33) and to compensate for the additional term

Ah
2 :=

1

2
u2khE tr[∇2ṽhk (χ

h
k)H̄

⊗2(χh
k)].

Again, we could have stated Lemma 14 with g depending on h and t, so the following holds.

Lemma 15 With the conditions as in Lemma 14, there exists a constant C > 0 with

T
h
−1󰁛

n=0

|EΦh
n(χ

h
n)− EΦh

n(X̃
h
n)| ≤ C

for all H ∋ h ↓ 0.

Our initial approximation follows just as in the ODE case, so we shall omit the proof of the
following lemma.

Lemma 16 For all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(Xh

T ) = h

󰁝 T

0
Eϕh

t (X
h
t ) dt+O(h2), (34)

where

ϕh
t (x) =

1

2
u2t tr[∇2vht (x)H̄

⊗2(x)] + ut∂t∇vht (x)H̄(x) +
1

2
∂2
t v

h
t (x).

Next we shall improve (34) in order to arrive at the equality in Theorem 2. An additional
step compared to the ODE approximation is then deriving an estimate of |Eϕh

t (X
h
t ) −

ϕh
0(X

0
t )| to get rid of the dependence of the integral

󰁕 T
0 |Eϕh

t (X
h
t )| dt on h ∈ (0, 1). First,

consider estimating the difference vh − v0 and its derivatives up to order 2.

29



Ankirchner and Perko

Lemma 17 Let vht (x) = Eg(Xh,t
T (x)). Define the H-indexed family

δht (x) :=
vht (x)− v0t (x)

h
.

Then δh ∈ G2([0, T ]× Rd), uniformly in h.

Proof For every s ∈ [0, T ] and h ∈ H, such that s
h ∈ N0 we have

|vhs − v0s | ≤

T−s
h

−1󰁛

n=0

|Ev0s+(n+1)h(X
h,s
s+(n+1)h)− Ev0s+nh(X

h,s
s+nh)|,

where this is meant as an inequality of functions on Rd, the set of possible initial values.
To shorten notation, throughout this proof we omit the initial value in Xh,s(x).

Set Ah
t := v0t+h(X

h,s
t+h)−v0t (X

h,s
t ). Since v0 ∈ G∞([0, T ]×Rd), applying Taylor’s theorem

to it implies

Ah
t =∂tv

0
t (X

h,s
t )h+∇v0t (X

h,s
t )†∆Xh,s

t +
1

2
tr[∇2v0t (X

h,s
t )(∆Xh,s

t )⊗2]

+ h2rht (∆Xh,s
t )

with some remainder term r : H×[0, T ]×Rd → R ∈ G([0, T ]×Rd) and∆Xh,s
t := Xh,s

t+h−Xh,s
t .

By the Feynman-Kac formula (33),

EAh
t =E[∇v0t (X

h,s
t )(∆Xh,s

t − hutH̄(Xh,s
t ))]

+
1

2
E tr[∇2v0t (X

h,s
t )((∆Xh,s

t )⊗2 − h2u2tΣ(X
h,s
t ))] + h2Erht (∆Xh,s

t ).

With an Itô-Taylor expansion (see Lemma 11) we see that there exists a C ∈ G(Rd) with

󰀂∆Xh,s
t − hutH̄(Xh,s

t )󰀂2 ≤Ch2,

󰀂(∆Xh,s
t )⊗2 − h2u2tΣ(X

h,s
t )󰀂2 ≤Ch2,

for all h ∈ (0, 1) and s, t ∈ [0, T ] with s ≤ t. Since ∇v0 and ∇2v0 have polynomial growth,
uniformly in space and time, there exists a C ∈ G(Rd) with

|EAh
t | ≤󰀂∇v0t (X

h,s
t )󰀂2󰀂∆Xh,s

t − hutH̄(Xh,s
t )󰀂2

+
1

2
󰀂∇2v0t (X

h,s
t )󰀂2󰀂(∆Xh,s

t )⊗2 − h2u2tΣ(X
h,s
t )󰀂2 + h2|Erht (∆Xh,s

t )|

≤Ch2, h ∈ H,

by Theorem 26 and using the Cauchy-Schwarz inequality. We conclude

|vhs − v0s | ≤
T

h
Ch2 ≤ TCh,

for some C ∈ G(Rd), all h ∈ H and s ∈ [0, T ] such that s
h ∈ N0. For general t ∈ [0, T ] with

nh ≤ t < (n+ 1)h a Taylor approximation yields

|vht − vhnh| ≤ (t− nh)|∂tvht |+ h2r
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for some remainder r ∈ G([0, T ] × Rd). Since ∂tv ∈ G([0, T ] × Rd) and (t − nh) ≤ h we
conclude the existence of a C ∈ G(Rd) with

|vht − vhnh| ≤ Ch,

for all h ∈ H. A similar argument applies to the difference v0t − v0nh. Hence,

|vht − v0t | ≤ |vht − vhnh|+ |vhnh − v0nh|+ |v0nh − v0t | ≤ Ch,

for some C ∈ G(Rd), all h ∈ H and t ∈ [0, T ]. This shows that δh ∈ G([0, T ]×Rd), uniformly
in h.

Now, we want to show that the partial derivatives of δ up to order 2 have the same
property. Fix j ∈ {1, . . . , d} and define

wh
t (x, y) = E[∇g(Xh,t

T (x))†∂jX
h,t
T (x, y)].

Note that wh(x, 1) = ∂jv
h(x). Furthermore, by differentiating the SDE (12) governing

X with respect to its initial condition (see 27), we see that the partial derivative Yr :=

∂jX
h,t
r (x, y) satisfies

dYr = ur∇H̄(Xh,t
r (x))Yr dr + ur

√
h∇

󰁴
Σ(Xh,t

r (x))Yr dWr,

with initial condition Yt = y, where

(∇
󰁳

Σ(x)y)i,j =

d󰁛

k=1

∂i

󰁴
Σ(x)j,kyk,

for all x, y ∈ Rd and i, j ∈ {1, . . . , d}. The Feynman-Kac equation applies to the system

(Xh,t
r , ∂jX

h,t
r ) giving us

0 =∂tw
h
t (x, y) + ut∇xw

h
t (x, y)H̄(x) +∇yw

h
t (x, y)y∂jH̄(x)

+
1

2
hu2t tr[∇2

x,yw
h
t (x, y)S(x, y)],

with S given by the block matrix

S(x, y) :=

󰀣
Σ(x)

󰁳
Σ(x)(∇

󰁳
Σ(x)y)†

∇
󰁳

Σ(x)y
󰁳

Σ(x)
†

(∇
󰁳

Σ(x)y)(∇
󰁳

Σ(x)y)†

󰀤
.

Similarly to the above argument, using Taylor’s theorem we can show

x 󰀁→1

h
(Ew0

t+(n+1)h(X
h
t+(n+1)h(x), ∂jX

h
t+(n+1)h(x, 1)) (35)

− Ew0
t+nh(X

h
t+nh(x), ∂jX

h
t+nh(x, 1))) ∈ G(Rd) (36)

and conclude, using a telescoping sum,

1

h
(∂jv

h
t − ∂jv

0
t ) ∈ G(Rd).
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By differentiating the process X once more, an analogous argument works for any second
space-derivative to prove

1

h
|∂i,jvht − ∂i,jv

0
t | ∈ G(Rd),

with i, j ∈ {1, . . . , d}. Then use the Feynman-Kac equation for v to conclude

1

h
|∂tvht − ∂tv

0
t | ∈ G(Rd).

We can then do essentially the same for ∂j∂ty with j ∈ {1, . . . , d} and ∂2
t y.

Consider the linear operator

F : G2([0, T ]× Rd) → G([0, T ]× Rd)

given by

Ftf(x) :=
1

2
u2t tr(∇2ft(x)H̄

⊗2(x)) + ut∂t∇ft(x)H̄(x) +
1

2
∂2
t ft(x).

Implicitly, we have already seen it in action. In particular, ϕh
t (x) = Ftv

h(x) for all t ∈ [0, T ]
and x ∈ Rd. In the next lemma we consider spaces of the form

Gl
κ([0, T ]× Rd) = {f ∈ C l([0, T ]× Rd) : 󰀂∂k

t ∂αf󰀂Gκ < ∞, k ≤ l, |α| ≤ l − k}.

This is a Banach space when equipped with the norm

󰀂f󰀂Gl
κ
:=

l󰁛

k=0

󰁛

|α|≤l−k

󰀂∂k
t ∂αf󰀂Gκ .

This works regardless of whether we consider functions f : [0, T ] × Rd → R or families of
functions, such as f : H × [0, T ] × Rd → R with polynomial growth uniformly in H and
[0, T ]. Of course, by construction

Gl([0, T ]× Rd) =
󰁞

κ∈N0

Gl
κ([0, T ]× Rd).

Lemma 18 Let κ ∈ N0. The function

F : G2
κ([0, T ]× Rd) → Gκ+2([0, T ]× Rd)

with

Ftf(x) =
1

2
u2t tr[∇2ft(x)H̄

⊗2(x)] + ut∂t∇ft(x)
†H̄(x) +

1

2
∂2
t ft(x).

is a continuous linear operator. The statement applies for spaces of families of functions as
well (see Equation 26). Moreover, if f ∈ G2

κ([0, T ]×Rd) with ft ∈ G∞
κ (Rd), uniformly in t,

then Fft ∈ G∞
κ+2(Rd), uniformly in t.
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Proof The linearity of F is trivial. Now, given f ∈ G2
κ([0, T ]× Rd) we have

󰀂Ff󰀂Gκ+2 ≤9

2
󰀂u󰀂2∞

d󰁛

i,j

󰀂∂i,jf󰀂Gκ󰀂H̄i󰀂G1󰀂H̄j󰀂G1

+ 3󰀂u󰀂∞
d󰁛

i=1

󰀂∂t∂if󰀂Gκ󰀂H̄i󰀂G1 +
1

2
󰀂∂2

t f󰀂Gκ

From this we can see that 󰀂Ff󰀂Gκ+2 < ∞, so F is well-defined. Furthermore, the bound
on 󰀂Ff󰀂Gκ+2 is a scalar multiple of the norm on G2

κ([0, T ]×Rd) proving the continuity. To
show the last sentence note that 󰀂∂αFf󰀂Gκ+2 is bounded by a linear combination of the
Gκ-norms of f, ∂tf, ∂

2
t f and their derivatives, as well as 󰀂H̄󰀂G1 and the ∞-norms of the

derivatives of H̄.

Corollary 19 There exists a function C ∈ G(Rd), such that

|ϕh
t (x)− ϕ0

t (x)| ≤ hC(x),

for all t ∈ [0, T ], x ∈ Rd and h ∈ H. Consequently,

|Eϕh
t (X

h
t )− Eϕ0

t (X
h
t )| = O(h) (37)

for all t ∈ [0, T ] and h ∈ H.

Proof With δ defined as in Lemma 17 we have

ϕh − ϕ0 = hFδh.

Now apply Lemma 17 and the fact that F maps into G([0, T ]× Rd). With this, Inequality
(37) follows from Theorem 26 in the Appendix.

Lemma 20 We have
|Eϕ0

t (X
h
t )− ϕ0

t (X
0
t )| = O(h) (38)

for all t ∈ [0, T ] and h ∈ H.

Proof If we replace χh
k by X̃h

k in Lemma 12 and its extension in (30), then we can proceed
with the proof in the same way to show

Eϕ0
nh(X̃

h
n)− ϕ0

nh(X
0
nh) = h2

n−1󰁛

k=0

EΨh
n,k(X̃

h
k ) +O(h2) (39)

where
Ψh

n,k(x) := Fkh(Eϕ0
nh(X

h,·
nh))(x).

Here Xh,·
nh is a random field with variable initial value x ∈ Rd.
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We use the Itô-Taylor approximation in Lemma 11 to calculate E(∆X̃h
n |X̃h

n) and
E((∆X̃h

n)
⊗2|X̃h

n), and estimate 󰀂X̃h󰀂#β using Theorem 26.
Having established (39) next we consider the family

wh,r
s (x) := Eϕ0

r(X
h,s
r (x)),

which satisfies w ∈ G∞([0, T ]×Rd), uniformly in h, r and s, by a straightforward extension
of Remark 9. Therefore, Lemma 18 implies

|Ψh
n,k(x)| = |(Fkhv

h,nh)(x)| ≤ C(1 + |x|κ),

for some C > 0 and κ ∈ N. This proves (38) for t = nh.
Now consider an arbitrary t ∈ [0, T ] with nh ≤ t < (n + 1)h. Then Taylor’s theorem,

the Cauchy-Schwarz inequality and the fact that (t− nh) ≤ h, imply

|Eϕ0
t (X

h
t )− Eϕ0

nh(X
h
nh)| ≤h|E∂tϕ0

nh(X
h
nh)|+ 󰀂∇ϕ0

nh(X
h
nh)󰀂2󰀂∆X̃h

n󰀂2
+O(h2),

with some remainder r ∈ G([0, T ]× Rd). So,

|Eϕ0
t (X

h
t )− Eϕ0

nh(X
h
nh)| = O(h)

for all h ∈ H by Lemma 10, Theorem 26 and since ∇ϕ0 ∈ G([0, T ] × Rd) by the last
statement of Lemma 18. Similarly,

|ϕ0
t (X

0
t )− ϕ0

nh(X
0
nh)| ∈ O(h),

for all h ∈ H. Hence,

|Eϕ0
t (X

h
t )− ϕ0

t (X
0
t )| ≤|Eϕ0

t (X
h
t )− Eϕ0

nh(X̃
h
n)|

+ |Eϕ0
nh(X̃

h
n)− ϕ0

nh(X
0
nh)|

+ |ϕ0
t (X

0
t )− ϕ0

nh(X
0
nh)|

∈O(h)

for all t ∈ [0, T ] and h ∈ H.

Proof of Theorem 2 Combining inequalities (37) and (38) gives us

|Eϕh
t (X

h
t )− ϕ0

t (X
0
t )| ≤|Eϕh

t (X
h
t )− Eϕ0

t (X
h
t )|+ |Eϕ0

t (X
h
t )− ϕ0

t (X
0
t )|

∈O(h)

for all h ∈ H. We conclude with the help of (34),

Eg(χh
T/h)− Eg(Xh

T ) = h

󰁝 T

0
ϕ0
t (X

0
t ) dt+O(h2).
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5. Proof of Theorem 4

In this section our main aim is to prove Theorem 4, which extends the results from Theorems
1, 2 and 3. We have already used Theorem 4 to study the case of linear regression.

First, we need to introduce some additional facts and notation. Given tensors B ∈ Rd×l

and C ∈ Rd×k
we define their outer product B ⊗ C ∈ Rd×(l+k)

by

(B ⊗ C)i1,...,il,j1,...,jk = Bi1,...,ilCj1,...,jk ,

and we set B⊗2 := B ⊗ B (as we did previously for vectors). Given vectors u, v ∈ Rd we
also write u ⊗ v := uv† ∈ Rd×d. Note that given a matrix A we have u†Av = 〈A, u ⊗ v〉.
Further, 󰀂v⊗2󰀂F ≤ |v|2.

In this section, to reduce notational clutter we again often omit the initial condition
from the solution X of a given SDE and formulate statements for the mapping from the set
of in initial conditions Rd to the collection of random variables (Xt)t.

The next proposition gives alternative representations for the functions ϕ and ∇2v
appearing in Theorems 1, 2 and 3.

Proposition 21 Define
ϕid
t = (ϕ1

t , . . . ,ϕ
d
t ) : Rd → Rd,

where ϕi
t := ϕg

t for g(x) = xi and i ∈ {1, . . . , d}. Then

ϕid
t =

1

2
〈∇2X0,t

T , H̄⊗2〉 − (∇X0,t
T )†∇H̄(X0,t

T )†H̄ +
1

2
∇H̄(X0,t

T )H̄(X0,t
T ), t ∈ [0, T ].

Further, if g ∈ G∞(Rd), then
ϕg
t = 〈∇g(X0,t

T ),ϕid
t 〉,

and for any S ∈ Rd×d,

〈∇2vgt , S〉 = 〈∇2g(X0,t
T ),∇X0,t

T S(∇X0,t
T )†〉+ 〈∇g(X0,t

T ), 〈∇2X0,t
T , S〉〉,

for all t ∈ [0, T ]. Finally, if H̄ is a conservative vector field and ∇X0
t is symmetric every-

where, then

ϕid
t =

1

2
〈∇2X0,t

T , H̄⊗2〉 − 1

2
∇H̄(X0,t

T )H̄(X0,t
T ), t ∈ [0, T ].

Remark 22 Note that H̄ is called conservative if it is the gradient of some function. For
example, in case of SGD with replacement (see Example 1) we have H̄ = ∇E[Rγ(n)] and so,
indeed, H̄ is conservative.

On the other hand, characterizing the symmetry of ∇X0
t is a delicate issue that goes

beyond the scope of this paper. A sufficient condition is that H̄ is conservative and󰁕 t
0 ∇H̄(Xs) ds commutes with ∇H̄(X0

t ), for all t ≥ 0. In this case, we can solve the differ-
ential equation

d∇X0
t = ∇H̄(X0

t )∇X0
t dt, ∇X0 = 1d×d,

explicitly. The solution is then given by

∇X0
t = exp

󰀕󰁝 t

0
∇H̄(X0

s ) ds

󰀖
, t ∈ [0, T ].

Since ∇H(X0
s ) is symmetric for all s ∈ [0, T ], so is ∇X0

t . For more general conditions for
the symmetry of ∇X0

t one may refer to Fetisov (2021).
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Proof of Proposition 21 Recall the definition of ϕ in Equation (10). Note that X0,t
T =

X0
T−t. Thus,

∂tX
0
T−t =− ∂tX

0
T−t = −H̄(X0

T−t),

∂2
tX

0
T−t =− ∂t(H̄(X0

T−t)) = ∇H̄(X0
T−t)H̄(X0

T−t),

∂t∇X0
T−t =−∇H̄(X0

T−t)∇X0
T−t, (40)

where the last equation follows from Theorem 29. Moreover,

∂t(H̄(X0,t
T )) = ∇H̄(X0,t

T )∂tX
0,t
T = −∇H̄(X0,t

T )H̄(X0,t
T ),

and the solution to this linear equation can be expressed in terms of the solution to associ-
ated matrix equation (40)

H̄(X0,t
T ) = ∇X0,t

T H̄, t ∈ [0, T ]. (41)

For all g ∈ G∞, we have

∂tv
g
t =

󰁛

i

∂ig(X
0,t
T )(∂tX

0,t
T )i,

∂2
t v

g
t =

󰁛

i,j

(∂ijg(X
0,t
T )(∂tX

0,t
T )i(∂tX

0,t
T )j + ∂ig(X

0,t
T )(∂2

tX
0,t
T )i)

∂kv
g
t =

󰁛

i

∂ig(X
0,t
T )(∂kX

0,t
T )i

∂k∂tv
g
t =

󰁛

i,j

(∂ijg(X
0,t
T )(∂tX

0,t
T )j(∂kX

0,t
T )i + ∂ig(X

0,t
T )(∂k∂tX

0,t
T )i)

∂klv
g
t =

󰁛

i,j

(∂ijg(X
0,t
T )(∂lX

0,t
T )j(∂kX

0,t
T )i + ∂ig(X

0,t
T )(∂klX

0,t
T )i).

Thus,

∂2
t v

g
t =〈∇2g(X0,t

T ), (∂tX
0,t
T )⊗2〉+ 〈∇g(X0,t

T ), ∂2
tX

0,t
T 〉,

〈∂t∇vgt , H̄〉 =〈∇2g(X0,t
T ),∇X0,t

T H̄ ⊗ ∂tX
0,t
T 〉+ 〈∇g(X0,t

T ), ∂t(∇X0,t
T )†H̄〉.

Moreover, note that for matrices A,B ∈ Rd×d we have 〈A,B〉 = tr(A†B). In particular, for
A,B,C, S ∈ Rd×d, using the cyclic property of the matrix trace,

〈ABC,S〉 = tr(C†B†A†S) = tr(B†A†SC†) = 〈B,A†SC†〉.

Thus,

〈∇2vgt , S〉 =〈(∇X0,t
T )†∇2g(X0,t

T )∇X0,t
T , S〉+ 〈∇g(X0,t

T ), 〈∇2X0,t
T , S〉〉

=〈∇2g(X0,t
T ),∇X0,t

T S(∇X0,t
T )†〉+ 〈∇g(X0,t

T ), 〈∇2X0,t
T , S〉〉, S ∈ Rd×d.

Further, note that by (41)

∇X0,t
T H̄⊗2(∇X0,t

T )† = ∇X0,t
T H̄H̄†(∇X0,t

T )† = H̄(X0,t
T )H̄(X0,t

T )† = H̄(X0,t
T )⊗2,
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and so

(∂tX
0,t
T )⊗2 + 2∇X0,t

T H̄ ⊗ ∂tX
0,t
T +∇X0,t

T H̄⊗2(∇X0,t
T )†

=H̄(X0
T−t)

⊗2 − 2H̄(X0,t
T )⊗2 + H̄(X0

T−t)
⊗2

=0.

Thus,

ϕg
t =

1

2
〈∇2vgt , H̄

⊗2〉+ 〈∂t∇vgt , H̄〉+ 1

2
∂2
t v

g
t

=〈∇g(X0,t
T ),

1

2
〈∇2X0,t

T , H̄⊗2〉+ ∂t(∇X0,t
T )†H̄ +

1

2
∂2
tX

0,t
T 〉.

For g(x) = xi we have ∇g(x) = ei, and therefore

ϕid
t =

1

2
〈∇2X0,t

T , H̄⊗2〉+ ∂t(∇X0,t
T )†H̄ +

1

2
∂2
tX

0,t
T , t ∈ [0, T ].

Moreover, using once more the equations (40), we may rewrite ϕid as follows

ϕid
t =

1

2
〈∇2X0,t

T , H̄⊗2〉 − (∇X0,t
T )†∇H̄(X0,t

T )†H̄ +
1

2
∇H̄(X0,t

T )H̄(X0,t
T ).

Furthermore, for an arbitrary g ∈ G∞ we have

ϕg
t = 〈∇g(X0,t

T ),ϕid
t 〉, t ∈ [0, T ].

Finally, suppose H̄ is conservative and ∇X0
t is symmetric everywhere. Then ∇H̄(X0

t ) is
symmetric as well for all t ∈ [0, T ], since higher partial derivatives commute. Hence,

∇X0
t ∇H̄(X0

t ) = (∂t∇X0
t )

† = ∂t∇X0
t = H̄(X0

t )∇X0
t , t ∈ [0, T ].

Consequently, by (41),

(∇X0,t
T )†∇H̄(X0,t

T )H̄ = ∇H̄(X0,t
T )∇X0,t

T H̄ = ∇H̄(X0,t
T )H̄(X0,t

T ),

and so ϕid simplifies, as desired.

For the remainder of the section we consider an objective function R ∈ C∞(Rd)∩G2(Rd)
with ∇R ∈ Lip∞(Rd) and set g = R. Since we are looking at a minimization problem the
objective function is arguably the most important test function g to consider. As we can
see in Theorem 4, the linear error terms for the various continuous-time approximations of
SGD have a particularly nice form in this case.
Proof of Theorem 4 By the last equation in Proposition 21, we have

ϕid
t (X0

t ) =
1

2
〈∇2X0,t

T (X0
t ),∇R(X0

t )
⊗2〉 − 1

2
∇2R(X0

T )∇R(X0
T ),

and further

ϕR
t (X

0
t ) = −1

2
〈∇2R(X0

T ),∇R(X0
T )

⊗2〉+ 1

2
〈∇R(X0

T ), 〈∇2X0,t
T (X0

t ),∇R(X0
t )

⊗2〉〉.
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Hence, by Theorem 2,

2 LE(XNCC) =

󰁝 T

0
ϕR
t (X

0
t ) dt

=− T 〈∇2R(X0
T ),∇R(X0

T )
⊗2〉

+

󰁝 T

0
〈∇R(X0

T ), 〈∇2X0,t
T (X0

t ),∇R(X0
t )

⊗2〉〉 dt.

Moreover, by Theorem 1 and 3, as well Proposition 21,

2 LE(X) =2LE(XNCC)

+

󰁝 T

0
〈∇2R(X0

T ),∇X0,t
T (X0

t )D̃(X0
t )∇X0,t

T (X0
t )〉 dt

+

󰁝 T

0
〈∇R(X0

T ), 〈∇2X0,t
T (X0

t ), D̃(X0
t )〉〉 dt

=〈∇2R(X0
T ),αT − T∇R(X0

T )
⊗2〉+ 〈∇R(X0

T ),βT 〉,

where D̃ = Σ−D. To prove (17), we estimate using Theorem 29

󰀂αT 󰀂F ≤
󰁝 T

0
󰀂∇X0,t

T (X0
t )󰀂2F 󰀂Σ(X0

t )−D(X0
T )󰀂F dt

≤d

󰁝 T

0

M2
T

M2
t

󰀂Σ(X0
t )−D(X0

t )󰀂F dt = dξDT .

Further, note that in our case (41) takes the form

∇R(X0
t ) = ∇X0

t ∇R, t ≥ 0,

and so
|∇R(X0

t )| ≤ 󰀂∇X0
t 󰀂F |∇R| ≤

√
dMt|∇R|, t ≥ 0.

Equation (45) in Theorem 29 implies

󰀂∇2X0,t
T (X0

t )󰀂F ≤d
MT

Mt

󰁝 T

t

Ms

Mt
󰀂∇3R(X0

s )󰀂F ds.

Note that 󰀂v×2󰀂F ≤ |v|2, v ∈ Rd. Further, for tensors A and B we have the following
generalization of the Cauchy-Schwarz inequality

󰀂〈A,B〉󰀂F ≤ 󰀂A󰀂F 󰀂B󰀂F .

Therefore,

|βT | ≤
󰁝 T

0
󰀂∇2X0,t

T (X0
t )󰀂F (|∇R(X0

t )|2 + 󰀂Σ(X0
t )−D(X0

t )󰀂F ) dt

≤d

󰁝 T

0

MT

M2
t

|∇R(X0
t )|2

󰀕󰁝 T

t
Ms󰀂∇3R(X0

s )󰀂F ds

󰀖
dt

+ d

󰁝 T

0

MT

M2
t

󰀂Σ(X0
t )−D(X0

t )󰀂F
󰀕󰁝 T

t
Ms󰀂∇3R(X0

s )󰀂F ds

󰀖
dt

≤d2TMT |∇R|2ζT + dM−1
T ξDT ζT .
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Thus, by the Cauchy-Schwarz inequality,

2|LE(X)| ≤|〈∇2R(X0
T ),αT − T∇R(X0

T )
⊗2〉|+ |〈∇R(X0

T ),βT 〉|
≤T󰀂∇2R(X0

T )󰀂F |∇R(X0
T )|2 + 󰀂∇2R(X0

T )󰀂F 󰀂αT 󰀂F
+ |∇R(X0

T )||βT |
≤dTM2

T |∇R|2󰀂∇2R(X0
T )󰀂F + d󰀂∇2R(X0

T )󰀂F ξDT
+
√
dMT |∇R|(d2TMT |∇R|2ζT + dM−1

T ξDT ζT )

=dTM2
T |∇R|2(󰀂∇2R(X0

T )󰀂F + d3/2|∇R|ζT )
+ dξDT (󰀂∇2R(X0

T )󰀂F +
√
d|∇R|ζT ).

6. Derivations and Proofs for Section 3

In this section we give proper justifications for the results of Section 3.

6.1 Quadratic Objectives

Here, we derive the linear error terms for the three continuous-time approximations when
the objective function is quadratic. This includes ordinary linear regression with SGD using
the population risk, but the derivation applies more generally.

Suppose we are given a symmetric and positive definite matrix κ ∈ Rd×d and a quadratic
form

R(θ) = θ†κθ + θ†c′ + d′, θ ∈ Rd,

where c′ ∈ Rd and d′ ∈ R. Then R has a global minimum θ∗ ∈ Rd and so we may rewrite
it as

R(θ) = 〈κ, (θ − θ∗)⊗2〉+ d, θ ∈ Rd

for some d ∈ R. Now, consider SGD with H̄(θ) = −∇R(θ). The gradient flow equation

dX0
t = −∇R(X0

t ) = −κ(X0
t − θ∗) dt,

has the unique solution

X0
t (θ) = e−tκ(θ − θ∗) + θ∗, t ∈ [0, T ],

for every initial condition θ ∈ Rd. Note that X0
t (θ) → X0

∞(θ) = θ∗, as t → ∞, for
every θ ∈ Rd. Further, ∇2R = κ,∇3R = 0,∇X0

t = e−tκ,∇2X0 = 0,∇X0,t
T (X0

t ) =
e−(T−t)κ,∇R(X0

T (θ)) = −e−Tκκ(θ − θ∗), and so

〈κ,∇R(X0
T (θ))

⊗2〉 =tr(κ†e−Tκκ(θ − θ∗)(θ − θ∗)†κ†e−Tκ†
)

=〈κ3e−2Tκ, (θ − θ∗)⊗2〉.
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Now, consider D ∈ {0,Σ(θ∗),Σ} and

dXh
t = −∇R(Xh

t ) +
󰁴

hD(Xh
t ) dWt, t ∈ [0, T ], h ∈ H.

By Theorem 4 we have

LE(X) =− 1

2
T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉+ 1

2
〈κ,αD

T 〉, (42)

where

αD
T =

󰁝 T

0
e−(T−t)κ(Σ(X0

t )−D(X0
t ))e

−(T−t)κ dt.

6.2 Derivation of the Covariance Matrix of the Gradient Noise

Recall the statistical learning setting in Section 3.1. Then for S(θ) := Cov[∇θRx,y(θ)] we
have

S(θ) =E[(〈θ,x〉 − y)2x⊗2]− (κ(θ − θ∗))⊗2

=E[(〈θ − θ∗,x〉 − ε)2x⊗2]− κ(θ − θ∗)⊗2κ†

=E[〈θ − θ∗,x〉2x⊗2]− 2E[ε〈θ − θ∗,x〉x⊗2]

+ E[ε2x⊗2]− κ(θ − θ∗)⊗2κ†

=〈µ4
x, (θ − θ∗)⊗2〉 − κ(θ − θ∗)⊗2κ† + σ2

εκ

=〈µ4
x − κ⊗2, (θ − θ∗)⊗2〉+ σ2

εκ

Recall Example 2 (a). We will now derive the explicit formula for S given there. Let τ be

a permutation of the set {1, . . . , l} and B ∈ Rd×l
an l-tensor. Then we write Bτ ∈ Rd×l

for

(Bτ )i1,...,il = Biτ(1),...,iτ(l) .

For example if B is matrix, then B† = B(12). Here we use the cycle notation for per-
mutations. By Isserli’s theorem (see Bose, 2021), the joint fourth moments of a centered
Gaussian satisfy

µ4
x = κ⊗2 + κ⊗2

(23) + κ⊗2
(13).

Given matrices U,A ∈ Rd×d we have

〈U⊗2
(23), A〉i,j =

󰁛

k,l

Ui,kUj,lAk,l

=UAU †,

〈U⊗2
(13), A〉i,j =

󰁛

k,l

Uk,jUi,lAk,l

=UA†U.

Therefore, S(θ) = 2κ(θ − θ∗)⊗2κ+ σ2
εκ.
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Proof of Proposition 5 Recall Equation (42). The first equation in Proposition 5 follows
by setting αT = 0 in the linear error expansion. Moreover,

Σ(X0
t )− Σ(θ∗) = 2

BEq

B
κe−tκ(θ − θ∗)⊗2e−tκκ,

and so

α
Σ(θ∗)
T =2

BEq

B

󰁝 T

0
e−(T−t)κκe−tκ(θ − θ∗)⊗2e−tκκe−(T−t)κ dt

=2T
BEq

B
(κe−Tκ(θ − θ∗))⊗2.

Therefore,

LE(XCC) =LE(XNCC) + T
BEq

B
〈κ, (κe−Tκ(θ − θ∗))⊗2〉

=T

󰀕
BEq

B
− 1

2

󰀖
〈κ3e−2Tκ, (θ − θ∗)⊗2〉.

Moreover,

LE(X0) =LE(XCC) +
1

2
〈κ,

󰁝 T

0
e−(T−t)κΣ(θ∗)e−(T−t)κ〉 dt

=LE(XCC) +
1

2B
σ2
ε〈κ2,

󰁝 T

0
e−2(T−t)κ dt〉.

Finally, since κ is positive definite, we may simplify

1

2B
σ2
ε〈κ2,

󰁝 T

0
e−2(T−t)κ dt〉 = 1

4B
σ2
ε〈κ2, (1d×d − e−2κT )κ−1〉 = 1

4B
σ2
ε〈κ, 1d×d − e−2κT 〉.

The following lemma is used in the proof of Theorem 6.

Lemma 23 Let a, b1, b2, B > 0 with b1 < b2 and set ei = −a+ bi
B Then,

sgn(|e1|− |e2|) = sgn

󰀕
B − b1 + b2

2a

󰀖
.

Proof Note that B ≤ bi
a if and only if ei ≥ 0, and B ≥ bi

a if and only if ei ≤ 0. Moreover,

b1
a

<
b1 + b2
2a

<
b2
a
.

Thus, we have |e1| < |e2| if and only if

(a) B ≤ b1
a and e1 < e2, or

(b) b2
a < B ≤ b1

a and e1 < −e2, or
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(c) b1
a < B ≤ b2

a and −e1 < e2, or

(d) B > b2
a and −e1 < −e2.

Since e1 < e2, case (d) can never occur and (a) is equivalent to B ≤ b1
a . Further, since

b1 < b2, (b) is also impossible. Moreover, (c) is equivalent to

b1
a

≤ B <
b1 + b2
2a

.

Putting (a) and (c) together yields

|e1| < |e2| ⇔ B <
b1 + b2
2a

.

Finally, since

|e1| = |e2| ⇔ e1 = −e2 ⇔ B =
b1 + b2
2a

,

the result follows.

Proof of Theorem 6 Set

a :=
1

2
T 〈κ3e−2Tκ, (θ−θ∗)⊗2〉, b := BEqT 〈κ3e−2Tκ, (θ−θ∗)⊗2〉, c := 1

4
σ2
ε〈κ, 1d×d−e−2κT 〉 > 0.

By definition and Proposition 5

LE(XNCC) = −a, LE(XCC) = −a+
b

B
, LE(X0) = −a+

b

B
+

c

B
.

Lemma 23 implies

B <
b

2a
⇔ |LE(XNCC)| < |LE(XCC)|, B >

b

2a
⇔ |LE(XNCC)| > |LE(XCC)|,

B <
b+ c

2a
⇔ |LE(XNCC)| < |LE(X0)|, B >

b+ c

2a
⇔ |LE(XNCC)| > |LE(X0)|,

B <
2b+ c

2a
⇔ |LE(XCC)| < |LE(X0)|, B >

2b+ c

2a
⇔ |LE(X0)| > |LE(XCC)|.

Further,

BEq =
b

2a
,

c

2a
=

σ2
ε〈κ, 1− e−2Tκ〉

4T 〈κ3e−2Tκ, (θ − θ∗)⊗2〉 , BGF =
2b+ c

2a
,

and so the cases (i) - (iv) are proven. Finally,

LE(XCC) = 0 ⇔ B =
b

a
= 2BEq,

LE(XCC) = 0 ⇔ B =
b+ c

a
=

2b+ c

2a
+

c

2a
= BGF +BGF − 2BEq,

proving (v) and (vi).
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Remark 24 There are few additional statements one can make, adding to the list in The-
orem 6. Firstly,

(i) X0 ≍ XNCC, if B = BGF −BEq,

(ii) X0 ≍ XCC, if B = BGF,

(iii) LE(X0) = 0, if B = 2(BGF −BEq).

Note however that these will almost never occur in practice because it is unlikely that BGF is
an integer. That is, unless one specifically designs the problem in such a way. On the other
hand, notice that BEq = 1 if x is Gaussian and BEq = 4 if d = 1 and x is exponentially
distributed and so the case (ii) in Theorem 6 can realistically occur in applications.

Moreover, note that for BEq = 0 we have Σ(θ) = Σ(θ∗) for all θ ∈ Rd and so
XCC = XNCC. In particular, this happens for d = 1 and if x has a symmetric Rademacher
distribution, since then Kurtx = 1 (recall example 2). Thus, we are left with the cases

(i) X0 ≺ XNCC, if B < BGF,

(ii) XNCC ≺ X0, if B > BGF.

6.3 Explicit Formulas for the Expected Risk of the Continuous-Time
Approximations of SGD for Linear Regression

Here, we derive explicit formulas for the expected (excess) population risk for four
continuous-time approximation of SGD for linear regression. These are used in the numerical
experiments to compute the continuous-time half of the weak error. Firstly, recall the
following stochastic differential equations from Section 3.2

dX0
t =− κ(X0

t − θ∗) dt,

dXNCC,h
t =− κ(Xh

t − θ∗) dt+

󰁵
h

B

󰁴
2BEqκ(XNCC,h

t − θ∗)⊗2κ+ σ2
εκ dWt,

dXCC,h
t =− κ(XCC,h

t − θ∗) dt+

󰁵
h

B
σ2
εκ dWt.

We also consider the following second-order diffusion approximation of SGD

dX2,h
t = −κ

󰀕
1d×d + κ

h

2

󰀖
(Xh

t − θ∗) dt+

󰁵
h

B

󰁴
2BEqκ(θ − θ∗)⊗2κ+ σ2

εκ dWt.

For simplicity we set d = 1 and so BEq = 1
2(Kurtx− 1). The next Proposition gives ex-

plicit formulas for the expected excess population risk E[Re(Yt)] for Y ∈ {X0, XNCC,h, XCC,h, X2,h},
where Re(θ) = 1

2(θ− θ∗)2. The actual population risk is also given by R = κRe+ σ2
ε
2 . Note

that

Re(θ)−Re(θ̃) =
1

κ
(R(θ)−R(θ̃)), θ, θ̃ ∈ R.
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Proposition 25 Define

ζh = 1− h

2B
κ(Kurtx− 1), ξh := ζh +

h

2
κ = 1 +

h

2B
κ(B + 1−Kurtx), h ∈ [0, 1).

Then, we have

Re(X0
t ) =e−2κtRe(θ),

E[Re(XCC,h
t )] =e−2κtRe(θ) +

hσ2
ε

4B
(1− e−2κt),

E[Re(XNCC,h
t )] =e−2κζhtRe(θ) +

hσ2
ε

4Bζh
(1− e−2κζht),

E[Re(X2,h
t )] =e−2κξhtRe(θ) +

hσ2
ε

4Bξh
(1− e−2κξht),

for all h ∈ (0, 1) and t ≥ 0.

Proof Recall that
X0

t = e−κt(θ − θ∗) + θ∗,

and so
Re(X0

t ) = e−2κtRe(θ).

Further, XCC,h is an Ornstein-Uhlenbeck process and so

XCC,h
t = X0

t +

󰁵
hσ2

ε

2B
W1−e−2κt .

Hence,

E[Re(XCC,h
t )] = e−2κtRe(θ) +

hσ2
ε

4B
(1− e−2κt).

Now, by Itô’s formula

dRe(XNCC,h
t ) =− κ(XNCC,h

t − θ∗)2 +
h

2B
κ2(Kurtx− 1)(XNCC,h

t − θ∗)2 +
h

2B
κσ2

ε dt+Mt

=

󰀕
h

B
κ2(Kurtx− 1)− 2κ

󰀖
Re(XNCC,h

t ) +
h

2B
κσ2

ε dt+Mt

where M is a martingale starting in 0, a.s. Hence, by optional stopping

dE[Re(XNCC,h
t )] = −2κζhE[Re(XNCC,h

t )] +
h

2B
κσ2

ε dt,

and so

E[Re(XNCC,h
t )] = e−2κζhtRe(θ) +

hσ2
ε

4Bζh
(1− e−2κζht).

Similarly,

E[Re(X2,h
t )] = e−2κξhtRe(θ) +

hσ2
ε

4Bξh
(1− e−2κξht).
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Appendix A. A Remark on Kurtosis

The kurtosis of a distribution is its standardized fourth central moment. That is, given a
random variable Z with EZ4 < ∞ it is defined by

KurtZ =
E[(Z − E[Z])4]

(VarZ)2
.

Note that KurtZ ≥ 1 by Jensen’s inequality. Further, kurtosis is invariant under affine
transformations, that is

Kurt(aZ + b) = Kurt(Z).

This property is of great importance in regards to machine learning, because this means
that the typical pre-processing steps of centering and dividing by the standard deviation do
not affect the kurtosis of the features (or labels). In other words, the presence of Kurtx in
the expression for Σ(θ) cannot be explained away by a standardization of x.

For convenience, here is a list of common distributions and their kurtosises.

Dist. Exp(λ) Poi(λ) χ2
n N (µ,σ2) U [a, b] Lognormal(µ,σ2)

Kurt. 9 3 + 1
λ 3 + 12

n 3 9
5 e4σ

2
+ 3e3σ

2
+ 3e2σ

2 − 3

Further, if p ∈ [0, 1] and Z ∼ Bin(1, p), then

KurtZ =
3p2 − 3p+ 1

p(1− p)

which has minimum 1 at 1
2 . That is, a symmetric Bernoulli attains the smallest possible

Kurtosis of 1.
If KurtZ = 3, then we say Z (or its distribution) is mesokurtic. If KurtZ > 3, then Z

is called platykurtic and we call Z leptokurtic for KurtZ < 3. These terms also delineate
the settings for the error expansions in Section 3.2.1.

Finally, we remark that the common interpretation of kurtosis as heaviness of the tails
of a distribution is somewhat misleading. Let us suppose the distribution of Z is unimodal,
for simplicity. Then, according to Balanda and MacGillivray (1988), kurtosis is “vaguely
[...] the location- and scale-free movement of probability mass from the shoulders of a distri-
bution into its center and tails [...]”, that is higher kurtosis implies both higher peakedness
as well as heavier tails. The term shoulders refers roughly to the area between the tails
and the center. For multimodal distributions, the interpretation of kurtosis is a lot more
involved or perhaps not even well understood. We will restrict our attention to unimodal
distributions only (which includes all previous examples).
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Appendix B. Results from (Stochastic) Analysis

Here we collect some known results from stochastic analysis that are needed for the proofs of
our main theorems. We adapt the presentation to our setting in order to make the present
article more self-contained.

Theorem 26 Let b,σ ∈ G1(Rd)∩Lip, such that b is Rd-valued and σ is Rd×d-valued. Then,
for every p ≥ 2, T > 0 and random field ϕ : Ω × [0, T ] × Rd → Rd with 󰀂ϕ∗󰀂p,T < ∞, the
stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = ϕ

admits a unique8 solution X on [0, T ], such that the family of solutions X = (Xt)t≥0 satisfies
󰀂X∗󰀂p,T < ∞ and

󰀂X∗󰀂p,T ≤ (1 + 󰀂ϕ∗󰀂p,T ).
The same bound holds if we consider I-indexed families b,σ,ϕ and X for some index set I.

Proof This essentially a standard result (see, for example, Kunita, 2004, Theorems 3.1 and
3.2). The extension to an index set I and from an initial value x ∈ Rd to a process ϕ is
discussed by Li et al. (2019, Theorem 18 and 19).

A (unordered) multi-index α ⊆ {1, . . . , d} is a multi-subset of {1, . . . , d}, that is a
function α : {1, . . . , d} → N0. The size #α of α is given by

#α :=

d󰁛

j=1

α(j).

Every subset A ⊆ {1, . . . , d} becomes a multi-set by identifying it with its indicator function.
Given multi-indices α and β we write α ≤ β if α(j) ≤ β(j) for all j ∈ {1, . . . , d} and in that
case the multi-index β − α is well defined by component-wise. Further, we write j ∈ α if
{j} ≤ α and set α− j := α− {j} in that case.

If a function f : Rd → R is l-times continuously differentiable, then by Schwarz’s theorem
the partial derivative with respect to a multi-index α with #α ≤ l is well-defined recursively
by

∂αf = ∂j∂α−jf, ∂∅f = f.

where j is any j ∈ {1, . . . , d} with j ∈ α. Given x ∈ Rd and a multi-index α we define

xα :=

d󰁜

j=1

x
α(j)
j .

Theorem 27 Let l ∈ N, p ≥ 1 and b,σ ∈ G1(Rd) ∩ Lipl, such that b is Rd-valued and σ is
Rd×d-valued. Let x ∈ Rd, s ∈ [0, T ] and X be the unique solution to the family of stochastic
differential equations

dXt = bt(Xt) dt+ σt(Xt) dWt, Xs = x.

8. Of course, here we imply uniqueness up to indistinguishability.
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Then X is l-times continuously differentiable w.r.t. x at any (t, x) ∈ [s, T ] × Rd, a.s. and
for every multi-index α with 0 < #α ≤ l, ∂αX satisfies the stochastic differential equation

∂αXt = ψα +

󰁝 t

s
∇bu(Xu)∂αXu du+

󰁝 t

s
∇σu(Xu)∂αXu dWu,

where 󰀂ψ∗
α󰀂p,T ∈ G(Rd) for all p ≥ 2. Moreover,

E[∂αXt] = ∂αE[Xt],

for all t ≥ 0. Again, the results extend readily to I-indexed coefficients and processes for
some index set I.

Proof For the proof we refer to Kunita (2004, Theorem 3.4). More specifically, for every
l ∈ N, assuming the result holds for all l′ < l define

Y := (X, ∂1X, . . . ∂dX, ∂1,1X, . . . , ∂1,dX, ∂2,1X, . . . , ∂d,...,dX)†,

where the last partial derivative is of the order l − 1. Then Y satisfies the stochastic
differential equation

Y =

󰀳

󰁅󰁅󰁅󰁃

x
e1
...
0

󰀴

󰁆󰁆󰁆󰁄
+

󰀳

󰁅󰁅󰁅󰁃

0
ψ1
...

ψd,...,d

󰀴

󰁆󰁆󰁆󰁄
+

󰁝 t

s

󰀳

󰁅󰁅󰁅󰁃

bu(Xu)
∇bu(Xu)∂1Xu

...
∇l−1bu(Xu)∂d,...,dXu

󰀴

󰁆󰁆󰁆󰁄
du

+

󰁝 t

s

󰀳

󰁅󰁅󰁅󰁃

σu(Xu)
∇σu(Xu)∂1Xu

...
∇l−1σu(Xu)∂d,...,dXu

󰀴

󰁆󰁆󰁆󰁄
dWu,

where the processes ψ1, . . . ,ψd,...,d consist of additional integrals
󰁕 t
s du and

󰁕 t
s dWu of the

remaining terms induced by repeated application of the chain rule. The terms within󰁕 t
s du and

󰁕 t
s dWu respectively are seen to be functions of u and the state Y , satisfying the

conditions given by Kunita (2004, Theorem 3.4). By applying it again to the SDE governing
Y the result follows via induction on l.

We denote the spectral norm of a square matrix or linear map A by 󰀂A󰀂2. Note that for

any linear map Φ : Rd×k → Rd×k
, where Rd×k

is equipped with the Frobenius norm, the
operator norm is given by

󰀂Φ󰀂2op = sup
󰀂A󰀂F=1

󰀂ΦA󰀂2F = sup
󰀂A󰀂F=1

〈Φ†ΦK,K〉 = λmax(Φ
†Φ) = 󰀂Φ󰀂22,

where Φ† is the adjoint operator of Φ. Hence,

󰀂ΦK󰀂F ≤ 󰀂Φ󰀂2󰀂K󰀂F , K ∈ Rd×k
.
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Lemma 28 Let A : [0, T ] → Rd×d be a family of symmetric matrices and Φ : [0, T ] →
Rd×d ∈ C1 a solution to the non-autonomous matrix linear ODE

dΦt = AtΦt dt, Φ0 = 1d×d.

Then,

󰀂ΦtΦ
−1
s 󰀂2 ≤ exp

󰀕󰁝 t

s
λmax(Ar) dr

󰀖
, 0 ≤ s ≤ t ≤ T.

This is a combination of special cases of Lemma 1b and 1c by Strom (1975).

Theorem 29 Let b : Rd → Rd ∈ Lip2 and X : [0, T ] × Rd → Rd be the unique solution to
the ordinary differential equation

dXt = b(Xt) dt,

in the sense that
dXt(x) = b(Xt(x)) dt, X0(x) = x,

for all x ∈ Rd. Then X : [0, T ]× Rd → Rd ∈ C2([0, T ]× Rd), with

d∇Xt = ∇b(Xt)∇Xt dt, ∇X0 = 1d×d, (43)

and

d∇2Xk
t = (∇Xt)

†∇2bk(Xt)∇Xt +

d󰁛

l=1

∂lbk(Xt)∇2X l
t dt, ∇2Xk

0 = 0, k ∈ {1, . . . , d}.

(44)
Further, suppose b = −∇R and define

Mt := exp

󰀕
−
󰁝 t

0
λmin(∇2R(Xs)) ds

󰀖
.

Then, 󰀂∇Xt󰀂2 ≤ Mt, and

󰀂∇2Xt󰀂F ≤dMt

󰁝 t

0
Ms󰀂∇3R(Xs)󰀂F ds, (45)

for all t ∈ [0, T ].

Proof Since b ∈ Lip2, we have X : [0, T ] × Rd → Rd ∈ C2([0, T ] × Rd) (see Teschl, 2012,
Theorem 2.10). Since higher partial derivatives can be exchanged, we have

∂t∂jX
i
t =∂j∂tX

i
t =

d󰁛

k=1

∂kbi(Xt)∂jX
k
t , i, j ∈ {1, . . . , d},

and hence (43) follows. Now, let us consider ∇2X. We compute

∂t∂ijX
k
t =∂i

󰀣
d󰁛

l=1

∂lbk(Xt)∂jX
l
t

󰀤
=

d󰁛

m,l

∂mlbk(Xt)∂iX
m
t ∂jX

l
t +

d󰁛

l=1

∂lbk(Xt)∂ijX
l
t ,
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for i, j, k ∈ {1, . . . , d}. Thus, (44) holds true. Now, assume b = −∇R. Lemma 28 implies
󰀂∇Xt󰀂2 ≤ Mt. Denote by L(V, V ) the set of linear operators V → V for some vector space
V . Define a family of linear operators A : [0, T ] → L(Rd×d×d,Rd×d×d) by

At(K)ijk =

d󰁛

l=1

∂l∂iR(Xt)Kljk, t ∈ [0, T ],K ∈ Rd×d×d, i, j, k ∈ {1, . . . , d}.

Further, define f : [0, T ]× Rd → Rd×d×d by

(ft)ijk = ((∇Xt)
†∇3R·,·,k(Xt)∇Xt)ij , t ∈ [0, T ], i, j, k ∈ {1, . . . , d}.

Recall that ∇2Xijk = ∂jkX
i. Therefore, we can write (44) as

d∇2Xt = −At(∇2Xt)− ft. (46)

Fix t ≥ 0. Let {v1, . . . , vd} be an eigenbasis of ∇2R(Xt) with corresponding eigenvalues
λ1, . . . ,λd. Then for all i, j, k ∈ {1, . . . , d}, define Ki,j,k ∈ Rd×d×d by

Ki,j,k
l,m,n = vilδj,mδk,n,

where δ is the Kronecker delta. Then (see also user1551 on Math Stack Exchange, 2023),

At(K
ijk)lmn =

d󰁛

p=1

∇2R(Xt)lpK
ijk
pmn =

d󰁛

p=1

∇2R(Xt)lpK
ijk
pmn

=λiv
i
lδj,mδk,n = λiK

ijk
lmn.

Thus, Ki,j,k is an eigenvector of At with corresponding eigenvalue λi. Further, the K
i,j,k are

linearly independent and thus form an eigenbasis of At. In particular, the set of eigenvalues
for At and ∇2R(Xt) coincide, and we have λmin(At) = λmin(∇2R(Xt)). Further, suppose
Φ : [0, T ] → L(Rd×d×d,Rd×d×d) is a solution to the operator-valued ODE

dΦt = −At(Φt), Φ0 = idRd×d×d .

Then, by Lemma 28,

󰀂ΦtΦ
−1
s 󰀂2 = 󰀂Φ̃tΦ̃

−1
s 󰀂2 ≤ exp

󰀕󰁝 t

s
λmax(−∇2R(Xs)) ds

󰀖
=

Mt

Ms
,

where Φ̃t is a matrix representing Φt in some basis of Rd×d×d. Further, the solution to (46)
is given by

∇2Xt =

󰁝 t

0
ΦtΦ

−1
s fs ds.

We have

󰀂ft󰀂2F =

d󰁛

k=1

󰀂(ft)··k󰀂2F ≤ 󰀂∇Xt󰀂4F
d󰁛

k=1

󰀂∇3R·,·,k(Xt)󰀂2F = 󰀂∇Xt󰀂4F 󰀂∇3R(Xt)󰀂2F ,
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and so

󰀂∇2Xt󰀂F ≤
󰁝 t

0
󰀂ΦtΦ

−1
s 󰀂2󰀂fs󰀂F ds

≤
󰁝 t

0

Mt

Ms
󰀂∇Xs󰀂2F 󰀂∇3R(Xs)󰀂F ds

≤dMt

󰁝 t

0
Ms󰀂∇3R(Xs)󰀂F ds,

noting that 󰀂A󰀂F ≤
√
d󰀂A󰀂2 for any square matrix A.

Given a set A the Kleene closure is the set of all A-tuples of arbitrary length, that is

A∗ :=
󰁞

n≥0

An,

where A0 = {()}. We let |(a1, . . . , an)| = n and |()| = 0 be the length of such a tuple.

We care about the set of (ordered) multi-indices {0, . . . , d}∗, where Rd is the state
space of W . Note that we have (1, 2) ∕= (2, 1), unlike the case of (unordered) multi-indices
considered before. Given a multi-index α ∈ {0, . . . , d}∗ of length l = |α| > 0 we define the
left- and right deletions

α− = (α1, . . . ,αl−1),
−α = (α2, . . . ,αl) ∈ {0, . . . , d}l−1.

Let H() be the set of all continuous stochastic processes and define

H(0) = {X ∈ H() :

󰁝 t

0
|Xs| ds < ∞, a.s., t ≥ 0},

H(1) = {X ∈ H() :

󰁝 t

0
|Xs|2 ds < ∞, a.s., t ≥ 0}.

Also for convenience set H(j) := H(1) for all j ∈ {1, . . . , d}.
We let W 0

t = t, t ≥ 0. Given a progressively measurable stochastic process X : Ω ×
[0,∞) → Rd and α ∈ {0, . . . d}∗ with l = |α| we define the multiple Itô integral

󰁝 t

s
X dWα =

󰀫
X, |α| = 0,󰁕 t
s

󰁕 u
s X dWα−

dWαl , |α| > 0,

as long as X ∈ Hα, where the latter is the case exactly when

󰁝 ·

s
X dWα− =

󰀕󰁝 t

s
X dWα−

󰀖

t≥s

∈ H(αl).
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Further, given f ∈ C1,2([0,∞)× Rd) define

AXf := L0f :=
∂f

∂t
+∇f †b+

1

2
tr(∇2fσσ†),

Ljf :=σ†
j,·∇f =

d󰁛

k=1

σk,j∂xk
f, j ∈ {1, . . . , d}.

For any α ∈ {0, . . . , d}∗ set

α(0) := #{j : αj = 0}.

Given f ∈ Cα(0),2(|α|−α(0))([0,∞)× Rd) we define the Itô coefficient function

Lαf :=

󰀫
f, |α| = 0,

Lα1(L−αf), |α| > 0.

Theorem 30 Let b,σ ∈ G1(Rd) ∩ Lip, such that b is Rd-valued and σ is Rd×d-valued,
0 ≤ s ≤ t ≤ T, x ∈ Rd and let X be the unique solution to the stochastic differential
equation

dXt = bt(Xt) dt+ σt(Xt) dWt, Xs = x.

on [s, T ]. Then given f ∈ Cα(0),2(|α|−α(0))([0,∞)× Rd) we have

f(T,XT ) =
󰁛

|α|≤l

󰁝 T

s
Lαf(s,Xs) dW

α +
󰁛

|β|=l+1

󰁝 T

s
Lαf(·, X·) dW

α.

Further, applying expectation yields

Ef(T,XT ) =

l󰁛

i=0

(T − s)i

i!
Ai

Xf(s,Xs)

+

󰁝 T

s

󰁝 u1

s
· · ·

󰁝 ul

s
EAl+1

X f(ul+1, Xul+1
) dul+1 . . . du1.

Proof We refer to Kloeden and Platen (1995, Theorem 5.5.1. page 182). All the iterated
integrals are defined since Lαf(·, X·) ∈ Hα for all α with |α| ≤ l. As the hierarchical set
choose A := {α : |α| ≤ l}. For the second statement note that

󰁝 T

s

󰁝 u1

s
· · ·

󰁝 ui−1

s
1 dui . . . du1 =

1

i!
(T − s)i,

and that any integral
󰁕 T
s dWα with α(0) < |α| has expectation zero.

Lemma 31 Consider the stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt,
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where
b : [0, T ]× Rd → Rd,σ : [0, T ]× Rd → Rd×d ∈ G1([0, T ]× Rd) ∩ Lip

and additionally
b,σ ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd).

Let f : [0, T ]× Rd → R ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd). Then,

Ai
Xf ∈ Gl−2i ∩ C l′−i,l−2i([0, T ]× Rd),

for all i ∈ N with i ≤ l
2 ∧ l′, where AX is the infinitesimal generator of X.

Proof Suppose the statement holds for all i′ < i. Then Ai
Xf = AXg for some

g ∈ C l′−(i−1),l−2(i−1)([0, T ]× Rd)

with g ∈ Gl−2(i−1)(Rd). Then,

b†∇g ∈ Gl−2i+1(Rd), tr[σ†σ∇2g] =

d󰁛

j,k

(σ†σ)j,k∂j,kg ∈ Gl−2i(Rd),

and ∂tg ∈ C l′−i,l−2i+2([0, T ]× Rd). Combining all three statements yields the result.
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