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Abstract

We consider a class of diffusion processes with finite-dimensional parameters and partially
observed at discrete time instances. We propose a methodology to unbiasedly estimate
the expectation of a given functional of the diffusion process conditional on parameters
and data. When these unbiased estimators with appropriately chosen functionals are em-
ployed within an expectation-maximization algorithm or a stochastic gradient method, this
enables statistical inference using the maximum likelihood or Bayesian framework. Com-
pared to existing approaches, the use of our unbiased estimators allows one to remove
any time-discretization bias and Markov chain Monte Carlo burn-in bias. Central to our
methodology is a novel and natural combination of the multilevel randomization schemes
developed by Mcleish (2011); Rhee and Glynn (2015) and the unbiased Markov chain Monte
Carlo methods of Jacob et al. (2020a,b), and the development of new couplings of multi-
ple conditional particle filters of Andrieu et al. (2010). We establish under assumptions
that our estimators are unbiased and have finite variance. We illustrate various aspects
of our method on an Ornstein–Uhlenbeck model, a logistic diffusion model for population
dynamics, and a neural network model for grid cells.

Keywords: diffusions, unbiased estimation, particle filters, coupling, stochastic gradient
methods

1. Introduction

1.1 Model and Observations

We consider a diffusion process (Xt)t≥0 in Rd, defined as the solution of the stochastic
differential equation (SDE)

dXt = aθ(Xt)dt+ σ(Xt)dWt, X0 = x? ∈ Rd, (1)

where (Wt)t≥0 is a standard Brownian motion in Rd. We will assume that the drift function
a : Θ × Rd → Rd depends on a vector of unknown parameters θ ∈ Θ ⊆ Rdθ , but the
diffusion coefficient σ : Rd → Rd×d does not. When the diffusion coefficient is parameter
dependent, one can deal with this in some cases by finding a suitable transformation of
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the process. For example, if σ is diagonal matrix of coefficients to be inferred, then a
simple rescaling would yield a transformed process with unit diffusion coefficient. Tackling
the general case requires a more involved treatment; we discuss how to adapt our proposed
methodology in Section A of the supplementary material. The drift and diffusion coefficients
are assumed to be regular enough for (1) to admit a (weakly) unique solution for all t > 0;
more precise regularity conditions needed in our analysis will be stated. The use of SDE
models is ubiquitous in engineering, finance, machine learning, and many areas of science.
We model observations Yt1 , . . . , YtP ∈ Rdy at a collection of time instances 0 ≤ t1 < · · · <
tP = T as conditionally independent given the latent diffusion process X = (Xt)0≤t≤T ,
with conditional density g : Θ× Rd × Rdy → R+, i.e. Yt ∼ gθ(·|Xt) for all t ∈ {t1, . . . , tP },
that can be evaluated. For notational ease, we assume that observations are given at unit
times, i.e. tp = p for p ∈ {1, . . . , P} and P = T , which covers the case of regularly observed
data by a time rescaling. Irregularly observed data can also be accommodated with minor
modifications to our presentation and considered for an application in Section 5.2. We note
that this partially observed setting is related to but distinct from the discretely observed
case where the diffusion process is observed without error (Sørensen, 2004). Extension of
our methodology to continuous-time observation models is straightforward and illustrated
on an application in Section 5.3.

Given a realization y1:T = (yt)
T
t=1 of the observation process, the marginal likelihood is

pθ(y1:T ) = Eθ

[
T∏
t=1

gθ(yt|Xt)

]
, (2)

where Eθ denotes expectation with respect to (w.r.t.) the probability measure Pθ, induced
by the solution of (1) on Cd([0, T ]), the space of continuous mappings from [0, T ] to Rd. For
most problems of practical interest, statistical inference for diffusion models is challenging
for two main reasons. Firstly, as most diffusion processes do not have analytically tractable
transition densities, one has to resort to time-discretization. Secondly, even if transition
densities are available or a time-discretization scheme is employed, the expectation over
the latent process (conditional on observations) is usually intractable, and one has to rely
on Monte Carlo approximations. Existing approaches to these two issues (Beskos et al.,
2006b, 2009; Fearnhead et al., 2008) are mostly based on the exact algorithm of Beskos
and Roberts (2005); Beskos et al. (2006a) that allows exact simulation of diffusion sample
paths without any time-discretization bias. Although these simulation techniques are very
elegant, they require a user to know various properties of the diffusion process, which may
not always be the case in practice.

1.2 Unbiased Estimation and Parameter Inference

In this paper, we propose to deal with the above-mentioned difficulties using a novel compu-
tational framework by bridging the randomized multilevel Monte Carlo (MLMC) schemes
developed by Mcleish (2011); Rhee and Glynn (2015) to remove the time-discretization bias
with the unbiased Markov chain Monte Carlo (MCMC) methods of Jacob et al. (2020a,b)
to eliminate the MCMC burn-in bias. Our proposed methodology allows one to unbiasedly
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estimate conditional expectations of the form

S(θ, θ?) = Eθ? [Gθ(X) | y1:T ] , (3)

for a given functional Gθ. We will write S(θ) = S(θ, θ) and choose Gθ according to the
parameter inference algorithm of interest. We consider two types of algorithms in which
(3) can be used: the expectation-maximization (EM) algorithm (Dempster et al., 1977) and
gradient-based methods for maximum likelihood estimation and Bayesian inference.

EM algorithm. Within an EM algorithm to compute the maximum likelihood estimator
(MLE) θ̂ ∈ arg maxθ∈Θ pθ(y1:T ), the expectation step corresponds to S(θ, θ?) with Gθ given
by the complete-data log-likelihood, and the expectation is w.r.t. the law of X conditioned
on current parameters θ? and observations y1:T . Approximating the expectation step with
unbiased estimators would yield a Monte Carlo EM algorithm (Wei and Tanner, 1990).

Gradient-based methods. To employ gradient-based algorithms, we shall consider ap-
proximations of the score function ∇θ log pθ(y1:T ), where ∇θ denotes the gradient w.r.t. the
parameter θ. We will show that the score can be represented as S(θ) with Gθ given by the
gradient of the complete-data log-likelihood. If unbiased estimators Ŝ(θ) of S(θ) can be
constructed, one can compute the MLE with stochastic gradient ascent (SGA)

θm = θm−1 + εmŜ(θm−1), m = 1, 2, . . . , (4)

where (εm)∞m=1 is a sequence of learning rates. Similarly, in the Bayesian framework, one
can sample from the posterior distribution p(dθ|y1:T ) ∝ p(θ)pθ(y1:T )dθ using the stochastic
gradient Langevin dynamics (SGLD) (Welling and Teh, 2011)

θm = θm−1 +
1

2
εm

(
∇θ log p(θm−1) + Ŝ(θm−1)

)
+ ε1/2

m ηm, m = 1, 2, . . . , (5)

where (ηm)∞m=1 is a sequence of independent standard Gaussian random vectors in Rdθ .
The use of unbiased estimators of the score function within stochastic gradient methods is
particularly appealing. Under suitable assumptions and an appropriate choice of learning
rates (εm)∞m=1, unbiased scores ensures convergence of the SGA iterates (4) to a local
maxima of the likelihood pθ(y1:T ) (Kushner and Yin, 2003), and convergence of the SGLD
and its ergodic averages to the posterior distribution and posterior expectations, respectively
(Teh et al., 2016). In contrast, the use of biased gradient estimates leads to asymptotic biases
that have to be studied (Tadić and Doucet, 2017).

1.3 Proposed Methodology

Our approach first relies on the idea of debiasing by randomizing over the level of the
time-discretization (Mcleish, 2011; Rhee and Glynn, 2015). Unbiased estimators based on
randomized MLMC can also attain better convergence rates than Monte Carlo approaches
based on the finest discretization level, and can be made the same as standard MLMC
under simple modifications (Vihola, 2018). When employing randomized MLMC schemes,
we shall assume access to unbiased estimates of differences between successive levels of
discretization, i.e. Sl − Sl−1 where

Sl(θ, θ?) = Elθ?
[
Glθ(X0:T ) | y1:T

]
(6)
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denotes an approximation of (3) at discretization level l ∈ N. In (6), Glθ is the finite-
dimensional approximation of Gθ and X0:T is distributed according to πlθ? , the law of the
time-discretized process X0:T at level l conditioned on θ? and y1:T . The specific definitions of
Glθ and πlθ? will be given in Section 2.2. Unbiased estimators of each increment Il = Sl−Sl−1

are not easily obtained as exact sampling from the posterior distributions πl−1
θ?

and πlθ? is not
straightforward. Although MCMC methods targeting these posteriors can be considered,
their routine application will lead to biased estimators of Il due to MCMC burn-in biases.
By employing recent advances in Jacob et al. (2020a,b) that builds on earlier work by Glynn
and Rhee (2014), one can remove the MCMC burn-in bias and estimate Sl unbiasedly by
simulating a pair of MCMC chains targeting πlθ? that are coupled in such a way that they
meet exactly after some random number of iterations, and remain faithful after meeting. For
the randomized MLMC schemes to return estimators of S with finite variance, the variance
of estimated increments has to decrease sufficiently fast to zero with the discretization
level l. Hence simply applying unbiased MCMC to estimate Sl−1 and Sl independently is
inadequate, as this would lead to estimators of S with infinite variance. This motivated us
to propose an extension the unbiased MCMC framework to allow the terms Sl−1 and Sl
in Il to be estimated in a dependent manner, and employ the estimated increments within
randomized MLMC. This requires simulating a quadruple of MCMC chains, with a pair
targeting πl−1

θ?
and another pair targeting πlθ? , which are appropriately coupled so that the

pair of chains for each discretization level can meet and remain faithful, and the pairs of
chains between successive discretization levels are close for large levels l (see Figure 1 for a
schematic illustration). After meeting has occurred for both pairs of chains on discretization
levels l− 1 and l, our framework reduces to having a single pair of coupled chains targeting
πl−1
θ?

and πlθ? , as one would have in a MLMC approach (Jasra et al., 2017). Therefore
we believe our work provides a natural combination of the randomized MLMC and the
unbiased MCMC frameworks. It extends the application of randomized MLMC (Mcleish,
2011; Rhee and Glynn, 2015) to compute expectations with respect to infinite-dimensional
laws that are conditioned on data, and unbiased MCMC (Jacob et al., 2020a,b) to handle
infinite-dimensional models that require discretization. Combining these two computational
paradigms has also been recently explored by Wang and Wang (2023) for other statistical
problems.

While the focus of this article is partially observed diffusions, our computational frame-
work is more generally applicable to other settings where it is necessary to discretize a
model during implementation; see Heng et al. (2023) for an application to Bayesian inverse
problems. After selecting an appropriate MCMC method for the problem of interest, the
main challenges are to then design a suitable coupling of a quadruple of MCMC chains and
prove that it has the above-mentioned properties. We will focus on the conditional particle
filter (CPF) of Andrieu et al. (2010), which is a MCMC algorithm targeting πlθ? with good
ergodicity properties (Lindsten et al., 2015; Andrieu et al., 2018). Each iteration of CPF
involves simulating a particle filter conditioned such that the current trajectory survives all
resampling steps; we refer readers who are unfamiliar with particle filtering to the recent
textbook by Chopin and Papaspiliopoulos (2020) on the subject. In addition to our pro-
posed estimation framework, the construction of an appropriate coupling for CPF chains is
another key methodological contribution. This involves couplings of time-discretizations of
the diffusion process and couplings of resampling steps that are necessary to prevent weight
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Figure 1: Schematic illustration of the proposed 4-CCPF algorithm. In the displayed equa-
tion, L is an independent random variable with probability mass function (Pl)

∞
l=0

supported on N0, Pl =
∑∞

k=l Pk denotes the cumulative tail probability, and Ŝl is
an unbiased estimator of Sl.

degeneracy within the CPFs. While the former can be achieved using common Brownian
increments which is standard in MLMC (Giles, 2008), the latter requires novel schemes
to induce adequate dependencies between a quadruple of CPF chains as simple strategies
based on common random variables will be inadequate. We provide a thorough analysis to
establish, under assumptions, that our proposed methodology provides unbiased estimators
of S with finite variance. This analysis involves a detailed study of the dependencies be-
tween the CPF chains induced by our proposed couplings and constitutes one of our main
theoretical contributions.

This article is structured as follows. In Section 2.1, we begin by relating the expectation
step of an EM algorithm and the score function needed in gradient-based algorithms to
the problem of computing conditional expectations of the form (3). We then introduce
discrete-time approximations (6) in Section 2.2. Our proposed methodology to unbiasedly
estimate (3) is presented in Section 3; Section 3.1 outlines our overall framework, and the
rest of Section 3 contains specific details of our coupling construction for CPF. We establish
various properties of our unbiased estimators under assumptions in Section 4 and illustrate
multiple aspects of our methodology on three applications in Section 5. The proof of our
results are detailed in the supplementary material. An R package to reproduce all numerical
results can be found at https://github.com/jeremyhengjm/UnbiasedScore.

2. Parameter Inference and Conditional Expectations

2.1 Continuous-Time Representation

We first relate the expectation step of an EM algorithm and the score function required in
gradient-based algorithms with the task of computing conditional expectations (3) for an
appropriate choice of functional Gθ. In the following, we write A∗ to denote the transpose
of A and ‖x‖p to denote the Lp-norm of a vector x ∈ Rd. As the law Pθ depends on the
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parameter θ, we consider a change of measure to the law Q induced by dXt = σ(Xt)dWt

with X0 = x? on the space Cd([0, T ]). Since Pθ and Q are equivalent, by Girsanov theorem
(Rogers and Williams, 2000, p. 79) the corresponding Radon–Nikodym derivative is

dPθ
dQ

(X) = exp

{
−1

2

∫ T

0
‖bθ(Xt)‖22dt+

∫ T

0
bθ(Xt)

∗Σ(Xt)
−1σ(Xt)

∗dXt

}
, (7)

where Σ(x) = σ(x)σ(x)∗ and bθ(x) = Σ(x)−1σ(x)∗aθ(x) for x ∈ Rd. Therefore we can write
the complete-data likelihood under Q as

dPθ
dQ

(X)
T∏
t=1

gθ(yt|Xt). (8)

The purpose of Q is to act as a reference measure to allow us to define densities; it will not
play a role in the simulation algorithms that we will later introduce.

EM algorithm. At each iteration of an EM algorithm with current parameters θ?, one
determines the parameters in the next iteration by computing arg maxθ∈ΘQ(θ, θ?), where
Q(θ, θ?) denotes the expectation of the complete-data log-likelihood w.r.t. the law of X
conditioned on θ? and y1:T . By defining S(θ, θ?) in (3) with the functional

Gθ(X) = log
dPθ
dQ

(X) +

T∑
t=1

log gθ(yt|Xt), (9)

the EM algorithm is equivalent to computing arg maxθ∈Θ S(θ, θ?) as it follows from (8) that
S(θ, θ?) and Q(θ, θ?) differ by a term that does not depend on θ.

Gradient-based methods. Next we consider the score function ∇θ log pθ(y1:T ). Under the
above change of measure, the marginal likelihood in (2) can be written as

pθ(y1:T ) = EQ

[
dPθ
dQ

(X)
T∏
t=1

gθ(yt|Xt)

]
. (10)

We will assume throughout the article that θ 7→ aθ(x) and θ 7→ gθ(y|x) are differentiable
for each (x, y) ∈ Rd ×Rdy . Under mild regularity conditions and thanks to the fact that Q
does not depend on θ, we may differentiate (10) and, using Fisher’s identity (Cappé et al.,
2006, p. 353), we obtain

∇θ log pθ(y1:T ) = ∇θEQ

[
dPθ
dQ

(X)

T∏
t=1

gθ(yt|Xt)

]/
pθ(y1:T )

= EQ

[{
∇θ log

dPθ
dQ

(X) +
T∑
t=1

∇θ log gθ(yt|Xt)

}
dPθ
dQ

(X)
T∏
t=1

gθ(yt|Xt)

]/
pθ(y1:T )

= Eθ

[{
∇θ log

dPθ
dQ

(X) +
T∑
t=1

∇θ log gθ(yt|Xt)

}
| y1:T

]
. (11)
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X0 = x? X∆l · · · X1 X1+∆l · · · X2 X2+∆l · · · XT

Y1 · · · Y2 · · · YT

f lθ

gθ gθ gθ

Figure 2: State space model with time-discretization step-size ∆l = 2−1.

Hence we can represent the score function as S(θ) = S(θ, θ) in (3) with the functional

Gθ(X) = ∇θ log
dPθ
dQ

(X) +
T∑
t=1

∇θ log gθ(yt|Xt). (12)

By differentiating (7), the first gradient term can be written as

∇θ log
dPθ
dQ

(X) = −
∫ T

0
{∇θaθ(Xt)}∗Σ(Xt)

−1aθ(Xt)dt+

∫ T

0
{∇θaθ(Xt)}∗Σ(Xt)

−1dXt,

where ∇θaθ(x) ∈ Rd×dθ denotes the Jacobian matrix w.r.t. θ.
The above relations also hold in more general settings under small modifications to the

functionals (9) and (12). Firstly, although we have assumed a deterministic initial condition
of X0 = x? to simplify our presentation, random initializations can also be accommodated.
Assuming that X0 ∼ µθ is initialized from a distribution µθ on Rd that admits a differ-
entiable density (w.r.t. the d-dimensional Lebesgue measure), the terms logµθ(X0) and
∇θ logµθ(X0) should be added to the expressions in (9) and (12) respectively. This fol-
lows by conditioning on the value of X0 and applying the above arguments. Secondly, our
methodology can also handle continuous-time observation models. In this case, the sums∑T

t=1 log gθ(yt|Xt) in (9) and
∑T

t=1∇θ log gθ(yt|Xt) in (12) would be replaced by the con-
ditional log-likelihood log pθ(y1:T |X) and its gradient ∇θ log pθ(y1:T |X); see Section 5.3 for
an application where the observational model is given by an inhomogenous Poisson point
process.

When the diffusion coefficient also depends on unknown parameters, it may be possible
to find an invertible transformation Ψ : Rd → Rd, such that the transformed process Xt =
Ψ(Zt) satisfies an SDE with a diffusion coefficient that is not parameter-dependent. We
will illustrate two examples of this principle in Section 5 using the Lamperti transformation
and a simple rescaling of each component of the diffusion process. In more general cases
where such transformations are not available, one has to seek a different representation of
the expectation step of EM and the score function as the above change of measure is no
longer applicable; see Section A of the supplementary material.

2.2 Discrete-Time Approximation

As alluded to in the introduction, we will rely on time-discretizations of the diffusion process
(1). We will employ a hierarchy of discretizations of the time interval [0, T ], indexed by a
level parameter l ∈ N0 that determines the temporal resolution. Higher levels with finer
time resolutions will require increased algorithmic cost. For each level l, let 0 = s0 <
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· · · < sKl = T denote a dyadic uniform discretization of [0, T ], defined as sk = k∆l for
k ∈ {0, 1, . . . ,Kl}, where ∆l = 2−l is the step-size and Kl = 2lT is the number of time
steps. Note that, by construction, (sk)

Kl
k=0 contains the unit observation times (tp)

P
p=1. We

consider the Euler–Maruyama scheme (Kloeden and Platen, 2013) which defines a time-
discretized process X0:T = (Xsk)Klk=0 on the path space Xl = (Rd)Kl+1 according to the
following recursion for k ∈ {1, . . . ,Kl}:

Xsk = Xsk−1
+ aθ(Xsk−1

)∆l + σ(Xsk−1
)(Wsk −Wsk−1

), X0 = x?. (13)

In the following, we write Nd(µ,Σ) to denote a d-dimensional Gaussian distribution with
mean µ ∈ Rd and covariance Σ ∈ Rd×d, and its density as x 7→ Nd(x;µ,Σ). The nota-
tion Nd(0d, Id) refers to the standard Gaussian distribution, i.e. with zero mean vector
0d ∈ Rd and identity covariance matrix Id ∈ Rd×d. Let f lθ(dxsk |xsk−1

) = Nd(xsk ;xsk−1
+

aθ(xsk−1
)∆l,∆lΣ(xsk−1

))dxsk denotes the Gaussian transition kernel corresponding to (13).
To simplify our notation, we omit the dependence of the time grid and time-discretized pro-
cess on the level parameter (until this distinction is necessary in Section 3.3), and write the
transition in (13) as Xsk = F lθ(Xsk−1

, Vsk), where Vsk = Wsk −Wsk−1
denotes the Brownian

increment. Higher-order schemes such as the Milstein method could be employed but would
be difficult to implement for problems with dimension d ≥ 2. Future work could consider
the antithetic truncated Milstein method of Giles and Szpruch (2014) for such settings.

Under time-discretization, the joint distribution of the latent process and observations
is given by a state space model (see Figure 2)

plθ(dx0:T , y1:T ) =

T∏
t=1

gθ(yt|xt)δx?(dx0)

Kl∏
k=1

f lθ(dxsk |xsk−1
),

where δx?(dx0) refers to the Dirac measure at the deterministic initial condition x?, and the
marginal likelihood is plθ(y1:T ) =

∫
Xl p

l
θ(dx0:T , y1:T ). Hence the resulting finite-dimensional

approximation of the law of X conditioned on θ and y1:T is

πlθ(dx0:T ) = plθ(dx0:T |y1:T ) =
plθ(dx0:T , y1:T )

plθ(y1:T )
. (14)

Following the literature on state space modelling, we will refer to (14) as a smoothing
distribution (Chopin and Papaspiliopoulos, 2020, ch. 12). Particle smoothing algorithms
(Briers et al., 2010; Fearnhead et al., 2010; Douc et al., 2011) can be used to approximate
(14), but are not suited to our framework which is based on MCMC.

Next we define time-discretized approximations of the functional Gθ. For (9), we have

Glθ(X0:T ) =− 1

2

Kl∑
k=1

‖bθ(Xsk−1
)‖22∆l +

1

2

Kl∑
k=1

bθ(Xsk−1
)∗Σ(Xsk−1

)−1σ(Xsk−1
)∗(Xsk −Xsk−1

)

+

T∑
t=1

log gθ(yt|Xt),

8
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and for (12), we have

Glθ(X0:T ) =−
Kl∑
k=1

{
∇θaθ(Xsk−1

)
}∗

Σ(Xsk−1
)−1aθ(Xsk−1

)∆l

+

Kl∑
k=1

{
∇θaθ(Xsk−1

)
}∗

Σ(Xsk−1
)−1(Xsk −Xsk−1

) +
T∑
t=1

∇θ log gθ(yt|Xt). (15)

With Glθ and πlθ in place, we then define Sl using (6), which forms our approximation of S
in (12) at discretization level l. In Section 4, under appropriate regularity conditions, we
will study the rate at which the discrete-time approximation Sl converges to the desired S
as the level l tends to infinity. The following section concerns numerical approximations of
these conditional expectations.

3. Unbiased Estimation

3.1 Unbiased Estimation Framework

We begin this section by outlining our novel framework to construct unbiased estimators of
the conditional expectation in (3) with a given functional Gθ : Cd([0, T ])→ Rdg . To simplify
our exposition, we will henceforth consider S(θ) = S(θ, θ) as extension to the case θ 6= θ?
follows straightforwardly. For each θ ∈ Θ, convergence of time-discretized approximation
Sl(θ) in (6) as l→∞ allows us to write

S(θ) = lim
L→∞

L∑
l=0

Il(θ), (16)

where Il(θ) = Sl(θ)−Sl−1(θ) denotes the increment at level l ∈ N0 (with S−1 = 0). We will
design algorithms that allow us to construct unbiased estimators Îl(θ) of Il(θ) independently
for any l ∈ N0, i.e.

E
[
Îl(θ)

]
= Il(θ), l ∈ N0, (17)

where E denotes expectation w.r.t. all random variables generated in our algorithm. The
key insight of the randomized MLMC schemes proposed by Mcleish (2011); Rhee and Glynn
(2015) is to perform a random truncation of the sum in (16) at level L, so that unbiasedness
is retained when unbiased estimators of the increments are employed. The relationships be-
tween the six different algorithms that will be used to compute Îl(θ) for l ∈ N0 is illustrated
in Figure 3.

Let (Pl)
∞
l=0 be a given probability mass function (PMF) with support on N0 and define

its cumulative tail probabilities as Pl =
∑∞

k=l Pk for l ∈ N0. Suppose that

∞∑
l=0

P−1
l

{
Var

[
Îl(θ)

j
]

+
(
Sl(θ)

j − S(θ)j
)2}

<∞ (18)
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Figure 3: Relationships between Algorithms 1 to 6.

for all j ∈ {1, . . . , dg}, where Var denotes variance under E and xj refers to the jth-

component of the vector x. If we sample L from (Pl)
∞
l=0 independently of (Îl(θ))

∞
l=0, it

follows from Rhee and Glynn (2015) that the independent sum estimator

Ŝ(θ) =
L∑
l=0

Îl(θ)

Pl
(19)

is an unbiased estimator of S with finite variance, i.e. E[Ŝ(θ)] = S(θ) and the entries of
the covariance matrix Var[Ŝ(θ)] are finite. Alternatives to the estimator in (19) such as the
single term estimator of Rhee and Glynn (2015) could also be considered here. Inspection
of (18) reveals that we have to understand how fast Sl converges to S as l → ∞, which
will be established in Theorem 1. Moreover, for (17) and (18) to hold, we have to compute
an unbiased estimator of I0(θ) = S0(θ) at level l = 0 with finite variance, and construct
unbiased estimators of the increments Il(θ), whose variance vanishes sufficiently fast as
l → ∞ relative to the tails of (Pl)

∞
l=0. Developing a methodology that meets these two

requirements will be the focus of Sections 3.2 and 3.3 respectively. To establish that these
requirements are satisfied, we provide a detailed analysis of our proposed methodology (in
supplementary material) and summarize the key results in Theorem 2.

3.2 Unbiased Estimation under Time-Discretization

This section considers unbiased estimation of Sl(θ) at discretization level l ∈ N0; the case
l = 0 will be employed to construct the first summand Î0(θ) in (19). Our basic algorithmic
building block is the CPF of Andrieu et al. (2010), which defines a Markov kernel on the
space of trajectories X0:T ∈ Xl that admits the smoothing distribution πlθ as its invariant
distribution. A detailed description for our application is given in Algorithm 1, which has
a complexity of O(NKl). The CPF involves simulating N ≥ 2 trajectories under the time-
discretized model dynamics (Steps 2a & 2b), weighting samples according to the conditional
density gθ (Step 2c), and resampling from the weighted particle approximation (Step 2d).
We will consider multinomial resampling, in which case, R(w1:N

t ) refers to the categorical
distribution on {1, . . . , N} with probabilities w1:N

t = (wnt )Nn=1. The main difference to a
standard bootstrap particle filter (BPF) (Gordon et al., 1993) is that the input trajectory

10
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Algorithm 1 Conditional particle filter (CPF) at parameter θ ∈ Θ and discretization level
l ∈ N0

Input: a trajectory X?
0:T = (X?

sk
)Klk=0 ∈ Xl. For time step k = 0

(1a) Set Xn
0 = x? for n ∈ {1, . . . , N}.

(1b) Set wn0 = N−1 and An0 = n for n ∈ {1, . . . , N}.
For time step k ∈ {1, . . . ,Kl}

(2a) Sample Brownian increment V nsk ∼ Nd(0d,∆lId) independently for n ∈ {1, . . . , N − 1}.

(2b) Set Xn
sk

= F lθ(X
Ansk−1
sk−1 , V nsk) for n ∈ {1, . . . , N − 1}, and XN

sk
= X?

sk
.

If there is an observation at time t = sk ∈ {1, . . . , T}
(2c) Compute normalized weight wnt ∝ gθ(yt|Xn

t ) for n ∈ {1, . . . , N}.
(2d) If t < T , sample ancestor Ant ∼ R(w1:N

t ) independently for n ∈ {1, . . . , N − 1} and
set ANt = N .

Else
(2e) Set Ansk = n for n ∈ {1, . . . , N}.

After the terminal step
(3a) Sample particle index BT ∼ R(w1:N

T ).

(3b) Set particle index Bsk = A
Bsk+1
sk for k ∈ {0, 1, . . . ,Kl − 1}.

Output: a trajectory X◦
0:T = (X

Bsk
sk )Klk=0 ∈ Xl.

X?
0:T is conditioned to survive all resampling steps. The algorithm outputs a trajectory

X◦0:T by sampling the particle indexes (Bsk)Klk=0 after the terminal step (Steps 3a & 3b).
We will write X◦0:T ∼ M l

θ(·|X?
0:T ) to denote a trajectory generated by the CPF kernel at

parameter θ ∈ Θ and discretization level l ∈ N0.
We will initialize the CPF Markov chain using the law of the time-discretized dynamics

νlθ(dx0:T ) = δx?(dx0)
∏Kl
k=1 f

l
θ(dxsk |xsk−1

). One could also consider the law of a trajectory
sampled from a BPF, which provides a good approximation of πlθ for sufficiently large N
(Andrieu et al., 2010, Theorem 1). Under mild assumptions, the Markov chain (X0:T (i))∞i=0

generated by

X0:T (0) ∼ νlθ, X0:T (i) ∼M l
θ(·|X0:T (i− 1)), (20)

for i ≥ 1, is uniformly ergodic (Chopin and Singh, 2015; Lindsten et al., 2015; Andrieu
et al., 2018). Hence one can adopt a standard MCMC approach to approximate Sl(θ) by
the average Ab:Il (θ) = (I − b + 1)−1

∑I
i=bG

l
θ(X0:T (i)), for some fixed burn-in 0 ≤ b ≤ I,

which is consistent as the number of iterations I → ∞. However, as the Markov chain is
not started at stationarity, the MCMC average Ab:Il (θ) is a biased estimator for any finite
I ∈ N. Although this burn-in bias can be reduced by increasing b, tuning it to control the
bias is a difficult task in practice.

By building on the work of Glynn and Rhee (2014), Jacob et al. (2020a) showed how
to obtain unbiased estimators of smoothing expectations by simulating a pair of coupled
CPF chains (X0:T (i), X̄0:T (i))∞i=0 on the product space Zl = Xl×Xl with the same marginal
law. This is achieved using a coupling of two CPFs as described in Algorithm 2, which we
will refer to as the 2-CCPF. Writing (X◦0:T , X̄

◦
0:T ) ∼ M̄ l

θ(·|X?
0:T , X̄

?
0:T ) to denote a pair of

trajectories generated by the 2-CCPF kernel given (X?
0:T , X̄

?
0:T ) ∈ Zl as input, marginally

we have X◦0:T ∼ M l
θ(·|X?

0:T ) and X̄◦0:T ∼ M l
θ(·|X̄?

0:T ). The two main ingredients of this
coupling are the use of common Brownian increments (Steps 2a & 2b), and a coupling

11
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of the resampling distributions R(w1:N
t ) and R(w̄1:N

t ) denoted as R̄(w1:N
t , w̄1:N

t ) (Steps
2e & 3a). We refer readers to the references in Jacob et al. (2020a) for various coupled
resampling schemes. Our focus is the maximal coupling (Chopin and Singh, 2015; Jasra
et al., 2017) that maximizes the probability of having identical ancestors at each step of the
CPFs. Sampling from the maximal coupling can be done with the inverse transformation
method; this is detailed in Algorithm 3, where we have suppressed the time dependence
for notational simplicity. We could also consider an improvement of Step 5 that samples
from the residual distributions with common uniform random variables. As the cost of
implementing Algorithm 3 is O(N), the overall cost of Algorithm 2 is still O(NKl).

We initialize by sampling (X0:T (0), X̄0:T (0)) from a coupling ν̄lθ with νlθ as its marginals.
The choice of ν̄lθ could be explored but we will consider the independent coupling for sim-
plicity. The pair of CPF chains is then generated as

X0:T (1) ∼M l
θ(·|X0:T (0)), (X0:T (i+ 1), X̄0:T (i)) ∼ M̄ l

θ(·|X0:T (i), X̄0:T (i− 1)), (21)

for i ≥ 1. Marginally, (X0:T (i))∞i=0 and (X̄0:T (i))∞i=0 have the same law as the Markov chain
generated by (20). It can be shown that each application of 2-CCPF allows the chains to
meet with some positive probability (Jacob et al., 2020a, Theorem 3.1), that depends on the
number of trajectories N and observations T (Lee et al., 2020, Theorems 8 & 9). Moreover,
the construction of 2-CCPF ensures that the chains are faithful, i.e. X0:T (i) = X̄0:T (i− 1)
for all i ≥ τ lθ, where τ lθ = inf{i ≥ 1 : X0:T (i) = X̄0:T (i − 1)} denotes the meeting time.
Using the time-averaged estimator of Jacob et al. (2020a), an unbiased estimator of Sl(θ)
is given by

Ŝl(θ) = Ab:Il (θ) +

τ lθ−1∑
i=b+1

min

(
1,

i− b
I − b+ 1

)(
Glθ(X0:T (i))−Glθ(X̄0:T (i− 1))

)
. (22)

The second term corrects for the bias of the MCMC average Ab:Il (θ) and is equal to zero

if b + 1 > τ lθ − 1. Under assumptions that will be stated in Section 4, Ŝl(θ) has finite
variance and finite expected cost, for any choice of N ≥ 2 and 0 ≤ b ≤ I. Assuming that
2-CCPF costs twice as much as CPF, the cost of computing Ŝl(θ) is max{2τ lθ−1, I+τ lθ−1}
applications of the CPF kernel M l

θ.

3.3 Unbiased Estimation of Increments

We now consider unbiased estimation of the increment Il(θ) = Sl(θ)−Sl−1(θ) at level l ∈ N
to construct the term Îl(θ) in the independent sum estimator Ŝ(θ) in (19). A naive approach
that employs the unbiased estimation framework in Section 3.2 to estimate the terms Sl−1(θ)
and Sl(θ) independently, and take the difference to estimate the increment Il(θ), will satisfy
the unbiasedness requirement in (17). However, as the variance of the estimated increment
will not decrease with the discretization level l under independent estimation of Sl−1(θ)
and Sl(θ), one cannot choose a PMF (Pl)

∞
l=0 such that the condition in (18) holds. This

prompts an extension of the preceding framework that allows the terms in each increment
to be estimated in a dependent manner, as illustrated in Figure 1. Our proposed method-
ology involves simulating a quadruple of coupled CPF chains, a pair (X l−1

0:T (i), X̄ l−1
0:T (i))∞i=0

12
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Algorithm 2 Two coupled CPF (2-CCPF) at parameter θ ∈ Θ and discretization level
l ∈ N0

Input: a pair of trajectories (X?
0:T , X̄

?
0:T ) = (X?

sk
, X̄?

sk
)Klk=0 ∈ Zl. For time step k = 0

(1a) Set Xn
0 = x? and X̄n

0 = x? for n ∈ {1, . . . , N}.
(1b) Set wn0 = N−1, w̄n0 = N−1 and An0 = n, Ān0 = n for n ∈ {1, . . . , N}.

For time step k ∈ {1, . . . ,Kl}
(2a) Sample Brownian increment V nsk ∼ Nd(0d,∆lId) independently for n ∈ {1, . . . , N − 1}.

(2b) Set Xn
sk

= F lθ(X
Ansk−1
sk−1 , V nsk) and X̄n

sk
= F lθ(X̄

Ānsk−1
sk−1 , V nsk) for n ∈ {1, . . . , N − 1}.

(2c) Set XN
sk

= X?
sk

and X̄N
sk

= X̄?
sk

.
If there is an observation at time t = sk ∈ {1, . . . , T}

(2d) Compute normalized weights wnt ∝ gθ(yt|Xn
t ) and w̄nt ∝ gθ(yt|X̄n

t ) for
n ∈ {1, . . . , N}.

(2e) If t < T , sample ancestors (Ant , Ā
n
t ) ∼ R̄(w1:N

t , w̄1:N
t ) independently for

n ∈ {1, . . . , N − 1} and set ANt = N, ĀNt = N .
Else

(2f) Set Ansk = n and Ānsk = n for n ∈ {1, . . . , N}.
After the terminal step

(3a) Sample particle indexes (BT , B̄T ) ∼ R̄(w1:N
T , w̄1:N

T ).

(3b) Set particle indexes Bsk = A
Bsk+1
sk and B̄sk = Ā

B̄sk+1
sk for k ∈ {0, 1, . . . ,Kl − 1}.

Output: a pair of trajectories (X◦
0:T , X̄

◦
0:T ) = (X

Bsk
sk , X̄

B̄sk
sk )Klk=0 ∈ Zl.

Algorithm 3 Maximal coupling of two resampling distributions R(w1:N ) and R(w̄1:N )
(2-Maximal)

Input: normalized weights w1:N = (wn)Nn=1 and w̄1:N = (w̄n)Nn=1.
(1) Compute the overlap on = min{wn, w̄n} for n ∈ {1, . . . , N}.
(2) Compute the mass of the overlap µ =

∑N
n=1 o

n and normalize On = on/µ for n ∈ {1, . . . , N}.
(3) Compute the residuals rn = (wn − on)/(1− µ) and r̄n = (w̄n − on)/(1− µ) for n ∈ {1, . . . , N}.
With probability µ

(4) Sample A ∼ R(O1:N ) and set Ā = A.

Otherwise
(5) Sample A ∼ R(r1:N ) and Ā ∼ R(r̄1:N ) independently.

Output: indexes (A, Ā).

on Zl−1 for discretization level l − 1, and another pair (X l
0:T (i), X̄ l

0:T (i))∞i=0 on Zl for dis-
cretization level l. This relies on the coupling of four CPFs detailed in Algorithm 4, which
will be referred to as the 4-CCPF. In the algorithmic description, (sk)

Kl
k=0 denotes a time

discretization of [0, T ] at level l, and a trajectory at the coarser level l − 1 is written as

X l−1
0:T = (X l−1

s2k
)
Kl−1

k=0 . Given trajectories (X l−1,?
0:T , X̄ l−1,?

0:T , X l,?
0:T , X̄

l,?
0:T ) ∈ Zl−1×Zl as input, we

will write

(X l−1,◦
0:T , X̄ l−1,◦

0:T , X l,◦
0:T , X̄

l,◦
0:T ) ∼ M̄ l−1,l

θ (·|X l−1,?
0:T , X̄ l−1,?

0:T , X l,?
0:T , X̄

l,?
0:T ) (23)

to denote the trajectories generated by 4-CCPF. The 4-CCPF kernel M̄ l−1,l
θ is a four-

marginal coupling of the CPF kernels M l−1
θ and M l

θ, in the sense that marginally, we have

X l−1,◦
0:T ∼M l−1

θ (·|X l−1,?
0:T ) and X̄ l−1,◦

0:T ∼M l−1
θ (·|X̄ l−1,?

0:T ) at level l−1, and X l,◦
0:T ∼M l

θ(·|X
l,?
0:T )

13
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Algorithm 4 Four coupled CPF (4-CCPF) at parameter θ ∈ Θ and discretization levels
l − 1 and l ∈ N
Input: a pair of trajectories (X l−1,?

0:T , X̄ l−1,?
0:T ) = (X l−1,?

s2k
, X̄ l−1,?

s2k
)
Kl−1

k=0 ∈ Zl−1 and a pair of

trajectories (X l,?
0:T , X̄

l,?
0:T ) = (X l,?

sk
, X̄ l,?

sk
)Klk=0 ∈ Zl.

For time step k = 0
(1a) Set X l−1,n

0 = x?, X̄
l−1,n
0 = x? and X l,n

0 = x?, X̄
l,n
0 = x? for n ∈ {1, . . . , N}.

(1b) Set wl−1,n
0 = N−1, w̄l−1,n

0 = N−1 and wl,n0 = N−1, w̄l,n0 = N−1 for n ∈ {1, . . . , N}.
(1c) Set Al−1,n

0 = n, Āl−1,n
0 = n and Al,n0 = n, Āl,n0 = n for n ∈ {1, . . . , N}.

For time step k ∈ {1, . . . ,Kl}
(2a) Sample Brownian increment V l,nsk ∼ Nd(0d,∆lId) at level l independently for
n ∈ {1, . . . , N − 1}.

(2b) Set X l,n
sk

= F lθ(X
l,Al,nsk−1
sk−1 , V l,nsk ) and X̄ l,n

sk
= F lθ(X̄

l,Āl,nsk−1
sk−1 , V l,nsk ) at level l for

n ∈ {1, . . . , N − 1}.
(2c) Set X l,N

sk
= X l,?

sk
and X̄ l,N

sk
= X̄ l,?

sk
.

If k ∈ {2, 4, . . . ,Kl}
(2d) Set Brownian increment V l−1,n

sk
= V l,nsk−1

+ V l,nsk at level l− 1 for n ∈ {1, . . . , N − 1}.

(2e) Set X l−1,n
sk

= F l−1
θ (X

l−1,Al−1,n
sk−1

sk−1 , V l−1,n
sk

) and X̄ l−1,n
sk

= F l−1
θ (X̄

l−1,Āl−1,n
sk−1

sk−1 , V l−1,n
sk

) at
level l − 1 for n ∈ {1, . . . , N − 1}.

(2f) Set X l−1,N
sk

= X l−1,?
sk

and X̄ l−1,N
sk

= X̄ l−1,?
sk

.
If there is an observation at time t = sk ∈ {1, . . . , T}

(2g) Compute normalized weights wl−1,n
t ∝ gθ(yt|X l−1,n

t ), w̄l−1,n
t ∝ gθ(yt|X̄ l−1,n

t ) and

wl,nt ∝ gθ(yt|X
l,n
t ), w̄l,nt ∝ gθ(yt|X̄

l,n
t ) for n ∈ {1, . . . , N}.

(2h) If t < T , sample ancestors

(Al−1,n
t , Āl−1,n

t , Al,nt , Āl,nt ) ∼ R̄(wl−1,1:N
t , w̄l−1,1:N

t , wl,1:N
t , w̄l,1:N

t ) independently for

n ∈ {1, . . . , N − 1} and set Al−1,N
t = N, Āl−1,N

t = N,Al,Nt = N, Āl,Nt = N .
Else

(2i) If k ∈ {2, 4, . . . ,Kl}, set Al−1,n
sk

= n and Āl−1,n
sk

= n at level l− 1 for n ∈ {1, . . . , N}.
(2j) Set Al,nsk = n and Āl,nsk = n at level l for n ∈ {1, . . . , N}.

After the terminal step
(3a) Sample particle indexes (Bl−1

T , B̄l−1
T , BlT , B̄

l
T ) ∼ R̄(wl−1,1:N

T , w̄l−1,1:N
T , wl,1:N

T , w̄l,1:N
T ).

(3b) Set particle indexes Bl−1
s2k

= A
l−1,Bl−1

s2(k+1)
s2k and B̄l−1

s2k
= Ā

l−1,B̄l−1
s2(k+1)

s2k at level l − 1 for
k ∈ {0, 1, . . . ,Kl−1 − 1}.

(3c) Set particle indexes Blsk = A
l,Blsk+1
sk and B̄lsk = Ā

l,B̄lsk+1
sk at level l for k ∈ {0, 1, . . . ,Kl− 1}.

Output: a pair of trajectories (X l−1,◦
0:T , X̄ l−1,◦

0:T ) = (X
l−1,Bl−1

s2k
s2k , X̄

l−1,B̄l−1
s2k

s2k )
Kl−1

k=0 ∈ Zl−1 and a pair of

trajectories (X l,◦
0:T , X̄

l,◦
0:T ) = (X

l,Blsk
sk , X̄

l,B̄lsk
sk )Klk=0 ∈ Zl.

and X̄ l,◦
0:T ∼ M l

θ(·|X̄
l,?
0:T ) at level l. The two main ingredients of 4-CCPF are the use of

common Brownian increments within each level (Steps 2b & 2e) and across levels (Steps 2a &

2d), and an appropriate four-marginal coupling of the resampling distributions R(wl−1,1:N
t ),

R(w̄l−1,1:N
t ), R(wl,1:N

t ), R(w̄l,1:N
t ) denoted by R̄(wl−1,1:N

t , w̄l−1,1:N
t , wl,1:N

t , w̄l,1:N
t ) (Steps 2h

& 3a). While the use of common Brownian increments is a standard choice in MLMC
(Giles, 2008), constructing coupled resampling schemes that induce sufficient dependencies
between the four CPF chains, for the variance of the estimated increment to decrease with
the discretization level, requires new algorithmic design.
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Algorithm 5 presents a coupled resampling scheme that will be the focus of our analysis
in Section 4. Here we suppress the time dependence for notational simplicity. Given nor-
malized weights wl−1,1:N = (wl−1,n)Nn=1, w̄l−1,1:N = (w̄l−1,n)Nn=1 at discretization level l − 1
and wl,1:N = (wl,n)Nn=1, w̄l,1:N = (w̄l,n)Nn=1 at discretization level l, the algorithm samples
ancestor indexes (Al−1, Āl−1, Al, Āl) from the maximal coupling of the maximal couplings
R̄(wl−1,1:N , wl,1:N ) and R̄(w̄l−1,1:N , w̄l,1:N ). That is, amongst all possible four-marginal
couplings, this scheme maximizes the probabilities of having identical ancestors across lev-
els, i.e. Al−1 = Al and Āl−1 = Āl, and identical pair of ancestors within the levels, i.e.
(Al−1, Al) = (Āl−1, Āl). The cost of Algorithm 5 is random as it employs rejection samplers
(Thorisson, 2000) in Steps 2b, 3b and 4, wherein U[0,1] denotes the uniform distribution on
[0, 1]. As the expected cost is O(N), the overall cost of Algorithm 4 is O(NKl) on average.
Note that a naive approach to sample from the desired coupled resampling scheme based on
the inverse transformation method in place of Algorithm 5 would involve a deterministic but
prohibitive cost of O(N2). In Step 4, we denote the respective PMF of R̄(wl−1,1:N , wl,1:N )
and R̄(w̄l−1,1:N , w̄l,1:N ) as

Rl−1,l(A,B) = ID(A,B)oA +
(wl−1,A − oA)(wl,B − oB)

1− µ
, (24)

R̄l−1,l(A,B) = ID(A,B)ōA +
(w̄l−1,A − ōA)(w̄l,B − ōB)

1− µ̄
,

for (A,B) ∈ {1, . . . , N}2, where ID(A,B) is the indicator function on the diagonal set
D = {(A,B) ∈ {1, . . . , N}2 : A = B}, on = min{wl−1,n, wl,n} and ōn = min{w̄l−1,n, w̄l,n}
for n ∈ {1, . . . , N} are the overlapping measures, and µ =

∑N
n=1 o

n and µ̄ =
∑N

n=1 ō
n are

their corresponding mass. From the expressions in (24), one can check that the three cases
considered in Algorithm 5 are necessary to ensure faithfulness of the pair of chains on each
discretization level. More precisely, if the input trajectories satisfy X l−1,?

0:T = X̄ l−1,?
0:T and/or

X l,?
0:T = X̄ l,?

0:T , then under the 4-CCPF (23), the output trajectories satisfy X l−1,◦
0:T = X̄ l−1,◦

0:T

and/or X l,◦
0:T = X̄ l,◦

0:T almost surely.

We note that the two-marginal couplings induced by the 4-CCPF kernel M̄ l−1,l
θ on each

discretization level are not the same as the 2-CCPF kernels M̄ l−1
θ and M̄ l

θ. Although it is
not a requirement of our methodology, this property would hold if we consider a modifi-
cation of Algorithm 5 that samples from the maximal coupling of the maximal couplings
R̄(wl−1,1:N , w̄l−1,1:N ) and R̄(wl,1:N , w̄l,1:N ). However, as with simple coupling strategies
based on common random variables, such a coupled resampling scheme does not induce
adequate dependencies between the CPF chains across discretization levels. This will be
illustrated experimentally in Section 5.1. To understand the rationale behind Algorithm 5,
we observe that the two-marginal couplings induced by the 4-CCPF kernel across discretiza-
tion levels are given by the multilevel CPF (ML-CPF) described in Algorithm 6. That is,

writing M l−1,l
θ as the ML-CPF kernel, which is a coupling of the CPF kernels M l−1

θ and M l
θ,

we have (X l−1,◦
0:T , X l,◦

0:T ) ∼M l−1,l
θ (·|X l−1,?

0:T , X l,?
0:T ) and (X̄ l−1,◦

0:T , X̄ l,◦
0:T ) ∼M l−1,l

θ (·|X̄ l−1,?
0:T , X̄ l,?

0:T )
under the 4-CCPF kernel in (23). The ML-CPF is similar to the multilevel particle filter
of Jasra et al. (2017), who proposed multilevel estimators of filtering expectations that are
non-asymptotically biased but consistent in the limit of our computational budget. Even
though our objective is markedly different, as we seek non-asymptotically unbiased and
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Algorithm 5 Maximal coupling of the maximal couplings R̄(wl−1,1:N , wl,1:N ) and
R̄(w̄l−1,1:N , w̄l,1:N ) (4-Maximal)

Input: normalized weights wl−1,1:N = (wl−1,n)Nn=1, w̄l−1,1:N = (w̄l−1,n)Nn=1 at level l − 1 and
wl,1:N = (wl,n)Nn=1, w̄l,1:N = (w̄l,n)Nn=1 at level l.
(1) Sample (Al−1, Al) ∼ R̄(wl−1,1:N , wl,1:N ) using Algorithm 3.
If normalized weights at level l − 1 are identical and normalized weights at level l are non-identical

(2a) Set Āl−1 = Al−1.

(2b) With probability w̄l,Ā
l−1

/w̄l−1,Āl−1

, set Āl = Āl−1; otherwise sample A ∼ R(w̄l,1:N ) and
U ∼ U[0,1] until U > w̄l−1,A/w̄l,A, and set Āl = A.

If normalized weights at level l − 1 are non-identical and normalized weights at level l are identical
(3a) Set Āl = Al.

(3b) With probability w̄l−1,Āl/w̄l,Ā
l

, set Āl−1 = Āl; otherwise sample A ∼ R(w̄l−1,1:N ) and
U ∼ U[0,1] until U > w̄l,A/w̄l−1,A, and set Āl−1 = A.

Otherwise
(4) With probability R̄l−1,l(Al−1, Al)/Rl−1,l(Al−1, Al), set (Āl−1, Āl) = (Al−1, Al); otherwise

sample (A,B) ∼ R̄(w̄l−1,1:N , w̄l,1:N ) and U ∼ U[0,1] until U > Rl−1,l(A,B)/R̄l−1,l(A,B), and

set (Āl−1, Āl) = (A,B).
Output: indexes (Al−1, Āl−1, Al, Āl).

(almost surely) finite cost estimators of S(θ) which is a smoothing expectation, the connec-
tion to MLMC estimation alludes to better convergence rates than Monte Carlo approaches
based on the finest discretization level.

We now describe simulation of the quadruple of CPF chains (X l−1
0:T (i), X̄ l−1

0:T (i), X l
0:T (i),

X̄ l
0:T (i))∞i=0 using ML-CPF and 4-CCPF. We initialize the four chains (X l−1

0:T (0), X̄ l−1
0:T (0),

X l
0:T (0), X̄ l

0:T (0)) from a four-marginal coupling ν̄l−1,l
θ that satisfies X l−1

0:T (0), X̄ l−1
0:T (0) ∼ νl−1

θ

and X l
0:T (0), X̄ l

0:T (0) ∼ νlθ. For simplicity, we assume ν̄l−1,l
θ is such that each of the pairs

across levels (X l−1
0:T (0), X l

0:T (0)) and (X̄ l−1
0:T (0), X̄ l

0:T (0)) independently follow a coupling of

νl−1
θ and νlθ, denoted as νl−1,l

θ . The choice of νl−1,l
θ will be taken as the joint law of the

time-discretized dynamics under common Brownian increments in our analysis. We then
sample (X l−1

0:T (1), X l
0:T (1)) ∼ M l−1,l

θ (·|X l−1
0:T (0), X l

0:T (0)) with ML-CPF, and subsequently
for i ≥ 1, iteratively sample

(X l−1
0:T (i+ 1), X̄ l−1

0:T (i), X l
0:T (i+ 1), X̄ l

0:T (i)) ∼

M̄ l−1,l
θ (·|X l−1

0:T (i), X̄ l−1
0:T (i− 1), X l

0:T (i), X̄ l
0:T (i− 1)) (25)

from 4-CCPF. Marginally, the single CPF chains have the same law as a Markov chain
generated by (20) at discretization level l− 1 or l. Since each application of 4-CCPF allows
the pair of chains on each level to meet with some positive probability (see Lemma 29 in
the supplementary material), and by construction remain faithful thereafter, we define the
meeting time at level l as τ lθ = inf{i ≥ 1 : X l

0:T (i) = X̄ l
0:T (i − 1)} and the stopping time

at level l as τ̄ lθ = max{τ l−1
θ , τ lθ}. Our construction has the desirable property that the 4-

CCPF collapses to the ML-CPF after the stopping time, i.e. for i > τ̄ lθ, the transition in

(25) is equivalent to sampling (X l−1
0:T (i + 1), X l

0:T (i + 1)) ∼ M l−1,l
θ (·|X l−1

0:T (i), X l
0:T (i)) and

setting X̄ l−1
0:T (i) = X l−1

0:T (i + 1), X̄ l
0:T (i) = X l

0:T (i + 1). For any choice of burn-in b ∈ N0

and number of iterations I ≥ b, we can compute unbiased estimators Ŝl−1(θ) and Ŝl(θ)
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Algorithm 6 Multilevel CPF (ML-CPF) at parameter θ ∈ Θ and discretization levels l−1
and l ∈ N
Input: a trajectory X l−1,?

0:T = (X l−1,?
s2k

)
Kl−1

k=0 ∈ Xl−1 and a trajectory X l,?
0:T = (X l,?

sk
)Klk=0 ∈ Xl.

For time step k = 0
(1a) Set X l−1,n

0 = x? and X l,n
0 = x? for n ∈ {1, . . . , N}.

(1b) Set wl−1,n
0 = N−1, wl,n0 = N−1 and Al−1,n

0 = n,Al,n0 = n for n ∈ {1, . . . , N}.
For time step k ∈ {1, . . . ,Kl}

(2a) Sample Brownian increment V l,nsk ∼ Nd(0d,∆lId) at level l independently for
n ∈ {1, . . . , N − 1}.

(2b) Set X l,n
sk

= F lθ(X
l,Al,nsk−1
sk−1 , V l,nsk ) at level l for n ∈ {1, . . . , N − 1}, and X l,N

sk
= X l,?

sk
.

If k ∈ {2, 4, . . . ,Kl}
(2c) Set Brownian increment V l−1,n

sk
= V l,nsk−1

+ V l,nsk at level l − 1 for n ∈ {1, . . . , N − 1}.

(2d) Set X l−1,n
sk

= F l−1
θ (X

l−1,Al−1,n
sk−1

sk−1 , V l−1,n
sk

) at level l − 1 for n ∈ {1, . . . , N − 1}, and

X l−1,N
sk

= X l−1,?
sk

.
If there is an observation at time t = sk ∈ {1, . . . , T}

(2e) Compute normalized weights wl−1,n
t ∝ gθ(yt|X l−1,n

t ) and wl,nt ∝ gθ(yt|X
l,n
t ) for

n ∈ {1, . . . , N}.
(2f) If t < T , sample ancestors (Al−1,n

t , Al,nt ) ∼ R̄(wl−1,1:N
t , wl,1:N

t ) independently for

n ∈ {1, . . . , N − 1} and set Al−1,N
t = N,Al,Nt = N .

Else
(2i) If k ∈ {2, 4, . . . ,Kl}, set Al−1,n

sk
= n at level l − 1 for n ∈ {1, . . . , N}.

(2j) Set Al,nsk = n at level l for n ∈ {1, . . . , N}.
After the terminal step

(3a) Sample particle indexes (Bl−1
T , BlT ) ∼ R̄(wl−1,1:N

T , wl,1:N
T ).

(3b) Set particle indexes Bl−1
s2k

= A
l−1,Bl−1

s2(k+1)
s2k at level l − 1 for k ∈ {0, 1, . . . ,Kl−1 − 1}.

(3c) Set particle indexes Blsk = A
l,Blsk+1
sk at level l for k ∈ {0, 1, . . . ,Kl − 1}.

Output: a trajectory X l−1,◦
0:T = (X

l−1,Bl−1
s2k

s2k )
Kl−1

k=0 ∈ Xl−1 and a trajectory X l,◦
0:T = (X

l,Blsk
sk )Klk=0 ∈ Xl.

of Sl−1(θ) and Sl(θ) using the time-averaged estimator in (22) based on the pair of CPF
chains on level l − 1 and l, respectively. We can then obtain an unbiased estimator of
the increment Il(θ) using the difference Îl(θ) = Ŝl(θ) − Ŝl−1(θ), which has finite variance
and finite expected cost under the assumptions in Section 4. The cost of computing Îl(θ)
is max{2τ l−1

θ − 1, I + τ l−1
θ − 1}/2 + max{2τ lθ − 1, I + τ lθ − 1} applications of the CPF

kernel M l
θ (this assumes that Cost(M l−1,l

θ ) = Cost(M l−1
θ ) + Cost(M l

θ), Cost(M̄ l−1,l
θ ) =

2Cost(M l−1
θ ) + 2Cost(M l

θ) and Cost(M l
θ) = 2Cost(M l−1

θ )).

3.4 Summary of Proposed Methodology and Choice of Tuning Parameters

We consolidate the algorithms presented in this section by summarizing our proposed
methodology to unbiasedly estimate S(θ) below.

Input: PMF (Pl)
∞
l=0, number of particles N , burn-in b, and number of iterations I.

(1) Sample highest discretization level L from (Pl)
∞
l=0.
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(2) Simulate a pair of coupled CPF chains (X0:T (i), X̄0:T (i)) using CPF (Algorithm 1)
and 2-CCPF (Algorithm 2) with N particles at discretization level 0 as described in
(21) for iteration i = 0, 1, . . . ,max{I, τ0

θ }, and compute unbiased estimator Î0(θ) of
I0(θ) using time-averaged estimator (22) with burn-in b and I iterations.

(3) Independently for l = 1, . . . , L, simulate a quadruple of coupled CPF chains
(X l−1

0:T (i), X̄ l−1
0:T (i), X l

0:T (i), X̄ l
0:T (i)) using ML-CPF (Algorithm 6) and 4-CCPF

(Algorithm 4) with N particles at discretization levels l − 1 and l as described in
(25) for iteration i = 0, 1, . . . ,max{I, τ̄ lθ}, and compute unbiased estimators Ŝl−1(θ)

and Ŝl(θ) of Sl−1(θ) and Sl(θ) using time-averaged estimator (22) with burn-in b
and I iterations. Compute unbiased estimator of the increment Il(θ) with
Îl(θ) = Ŝl(θ)− Ŝl−1(θ).

(4) Compute unbiased estimator of S(θ) using independent sum estimator
Ŝ(θ) =

∑L
l=0 Îl(θ)/Pl, where Pl =

∑∞
k=l Pk.

Output: unbiased estimator Ŝ(θ) of S(θ).

We will establish unbiasedness and finite variance properties of Ŝ(θ) in Section 4. The
cost of the above procedure is c(θ) =

∑L
l=0 cl(θ), where cl(θ) is the cost of computing Îl(θ).

From Sections 3.2 and 3.3, we have cl(θ) = alθ×Cost(M l
θ), with alθ = max(2τ0

θ −1, I+τ0
θ −1)

for level l = 0, and alθ = max(2τ l−1
θ − 1, I + τ l−1

θ − 1)/2 + max(2τ lθ − 1, I + τ lθ − 1) for
level l ∈ N. We take the view here that the cost per application of the CPF kernel M l

θ

is Cost(M l
θ) = NKl = N2lT . Hence the expected cost of computing Ŝ(θ) is E [c(θ)] =∑∞

l=0 E [cl(θ)]Pl = NT
∑∞

l=0 E
[
alθ
]
2lPl. We will see that one cannot find a PMF (Pl)

∞
l=0 so

that the variance and expected cost of Ŝ(θ) are both finite. We defer further discussions
and the selection of the distribution of L to Section 4, and assume for now that we have a
given PMF (Pl)

∞
l=0 that ensures finite variance but infinite expected cost. In this regime,

we will refrain from discussions of asymptotic efficiency in the sense of Glynn and Whitt
(1992).

We now discuss the choice of tuning parameters and various algorithmic considerations.
In the above description, the choice of (N, b, I) could be level-dependent but optimizing
these tuning parameters is outside the scope of this work. Following the discussion in
Andrieu et al. (2010, Theorem 1) and the empirical findings in Jacob et al. (2020a), we
will scale the number of particles N linearly with the number of observations T . Although
the variance of Îl(θ) decreases as we increase the burn-in parameter b ∈ N0, setting b too
large would be inefficient. Jacob et al. (2020a,b) proposed choosing b according to the
distribution of the meeting time. In our context, as the stopping time τ̄ lθ typically decreases
as the level l increases, a conservative strategy is to select b based on the stopping time of
a low discretization level, which can be simulated by running ML-CPF and 4-CCPF as in
Step 3. We will illustrate this numerically in Section 5 and experiment with various choices
of b. After selecting b, one can choose the number of iterations I ≥ b to further reduce the
variance of Îl(θ), and hence that of Ŝ(θ), at a cost E [c(θ)] that grows linearly with I. On the
other hand, when employing unbiased estimators within an EM algorithm or a stochastic
gradient method, taking large values of I to obtain low variance gradient estimators would
be inefficient. Choosing the tuning parameters (N, b, I) to maximize the efficiency of the
resulting parameter inference algorithm is a highly non-trivial problem, and could be the
topic of future work.
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Given a choice of (N, b, I), one can produce R ∈ N independent replicates Ŝ(θ)r =∑Lr
l=0 Îl(θ)r/Pl, r ∈ {1, . . . , R}, of Ŝ(θ) in parallel, and compute the average S̄(θ) = R−1

∑R
r=1 Ŝ(θ)r

to approximate S(θ). To see the connection to MLMC, we follow Vihola (2018, Example
3) by noting that S̄(θ) has the same distribution as the random variable

∞∑
l=0

1

E [Rl]

Rl∑
r=1

Îl(θ)r, (26)

where Rl =
∑R

r=1 I(Lr ≥ l) has expectation E[Rl] = RPl. Vihola (2018) proposed new
unbiased estimators with lower variance than S̄(θ) by sampling the random variables (Lr)

R
r=1

that define (Rl)
∞
l=0 in (26) using stratification. As the number of replicates R → ∞, these

improved estimators also attain the same limiting variance as the idealized MLMC estimator

S̃(θ) =
∑∞

l=0 R̃
−1
l

∑R̃l
r=1 Îl(θ)r, where R̃l = bRPlc is allocated using the PMF (Pl)

∞
l=0. From

Vihola (2018, Thoerem 5), this asymptotic variance is given by limR→∞RVar[S̃(θ)j ] =∑∞
l=0 Var[Îl(θ)

j ]/Pl < Var[Ŝ(θ)j ], for all j ∈ {1, . . . , dg}.

4. Analysis

This section is concerned with the theoretical validity of our approach. We first introduce
some notation needed to state the assumptions which we will rely on. Let (E, E) be an
arbitrary measurable space. We write Bb(E) as the collection of real-valued, bounded, and
measurable functions on E. For real-valued ϕ : E → R (and vector-valued ϕ : E → Rd), let
Cj(E) (and Cjd(E)) denote the collection of j ∈ N times continuously differentiable functions,
and C(E) (and Cd(E)) for the collection of continuous functions. We write ϕ ∈ Lip‖·‖2(Rd)
if the real-valued function ϕ : Rd → R is Lipschitz w.r.t. the L2-norm ‖ · ‖2, i.e. if there
exists a constant C < ∞ such that |ϕ(x) − ϕ(y)| ≤ C‖x − y‖2 for all x, y ∈ Rd, and
‖ϕ‖Lip as the Lipschitz constant. We recall the definitions of Σ(x) = σ(x)σ(x)∗ and bθ(x) =
Σ(x)−1σ(x)∗aθ(x) for x ∈ Rd as they appear in the following.

Assumption 1 The drift function a : Θ×Rd → Rd and diffusion coefficient σ : Rd → Rd×d
satisfy:

(i) (Smoothness) For any θ ∈ Θ, ajθ ∈ C
2(Rd) for all j ∈ {1, . . . , d} components of aθ,

and σj,k ∈ C2(Rd) for all (j, k) ∈ {1, . . . , d} components of σ. Also, for any x ∈ Rd,
θ 7→ ajθ(x) ∈ C(Θ) for all j ∈ {1, . . . , d}.

(ii) (Uniform ellipticity) Σ(x) is uniformly positive definite for all x ∈ Rd.

(iii) (Globally Lipschitz) For any θ ∈ Θ, there exists a constant C <∞ such that |ajθ(x)−
ajθ(x

′)| + |σj,k(x) − σj,k(x′)| ≤ C‖x − x′‖2 for all (x, x′) ∈ Rd × Rd and (j, k) ∈
{1, . . . , d}2.

Assumption 2 The drift function a : Θ × Rd → Rd, diffusion coefficient σ : Rd → Rd×d
and conditional density g : Θ× Rd × Rdy → R+ satisfy:

(i) the inverse of x 7→ Σ(x) satisfies [Σ−1]j,k ∈ Bb(Rd) ∩ Lip‖·‖2(Rd) for all (j, k) ∈
{1, . . . , d}2.
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(ii) For any θ ∈ Θ, ajθ ∈ Bb(R
d) for all j ∈ {1, . . . , d}, and σj,k ∈ Bb(Rd) for all (j, k) ∈

{1, . . . , d}2.

(iii) For any θ ∈ Θ, there exists 0 < C < C < ∞ such that C ≤ gθ(y|x) ≤ C for all
(x, y) ∈ Rd×Rdy . In addition, for any (θ, y) ∈ Θ×Rdy , we have gθ(y|·) ∈ Lip‖·‖2(Rd).

(iv) For any (θ, y) ∈ Θ×Rdy , [∇θ log gθ(y|·)]j ∈ Bb(Rd)∩Lip‖·‖2(Rd) for all j ∈ {1, . . . , dθ}.

(v) For any θ ∈ Θ, [∇θ[bθ]j ]k, [∇θ(bjθ)
2]k ∈ Bb(Rd)∩Lip‖·‖2(Rd) for all (j, k) ∈ {1, . . . , d}×

{1, . . . , dθ}.

Assumptions 1 and 2 should be understood as sufficient conditions to verify the validity
of our proposed methodology, and are not necessary for its implementation. Although some
of these assumptions are strong, they have been adopted to simplify the exposition of our
analysis, as is common in theoretical works on particle filtering. Some assumptions can be
relaxed at the expense of more involved and lengthy technical arguments.

We first give an intermediate result on the convergence of the time-discretized approxi-
mation Sl defined in (6).

Theorem 1 Under Assumptions 1 and 2, the choice of Gθ in (12) and Glθ in (15), for any
(T, θ) ∈ N×Θ, there exists a constant C <∞ such that for any l ∈ N0, ‖Sl(θ)− S(θ)‖1 ≤
C∆

1/2
l .

The proof of Theorem 1 which involves studying the time-discretization of diffusions can
be found in Section B.2 of the supplementary material. The following result establishes the
desired properties of our estimators.

Theorem 2 Under Assumptions 1 and 2, the choice of Gθ in (12) and Glθ in (15), for any
number of particles N ≥ 2, burn-in b ∈ N0 and number of iterations I ≥ b, there exists a
choice of PMF (Pl)

∞
l=0 such that for any θ ∈ Θ, the estimator Ŝ(θ) in (19) is unbiased and

has finite variance.

We remark that Theorem 2 can be extended to other functionals. For instance, in the
context of the EM algorithm, the result follows under the same assumptions and only no-
tational changes in the proof. The proof of Theorem 2 in Section B.3 of the supplementary
material involves studying various aspects of the 4-CCPF chains and its initialization, fol-
lowed by the properties of our estimators that are constructed using these coupled Markov
chains. It follows from the proof that the left-hand side of (18) is upper-bounded by

C(θ)

∞∑
l=0

P−1
l ∆2φ

l , (27)

where C(θ) <∞ is a parameter-dependent constant and φ > 0 is a constant determined in
our analysis that does not depend on l; the exact value of φ is ‘small’ but positive. Hence
any choice of PMF (Pl)

∞
l=0 such that the sum (27) is finite would be valid; e.g. Pl ∝ ∆2φα

l

for any α ∈ (0, 1). Due to the technical complexity of the problem and algorithms under
consideration, the rate in (27) is not sharp. We conjecture that the correct rate corresponds
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to having φ = 1/4 and a better rate of φ = 1/2 can be obtained in the case of constant
diffusion coefficient σ.

Using Lemma 37 in the supplementary material, we upper-bound the expected cost
E [c(θ)] by

C(θ, T,N, b, I)NT
∞∑
l=0

2lPl, (28)

where C(θ, T,N, b, I) <∞ is another constant that is independent of l. As we have φ ≤ 1/2,
there is no choice of PMF (Pl)

∞
l=0 that can keep both (27) and (28) finite. This is a con-

sequence of employing the Euler–Maruyama discretization scheme (13) and the choice of
coupled resampling scheme in Algorithm 5 despite their general applicability. Future work
could consider the antithetic truncated Milstein scheme of Giles and Szpruch (2014) and
improved coupled resampling schemes such as Ballesio et al. (2022). This issue with the
Euler–Maruyama scheme is well-understood and studied by Rhee and Glynn (2015, Sec-
tion 4) who suggested choosing the PMF (Pl)

∞
l=0 to ensure unbiased estimators with finite

variance but infinite expected cost. Our numerical implementations will follow their ap-

proach by choosing Pl ∝ ∆
1/2
l l(log2(1 + l))2 and Pl ∝ ∆ll(log2(1 + l))2 in the case of

non-constant and constant diffusion coefficients, respectively. Under these choices, the un-
biased estimators achieve computational complexities that are similar to standard MLMC
estimators (Giles, 2008). We stress that it is possible to achieve unbiased estimators with
finite variance and finite expected cost using our computational framework in other settings
(Heng et al., 2023). It is also worth noting that exact simulation algorithms for (uncon-
ditioned) diffusions that are applicable in similar generality as our work also have infinite
expected cost (Blanchet and Zhang, 2020).

5. Applications

5.1 Ornstein–Uhlenbeck Process

We consider an Ornstein–Uhlenbeck process X = (Xt)0≤t≤T in R, defined by the SDE

dXt = θ1(θ2 −Xt)dt+ σdWt, X0 = 0. (29)

The parameter θ1 > 0 can be interpreted as the speed of the mean reversion to the long-run
equilibrium value θ2 ∈ R. This corresponds to (1) with initial condition x? = 0, linear drift
function aθ(x) = θ1(θ2 − x) and constant diffusion coefficient σ(x) = σ > 0 for x ∈ R. We
assume that the process is observed at unit times with Gaussian measurement errors, i.e.
Yt|X ∼ gθ(·|Xt) = N (Xt, θ3) independently for t ∈ {1, . . . , T} and some θ3 > 0. We will
generate observations y1:T by simulating from the model with parameter θ = (θ1, θ2, θ3) =
(2, 7, 1). This setting is considered as it is possible to compute the score function S(θ)
exactly using Kalman smoothing; see Section C.1 of the supplementary material for details
and model-specific expressions to evaluate (15).

Figure 4a illustrates how the distribution of the stopping time τ̄ lθ varies with the dis-
cretization level l on a simulated data set with T = 25 observations. We took l = 3
as the lowest discretization level as lower levels lead to numerically unstable trajectories.
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As alluded earlier, the coupled resampling scheme proposed in Algorithm 5 (referred to
as “maximal”) leads to smaller and more stable stopping times for large enough levels.
As alternatives, we consider a modification (“other maximal”) that ensures 4-CCPF ad-
mits 2-CCPF as marginals on each level, and a scheme that uses common uniform random
variables (“common uniforms”). While the schemes based on maximal couplings have com-
parable stopping times, the approach based on common uniform variables gives rise to
significantly larger stopping times. Figure 4b reveals that these two alternative coupled
resampling schemes do not induce sufficient dependencies between the four CPF chains. As
the variance of the estimated increment does not decrease with the discretization level, this
precludes their use within our unbiased estimation framework.

To show the impact of the choice of b and I, we considered three types of estimators
corresponding to having b = 0 and I = b (“naive”); b = 90%-quantile(τ̄ lθ) at level l = 3
and I = b (“simple”); and b = 90%-quantile(τ̄ lθ) and I = 10b (“time-averaged”), where
90%-quantile(τ̄ lθ) denotes the 90% sample quantile of the stopping time at level l. The
benefits of increasing b and I in terms of variance reduction are consistent with findings
in Jacob et al. (2020a,b). Under our proposed coupling, all three choices yield estimators
of increments whose variance decrease exponentially with the level, which agrees with our
theoretical results (see Lemma 39 in the supplementary material). Hence we can employ
any of these estimators within the estimation framework outlined in Section 3.4. Figure 4c
displays the resulting squared error ‖Ŝ(θ)− S(θ)‖22 and cost of 100 independent replicates.
This plot suggests having N = 128 particles is sufficient in the case of T = 25 observations.
The choice of b and I also allows a tradeoff between error and cost. As we increase the
number of observations T , Figure 4d shows it is important to scale the number of particles
N linearly with T to obtain stable and non-exponentially increasing stopping times. Lastly,
Figures 4e and 4f concern the averaging of independent replicates of the score estimator
(Ŝ(θ)r)

R
r=1. Figure 4e shows that the average S̄(θ) = R−1

∑R
r=1 Ŝ(θ)r satisfies the standard

Monte Carlo rate as R → ∞, which is consistent with its properties in Theorem 2, at a
linear cost in R as illustrated in Figure 4f.

5.2 Logistic Diffusion Model for Population Dynamics of Red Kangaroos

Next we consider an application from population ecology to model the dynamics of a
population of red kangaroos (Macropus rufus) in New South Wales, Australia. Figure
5a displays data yt1 , . . . , ytP ∈ N2

0 from Caughley et al. (1987), which are double tran-
sect counts on P = 41 occasions at irregular times (tp)

P
p=1 between 1973 to 1984. The

latent population size Z = (Zt)t1≤t≤tP is assumed to follow a logistic diffusion process
with environmental variance (Dennis and Costantino, 1988; Knape and De Valpine, 2012)
defined by dZt = (θ2

3/2 + θ1 − θ2Zt)Ztdt + θ3ZtdWt, Zt1 ∼ LN (5, 102), where LN de-
notes the log-Normal distribution. The parameters θ1 ∈ R and θ2 > 0 can be seen as
coefficients describing how the growth rate depends on the population size. As the pa-
rameter θ3 > 0 appears in the diffusion coefficient of the considered diffusion process
we apply the Lamperti transformation Xt = Ψ(Zt) = log(Zt)/θ3. By Itô’s lemma, the
transformed process X = (Xt)t1≤t≤tP satisfies the SDE (1) with random initialization
Xt1 ∼ µθ = N (5/θ3, 102/θ2

3), drift function aθ(x) = θ1/θ3− (θ2/θ3) exp(θ3x) and unit diffu-
sion coefficient σ(x) = 1 for x ∈ R. The observations (Ytp)

P
p=1 are modelled as conditionally
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S(θ)‖22] against number of averaged replicates R

1e+05

1e+06

1e+07

1e+08

1e+09

1 2 4 8 16

replicates

c
o

s
t

estimator naive simple time−averaged

(f) Boxplots of cost against number of averaged
replicates R

Figure 4: Behaviour of different coupling methods and score estimators at the data gen-
erating parameter θ = (2, 7, 1) of the Ornstein–Uhlenbeck model in Section 5.1.
T = 25 observations and N = 128 particles were employed unless stated other-
wise. These plots are based on 100 independent repetitions.
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independent given X and negative Binomial distributed, i.e. the conditional density at time
t ∈ {t1, . . . , tP } is gθ(yt|xt) = NB(y1

t ; θ4, exp(θ3xt))NB(y2
t ; θ4, exp(θ3xt)), where θ4 > 0.

We will use a parameterization of the negative Binomial distribution that is common in
ecology, NB(y; r, µ) = Γ(y+r)

Γ(r)y! ( r
r+µ)r( µ

r+µ)y for y ∈ N0, where r > 0 is the dispersion param-
eter and µ > 0 is the mean parameter. The dθ = 4 unknown parameters to be inferred are
θ = (θ1, θ2, θ3, θ4) ∈ Θ = R× (0,∞)3.

Application of our methodology for score estimation requires some minor modifications.
As the initial distribution µθ depends on θ3, the representation in (3) and (6) require
adding ∇θ logµθ(Xt1) to (12) and (15); see Section C.2 of the supplementary material for
model-specific expressions. To deal with irregular observation times (tp)

P
p=1, we set the

step-size at discretization level zero as the size of the smallest time interval, i.e. ∆0 =
minp=2,...,P tp − tp−1. Higher levels l ∈ N will employ ∆l = ∆02−l. For level l ∈ N0, the
first time interval [t1, t2] is discretized using ∆l sequentially, i.e. we set sk = t1 + k∆l for
k ∈ {0, . . . ,ml,1} with ml,1 = b(t2 − t1)/∆lc, and sk = t2 for k = ml,1 +1 if (t2−t1)/∆l /∈ N.
The subsequent time intervals are then discretized in the same manner.

Figure 5b illustrates how the median and the 90% quantile of the stopping time τ̄ lθ vary
with the discretization level l, the impact of the number of particles N , and the benefits of
employing adaptive resampling. As before, the coupled resampling scheme in Algorithm 5
results in stopping times that are smaller for higher discretization levels, with less variability
over levels as the number of particles increases. Moreover, resampling only when the effective
sample size is less than N/2 allows us to induce more dependencies between the multiple
CPF chains at lower discretization levels. Using N = 256 particles and adaptive resampling,
Figure 5c examines the rate at which the variance of the estimated increment decreases with
the discretization level. Here we consider the “naive” and “simple” estimators described
in Section 5.1, with a burn-in of b = 90%-quantile(τ̄ lθ) at level l = 3, and omit the more
costly “time-averaged” estimator. From the plot, both type of estimators have similar rate
of decay and are valid choices in our score estimation methodology. Using the “simple”
estimator, Figure 5d verifies that the average of R independent replicates of the resulting
score estimator S̄(θ) satisfies the standard Monte Carlo rate as R→∞.

Lastly, we perform Bayesian parameter inference by employing our score estimators
within the SGLD framework (Welling and Teh, 2011). We rely on logarithmic transforma-
tions to deal with positivity parameter constraints, and specify the prior distribution for the
transformed parameters (θ1, log θ2, log θ3, log θ4) as Ndθ(µ0,Σ0), with µ0 = (0,−1,−1,−1)
and Σ0 = diag(52, 22, 22, 22). As log θ3 has a significantly different scale compared to
the other parameters, we let the learning rate in (5) be component-dependent by tak-
ing εm = diag((100 + m)−0.6(10−2, 10−2, 10−4, 10−2)) at iteration m ≥ 1. The algorithmic
settings used to produce score estimators are the same as in Figure 5d with R = 1 realiza-
tion. Figure 5e shows the empirical average, weighted by the learning rates as in Welling
and Teh (2011), over 7500 iterations of the resulting SGLD algorithm for each parameter.

5.3 Neural Network Model for Grid Cells in the Medial Entorhinal Cortex

As our final application, we consider a neural network model for single neurons to an-
alyze grid cells spike data (https://www.ntnu.edu/kavli/research/grid-cell-data)
recorded in the medial entorhinal cortex of rats that were running on a linear track (Hafting
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Figure 5: Behaviour at parameter θ = (2.397, 4.429 × 10−3, 0.840, 17.631) of the logistic
diffusion model in Section 5.2. N = 256 particles were employed unless stated
otherwise. These plots are based on 100 independent repetitions.
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et al., 2008). The neural states Zt = (Z1
t , Z

2
t ) of two grid cells that were simultaneously

recorded is assumed to follow

dZ1
t =

(
α1 tanh(β1Z

2
t + γ1)− δ1Z

1
t

)
dt+ σ1dW

1
t , (30)

dZ2
t =

(
α2 tanh(β2Z

1
t + γ2)− δ2Z

2
t

)
dt+ σ2dW

2
t ,

for t ∈ [0, T ], where (α1, α2) ∈ R2 controls the amplitude, (β1, β2) ∈ R2 describes the con-
nectivity between the cells, (γ1, γ2) ∈ R2 are baseline levels, (δ1, δ2) ∈ (0,∞)2 determines the
strength of the mean reversion towards the origin. We assume Z0 = (0, 0) at the beginning of
the experiment. This diffusion is motivated by an example in Kappen and Ruiz (2016), and
modified for our purposes. To infer the unknown diffusivity parameters (σ1, σ2) ∈ (0,∞)2,
we consider the transformation Xt = (X1

t , X
2
t ) = Ψ(Zt) = (Z1

t /σ1, Z
2
t /σ2), which rescales

each component of the diffusion. By Itô’s formula, the transformed process X = (Xt)0≤t≤T
satisfies the diffusion model (1) with initialization x? = (0, 0), drift function

aθ(x) =

(
a1
θ(x)
a2
θ(x)

)
=

(
α1 tanh(β1σ2x

2 + γ1)/σ1 − δ1x
1

α2 tanh(β2σ1x
1 + γ2)/σ2 − δ2x

2

)
,

and diffusion coefficient σ(x) = I2 for x = (x1, x2) ∈ R2.
The experimental data over a duration of T = 20 contains time stamps in [0, T ] when

a spike at one of the two cells is recorded using tetrodes. Following Brown (2005), we
adopt an inhomogenous Poisson point process to model these times. Let tp = pT2−6

for p ∈ {0, 1, . . . , P} denote a dyadic uniform discretization of [0, T ] into P = 26 time
intervals. Given the latent process X = (Xt)0≤t≤T , the number of spikes Y i

tp occurring
in each time interval [tp−1, tp] at cell i = 1, 2 is assumed to be conditionally indepen-
dent of the other time intervals and the activity in the other cell, and follow a Pois-
son distribution with rate

∫ tp
tp−1

λi(X
i
t)dt. The intensity function for grid cell i = 1, 2 is

modelled as λi(X
i
t) = exp(κi + Xi

t), where κi ∈ R represents a baseline level. The ob-
served counts ytp = (y1

tp , y
2
tp) for interval p ∈ {1, . . . , P}, computed from the experimental

data, are displayed in Figure 6a. The conditional likelihood of the observation model is
pθ(yt1 , . . . , ytP |X) =

∏P
p=1 gθ(ytp |(Xt)tp−1≤t≤tp) with the intractable conditional density

gθ(ytp |(Xt)tp−1≤t≤tp) =
2∏
i=1

Poi

(
yitp ;

∫ tp

tp−1

λi(X
i
t)dt

)
,

where Poi(y;λ) = λy exp(−λ)/y! for y ∈ N0 denotes the PMF of a Poisson distribution
with rate λ > 0. To approximate the conditional likelihood, at level l ≥ 6, we discretize
the time interval [0, T ] in a similar manner using sk = k∆l for k ∈ {0, 1, . . . ,Kl}, where
∆l = T2−l is the step-size and Kl = 2l is the number of time steps. Under the time-
discretized process X0:T = (Xsk)Klk=0, the resulting approximation of the conditional like-

lihood is plθ(yt1 , . . . , ytP |X0:T ) =
∏P
p=1 g

l
θ(ytp |(Xt)tp−1≤t≤tp) with the corresponding condi-

tional density

glθ(ytp |(Xt)tp−1≤t≤tp) =

2∏
i=1

Poi

yitp ; ∆l

∑
t:tp−1≤t≤tp

λi(X
i
t)

 . (31)
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By using these level-dependent observation densities (31) in Section 2.2, our proposed
methodology can then be applied. There are dθ = 12 parameters θ = (θ1, θ2) to be in-
ferred, where θi = (αi, βi, γi, δi, σi, κi) denote the parameters associated to cell i = 1, 2. We
refer the reader to Section C.3 of the supplementary material for model-specific expressions
to implement score estimation.

We consider an extension of the proposed method based on the conditional ancestor
sampling particle filter (CASPF) (Lindsten et al., 2014) as the basic algorithmic building
block. In Figure 6b, we observe that the stopping times of CASPF are smaller than CPF
for lower discretization levels, and similar for higher discretization levels. Although this
is consistent with CASPF having better mixing properties than CPF (Lee et al., 2020),
the use of CASPF is invalid in our setting as the algorithm is not well-defined as the
discretization level goes to infinity. This issue stems from degeneracy of the transition
kernel of the Euler-Maruyama discretization (13) as the step-size goes to zero; see also
Beskos et al. (2021, Section 3) for a related discussion. Some pathological behaviour can be
seen in Figure 6c which checks the validity of using both MCMC algorithms and “naive”
and “simple” estimators (as described in Section 5.1) within our methodology. For “simple”
estimators, the burn-in was taken as b = 90%-quantile(τ̄ lθ) at level l = 11. While the variance
of the estimated increment decays with the discretization level for estimators based on CPF,
it does not seem to be the case for estimators based on CASPF.

Lastly, we combine our score estimators and the SGA scheme in (4) to perform max-
imum likelihood estimation. The score estimation relies on the CPF algorithm and the
“simple” estimator with a burn-in of b = 100. Positivity parameter constraints are dealt
with using logarithmic transformations and a constant learning rate of εm = 10−3 is em-
ployed. Figure 6d illustrates how the distribution of the Polyak–Ruppert average evolves
over the iterations, estimated using independent runs of SGA. We note that only 86 out of
100 runs were considered, as there were 14 instances of the variance of the score estimator
driving the SGA algorithm to regions of the parameter space where the stopping times are
prohibitively large, causing the SGA to stall. This behaviour is due to poor mixing proper-
ties of the underlying CPF algorithm at very unlikely regions of the parameter space and
the use of a constant learning rate. A discussion on how to improve the MCMC algorithm
and adapt the learning rate is given in Section 6. The parameter estimates of β1 and β2

support the use of a joint model (30) for both grid cells, and indicates that these cells are
positively dependent.

6. Discussion

Although the proposed unbiased estimation methodology to remove both time-discretization
error and MCMC burn-in bias is conceptually appealing and applicable to a large class of
diffusion models, it is important to note that it has some computational limitations, as
evidenced in Section 5.3. For our approach to be computationally feasible, the distribution
of stopping times cannot be too heavy-tailed, i.e. the pair of CPF chains on each time-
discretization level has to meet in reasonable computation time. Even if our proposed
coupling is adequate, it follows from the coupling inequality that this is impractical if the
marginal CPF kernel has poor mixing properties. Hence the underlying assumption here is
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Figure 6: Behaviour at parameter θ = (1, . . . , 1) of the neural network model in Section 5.3.
The algorithmic settings involve N = 256 particles and adaptive resampling.
These plots are based on 1000 independent repetitions unless stated otherwise.

that the corresponding BPF is performing sufficiently well (Lindsten et al., 2015; Andrieu
et al., 2018).

Common regimes where this is not the case include high-dimensional state spaces (Sny-
der et al., 2008) and highly informative observations (Del Moral and Murray, 2015) with low
probability under the law of the diffusion in (1) and the observation model. For some class
of models, the curse of dimensionality can be tackled using particle filters that are modified
to exploit certain properties of the model (Rebeschini and van Handel, 2015; Beskos et al.,
2017). Further investigation is required to understand if these ideas can be used with our
approach. Highly informative observations require carefully designed particle filters that
simulate particle dynamics in a manner that incorporates information from the entire ob-
servation sequence (Richard and Zhang, 2007; Guarniero et al., 2017; Heng et al., 2020).
In our setting of diffusion models, the optimal particle dynamics follows a diffusion process
that is constructed using a Doob’s h-transform (Rogers and Williams, 2000, p. 83). The
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numerical approximation of Doob’s h-transform and its use within particle filtering has been
explored in works such as Ruiz and Kappen (2017); Park and Ionides (2020); Mider et al.
(2021); Chopin et al. (2023). As approximations of the optimal particle dynamics follow
the diffusion process (1) with a change in the drift function, we anticipate the use of these
methods to be quite straightforward within our unbiased estimation framework.

Even if our unbiased estimation methodology is performant, its application within pa-
rameter inference schemes may still be challenging when the parameter space is high-
dimensional and the marginal likelihood function is highly non-convex with many local
maxima. In such settings, we anticipate that the use of adaptive learning rate methods
to improve the performance of stochastic gradient ascent (Zeiler, 2012; Duchi et al., 2011;
Kingma and Ba, 2014), and momentum algorithms to accelerate its convergence (Nesterov,
1983; Qian, 1999; Sutskever et al., 2013).
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Appendix A. Parameter Dependence in Diffusion Coefficient

We consider how one can extend the ideas in this article to accommodate the case where
the diffusion coefficient also depends on the parameter θ ∈ Θ. In this case, we have the
SDE

dXt = aθ(Xt)dt+ σθ(Xt)dWt, X0 = x? ∈ Rd,

where σ : Θ× Rd → Rd×d is assumed to be such that θ 7→ σθ is invertible and satisfies the
conditions in Assumption 1 uniformly in θ ∈ Θ. Moreover, we shall suppose that all the
conditions in Schauer et al. (2017) hold. For k ∈ N0 and t ∈ [k, k+1], consider the diffusion
bridge

dXt = a◦θ(Xt)dt+ σθ(Xt)dWt, Xk = xk, Xk+1 = xk+1, (32)

where the drift function a◦θ is described in Schauer et al. (2017). Given a Brownian
path Wk = (Wt)k≤t≤k+1, we denote the path-wise solution of the diffusion bridge as
Fθ,k(Wk, xk, xk+1). Furthermore, for G : Θ×Rd → R given in Schauer et al. (2017, Equation

2.3) and a process Zk = (Zt)k≤t≤k+1, we define the functional Hθ,k(Zk) =
∫ k+1
k Gθ(Zt)dt.

Using the change of measure in Schauer et al. (2017) along with the approach in Beskos
et al. (2021) and Yonekura and Beskos (2022), one can write the marginal likelihood of
observations y1:T = (yt)

T
t=1 as

pθ(y1:T ) = Ẽθ

[
T∏
t=1

gθ(yt|Xt) exp
{ T−1∑
t=0

Hθ,t(Fθ,t(Wt, Xt, Xt+1))
}]

. (33)

29



Heng, Houssineau, and Jasra

In the above, Ẽθ denotes expectation w.r.t. the probability measure P̃θ defined as

P̃θ(d(x1, . . . , xT ,W0, . . . ,WT−1)) =
T∏
t=1

{
p̃θ(xt−1, xt)dxt

}
W̃(d(W0, . . . ,WT−1)),

where p̃θ(xt−1, xt) is the transition density of an auxiliary process on a unit time in-
terval as constructed in Schauer et al. (2017) that is known and can be sampled, and

W̃(d(W0, . . . ,WT−1)) =
⊗T−1

k=0 W(dWk) is given by the Wiener measure W.
EM algorithm. The expectation step of an EM algorithm will involve computing

S(θ, θ?) = Ĕθ?

[
T∑
t=1

log gθ(yt|Xt) +
T∑
t=1

log p̃θ(Xt−1, Xt) +
T−1∑
t=1

Hθ,t(Fθ,t(Wt, Xt, Xt+1))

]
,

(34)

where Ĕθ denotes expectation w.r.t. the probability measure

P̆θ(d(x1, . . . , xT ,W0, . . . ,WT−1)) = pθ(y1:T )−1×
T∏
t=1

gθ(yt|xt) exp
{ T−1∑
t=0

Hθ,t(Fθ,t(Wt, xt, xt+1))
}
P̃θ(d(x1, . . . , xT ,W0, . . . ,WT−1)). (35)

Gradient-based methods. Under regularity conditions, one can differentiate (33) and
represent the score function S(θ) = ∇θ log p(y1:T ) as

Ĕθ

[
T∑
t=1

∇θ log gθ(yt|Xt) +
T∑
t=1

∇θ log p̃θ(Xt−1, Xt) +
T−1∑
t=1

∇θHθ,t(Fθ,t(Wt, Xt, Xt+1))

]
,

(36)

Practical implementation will require a discretized approximation of Hθ,t(Fθ,t(·)) and
∇θHθ,t(Fθ,t(·)) which involves a gradient w.r.t. θ of a path-wise solution of the diffusion
bridge (32). Although Euler-type approximations can be obtained, the resulting bias in the
sense of Theorem 1 is significantly more complicated to analyze and is thus left as future
work. We stress that only small modifications to our proposed methodology is necessary to
obtain unbiased estimators of (34) and (36) in this case. A similar approach is considered
in Beskos et al. (2021) for a class of continuous-time models. Alternatively, one could also
consider using Malliavin techniques (Fournié et al., 1999), instead of the ideas described
here.

Appendix B. Theoretical Analysis

B.1 Introduction and Preliminaries

Section B.2 provides some results on time-discretization of diffusions, which are needed
for the proofs associated to Theorem 1 as well as the 4-CCPF (Algorithm 4). Our main
technical arguments associated to Theorem 2 are given in Section B.3, followed by several
remarks about the proofs and discussions of alternative strategies. This section of the
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appendix is intended to be read in the order in which it is presented. Some familiarity with
the approach in Jasra et al. (2017) is also useful.

Note that our results concerning Lr-norms are stated for r ∈ [1,∞); and can be ex-
tended to the case r ∈ (0, 1) by Hölder’s inequality. We will use this fact without further
elaboration. Throughout our arguments, C will represent a finite constant whose value
may change from line to line, but does not depend upon the discretization level. Any other
dependencies in the various parameters considered will be made explicit in the statement
of our results.

B.2 Results on Time-Discretized Diffusion Processes

In this section, we consider two diffusion process X = (Xt)t≥0 and X? = (X?
t )t≥0 on

the filtered probability space (Ω,F , {Ft}t≥0,Pθ) following (1), with the respective initial
conditions X0 = x ∈ Rd and X?

0 = x? ∈ Rd, and driven by the same Brownian motion.
We will consider Euler discretizations (13) of (Xt)t≥0 and (X?

t )t≥0 at some given level

l, denoted as X̃0:T and X̃?
0:T , driven by the same Brownian motion and with the initial

conditions X̃0 = x and X̃?
0 = x?. The expectation operator for the described processes is

written as Eθ.
In addition to the previously defined terms bθ(x) = Σ(x)−1σ(x)∗aθ(x) and Σ(x) =

σ(x)σ(x)∗, we introduce the function ρθ(x) = bθ(x)∗Σ(x)−1σ(x)∗ which allows us to rewrite
(12) as

Gθ(X) = −1

2

∫ T

0
∇θ‖bθ(Xt)‖22dt+

∫ T

0
∇θρθ(Xt)dXt +

T∑
t=1

∇θ log gθ(yt|Xt),

and (15) as

Glθ(X0:T ) =

− 1

2

Kl∑
k=1

∇θ‖bθ(Xsk−1
)‖22∆l +

Kl∑
k=1

∇θρθ(Xsk−1
)(Xsk −Xsk−1

) +
T∑
t=1

∇θ log gθ(yt|Xt). (37)

For notational convenience, we define the d× 1 vector of derivatives of ρθ as

κθ,i(x)∗ =
( ∂

∂θi
[ρθ(x)]1, . . . ,

∂

∂θi
[ρθ(x)]d

)
,

for any (i, x) ∈ {1, . . . , dθ}×Rd, and the conditional likelihood given states x1, . . . , xT ∈ Rd
as ϕθ(x1, . . . , xT ) =

∏T
t=1 gθ(yt|xt). We now give the proof of Theorem 1 followed by several

technical lemmata that are required to establish the theorem.

Proof [Proof of Theorem 1] We consider the proof for any given component i ∈ {1, . . . , dθ}
and decompose the error of the score function (6) at level l ∈ N0 as

[Sl(θ)− S(θ)]i = T1 + T2 (38)
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where

T1 =
Eθ[ϕθ(X̃?

1 , . . . , X̃
?
T )[Glθ(X̃

?
0:T )]i]

Eθ[ϕθ(X̃?
1 , . . . , X̃

?
T )]Eθ[ϕθ(X?

1 , . . . , X
?
T )]

(
Eθ[ϕθ(X?

1 , . . . , X
?
T )]− Eθ[ϕθ(X̃?

1 , . . . , X̃
?
T )]
)
,

T2 =
1

Eθ[ϕθ(X?
1 , . . . , X

?
T )]

(
Eθ[ϕθ(X̃?

1 , . . . , X̃
?
T )[Glθ(X̃

?
0:T )]i]− Eθ[ϕθ(X?

1 , . . . , X
?
T )[Gθ(X

?)]i]
)
.

Thus our objective is to provide bounds on the quantities T1 and T2 to conclude the proof.
For T1, using Assumption 2, one has the upper-bound

T1 ≤ C
T∑
t=1

Eθ[‖X̃?
t −X?

t ‖2],

then by using results on the convergence of Euler approximations (Kloeden and Platen,
2013), for r > 0

Eθ
[
‖X̃?

t −X?
t ‖r2
]1/r ≤ C∆

1/2
l (39)

one has
T1 ≤ C∆

1/2
l . (40)

Note that using standard results on weak errors for diffusions one can improve this upper-
bound to T1 ≤ C∆l.

For T2, using Assumption 2, we have T2 ≤ C(T3 + T4) where

T3 = Eθ
[
{ϕθ(X̃?

1 , . . . , X̃
?
T )− ϕθ(X?

1 , . . . , X
?
T )}[Glθ(X̃?

0:T )]i
]
,

T4 = Eθ
[
ϕθ(X

?
1 , . . . , X

?
T ){[Glθ(X̃?

0:T )]i − [Gθ(X
?)]i}

]
.

For T3, using Cauchy-Schwarz, we have the upper-bound

T3 ≤ Eθ
[
{ϕθ(X̃?

1 , . . . , X̃
?
T )− ϕθ(X?

1 , . . . , X
?
T )}2

]1/2Eθ[{[Glθ(X̃?
0:T )]i}2

]1/2
.

As the second term is bounded by C, we consider only the first. We have the upper-bound

T3 ≤ C
T∑
t=1

Eθ
[
‖X̃?

t −X?
t ‖22
]1/2 ≤ C∆

1/2
l . (41)

For T4, noting that ϕθ is a bounded function under Assumption 2, applying Lemma 4 allows

one to conclude that T4 ≤ C∆
1/2
l . Therefore, using T2 ≤ C(T3 + T4) along with (41), we

have
T2 ≤ C∆

1/2
l . (42)

Combining (40) and (42) with (38) allows one to conclude the proof.

Remark 3 We have adopted a strong error approach in our analysis to simplify the argu-
ments involved. At the expense of more involved and lengthy arguments, we note that the
upper-bound of Theorem 1 can be sharpened to O(∆l) if one takes a weak error approach.
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Lemma 4 Under Assumptions 1 and 2, for any (T, r, θ, i) ∈ N× [1,∞)×Θ× {1, . . . , dθ},
there exists a constant C <∞ such that for any (l, x) ∈ N0 × Rd

Eθ
[∣∣[Glθ(X̃0:T )]i − [Gθ(X)]i

∣∣r]1/r
≤ C∆

1/2
l ,

with X̃0 = X0 = x.

Proof We have that

Eθ
[∣∣[Glθ(X̃0:T )]i − [Gθ(X)]i

∣∣r] ≤ C(T1 + T2) (43)

where

T1 = Eθ
[∣∣[Glθ(X̃0:T )]i − [Glθ(X0:T )]i

∣∣r],
T2 = Eθ

[∣∣[Glθ(X0:T )]i − [Gθ(X)]i
∣∣r],

where X0:T = (Xsk)Klk=0 are the states of the process (Xt)t≥0 at the discretization times of

the process X̃0:T . From (37), we have that T1 ≤ C
∑6

j=3 Tj , where

T3 = Eθ
[∣∣∣ T∑

t=1

{[
∇θ log gθ(yt|X̃t)

]i − [∇θ log gθ(yt|Xt)
]i}∣∣∣r],

T4 = ∆r
lEθ
[∣∣∣ Kl∑
k=1

{[
∇θ‖bθ(X̃sk−1

)‖22
]i − [∇θ‖bθ(Xsk−1

)‖22
]i}∣∣∣r],

T5 = Eθ
[∣∣∣ Kl∑
k=1

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}[X̃sk − X̃sk−1
]
∣∣∣r],

T6 = Eθ
[∣∣∣ Kl∑
k=1

κθ,i(Xsk−1
)∗[(X̃sk − X̃sk−1

)− (Xsk −Xsk−1
)]
∣∣∣r].

The term T3 can be treated in almost the same manner as T1 in the proof of Theorem 1,
i.e. using a similar argument to the proof of the bound on T1 in Theorem 1, one can deduce
that

T3 ≤ C∆
r/2
l . (44)

For T4, using the fact that ∂/∂θi[b
2
θ]
j ∈ Lip‖·‖2(Rd) for any (i, j) ∈ {1, . . . , dθ} ×

{1, . . . , d}, we have by first applying Minkowski’s inequality

T4 ≤ C∆r
l

( Kl∑
k=1

Eθ
[
‖X̃sk−1

−Xsk−1
‖r2
]1/r)r

.

Then using (39), it follows that

T4 ≤ C∆
r/2
l . (45)
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The terms T5 and T6 are bounded in Lemmata 6-7, so combining (44), (45) and the afore-
mentioned lemmata with T1 ≤ C

∑6
j=3 Tj yields

T1 ≤ C∆
r/2
l .

By Lemma 8, T2 ≤ C∆
r/2
l and thus by (43) the proof is concluded.

Corollary 5 Under Assumptions 1 and 2, for any (T, r, θ) ∈ N × [1,∞) × Θ, there exists
a constant C <∞ such that for any (l, x) ∈ N0 × Rd

Eθ
[∥∥Glθ(X̃0:T )−Gθ(X)

∥∥r
2

]1/r
≤ C∆

1/2
l .

Proof By Minkowski’s inequality

Eθ
[∥∥Glθ(X̃0:T )−Gθ(X)

∥∥r
2

]1/r
≤
( dθ∑
i=1

Eθ
[∣∣[Glθ(X̃0:T )]i − [Gθ(X)]i

∣∣r]2/r
)1/2

so the proof follows by Lemma 4.

Lemma 6 Under Assumptions 1 and 2, for any (T, r, θ, i) ∈ N× [1,∞)×Θ× {1, . . . , dθ},
there exists a constant C <∞ such that for any (l, x) ∈ N0 × Rd

Eθ
[∣∣∣ Kl∑

k=1

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}[X̃sk − X̃sk−1
]
∣∣∣r] ≤ C∆

r/2
l ,

with X̃0 = X0 = x.

Proof We have the decomposition

Kl∑
k=1

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}[X̃sk − X̃sk−1
] = MKl +RKl ,

where

MKl =

Kl∑
k=1

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}σ(X̃sk−1
)[Wsk −Wsk−1

],

RKl = ∆l

Kl∑
k=1

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}aθ(X̃sk−1
).

Thus by the Cr−inequality,

Eθ
[∣∣∣ Kl∑

k=1

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}[X̃sk − X̃sk−1
]
∣∣∣r] ≤ C(Eθ[|MKl |

r] + Eθ[|RKl |
r]
)
. (46)
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We will bound the two terms on the R.H.S. of (46) individually. Bound for Eθ[|MKl |r]. If
we define

Mu =
u−1∑
k=0

{κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}σ(X̃sk−1
)[Wsk −Wsk−1

]

for any u ∈ N0, then (Mu,Fu∆l
)u∈N0 is a martingale. It follows from this fact and from an

application of the Burkholder-Gundy-Davis (BGD) inequality that

Eθ[|MKl |
r] ≤ CEθ

[∣∣∣ Kl∑
k=1

({κθ,i(X̃sk−1
)∗ − κθ,i(Xsk−1

)∗}σ(X̃sk−1
)[Wsk −Wsk−1

])2
∣∣∣r/2],

from which Minkowski’s inequality yields

Eθ[|MKl |
r] ≤ C

( Kl∑
k=1

Eθ
[∣∣{κθ,i(X̃sk−1

)∗ − κθ,i(Xsk−1
)∗}σ(X̃sk−1

)[Wsk −Wsk−1
]
∣∣r]2/r

)r/2
.

Using the Cr−inequality d2 times, we obtain the bound

Eθ[|MKl |
r] ≤ C

(
Kl∑
k=1

( ∑
(m,j)∈{1,...,d}2

Eθ
[∣∣{κθ,i(X̃sk−1

)− κθ,i(Xsk−1
)}m×

σ(X̃sk−1
)m,j [Wsk −Wsk−1

]j
∣∣r])2/r

)r/2
.

Using the fact that σm,j ∈ Bb(Rd) along with the Cauchy-Schwarz inequality yields

Eθ[|MKl |
r] ≤ C

(
Kl∑
k=1

( ∑
(m,j)∈{1,...,d}2

Eθ
[∣∣{κθ,i(X̃sk−1

)− κθ,i(Xsk−1
)}m

∣∣2r]1/2
×

Eθ
[∣∣[Wsk −Wsk−1

]j
∣∣2r]1/2

)2/r
)r/2

. (47)

Since it holds that [κθ,i]
m ∈ Lip‖·‖(Rd), it follows from the same type of inequality as (39)

that

Eθ
[∣∣{κθ,i(X̃sk−1

)− κθ,i(Xsk−1
)}m

∣∣2r]1/2
≤ C∆

r/2
l , (48)

and by standard properties of Brownian motion, we obtain

Eθ
[∣∣[Wsk −Wsk−1

]j
∣∣2r]1/2

≤ C∆
r/2
l . (49)

Combining (47) with (48) and (49) yields the upper-bound

Eθ[|MKl |
r] ≤ C∆

r/2
l . (50)
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Bound for Eθ[|RKl |r]. We have the upper-bound by Minkowski’s inequality

Eθ[|RKl |
r] ≤ ∆r

l

( Kl∑
k=1

Eθ
[∣∣{κθ,i(X̃sk−1

)∗ − κθ,i(Xsk−1
)∗}aθ(X̃sk−1

)
∣∣r]1/r

)r
.

Then applying the Cr−inequality d times and using the assumption that ajθ ∈ Bb(R
d) we

have the upper-bound

Eθ[|RKl |
r] ≤ C∆r

l

( Kl∑
k=1

d∑
j=1

Eθ
[∣∣{κθ,i(X̃sk−1

)− κθ,i(Xsk−1
)}j
∣∣r]1/r

)r
.

Using the same argument to obtain (48), we have

Eθ[|RKl |
r] ≤ C∆r

l∆
−r/2
l = C∆

r/2
l . (51)

Combining (50) and (51) with (46) allows us to conclude.

Lemma 7 Under Assumptions 1 and 2, for any (T, r, θ, i) ∈ N× [1,∞)×Θ× {1, . . . , dθ},
there exists a constant C <∞ such that for any (l, x) ∈ N0 × Rd

Eθ
[∣∣∣ Kl∑

k=1

κθ,i(Xsk−1
)∗
[
(X̃sk − X̃sk−1

)− (Xsk −Xsk−1
)
]∣∣∣r] ≤ C∆

r/2
l ,

with X̃0 = X0 = x.

Proof We have the decomposition

Kl∑
k=1

κθ,i(Xsk−1
)∗
[
(X̃sk − X̃sk−1

)− (Xsk −Xsk−1
)
]

= MKl +RKl ,

where

MKl =

Kl∑
k=1

∑
(m,j)∈{1,...,d}2

κθ,i(Xsk−1
)m
∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s ,

RKl =

Kl∑
k=1

d∑
j=1

κθ,i(Xsk−1
)j
∫ sk

sk−1

[
aθ(X̃sk−1

)− aθ(Xs)
]j
ds.

Thus by the Cr−inequality,

Eθ
[∣∣∣ Kl∑

k=1

κθ,i(Xsk−1
)∗
[
(X̃sk−X̃sk−1

)−(Xsk−Xsk−1
)
]∣∣∣r] ≤ C(Eθ[|MKl |

r]+Eθ[|RKl |
r]
)
. (52)

We will bound the two terms on the R.H.S. of (52) individually.

36



On Unbiased Estimation for Partially Observed Diffusions

Bound for Eθ[|MKl |r]. By applying the Cr−inequality d2 times we have the upper-bound

Eθ[|MKl |
r] ≤ C

∑
(m,j)∈{1,...,d}2

Eθ
[∣∣∣ Kl∑

k=1

κθ,i(Xsk−1
)m
∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

∣∣∣r].
For any (m, j) ∈ {1, . . . , d}2, we define

Mm,j
u =

u−1∑
k=0

κθ,i(Xsk−1
)m
∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

for u ∈ N0. As (Mm,j
u ,Fu∆l

)u∈N0 is a martingale, applying the BGD inequality yields

Eθ[|MKl |
r] ≤ C

∑
(m,j)∈{1,...,d}2

Eθ
[∣∣∣ Kl∑

k=1

(
κθ,i(Xsk−1

)m
∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

)2∣∣∣r/2].
Applying Minkowski’s inequality and using the fact that [κθ,i]

m ∈ Bb(Rd), we obtain

Eθ[|MKl |
r] ≤ C

∑
(m,j)∈{1,...,d}2

(
Kl∑
k=1

Eθ
[∣∣∣ ∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

∣∣∣r]2/r
)r/2

. (53)

Now we deal with the expectation on the R.H.S. of (53). Using the martingale property of
the stochastic integral, it follows from applying the BGD inequality again that

Eθ
[∣∣∣ ∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

∣∣∣r] ≤ CEθ[∣∣∣ ∫ sk

sk−1

{
[σ(X̃sk−1

)− σ(Xs)]
m,j
}2
ds
∣∣∣r/2]

≤ C∆
r/2−1
l Eθ

[ ∫ sk

sk−1

∣∣[σ(X̃sk−1
)− σ(Xs)]

m,j
∣∣rds],

where we have used Jensen’s inequality in the second line. Using the Cr−inequality, we
have

Eθ
[∣∣∣ ∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

∣∣∣r] ≤
C∆

r/2−1
l

∫ sk

sk−1

{
Eθ
[∣∣[σ(X̃sk−1

)− σ(Xsk−1
)]m,j

∣∣r]+ Eθ
[∣∣[σ(Xsk−1

)− σ(Xs)]
m,j
∣∣r]}ds.

Using the fact that σm,j ∈ Lip‖·‖2(Rd), we then obtain

Eθ
[∣∣∣ ∫ sk

sk−1

[σ(X̃sk−1
)− σ(Xs)]

m,jdW j
s

∣∣∣r] ≤
C∆

r/2−1
l

∫ sk

sk−1

{
Eθ
[
‖X̃sk−1

−Xsk−1
‖r2
]

+ Eθ
[
‖Xsk−1

−Xs‖r2
]}
ds.
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By the property (39) for r > 0 (Ikeda and Watanabe, 2014), it follows that

sup
(t,s)∈[0,T ]2

Eθ
[
‖Xt −Xs‖r2

]
≤ C|t− s|r/2, (54)

hence we obtain the upper-bound

Eθ
[∣∣∣ ∫ sk

sk−1

[
σ(X̃sk−1

)− σ(Xs)
]m,j

dW j
s

∣∣∣r] ≤ C∆
r/2−1
l ∆

1+r/2
l = C∆r

l . (55)

Combining (55) with (53) gives

Eθ[|MKl |
r] ≤ C∆

r/2
l . (56)

Bound for Eθ[|RKl |r]. Using Minkowski’s inequality followed by Jensen’s inequality, we
obtain the following bounds

Eθ[|RKl |
r] ≤

(
Kl∑
k=1

d∑
j=1

Eθ
[∣∣∣κθ,i(Xsk−1

)j
∫ sk

sk−1

[aθ(X̃sk−1
)− aθ(Xs)]

jds
∣∣∣r]1/r

)r

≤

(
Kl∑
k=1

d∑
j=1

∆
1−1/r
l Eθ

[∣∣κθ,i(Xsk−1
)j
∣∣r ∫ sk

sk−1

∣∣[aθ(X̃sk−1
)− aθ(Xs)]

j
∣∣rds]1/r

)r
.

Using the assumption [κθ,i]
j ∈ Bb(Rd), the decomposition

[aθ(X̃sk−1
)− aθ(Xs)]

j = [aθ(X̃sk−1
)− aθ(Xsk−1

)]j + [aθ(Xsk−1
)− aθ(Xs)]

j ,

and the Cr−inequality, we have

Eθ[|RKl |
r] ≤

(
Kl∑
k=1

d∑
j=1

C∆
1−1/r
l

(∫ sk

sk−1

Eθ
[∣∣[aθ(X̃sk−1

)− aθ(Xsk−1
)]j
∣∣r]ds+

∫ sk

sk−1

Eθ
[∣∣[aθ(Xsk−1

)− aθ(Xs)]
j
∣∣r]ds)1/r

)r
.

Since we have assumed that ajθ ∈ Lip‖·‖2(Rd), one has

Eθ[|RKl |
r] ≤

(
Kl∑
k=1

d∑
j=1

C∆
1−1/r
l

(∫ sk

sk−1

Eθ
[
‖X̃sk−1

−Xsk−1
‖r2
]
ds+

∫ sk

sk−1

Eθ
[
‖Xsk−1

−Xs‖r2
]
ds

)1/r
)r
.

Using (39) and (54), we therefore obtain

Eθ[|RKl |
r] ≤ C∆

r/2
l . (57)

Combining (56) and (57) with (52) allows us to conclude.
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Lemma 8 Under Assumptions 1 and 2, for any (T, r, θ, i) ∈ N× [1,∞)×Θ× {1, . . . , dθ},
there exists a constant C <∞ such that for any (l, x) ∈ N0 × Rd

Eθ
[∣∣[Glθ(X0:T )]i − [Gθ(X)]i

∣∣r] ≤ C∆
r/2
l ,

with X̃0 = X0 = x.

Proof We have the decomposition∣∣[Glθ(X0:T )]i − [Gθ(X)]i
∣∣ = R

(1)
Kl

+MKl +R
(2)
Kl
,

where

R
(1)
Kl

=

Kl∑
k=1

∫ sk

sk−1

(
[∇θ‖bθ(Xsk−1

)‖22]i − [∇θ‖bθ(Xs)‖22]i
)
ds,

MKl =

Kl∑
k=1

∑
(m,j)∈{1,...,d}2

∫ sk

sk−1

[κθ,i(Xsk−1
)mσ(X̃sk−1

)− κθ,i(Xs)
mσ(Xs)]

m,jdW j
s ,

R
(2)
Kl

=

Kl∑
k=1

d∑
j=1

∫ sk

sk−1

(
κθ,i(Xsk−1

)jaθ(Xsk−1
)j − κθ,i(Xs)

jaθ(Xs)
j
)
ds.

Thus, by the Cr−inequality, we have

Eθ
[∣∣[Glθ(X0:T )]i − [Gθ(X)]i

∣∣r] ≤ C(Eθ[|MKl |
r
]

+ Eθ
[∣∣R(1)

Kl

∣∣r]+ Eθ
[∣∣R(2)

Kl

∣∣r]).
In order to prove that Eθ[|MKl |r] ≤ C∆

r/2
l , one can rely on very similar arguments to (56)

in the proof of Lemma 7. Likewise, for m ∈ {1, 2} one can prove that Eθ[|R
(m)
Kl
|r] ≤ C∆

r/2
l

using similar arguments to (57) in the proof of Lemma 7.

Lemma 9 Under Assumptions 1 and 2, for any (T, r, θ) ∈ N × [1,∞) × Θ, there exists a
constant C <∞ such that for any (x, x?) ∈ Rd × Rd

Eθ
[
‖Gθ(X)−Gθ(X?)‖r2

]1/r ≤ C‖x− x?‖2,
with X0 = x and X?

0 = x?.

Proof This proof follows a similar type of arguments to those considered in the proofs of
Lemmata 7-8. The main difference is that one must use the following result which can be
deduced from (Rogers and Williams, 2000, Corollary v.11.7) and Grönwall’s inequality)

sup
t∈[0,T ]

Eθ[‖Xt −X?
t ‖2r2 ]

1
2r ≤ C‖x− x?‖2

instead of using Euler convergence. Given that the proofs of Lemmata 7-8 are repetitive,
these arguments are omitted.
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Lemma 10 Under Assumptions 1 and 2, for any (T, r, θ) ∈ N× [1,∞)×Θ, there exists a
constant C <∞ such that for any (l, x, x?) ∈ N× Rd × Rd

Eθ
[
‖Glθ(X̃0:T )−Gl−1

θ (X̂?
0:T )‖r2

]1/r ≤ C(∆1/2
l + ‖x− x?‖2

)
,

with X̃0 = x and X̃?
0 = x?, where X̂?

0:T = (X̃?
s2k

)
Kl−1

k=0 are the sequence of states in X̃?
0:T =

(X̃?
sk

)Klk=0 at the time steps corresponding to level l − 1.

Proof The expectation in the statement of the lemma is upper-bounded by
∑3

j=1 Tj , where

T1 = Eθ
[
‖Glθ(X̃0:T )−Gθ(X)‖r2

]1/r
,

T2 = Eθ
[
‖Gθ(X)−Gθ(X?)‖r2

]1/r
,

T3 = Eθ
[
‖Gl−1

θ (X̂?
0:T )−Gθ(X?)‖r2

]1/r
.

For T1 and T3, one can apply Corollary 5; for T2, we use Lemma 9. This allows us to
conclude the result.

We now introduce two additional functions which will be useful in the following section.
For (t, l) ∈ {1, . . . , T} × N0, we define Gl·,t : Θ× (Rd)2lt+1 → Rdθ as

Glθ,t(X0:t) = −1

2

2lt∑
k=1

∇θ‖bθ(Xsk−1
)‖22∆l +

2lt∑
k=1

∇θρθ(Xsk−1
)(Xsk −Xsk−1

)+

t∑
p=1

∇θ log gθ(yp|Xp),

and Gl·,t−1:t : Θ× Rd × (Rd)2l → Rdθ as

Glθ,t−1:t(Xt−1, Xt−1+∆l:t) = −1

2

2l−1∑
k=0

∇θ‖bθ(Xt−1+k∆l
)‖22∆l+

2l−1∑
k=0

∇θρθ(Xt−1+k∆l
)(Xt−1+(k+1)∆l

−Xt−1+k∆l
) +∇θ log gθ(yt|Xt).

From (37), we note that Glθ,T (X0:T ) = Glθ(X0:T ). The following remarks will facilitate our
proofs in the next section.

Remark 11 One can easily extend Lemma 10 as follows. Under Assumptions 1 and 2, for
any (t, r, θ) ∈ {1, . . . , T} × [1,∞) × Θ, there exists a constant C < ∞ such that for any
(l, x, x?) ∈ N× Rd × Rd

Eθ
[∥∥Glθ,t(X̃0:t)−Gl−1

θ,t (X̂?
0:t)
∥∥r

2

]1/r
≤ C

(
∆

1/2
l + ‖x− x?‖2

)
,

with X̃0 = x and X̃?
0 = x?, where X̂?

0:t = (X̃?
s2k

)2l−1t
k=0 .
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Remark 12 One can also deduce the following result. Under Assumptions 1 and 2, for
any (t, r, θ) ∈ {1, . . . , T} × [1,∞) × Θ, there exists a constant C < ∞ such that for any
(l, x, x?) ∈ N× Rd × Rd

Eθ
[∥∥Glθ,t−1:t(x, X̃t−1+∆l:t)−G

l−1
θ,t−1:t(x?, X̂

?
t−1+∆l−1:t)

∥∥r
2

∣∣∣X̃t−1 = x, X̃?
t−1 = x?

]1/r

≤ C
(
∆

1/2
l + ‖x− x?‖2

)
,

where X̂?
t−1+∆l−1:t = (X̃?

t−1+∆l−1
)2l−1

k=1 .

B.3 Results on Coupled Conditional Particle Filters

We begin with some definitions associated to Algorithm 4. For any (i, t, s) ∈ {1, . . . , N} ×
N0 × {l − 1, l}, we will write Ast (i) = As,it and Āst (i) = Ās,it . Using this notation, for any
(t, l) ∈ {0, . . . , T − 1} × N, we define

Slt = {i ∈ {1, . . . , N} : Alt(i) = Al−1
t (i),

Alt−1 ◦Alt(i) = Al−1
t−1 ◦A

l−1
t (i), . . . , Al0 ◦ · · · ◦Alt(i) = Al−1

0 ◦ · · · ◦Al−1
t (i)},

and

S̄lt = {i ∈ {1, . . . , N} : Ālt(i) = Āl−1
t (i),

Ālt−1 ◦ Ālt(i) = Āl−1
t−1 ◦ Ā

l−1
t (i), . . . , Āl0 ◦ · · · ◦ Ālt(i) = Āl−1

0 ◦ · · · ◦ Āl−1
t (i)}.

For (l, β, C) ∈ N× R+ × R+, we also introduce the following sets

Blβ,C = {(x0:T , x̄0:T ) ∈ Xl × Xl−1 : ‖xt − x̄t‖2 ≤ C∆β
l , t ∈ {1, . . . , T}},

Glβ,C = {(x0:T , x̄0:T ) ∈ Xl × Xl−1 : ‖Glθ,t(x0:t)−Gl−1
θ,t (x̄0:t)‖2 ≤ C∆β

l , t ∈ {1, . . . , T}}.

B.3.1 Results associated to Steps (1) and (2) of Algorithm 4

We consider Steps (1) and (2) of Algorithm 4 where the input pairs of trajectories are taken

as (X l−1,?
0:T , X̄ l−1,?

0:T ) = (xl−1
0:T , x̄

l−1
0:T ) ∈ Zl−1 and (X l,?

0:T , X̄
l,?
0:T ) = (xl0:T , x̄

l
0:T ) ∈ Zl. In order to

analyze the algorithm, it is useful to define the simulated trajectories recursively at time
steps t ∈ {1, . . . , T}, for any i ∈ {1, . . . , N}, as

(X l−1,i
0:t , X̄ l−1,i

0:t ) =
(

(X
l−1,Al−1,i

t−1

0:t−1 , X l−1,i
t−1+∆l−1:t), (X̄

l−1,Āl−1,i
t−1

0:t−1 , X̄ l−1,i
t−1+∆l−1:t)

)
,

(X l,i
0:t, X̄

l,i
0:t) =

(
(X

l,Al,it−1

0:t−1 , X
l,i
t−1+∆l:t

), (X̄
l,Āl,it−1

0:t−1 , X̄
l,i
t−1+∆l:t

)
)
.

After the completion of Step (2), we consider the output given by the two collections of

pairs of trajectories (X l−1,i
0:T , X̄ l−1,i

0:T )Ni=1 and (X l,i
0:T , X̄

l,i
0:T )Ni=1. Under these conditions, the

expectation associated to the law of Steps (1) and (2) of Algorithm 4 is denoted as Ěl−1,l
θ .
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Lemma 13 Under Assumptions 1 and 2, for any (t, r, θ, C ′) ∈ {1, . . . , T}×[1,∞)×Θ×R+,
there exists a constant C < ∞ such that for any (l, β,N) ∈ N × R+ × {2, 3, . . . } and any
(xl0:T , x

l−1
0:T ) ∈ Blβ,C′, it holds that

Ěl−1,l
θ

[
1

N

∑
i∈Slt−1

‖X l,i
t −X

l−1,i
t ‖r2

]1/r

≤ C∆
1
2
∧β

l .

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ also holds, then

Ěl−1,l
θ

[
1

N

∑
i∈S̄lt−1

‖X̄ l,i
t − X̄

l−1,i
t ‖r2

]1/r

≤ C∆
1
2
∧β

l .

Proof We only consider the first inequality as it is the same proof for the second inequality.
The proof is almost identical to Jasra et al. (2017, Lemma D.3.). The only difference is if

Al,ip = N for some (p, i) ∈ {1, . . . , t} × {1, . . . , N} with i ∈ Slp, but in such a case, one can

use that (xl0:T , x
l−1
0:T ) ∈ Blβ,C′ .

Remark 14 Implicit in the proof of Lemma 13 is the following result. Under Assumptions 1
and 2, for any (t, r, θ, C ′) ∈ {1, . . . , T} × [1,∞) × Θ × R+, there exists a constant C < ∞
such that for any (l, β,N) ∈ N×R+ × {2, 3, . . . } and any (xl0:T , x

l−1
0:T ) ∈ Blβ,C′, it holds that

Ěl−1,l
θ

[
1

N

∑
i∈Slt−1

∥∥∥X l,Al,it−1

t−1 −X l−1,Al−1,i
t−1

t−1

∥∥∥r
2

]1/r

≤ C∆
1
2
∧β

l .

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ also holds, then

Ěl−1,l
θ

[
1

N

∑
i∈S̄lt−1

∥∥∥X̄ l,Āl,it−1

t−1 − X̄ l−1,Āl−1,i
t−1

t−1

∥∥∥r
2

]1/r

≤ C∆
1
2
∧β

l .

Lemma 15 Under Assumptions 1 and 2, for any (t, θ, C ′) ∈ {1, . . . , T} × Θ × R+, there
exists a constant C < ∞ such that for any (l, β,N) ∈ N × R+ × {2, 3, . . . } and any
(xl0:T , x

l−1
0:T ) ∈ Blβ,C′, it holds that

1− Ěl−1,l
θ

[
Card(Slt−1)

N

]
≤ C∆

1
2
∧β

l ,

where Card(·) denotes the cardinality of a set. If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ also holds, then

1− Ěl−1,l
θ

[
Card(S̄lt−1)

N

]
≤ C∆

1
2
∧β

l .
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Proof We only consider the first inequality as it is the same proof for the second inequality.
The proof is almost identical to Jasra et al. (2017, Lemma D.4.). The only difference is if

Al,ip = N for some (p, i) ∈ {1, . . . , t} × {1, . . . , N} with i ∈ Slp, but in such a case, one can

use that (xl0:T , x
l−1
0:T ) ∈ Blβ,C′ and Lemma 13.

Lemma 16 Under Assumptions 1 and 2, for any (t, r, θ, C ′) ∈ {1, . . . , T}×[1,∞)×Θ×R+,
there exists a constant C < ∞ such that for any (l, β,N) ∈ N × R+ × {2, 3, . . . } and any
(xl0:T , x

l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′, it holds that

Ěl−1,l
θ

[ 1

N

∑
i∈Slt−1

∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2

]1/r
≤ C∆

1
2
∧β

l .

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ also holds, then

Ěl−1,l
θ

[ 1

N

∑
i∈S̄lt−1

∥∥Glθ,t(X̄ l,i
0:t)−G

l−1
θ,t (X̄ l−1,i

0:t )
∥∥r

2

]1/r
≤ C∆

1
2
∧β

l .

Proof We only consider the first inequality as it is the same proof for the second inequality.
The proof is by induction on t. The initialization holds for i ∈ {1, . . . , N − 1} by the result
stated in Remark 11. The case i = N is trivial as (xl0:T , x

l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ .

We now consider

Ěl−1,l
θ

[ 1

N

∑
i∈Slt−1

∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2

]1/r
≤ C(T1 + T2), (58)

where

T1 = Ěl−1,l
θ

[ 1

N

∑
i∈Slt−1

∥∥Glθ,t−1:t(X
l,i
t−1, X

l,i
t−1+∆l:t

)−Gl−1
θ,t−1:t(X

l−1,i
t−1 , X l−1,i

t−1+∆l−1:t)
∥∥r

2

]1/r
,

T2 = Ěl−1,l
θ

[
1

N

∑
i∈Slt−1

∥∥∥Glθ,t−1(X
l,Al,it−1

0:t−1 )−Gl−1
θ,t−1(X

l−1,Al−1,i
t−1

0:t−1 )
∥∥∥r

2

]1/r

.

So we consider bounds on T1 and T2.

For T1, by applying the result in Remark 12, we have

T1 ≤ C
(

∆
1/2
l + Ěl−1,l

θ

[ 1

N

∑
i∈Slt−1

∥∥∥X l,Al,it−1

t−1 −X l−1,Al−1,i
t−1

t−1

∥∥∥r
2

]1/r
)
.

Then applying the result in Remark 14 gives

T1 ≤ C∆
1
2
∧β

l . (59)
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For T2, one can use the same approach as in the proof of Jasra et al. (2017, Lemma D.3.)
from the bottom of page 3092, along with the induction hypothesis, to obtain

T2 ≤ C∆
1
2
∧β

l . (60)

Combining (58) with (59) and (60) concludes the proof.

Lemma 17 Under Assumptions 1 and 2, for any (t, r, θ) ∈ {1, . . . , T} × [1,∞)×Θ, there
exists a constant C <∞ such that for any (l, s,N, i) ∈ N×{l−1, 1}×{2, 3, . . . }×{1, . . . , N}
and any (xl0:T , x

l−1
0:T ) ∈ Xl × Xl−1, it holds that

Ěl−1,l
θ

[∥∥Gsθ,t(Xs,i
0:t)
∥∥r

2

]
≤ C

(
1 +

t∑
p=1

∥∥Gsθ,p−1:p(x
s,N
p−1, x

s,N
p−1+∆s:p

)
∥∥r

2

)
.

Also for any (x̄l0:T , x̄
l−1
0:T ) ∈ Xl × Xl−1

Ěl−1,l
θ

[∥∥Gsθ,t(X̄s,i
0:t)
∥∥r

2

]
≤ C

(
1 +

t∑
p=1

∥∥Gsθ,p−1:p(x̄
s,N
p−1, x̄

s,N
p−1+∆s:p

)
∥∥r

2

)
.

Proof We only consider the first inequality as it is the same proof for the second inequality.
We consider a proof by induction. In the case of t = 1, one can use the boundedness
properties of the appropriate terms along with the martingale-remainder methods in the
proof of Lemma 6 to deduce the given bound, except for the case i = N , which is exhibited
in the bound.

Now consider the case of t > 1, we have the upper-bound

Ěl−1,l
θ

[∥∥Gsθ,t(Xs,i
0:t)
∥∥r

2

]
≤ C(T1 + T2), (61)

where

T1 = Ěl−1,l
θ

[∥∥Gsθ,t−1:t(X
s,i
t−1, X

s,i
t−1+∆s:t

)
∥∥r

2

]
,

T2 = Ěl−1,l
θ

[∥∥Gsθ,t−1(X
s,As,it−1

0:t−1 )
∥∥r

2

]
.

So we consider bounds on T1 and T2.
For T1, by the same argument as for the initialization

T1 ≤ C
(

1 +
∥∥Gsθ,t−1:t(x

s,N
t−1, x

s,N
t−1+∆s:t

)
∥∥r

2

)
. (62)

For T2, we first note that for the resampling probabilities associated to As,it−1, we can deduce
the following upper-bound using Assumption 2

gθ(yt−1|xit−1)∑N
j=1 gθ(yt−1|xjt−1)

≤ C

N
. (63)
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Averaging over the resampling indexes, using (63) and the induction hypothesis one has

T2 ≤ C
(

1 +
t−1∑
p=1

∥∥Gsθ,p−1:p(x
s,N
p−1, x

s,N
p−1+∆s:p

)
∥∥r

2

)
. (64)

Combining (61) with (62) and (64) concludes the proof.

Corollary 18 Under Assumptions 1 and 2, for any (t, r, θ) ∈ {1, . . . , T}× [1,∞)×Θ, there
exists a constant C <∞ such that for any (l, s,N, i) ∈ N×{l−1, 1}×{2, 3, . . . }×{1, . . . , N}
and any (xl0:T , x

l−1
0:T ) ∈ Xl × Xl−1, it holds that

Ěl−1,l
θ

[∥∥Xs,i
t

∥∥r
2

]
≤ C

(
1 +

t∑
p=1

∥∥xs,Np ∥∥r
2

)
.

Also for any (x̄l0:T , x̄
l−1
0:T ) ∈ Xl × Xl−1

Ěl−1,l
θ

[∥∥X̄s,i
t

∥∥r
2

]
≤ C

(
1 +

t∑
p=1

∥∥x̄s,Np ∥∥r
2

)
.

Proof We only consider the first inequality as it is the same proof for the second inequality.
We consider a proof by induction. In the case of t = 1, one can use the boundedness
properties of the appropriate terms along with the martingale-remainder methods in the
proof of Lemma 6 to deduce the given bound, except for the case i = N , which is exhibited
in the bound.

For t > 1, when i ∈ {1, . . . , N −1}, repeating the argument of the initialization, one has

Ěl−1,l
θ

[∥∥Xs,i
t

∥∥r
2

]
≤ C

(
1 + Ěl−1,l

θ

[∥∥∥Xs,As,it−1

t−1

∥∥∥r
2

])
.

Then one can repeat the argument that leads to (64). The case i = N is trivially true.

Remark 19 The results in Lemmata 16 and 17 can be extended to the case where one
considers

Ěl−1,l
θ

[
1

N

∑
i∈Slt−1

∥∥∥Glθ,t(X l,Al,it
0:t )−Gl−1

θ,t (X
l−1,Al−1,i

t
0:t )

∥∥∥r
2

]

Ěl−1,l
θ

[ 1

N

∑
i∈S̄lt−1

∥∥Glθ,t(X̄ l,Āl,it
0:t )−Gl−1

θ,t (X̄
l−1,Āl−1,i

t
0:t )

∥∥r
2

]1/r
,

and

Ěl−1,l
θ

[∥∥∥Gsθ,t(Xs,As,it
0:t )

∥∥∥r
2

]
, Ěl−1,l

θ

[∥∥∥Gsθ,t(X̄s,Ās,it
0:t )

∥∥∥r
2

]
,

by using very similar arguments to the proof of those lemmata.
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Lemma 20 Under Assumptions 1 and 2, for any (t, r, θ, C ′) ∈ {1, . . . , T}×[1,∞)×Θ×R+,
there exists a constant C < ∞ such that for any (l, β,N, i, δ) ∈ N × R+ × {2, 3, . . . } ×
{1, . . . , N} × R+ and any (xl0:T , x

l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′, it holds that

Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2

]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(x
s,N
p−1, x

s,N
p−1+∆s:p

)
∥∥r

2

)
.

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ also holds, then

Ěl−1,l
θ

[∥∥Glθ,t(X̄ l,i
0:t)−G

l−1
θ,t (X̄ l−1,i

0:t )
∥∥r

2

]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(x̄
s,N
p−1, x̄

s,N
p−1+∆s:p

)
∥∥r

2

)
.

Proof We only consider the first inequality as it is the same proof for the second inequality.
We have

Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2

]1/r
= T1 + T2, (65)

where

T1 = Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2
ISlt−1

(i)
]1/r

,

T2 = Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2
I(Slt−1)c(i)

]1/r
.

So we consider bounds on T1 and T2.

For T1, we have the upper-bound

T1 ≤ CĚl−1,l
θ

[ 1

N

∑
i∈Slt−1

∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥r

2

]1/r

then applying Lemma 16 gives

T1 ≤ C∆
1
2
∧β

l . (66)

For T2, applying Hölder’s inequality gives

T2 ≤ Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥ r(1+δ)δ

2

] δ
(1+δ) Ěl−1,l

θ

[
I(Slt−1)c(i)

] 1
r(1+δ) . (67)

Note that

Ěl−1,l
θ

[
I(Slt−1)c(i)

]
= 1− Ěl−1,l

θ

[
Card(Slt−1)

N

]
≤ C∆

1
2
∧β

l , (68)
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where we have used Lemma 15, and

Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)−G

l−1
θ,t (X l−1,i

0:t )
∥∥ r(1+δ)δ

2
]

δ
(1+δ)

≤ C
(
Ěl−1,l
θ

[∥∥Glθ,t(X l,i
0:t)
∥∥ r(1+δ)δ

2

] δ
(1+δ)

+ Ěl−1,l
θ

[∥∥Gl−1
θ,t (X l−1,i

0:t )
∥∥ r(1+δ)δ

2

] δ
(1+δ)

)
.

Then applying Lemma 17 and combining with (67) and (68), one can deduce that

T2 ≤ C(∆
1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(x
s,N
p−1, x

s,N
p−1+∆s:p

)
∥∥r

2

)
. (69)

Combining (65), (66) and (69) completes the proof.

Corollary 21 Under Assumptions 1 and 2, for any (t, r, θ, C ′) ∈ {1, . . . , T}× [1,∞)×Θ×
R+, there exists a constant C <∞ such that for any (l, β,N, i, δ) ∈ N× R+ × {2, 3, . . . } ×
{1, . . . , N} × R+ and any (xl0:T , x

l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′, it holds that

Ěl−1,l
θ

[∥∥X l,i
t −X

l−1,i
t

∥∥r
2

]1/r
≤ C(∆

1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

∥∥xs,Np ∥∥r
2

)
.

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ also holds, then

Ěl−1,l
θ

[∥∥X̄ l,i
t − X̄

l−1,i
t

∥∥r
2

]1/r
≤ C(∆

1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

∥∥x̄s,Np ∥∥r
2

)
.

Remark 22 Using Remark 19, one can extend Lemma 20 using a similar argument to its
proof to obtain the same bound on

Ěl−1,l
θ

[∥∥∥Glθ,t(X l,Al,it
0:t )−Gl−1

θ,t (X
l−1,Al−1,i

t
0:t )

∥∥∥r
2

]1/r

.

A similar statement applies to Corollary 21.

We introduce the following sets, which will be of use later on in our proofs. For (t, l) ∈
{0, . . . , T − 1} × N, we define

Šlt = {i ∈ {1, . . . , N − 1} : Alt(i) = Ālt(i) 6= N,Alt−1 ◦Alt(i) = Ālt−1 ◦ Ālt(i) 6= N, . . . ,

Al0 ◦ · · · ◦Alt(i) = Āl0 ◦ · · · ◦ Ālt(i) 6= N} (70)

and

Šl−1
t = {i ∈ {1, . . . , N − 1} : Al−1

t (i) = Āl−1
t (i) 6= N,Al−1

t−1 ◦A
l−1
t (i) = Ālt−1 ◦ Ālt(i) 6= N, . . . ,

Al−1
0 ◦ · · · ◦Al−1

t (i) = Āl−1
0 ◦ · · · ◦ Āl−1

t (i) 6= N}. (71)
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Lemma 23 Under Assumptions 1 and 2, for any (t, θ,N) ∈ {0, . . . , T−1}×Θ×{2, 3, . . . },
there exists a constant ε ∈ (0, 1) such that for any (l, i) ∈ N × {1, . . . , N − 1} and any
((xl−1

0:T , x̄
l−1
0:T ), (xl0:T , x̄

l
0:T )) ∈ Zl−1 × Zl, it holds that

Ěl−1,l
θ

[
IŠlt(i)

]
∧ Ěl−1,l

θ

[
IŠl−1
t

(i)
]
≥ ε.

Proof To proceed we first introduce some notation. For (t, l) ∈ {1, . . . , T} × N, we define

ϑ̌lt(i, j) =

{
gθ(yt|xl,it )∑N

j1=1 gθ(yt|x
l,j1
t )
∧ gθ(yt|xl−1,j

t )∑N
j1=1 gθ(yt|x

l−1,j1
t )

}
I{i}(j) +(

gθ(yt|xl,it )∑N
j1=1 gθ(yt|x

l,j1
t )
−

{
gθ(yt|xl,it )∑N

j1=1 gθ(yt|x
l,j1
t )
∧ gθ(yt|xl−1,i

t )∑N
j1=1 gθ(yt|x

l−1,j1
t )

})
×(

gθ(yt|xl−1,j
t )∑N

j1=1 gθ(yt|x
l−1,j1
t )

−

{
gθ(yt|xl,jt )∑N

j1=1 gθ(yt|x
l,j1
t )
∧ gθ(yt|xl−1,j

t )∑N
j1=1 gθ(yt|x

l−1,j1
t )

})
×

(
1−

N∑
j2=1

{
gθ(yt|xl,j2t )∑N
j1=1 gθ(yt|x

l,j1
t )
∧ gθ(yt|xl−1,j2

t )∑N
j1=1 gθ(yt|x

l−1,j1
t )

})−1

which is the maximal coupling of the resampling distributions across levels. We write
ˇ̄ϑlt(i, j) when one replaces (xl,1:N

t , xl−1,1:N
t ) with (x̄l,1:N

t , x̄l−1,1:N
t ). We will write the maximal

coupling (in the above sense with independent residuals) of ϑ̌lt(j1, j2) and ˇ̄ϑlt(j3, j4) for

(j1, . . . , j4) ∈ {1, . . . , N}4, as ϑ
l
t(j1, . . . , j4). We also define Dl = {(x0:T , x̄0:T ) ∈ Zl : x0:T =

x̄0:T } and

ϑ
(l)
t (j1, j3) =

I(Dl)c(xl0:T , x̄
l
0:T )

∑
(j2,j4)∈{1,...,N}2

ϑ
(l)
t (j1, . . . , j4) + IDl(xl0:T , x̄

l
0:T )I{j1}(j3)

gθ(yt|xl,j1t )∑N
j=1 gθ(yt|x

l,j
t )

.

(72)

ϑ
(l)
t (j1, j3) is the distribution of the resampled indexes within a level under Algorithm 5.

One can make a similar definition for ϑ
(l−1)
t (j2, j4).

We give the proof in the case of l only as the proof for l − 1 is similar. The proof is by
induction on t and the initial case t = 0 is trivial by definition. For t ≥ 1, we have

Ěl−1,l
θ

[
IŠlt(i)

]
= Ěl−1,l

θ

[N−1∑
j=1

IŠlt−1
(i)ϑ

(l)
t (j, j)

]
≥ Ěl−1,l

θ

[
IŠlt−1

(1)ϑ
(l)
t (1, 1)

]
≥ Ěl−1,l

θ

[
IŠlt−1

(1)
]C
N

≥ ε
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where we have used Assumption 2 to establish that

ϑ
(l)
t (1, 1) ≥ C

N
(73)

on the third line, and the induction hypothesis in the final line. This completes our proof.

B.3.2 Results associated to the Entirety of Algorithm 4

We now consider Algorithm 4 in its entirety. We will denote expectation and probabil-
ity w.r.t. a single step of the corresponding 4-CCPF kernel M̄ l−1,l

θ by P̄l−1,l
θ and Ēl−1,l

θ ,
respectively.

Corollary 24 Under Assumptions 1 and 2, for any (T, r, θ, C ′) ∈ N × [1,∞) × Θ × R+,
there exists a constant C <∞ such that for any (l, β,N, δ) ∈ N×R+×{2, 3, . . . }×R+ and
any (xl0:T , x

l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′, it holds that

Ēl−1,1
θ

[∥∥Glθ(X l,BlT
0:T

)
−Gl−1

θ

(
X
l−1,Bl−1

T
0:T

)∥∥r
2

]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ)

(
1 +

T∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(x
s
p−1, x

s
p−1+∆s:p)

∥∥r
2

)
.

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ also holds, then

Ēl−1,l
θ

[∥∥Glθ(X̄ l,B̄lT
0:T

)
−Gl−1

θ

(
X̄
l−1,B̄l−1

T
0:T

)∥∥r
2

]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ)

(
1 +

T∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(x̄
s
p−1, x̄

s
p−1+∆s:p)

∥∥r
2

)
.

Proof This follows from the discussion in Remark 22.

Remark 25 By following the discussion in Remark 22, one can also extend Corollary 24
to a bound of the type

Ēl−1,l
θ

[∥∥Glθ,t(X l,BlT
0:t

)
−Gl−1

θ,t

(
X
l−1,Bl−1

T
0:t

)∥∥r
2

]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(x
s
p−1, x

s
p−1+∆s:p)

∥∥r
2

)
,

for t ∈ {1, . . . , T}.

Remark 26 One also use the discussion of Remark 22 to extend Lemma 17 to

Ēl−1,1
θ

[∥∥Glθ,t(X l,BlT
0:t

)∥∥r
2

]
≤ C

(
1 +

t∑
p=1

∥∥Glθ,p−1:p(x
l
p−1, x

l
p−1+∆l:p

)
∥∥r

2

)
,

and similarly for Ēl−1,l
θ

[∥∥Glθ,t(X̄ l,B̄lT
0:t

)∥∥r
2

]
.
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Corollary 27 Under Assumptions 1 and 2, for any (t, r, θ, C ′) ∈ {1, . . . , T}× [1,∞)×Θ×
R+, there exists a constant C <∞ such that for any (l, β,N, i, δ) ∈ N× R+ × {2, 3, . . . } ×
{1, . . . , N} × R+ and any (xl0:T , x

l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′, it holds that

Ēl−1,1
θ

[∥∥X l,BlT
t −X l−1,Bl−1

T
t

∥∥r
2

]1/r
≤ C(∆

1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

‖xsp‖r2
)
.

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ also holds, then

Ēl−1,l
θ

[∥∥X̄ l,B̄lT
t − X̄ l−1,B̄l−1

T
t

∥∥r
2

]1/r
≤ C(∆

1
2
∧β

l )
1

r(1+δ)

(
1 +

t∑
p=1

l∑
s=l−1

‖x̄sp‖r2
)
.

Proof This follows from Corollary 21 and the discussion in Remark 26.

Lemma 28 Under Assumptions 1 and 2, for any (T, θ, C ′) ∈ N × Θ × R+, there exists a

constant C < ∞ such that for any (l, β,N, δ, γ) ∈ N × R+ × {2, 3, . . . } × R+ × (0,
1
2
∧β

β(1+δ))

and any (xl0:T , x
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′, it holds that

Ēl−1,1
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c

(
X
l,BlT
0:T , X

l−1,Bl−1
T

0:T

)]
≤

C(∆l)
1
2∧β
(1+δ)

−γβ
(

1 +
T∑
p=1

l∑
s=l−1

{
‖xsp‖

γ
2 + ‖Gsθ,p−1:p(x

s
p−1, x

s
p−1+∆s:p)‖

γ
2

})
.

If (x̄l0:T , x̄
l−1
0:T ) ∈ Blβ,C′ ∩ Glβ,C′ also holds, then

Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c

(
X̄
l,B̄lT
0:T , X̄

l−1,B̄l−1
T

0:T

)]
≤

C(∆l)
1
2∧β
(1+δ)

−γβ
(

1 +
T∑
p=1

l∑
s=l−1

{
‖x̄sp‖

γ
2 + ‖Gsθ,p−1:p(x̄

s
p−1, x̄

s
p−1+∆s:p)‖

γ
2

})
.

Proof We only consider the first inequality as it is the same proof for the second inequality.
For any t ∈ {1, . . . , T}, by Markov’s inequality and Corollary 27, we have

P̄l−1,l
θ

(∥∥X l,BlT
t −X l−1,Bl−1

T
t

∥∥
2
> C ′∆β

l

)
≤ C(∆l)

1
2∧β
(1+δ)

−γβ
(

1 +

t∑
p=1

l∑
s=l−1

‖xsp‖
γ
2

)
.

Similarly, for any t ∈ {1, . . . , T}, by Markov’s inequality and the results discussed in Re-
mark 25

P̄l−1,l
θ

(∥∥Glθ,t(X l,BlT
0:t

)
−Gl−1

θ,t

(
X
l−1,Bl−1

T
0:t

)∥∥
2
> C ′∆β

l

)
≤ C(∆l)

1
2∧β
(1+δ)

−γβ
(

1 +

t∑
p=1

l∑
s=l−1

‖Gsθ,p−1:p(x
s
p−1, x

s
p−1+∆s:p)‖

γ
2

)
.
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Hence there exists a constant C < ∞ which depends on T but not l such that the result
holds.

We recall the definition of Dl = {(x0:T , x̄0:T ) ∈ Zl : x0:T = x̄0:T }.

Lemma 29 Under Assumptions 1 and 2, for any (T, θ,N) ∈ N×Θ×{2, 3, . . . }, there exists
a constant ε ∈ (0, 1) such that for any l ∈ N and any ((xl0:T , x̄

l
0:T ), (xl−1

0:T , x̄
l−1
0:T )) ∈ Zl×Zl−1,

it holds that

Ēl−1,l
θ

[
IDl
(
X
l,BlT
0:T , X̄

l,B̄lT
0:T

)]
∧ Ēl−1,l

θ

[
IDl−1

(
X
l−1,Bl−1

T
0:T , X̄

l−1,B̄l−1
T

0:T

)]
≥ ε.

Proof Recall the definition (72) of ϑ
(l)
t (j1, j3) in the proof of Lemma 23. This can be

extended to time T using the same construction for both level l and l−1 and will correspond
to the marginal distributions of (Bl

T , B̄
l
T ) and (Bl−1

T , B̄l−1
T ). We denote these two probability

distributions as ϑ
(l)
t (Bl

T , B̄
l
T ) and ϑ

(l−1)
t (Bl−1

T , B̄l−1
T ). Also recall the definitions of Šlt and

Šl−1
t in (70)-(71).

We give the proof for level l only as the case of level l − 1 is almost identical. We have
the following inequalities

Ēl−1,l
θ

[
IDl
(
X
l,BlT
0:T , X̄

l,B̄lT
0:T

)]
≥ Ěl−1,l

θ

[N−1∑
j=1

IŠT−1
(j)ϑ

(l)
T (j, j)

]
≥ Ěl−1,l

θ

[
IŠT−1

(1)ϑ
(l)
T (1, 1)

]
≥ ε.

In the first line, we have noted that for (x
l,BlT
0:T , x̄

l,B̄lT
0:T ) ∈ Dl to occur, one must at least

pick two equal indexes of pairs of particles at level l which were equal at time step T − 1 of
Algorithm 4. In the final line, we have used (73) and Lemma 23. This concludes the proof.

B.3.3 Results associated to the Initialization

Recall from Section 3.3 that the two pairs of CPF chains on Zl−1 × Zl are initialized by
sampling pairs (X l−1,?

0:T , X l,?
0:T ) and (X̄ l−1

0:T , X̄
l
0:T ) independently from νl−1,l

θ , and sampling

(X l−1
0:T , X

l
0:T ) ∼ M l−1,l

θ (·|X l−1,?
0:T , X l,?

0:T ) using the ML-CPF in Algorithm 6. We will denote

the law of the tuple (X l−1
0:T , X̄

l−1
0:T , X

l
0:T , X̄

l
0:T ) under this initialization by ν̌l−1,l

θ . Expectations

w.r.t. νl−1,l
θ , ν̌l−1,l

θ and the ML-CPF kernel M l−1,l
θ will be written as El−1,l

θ,ν , Ěl−1,l
θ,ν and El−1,l

θ ,
respectively.

Lemma 30 Under Assumptions 1 and 2, for any (t, r, θ) ∈ {1, . . . , T} × [1,∞)×Θ, there
exists a constant C < ∞ such that for any (l, β,N, δ) ∈ N × (0, 1

2) × {2, 3, . . . } × R+, we
have

Ěl−1,l
θ,ν

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]1/r
≤ C∆

β
r(1+δ)

l ,

and

Ěl−1,l
θ,ν

[∥∥Glθ,t(X̄ l
0:t)−Gl−1

θ,t (X̄ l−1
0:t )

∥∥r
2

]1/r
≤ C∆

1
2
l .
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Proof The second inequality simply follows from Remark 11, so we only consider the first.
We have

Ěl−1,l
θ,ν

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]1/r
= El−1,l

θ,ν

[
El−1,l
θ

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]]1/r
.

We note that by construction

El−1,l
θ

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]
= Ēl−1,l

θ

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]
.

We consider the decomposition

Ěl−1,l
θ,ν

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]
= T1 + T2, (74)

where

T1 = El−1,l
θ,ν

[
IBl

β,C′∩G
l
β,C′

(X l,?
0:T , X

l−1,?
0:T )Ēl−1,l

θ

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]]
,

T2 = El−1,l
θ,ν

[
I(Bl

β,C′∩G
l
β,C′ )

c(X
l,?
0:T , X

l−1,?
0:T )Ēl−1,l

θ

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

]]
,

for any 0 < C ′ <∞. We will deal with both terms separately.

For T1, applying the result in Remark 25 gives

T1 ≤ C∆
β

(1+δ)

l

(
1 + El−1,l

θ,ν

[ t∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(X
s,?
p−1, X

s,?
p−1+∆s:p

)
∥∥r

2

])
. (75)

We can use boundedness properties of the appropriate terms along with the martingale-
remainder methods in the proof of Lemma 6 to deduce that

T1 ≤ C∆
β

(1+δ)

l .

For T2, applying Hölder’s inequality for any % > 0 gives

T2 ≤ T3T4,

where

T3 = El−1,l
θ,ν

[
I(Bl

β,C′∩G
l
β,C′ )

c(X
l,?
0:T , X

l−1,?
0:T )

] 1
(1+%)

,

T4 = El−1,l
θ,ν

[
Ēl−1,l
θ

[∥∥Glθ,t(X l
0:t)−Gl−1

θ,t (X l−1
0:t )

∥∥r
2

] (1+%)
%
] %

(1+%)
.

We now bound T3 and T4. For any t ∈ {1, . . . , T}, using properties of the coupled Euler–
Maruyama discretization and Markov’s inequality, we have

Pl−1,l
θ,ν

(∥∥X l,?
t −X

l−1,?
t

∥∥
2
> C ′∆β

l

)
≤ C∆

α( 1
2
−β)

l
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for any α > 0, where Pl−1,l
θ,ν denotes probability under νl−1,l

θ . Similarly, for any t ∈
{1, . . . , T}, it follows from Remark 11 that

Pl−1,l
θ,ν

(∥∥Glθ,t(X l,?
0:t)−G

l−1
θ,t (X l−1,?

0:t )
∥∥

2
> C ′∆β

l

)
≤ C∆

α( 1
2
−β)

l

for any α > 0. Hence there exists a constant C < ∞, that depends on T but not l, such
that if α = (1 + %)

T3 ≤ C∆
( 1
2
−β)

l . (76)

For T4, one can use the results discussed in Remark 26, along with the above argument
(below (75)) to control terms such as El−1,l

θ,ν

[∑t
p=1

∑l
s=l−1

∥∥Gsθ,p−1:p(X
s,?
p−1, . . . , X

s,?
p )
∥∥r

2

]
to

deduce that T4 ≤ C. Thus we have shown that

T2 ≤ C∆
( 1
2
−β)

l . (77)

Combining (74)-(77) completes the proof.

Lemma 31 Under Assumptions 1 and 2, for any (T, θ, C ′, δ, γ) ∈ N × Θ × R+ × R+ ×
(0, 1

(1+δ)), there exists a constant C <∞ such that for any (l, β,N) ∈ N× (0, 1
2)×{2, 3, . . . }

Ěl−1,l
θ,ν

[
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T , X

l−1
0:T )

]
≤ C(∆l)

{β( 1
(1+δ)

−γ)}∧( 1
2
−β)

,

and

Ěl−1,l
θ,ν

[
I(Bl

β,C′∩G
l
β,C′ )

c(X̄ l
0:T , X̄

l−1
0:T )

]
≤ C∆

1
2
−β

l .

Proof As the proof of the second inequality is contained within the calculations to obtain
(76), we will only consider the first inequality. We have

Ěl−1,l
θ,ν

[
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T , X

l−1
0:T )

]
≤ T1 + T2, (78)

where

T1 = El−1,l
θ,ν

[
Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T , X

l−1
0:T )

]
IBl

β,C′∩G
l
β,C′

(X l,?
0:T , X

l−1,?
0:T )

]
,

T2 = El−1,l
θ,ν

[
I(Bl

β,C′∩G
l
β,C′ )

c(X
l,?
0:T , X

l−1,?
0:T )

]
.

By Lemma 28, we have

T1 ≤ C(∆l)
β( 1

(1+δ)
−γ)El−1,l

θ,ν

[(
1 +

t∑
p=1

l∑
s=l−1

{‖Xs,?
p ‖

γ
2 +

∥∥Gsθ,p−1:p(X
s,?
p−1, X

s,?
p−1+∆s:p

)
∥∥γ

2
}
)]
.

The expectation can be controlled using the argument below (75), so we have

T1 ≤ C(∆l)
β( 1

(1+δ)
−γ)

. (79)

For T2, using the second inequality in the statement of the lemma

T2 ≤ C∆
1
2
−β

l . (80)

Combining (78) with (79) and (80) concludes the proof.
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B.3.4 Results associated to Score Estimation Methodology

We now study the two pairs of CPF chains (X l−1
0:T (i), X̄ l−1

0:T (i))∞i=0 and (X l
0:T (i), X̄ l

0:T (i))∞i=0

that are assumed to be run indefinitely even if both pairs of chains have met. We will denote
the corresponding expectations by Ēl−1,l

θ . For any level l ∈ N0 and any probability measure
π defined on Xl, we denote by L2(π) the set of all measurable functions ψ : Xl → R such
that π(ψ2) =

∫
Xl ψ(x)2π(dx) ∈ (0,∞). The following results will involve the smoothing

distribution πlθ defined in (14).

Lemma 32 Under Assumptions 1 and 2, for any (T, θ) ∈ N × Θ, there exists (ε, C) ∈
(0, 1)× R+ such that for any (l, N, i, ψ) ∈ N× {2, 3, . . . } × N× L2(πlθ)

Ēl−1,l
θ [ψ(X l

0:T (i))] ∨ Ēl−1,l
θ [ψ(X̄ l

0:T (i− 1))] ≤ Cεiπlθ(ψ2)1/2 + πlθ(|ψ|).

Also if ψ ∈ L2(πl−1
θ ) then

Ēl−1,l
θ [ψ(X l−1

0:T (i))] ∨ Ēl−1,l
θ [ψ(X̄ l−1

0:T (i− 1))] ≤ Cεiπl−1
θ (ψ2)1/2 + πl−1

θ (|ψ|).

Proof We will prove the result for Ēl−1,l
θ [ψ(X l

0:T (i))] only. The other results can be obtained
in a similar way.

Marginally, the sequence (X l
0:T (i))∞i=1 is a Markov chain that has the initial distribution

ν̌lθ(dx0:T ) =

∫
Xl
νlθ(dx

?
0:T )M l

θ(dx0:T |x?0:T )dx?0:T

and Markov transition kernel M l
θ as described in Algorithm 1. By Andrieu et al. (2018,

Theorem 1b), one has∣∣Ēl−1,l
θ [ψ(X l

0:T (i))]− πlθ(ψ)
∣∣ ≤ (∫

Xl

νlθ(x
?
0:T )

πlθ(x
?
0:T )

νlθ(dx
?
0:T )

)
εi+1πlθ(ψ

2)1/2,

where we note that the extra power in ε follows as X l
0:T (0) ∼ νlθ. Using Assumptions 2, it

follows that ∣∣Ēl−1,l
θ [ψ(X l

0:T (i))]− πlθ(ψ)
∣∣ ≤ Cεiπlθ(ψ2)1/2,

and from here the proof is easily completed.

Lemma 33 Under Assumptions 1 and 2, for any (T, r, θ, C ′) ∈ N× [1,∞)×Θ×R+, there
exists a constant C <∞ such that for any (l, β,N, δ, i) ∈ N× R+ × {2, 3, . . . } × R+ × N

Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r
2
IBl

β,C′∩G
l
β,C′

(X l
0:T (i− 1), X l−1

0:T (i− 1))
]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ) ,

and

Ēl−1,l
θ

[∥∥Glθ(X̄ l
0:T (i))−Gl−1

θ (X̄ l−1
0:T (i))

∥∥r
2
IBl

β,C′∩G
l
β,C′

(X̄ l
0:T (i− 1), X̄ l−1

0:T (i− 1))
]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ) .
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Proof We only consider the first inequality as it is the same proof for the second inequality.
By Corollary 24, we have the upper-bound

Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r
2
IBl

β,C′∩G
l
β,C′

(X l
0:T (i− 1), X l−1

0:T (i− 1))
]1/r
≤

C(∆
1
2
∧β

l )
1

r(1+δ) Ēl−1,l
θ

[(
1 +

T∑
p=1

l∑
s=l−1

‖Gsθ,p−1:p(X
s
p−1(i− 1), Xs

p−1+∆s:p(i− 1))‖r2
)]
.

Note that ‖Gsθ,p−1:p(X
s
p−1, X

s
p−1+∆s:p

)‖r2 ∈ L2(πsθ) (see the argument below (75)). In addi-
tion the expectation of the square of this function w.r.t. πsθ is bounded uniformly in s (one
can use Assumptions 2 to upper-bound expectations w.r.t. πsθ by expectations w.r.t. νsθ).
Hence using Lemma 32, we obtain

Ēl−1,l
θ

[(
1 +

T∑
p=1

l∑
s=l−1

∥∥Gsθ,p−1:p(X
s
p−1(i− 1), Xs

p−1:∆s:p(i− 1))
∥∥r

2

)]
≤ C, (81)

which allows us to conclude the proof.

Lemma 34 Under Assumptions 1 and 2, for any (T, θ, C ′, β, δ, γ) ∈ N × Θ × (R+)3 ×
(0,

1
2
∧β

β(1+δ)), there exists a constant C <∞ such that for any (l, N, i) ∈ N× {2, 3, . . . } × N

Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T (i), X l−1

0:T (i))IBl
β,C′∩G

l
β,C′

(X l
0:T (i−1), X l−1

0:T (i−1))
]
≤ C(∆l)

1
2∧β
(1+δ)

−γβ
,

and

Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c(X̄ l
0:T (i), X̄ l−1

0:T (i))IBl
β,C′∩G

l
β,C′

(X̄ l
0:T (i−1), X̄ l−1

0:T (i−1))
]
≤ C(∆l)

1
2∧β
(1+δ)

−γβ
.

Proof The proof is essentially identical to that of Lemma 33, except one must use Lemma
28 instead of Corollary 24.

Lemma 35 Under Assumptions 1 and 2, for any (T, θ, C ′, β, δ, γ) ∈ N×Θ×R+× (0, 1
2)×

R+×(0, 1
(1+δ)), there exists a constant C <∞ such that for any (l, N, i) ∈ N×{2, 3, . . . }×N

Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T (i), X l−1

0:T (i))
]
≤ C(i+ 1)(∆l)

{β( 1
(1+δ)

−γ)}∧( 1
2
−β)

,

and
Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c(X̄ l
0:T (i), X̄ l−1

0:T (i))
]
≤ C(i+ 1)(∆l)

{β( 1
(1+δ)

−γ)}∧( 1
2
−β)

.

Proof We only consider the first inequality as it is the same proof for the second in-
equality. The proof is by induction on i. The initialization follows by Lemma 31. For the
induction step, one can easily conclude by using Lemma 34 and the induction hypothesis.
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Lemma 36 Under Assumptions 1 and 2, for any (T, r, θ, β, δ, γ) ∈ N× [1,∞)×Θ×(0, 1
2)×

R+×(0, 1
(1+δ)), there exists a constant C <∞ such that for any (l, N, i) ∈ N×{2, 3, . . . }×N

Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r
2

]1/r
≤ C(i+ 1)∆φ

l ,

where φ = β
r(1+δ) ∧

1
(1+δ)({β( 1

(1+δ) − γ)} ∧ (1
2 − β)), and

Ēl−1,l
θ

[∥∥Glθ(X̄ l
0:T (i))−Gl−1

θ (X̄ l−1
0:T (i))

∥∥r
2

]1/r
≤ C(i+ 1)∆φ

l .

Proof We only consider the first inequality as it is the same proof for the second inequality.
The proof is by induction on i. The initialization follows from Lemma 30. For the induction
step, one has

Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r
2

]1/r
≤ C(T1 + T2),

where

T1 = Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r
2
IBl

β,C′∩G
l
β,C′

(X l
0:T (i− 1), X l−1

0:T (i− 1))
]1/r

,

T2 = Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r
2
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T (i− 1), X l−1

0:T (i− 1))
]1/r

,

for any 0 < C ′ < ∞. For T1, one can apply Lemma 33 to obtain T1 ≤ C∆φ
l . For T2, one

can use Hölder’s inequality to get the bound

T2 ≤ Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥r 1+δ
δ

2

] δ
r(1+δ)×

Ēl−1,l
θ

[
I(Bl

β,C′∩G
l
β,C′ )

c(X l
0:T (i), X l−1

0:T (i))
] 1

(1+δ)
.

To deal with the leftmost expectation on the R.H.S. one can rely on the same argument
that led to (81) and for the other expectation one can use Lemma 35. This allows us to
obtain

T2 ≤ C(i+ 1)∆φ
l ,

and conclude the proof.

In the following, we will employ the notation Ai = {j ∈ N : j > i} for i ∈ N.

Lemma 37 Under Assumptions 1 and 2, for any (T, θ,N) ∈ N × Θ × {2, 3, . . . }, there
exists (ε, C) ∈ (0, 1)× R+ such that for any (l, i) ∈ N2

Ēl−1,l
θ

[
IAi
(
τ̄ lθ
)]
≤ Cεi.
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Proof We have

Ēl−1,l
θ [IAi(τ̄

l
θ)] ≤ Ēl−1,l

θ [IAi×Ai(τ
l−1
θ , τ lθ)] + Ēl−1,l

θ [IAci×Ai(τ
l−1
θ , τ lθ)] + Ēl−1,l

θ [IAi×Aci (τ
l−1
θ , τ lθ)].

By Lemma 29, we have Ēl−1,l
θ [IAi(τ sθ )] ≤ Cεi for s ∈ {l−1, l}, and so the proof is now easily

completed.

Remark 38 It is worth noting that Lemmata 23, 29 and 37 are the only cases where our
bounds have constants that depend upon N .

Lemma 39 Under Assumptions 1 and 2, for any (T, θ, β, δ, γ,N, b) ∈ N×Θ×(0, 1
2)×R+×

(0, 1
(1+δ))× {2, 3, . . . , } × N0, there exists a constant C <∞ such that for any l ∈ N

Ēl−1,l
θ

[
‖Îl(θ)‖22

]
≤ C∆2φ

l ,

where φ = β
2(1+δ) ∧

1
(1+δ)({β( 1

(1+δ) − γ)} ∧ (1
2 − β)).

Proof We recall that Îl(θ) = Ŝl(θ) − Ŝl−1(θ), where Ŝl−1(θ) and Ŝl(θ) are time-averaged
estimators of the form in (22). For level s ∈ {l − 1, l}, note that we can rewrite the time-
averaged estimator as Ŝs(θ) = (I − b+ 1)−1

∑I
k=b Ŝ

k
s (θ) with

Ŝks (θ) = Gsθ(X
s
0:T (k)) +

τsθ−1∑
i=b+1

(
Gsθ(X

s
0:T (i))−Gsθ(X̄s

0:T (i− 1))
)
.

Hence we can rewrite

Îl(θ) =
1

I − b+ 1

I∑
k=b

(
Ŝkl (θ)− Ŝkl−1(θ)

)
. (82)

Since we have

Ēl−1,l
θ

[
‖Îl(θ)‖22

]
≤ C

I∑
k=b

Ēl−1,l
θ

[
‖Ŝkl (θ)− Ŝkl−1(θ)‖22

]
(83)

using the representation in (82), it suffices to establish Ēl−1,l
θ

[
‖Ŝkl (θ)− Ŝkl−1(θ)‖22

]
≤ C∆2φ

l .
We consider the decomposition

Ēl−1,l
θ

[
‖Ŝkl (θ)− Ŝkl−1(θ)‖22

]
≤ C

2∑
j=1

Tj ,

where

T1 = Ēl−1,l
θ

[
‖Glθ(X l

0:T (k))−Gl−1
θ (X l−1

0:T (k))‖22
]
,

T2 = Ēl−1,l
θ

[
‖

τ̄ lθ∑
i=k+1

{Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i)) +Glθ(X̄

l
0:T (i))−Gl−1

θ (X̄ l−1
0:T (i))}‖22

]
.
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For T1, one can apply Lemma 36 to obtain

T1 ≤ C∆2φ
l .

For T2, we have

T2 = Ēl−1,l
θ

[
‖
∞∑

i=k+1

IAi(τ̄
l
θ){Glθ(X l

0:T (i))−Gl−1
θ (X l−1

0:T (i))+Glθ(X̄
l
0:T (i))−Gl−1

θ (X̄ l−1
0:T (i))}‖22

]
.

To shorten the notations, set

υi = Glθ(X
l
0:T (i))−Gl−1

θ (X l−1
0:T (i)) +Glθ(X̄

l
0:T (i))−Gl−1

θ (X̄ l−1
0:T (i))

where we denote the jth-component of υi as [υi]
j , j ∈ {1, . . . , d}. Then by application of

Minkowski’s inequality, we have

T2 ≤
dθ∑
j=1

( ∞∑
i=k+1

Ēl−1,l
θ [IAi(τ̄

l
θ){[υi]j}2]1/2

)2

.

Then applying the Cauchy-Schwarz inequality

T2 ≤
dθ∑
j=1

( ∞∑
i=k+1

Ēl−1,l
θ [IAi(τ̄

l
θ)]

1/4Ēl−1,l
θ [{[υi]j}4]1/4

)2

.

Now, using standard properties of the L2-norm along with Lemma 37

T2 ≤ C
( ∞∑
i=k+1

(ε1/4)iĒl−1,l
θ [‖υi‖42]1/4

)2
.

It is simple to ascertain that:

Ēl−1,l
θ [‖υi‖42]1/4 ≤ C

(
Ēl−1,l
θ

[∥∥Glθ(X l
0:T (i))−Gl−1

θ (X l−1
0:T (i))

∥∥4

2

]
+

Ēl−1,l
θ

[∥∥Glθ(X̄ l
0:T (i))−Gl−1

θ (X̄ l−1
0:T (i))

∥∥4

2

])1/4
.

Therefore, applying Lemma 36 gives

T2 ≤ C∆2φ
l

( ∞∑
i=k+1

(ε1/4)i(i+ 1)
)2
≤ C∆2φ

l . (84)

Combining (83)-(84) concludes the proof.

Remark 40 The strategy in the proof of Lemma 39 can be improved by using martingale
methods and Wald’s equality for Markov chains as considered in Heng et al. (2023). This
strategy was not adopted as it would require more complicated arguments given the technical
complexity of the problem and algorithms in this article.
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Remark 41 A better rate of φ can be obtained in Lemma 39 if we consider the case of
constant diffusion coefficient σ.

Remark 42 One can employ the approaches in Lemmata 32, 37 and 39 to establish that
the expected value of Î0(θ) is upper-bounded by a finite constant.

Proof [Proof of Theorem 2] We have to establish that (17) and (18) hold for some choice
of PMF (Pl)

∞
l=0. The unbiasedness property in (17) can be established using the same

approach as in Jacob et al. (2020a, Theorem 3.1). Assumption 1 of Jacob et al. (2020a)
is implied by Assumption 2(iii); Assumption 2 of Jacob et al. (2020a) can be verified by
inspecting the construction in the proof of Lemma 29; and Assumption 3 of Jacob et al.
(2020a) follows from the fact that ‖Glθ‖r2 ∈ L2(πlθ) for any (l, r) ∈ N0× [1,∞) and (Andrieu
et al., 2018, Theorem 1b). For the condition in (18), we apply Theorem 1, Lemma 39 and
Remark 42 to obtain

∞∑
l=0

P−1
l

{
Var

[
Îl(θ)

j
]

+
(
Sl(θ)

j − S(θ)j
)2}

< C
∞∑
l=0

∆2φ
l

Pl

for all j ∈ {1, . . . , dθ}, where Var denotes variance under Ēl−1,l
θ for all l ∈ N. We can

conclude the proof by selecting for instance Pl ∝ ∆2φα
l for any α ∈ (0, 1).

Remark 43 The approach in Lemma 32 also suggests an alternative method of proof. If
one could identify the invariant distribution of the ML-CPF kernel M l−1,l

θ (Algorithm 6) and
establish an ergodic theorem as in Andrieu et al. (2018, Theorem 1b), one could then study
the expectation of differences of the type ‖Glθ − Gl−1

θ ‖
r
2 under the invariant distribution.

Characterizing the invariant distribution could follow the ideas in Jasra and Yu (2020).
This potentially interesting strategy is left as a topic for future work.

Appendix C. Model-Specific Expressions

C.1 Ornstein–Uhlenbeck Process

For this example, we have Σ(x) = σ2, bθ(x) = σ−1aθ(x) for x ∈ R and θ ∈ Θ = (0,∞) ×
R× (0,∞). To evaluate (12) and (15), the gradients required are given by

∇θaθ(x) = ((θ2 − x), θ1, 0) , ∇θ log gθ(y|x) =

(
0, 0,− 1

2θ3
+

(y − x)2

2θ2
3

)
,

for x ∈ R and θ = (θ1, θ2, θ3) ∈ Θ. In this example, the score function S(θ) can be computed
using

∇θ log pθ(y1:T ) =
T∑
t=1

∫
R2

{∇θ log pθ(dxt|xt−1) +∇θ log gθ(yt|xt)} pθ(dxt−1, dxt|y1:T ),

where the transition kernel of the SDE (29) on a unit interval is

pθ(dxt|xt−1) = N
(
xt; θ2 + (xt−1 − θ2) exp(−θ1),

σ2(1− exp(−2θ1))

2θ1

)
dxt,
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and the marginal of the smoothing distribution pθ(dxt−1, dxt|y1:T ) is a Gaussian distribution
whose mean and covariance can be obtained using a Kalman smoother.

C.2 Logistic Diffusion Model for Population Dynamics of Red Kangaroos

In this application, we have Σ(x) = 1 and bθ(x) = aθ(x) for x ∈ R and θ ∈ Θ = R× (0,∞)3.
Evaluation of (12) and (15) require the following expressions. Firstly, we have

∇θ logµθ(x) = (0, 0, ∂θ3 logµθ(x), 0)

∂θ3 logµθ(x) =
1

θ3
− θ3

102
(x− 5/θ3)2 − 5

102
(x− 5/θ3),

and

∇θaθ(x) =

(
1

θ3
,− 1

θ3
exp(θ3x),−θ1

θ2
3

− θ2

θ2
3

exp(θ3x)(θ3x− 1), 0

)
,

for x ∈ R and θ = (θ1, θ2, θ3, θ4) ∈ Θ. The conditional density can be written as

gθ(y|x) = NB(y1; θ4, exp(θ3x))NB(y2; θ4, exp(θ3x))

=
Γ(y1 + θ4)Γ(y2 + θ4)

Γ(θ4)2(y1)!(y2)!

(
θ4

θ4 + exp(θ3x)

)2θ4 ( exp(θ3x)

θ4 + exp(θ3x)

)y1+y2

for y = (y1, y2) and x ∈ R. Hence

∇θ log gθ(y|x) = (0, 0, ∂θ3 log gθ(y|x), ∂θ4 log gθ(y|x)),

with

∂θ3 log gθ(y|x) = −2θ4x exp(θ3x)

θ4 + exp(θ3x)
+ (y1 + y2)x

(
1− exp(θ3x)

θ4 + exp(θ3x)

)
,

and

∂θ4 log gθ(y|x) = ψ(y1 + θ4) + ψ(y2 + θ4)− 2ψ(θ4) + 2 {log(θ4)− log(θ4 + exp(θ3x))}

+ 2

(
1− θ4

θ4 + exp(θ3x)

)
− (y1 + y2)

(θ4 + exp(θ3x))
,

where x 7→ ψ(x) = (d/dx) log Γ(x) denotes the digamma function.

C.3 Neural Network Model for Grid Cells in the Medial Entorhinal Cortex

In this application, we have Σ(x) = I2 and bθ(x) = aθ(x) for x = (x1, x2) ∈ R2 and θ ∈ Θ.
The following expressions are needed to evaluate (12) and (15). The non-zero entries of the
Jacobian matrix ∇θaθ(x) ∈ Rd×dθ are given by
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∂α1a
1
θ(x) = tanh(β1σ2x

2 + γ1)/σ1,

∂β1a
1
θ(x) = α1σ2x

2
(
1− tanh2(β1σ2x

2 + γ1)
)
/σ1,

∂γ1a
1
θ(x) = α1

(
1− tanh2(β1σ2x

2 + γ1)
)
/σ1,

∂δ1a
1
θ(x) = −x1,

∂σ1a
1
θ(x) = −α1 tanh(β1σ2x

2 + γ1)/σ2
1,

∂σ2a
1
θ(x) = α1β1x

2
(
1− tanh2(β1σ2x

2 + γ1)
)
/σ1,

∂α2a
2
θ(x) = tanh(β2σ1x

1 + γ2)/σ2,

∂β2a
2
θ(x) = α2σ1x

1
(
1− tanh2(β2σ1x

1 + γ2)
)
/σ2,

∂γ2a
2
θ(x) = α2

(
1− tanh2(β2σ1x

1 + γ2)
)
/σ2,

∂δ2a
2
θ(x) = −x2,

∂σ1a
2
θ(x) = α2β2x

1
(
1− tanh2(β2σ1x

1 + γ2)
)
/σ2,

∂σ2a
2
θ(x) = −α2 tanh(β2σ1x

1 + γ2)/σ2
2.

The partial derivatives of the log-conditional density are all zero except the ones w.r.t. κ1

and κ2, which can be expressed as

∂κi log glθ(ytp |(Xt)tp−1≤t≤tp) = yitp −∆l

∑
t:tp−1≤t≤tp

λi(X
i
t),

for i = 1, 2.
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Vladislav B Tadić and Arnaud Doucet. Asymptotic bias of stochastic gradient search. The
Annals of Applied Probability, 27(6):3255–3304, 2017.

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations
for stochastic gradient Langevin dynamics. Journal of Machine Learning Research, 17,
2016.

Hermann Thorisson. Coupling, stationarity, and regeneration. Springer New York, 2000.

Matti Vihola. Unbiased estimators and multilevel Monte Carlo. Operations Research, 66
(2):448–462, 2018.

Tianze Wang and Guanyang Wang. Unbiased Multilevel Monte Carlo methods for in-
tractable distributions: MLMC meets MCMC. Journal of Machine Learning Research,
24(249):1–40, 2023.

65



Heng, Houssineau, and Jasra

Greg CG Wei and Martin A Tanner. A Monte Carlo implementation of the EM algorithm
and the poor man’s data augmentation algorithms. Journal of the American statistical
Association, 85(411):699–704, 1990.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

Shouto Yonekura and Alexandros Beskos. Online smoothing for diffusion processes observed
with noise. Journal of Computational and Graphical Statistics, 2022.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

66


	Introduction
	Model and Observations
	Unbiased Estimation and Parameter Inference
	Proposed Methodology

	Parameter Inference and Conditional Expectations
	Continuous-Time Representation
	Discrete-Time Approximation

	Unbiased Estimation
	Unbiased Estimation Framework
	Unbiased Estimation under Time-Discretization
	Unbiased Estimation of Increments
	Summary of Proposed Methodology and Choice of Tuning Parameters

	Analysis
	Applications
	Ornstein–Uhlenbeck Process
	Logistic Diffusion Model for Population Dynamics of Red Kangaroos
	Neural Network Model for Grid Cells in the Medial Entorhinal Cortex

	Discussion
	Parameter Dependence in Diffusion Coefficient
	Theoretical Analysis
	Introduction and Preliminaries
	Results on Time-Discretized Diffusion Processes
	Results on Coupled Conditional Particle Filters
	Results associated to Steps (1) and (2) of Algorithm 4
	Results associated to the Entirety of Algorithm 4
	Results associated to the Initialization
	Results associated to Score Estimation Methodology


	Model-Specific Expressions
	Ornstein–Uhlenbeck Process
	Logistic Diffusion Model for Population Dynamics of Red Kangaroos
	Neural Network Model for Grid Cells in the Medial Entorhinal Cortex


