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Abstract
Stochastic majorization-minimization (SMM) is a class of stochastic optimization algo-
rithms that proceed by sampling new data points and minimizing a recursive average of
surrogate functions of an objective function. The surrogates are required to be strongly
convex and the existing convergence rate analysis for the general non-convex setting was
not available. In this paper, we propose an extension of SMM where surrogates are al-
lowed to be only weakly convex or block multi-convex, and the averaged surrogates are
approximately minimized with proximal regularization or block-minimized within dimin-
ishing radii, respectively. For the general nonconvex constrained setting with non-i.i.d.
data samples, we show that the first-order optimality gap of the proposed algorithm decays
at the rate Õ(n−1/4) for the empirical loss and Õ(n−1/8) for the expected loss, where n de-
notes the number of data samples processed. Under some additional assumption, the latter
convergence rate can be improved to Õ(n−1/4). As a corollary, we obtain the first con-
vergence rate bounds for various optimization methods under general nonconvex non-i.i.d.
data setting: Double-averaging projected gradient descent and its generalizations, proximal
point empirical risk minimization, and online matrix/tensor decomposition algorithms. We
also provide experimental validation of our results.
Keywords: Nonconvex stochastic optimization, stochastic majorization-minimization,
convergence rate, Markovian data, double-averaging, online matrix/tensor factorization,
deep learning
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Stochastic Regularized Majorization-Minimization

1. Introduction

Empirical loss minimization is a classical problem setting regarding parameter estimation
with a growing number of observations, where one seeks to minimize a recursively defined
empirical loss function as new data arrives. Some of its well-known applications include
maximum likelihood estimation, or more generally, M -estimation Geyer (1994); Geer et al.
(2000); Stefanski and Boos (2002), as well as the online dictionary learning literature Mairal
et al. (2010); Mairal (2013b); Mensch et al. (2017); Lyu et al. (2020). On the other hand, the
expected loss minimization seeks to estimate a parameter by minimizing the loss function
with respect to random data. It provides a general framework for stochastic optimization
literature Schneider and Kirkpatrick (2007); Marti (2005); Bottou and Bousquet (2008); Ne-
mirovski et al. (2009). Optimization algorithms for empirical or expected loss minimization
are in nature ‘online’, meaning that sampling new data points and adjusting the current esti-
mation occurs recursively. Such online algorithms have proven to be particularly efficient in
large-scale problems in statistics, optimization, and machine learning Bottou (1998); Duchi
and Singer (2009); Ghadimi and Lan (2013); Kingma and Ba (2014).

First-order methods for expected loss minimization include (projected or proximal)
Stochastic Gradient Descent (SGD) have been extensively studied for many decades, which
usually consist of stochastically estimating the full gradient of the expected loss function
and performing a gradient descent step followed by a projection onto the parameter space.
For a general constrained and nonconvex (weakly convex) setting, global convergence to sta-
tionary (first-order optimal) points of such methods was recently established in Davis and
Drusvyatskiy (2019) with a rate of convergence O(log n/

√
n), where n denotes the num-

ber of iterations (processed samples). This result assumes arbitrary initialization, although
faster convergence with special initialization is known in a matrix factorization setting Wang
et al. (2017). Throughout this paper, we are concerned with the convergence of online al-
gorithms with arbitrary initialization, which is often referred to as a ‘global convergence’ in
the literature.

On the other hand, Stochastic Majorization-Minimization (SMM) is one of the most pop-
ular approaches that directly solve empirical loss minimization Mairal (2013b) by sampling
data points from a target data distribution and minimizing a recursively defined majorizing
surrogate of the empirical loss function. This method is an online extension of the classi-
cal majorization-minimization Lange et al. (2000) principle and encompasses Expectation-
Minimization in statistics Neal and Hinton (1998); Cappé and Moulines (2009), and also
generalizes the celebrated online matrix factorization algorithm in Mairal et al. (2010).
While it was observed empirically that SMM shows competitive performance while requir-
ing less parameter tuning than SGD for online dictionary learning problems Mairal et al.
(2010), the theoretical convergence guarantee of SMM in the literature only ensures asymp-
totic convergence to stationary points and lacks any convergence rate bounds Mairal et al.
(2010); Mairal (2013b,a); Mensch et al. (2017).

Most theoretical analyses on online optimization algorithms assume the ability to sample
i.i.d. data points from the target distribution. This is a classical and convenient assumption
for analysis, but it is violated frequently in practice, especially when the samples are ac-
cessed through Markov chain-based methods. A common practice is to first sample a single
Markov chain trajectory of dependent data samples (after some burn-in period), which is
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then thinned (subsampled) to reduce the dependence. However, such practice only weakens
the dependence between data samples and does not make it truly independent in general.
One may re-initialize independent Markov chains for every sample to attain true indepen-
dence, but this approach suffers from a huge computational burden. Optimization algorithms
with Markovian data samples were studied in Johansson et al. (2007, 2010) in the context
of distributed optimization in networks. More recently, it was shown in Sun et al. (2018)
that arbitrarily initialized SGD almost surely converges to critical points of unconstrained
nonconvex objectives at rate O((log n)2/

√
n), even when the data samples have a Marko-

vian dependence. Block Coordinate Descent with Markovian coordinate selection was also
studied recently in Sun et al. (2020).

On the other hand, in Lyu et al. (2020), the online matrix factorization algorithm in
Mairal et al. (2010) based on SMM is extended and shown to converge to stationary points
for constrained matrix factorization problems in the Markovian setting. Based on the result
and combined with an MCMC network sampling algorithm in Lyu et al. (2023), an online
dictionary learning algorithm for learning latent motifs in networks is proposed in Lyu
et al. (2020). More recently, an online algorithm for nonnegative tensor dictionary learning
utilizing CANDECOMP/PARAFAC (CP) decomposition is developed in Lyu et al. (2022),
where convergence to stationary points under the Markovian setting is established. The
algorithm is based on SMM but uses new components such as block coordinate descent
with diminishing radius Lyu and Li (2023). Although the works Lyu et al. (2020, 2022) are
the first to establish global convergence of SMM-type methods to stationary points in the
Markovian setting, there has not been a convergence rate bounds, which is still the case in
the i.i.d. setting. A rate of convergence result is also important in practice since it provides
bounds on the number of iterations and data samples sufficient to guarantee obtaining an
approximate solution up to the desired precision.

Our goal in this paper is twofold. First, we generalize the framework of SMM so that not
only strongly convex surrogates can be used, but also the more general class of weakly convex
or multi-convex surrogates can be used with suitable regularization. Second, we intend to
provide the missing convergence rate analysis of SMM for general constrained nonconvex
objectives, both in the context of empirical and expected loss minimization. We call our
algorithm stochastic regularized majorization-minimization (SRMM), which generalizes the
original SMM Mairal (2013a), online matrix factorization Mairal et al. (2010); Lyu et al.
(2020), stochastic approximate majorization-minimization and subsampled online matrix
factorization Mensch et al. (2017), and the online CP-dictionary learning algorithm Lyu
et al. (2022).

1.1 Contribution

Our algorithm and analysis of SMM consider three cases: 1) Strongly convex surrogates
without regularization; 2) Multi-convex surrogates with block coordinate descent with di-
minishing radius; 3) Strongly convex surrogates with proximal regularization. A concise
summary of our results is given in Table 1 and in the following bullet points.

SMM with strongly convex surrogates
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• Rate of convergence of classical SMM with strongly convex surrogates and i.i.d. data
samples is established: O((log n)1+εn−1/2) for empirical loss and O((log n)1+εn−1/4)
for the expected loss.

• The results also hold against inexact computation of surrogates, inexact surrogate
minimization, and hidden Markovian dependence in data samples.

SMM with multi-convex surrogates

• SMM with block multi-convex surrogates is developed, where averaged surrogates
are approximately block-minimized within a diminishing radius, either with cyclically
or randomly chosen block coordinates.

• Coordinate descent for surrogate minimization reduces computational cost in high
dimension.

• Same convergence rate results as in the previous case hold.

SMM with weakly convex surrogates

• SMM with weakly convex surrogates and proximal regularization is developed. In
particular, only L-smooth surrogates can be used without verifying convexity.

• Proximal regularization improves the conditioning of surrogate minimization without
changing the surrogates.

• Same convergence rate results as in the previous case hold.

Surrogates Coordinate
Decent Regularization Asymptotic

Convergence
Iteration

Complexity
Data

Sampling
Strongly convex Full None X X Markovian

Multi-convex Block Diminishing
Radius X X Markovian

Weakly convex Full Proximal 7 X i.i.d.

Table 1: Overview of theoretical results depending on the types of surrogates, coordinate descent,
regularization, and data sampling. For the weakly convex case, asymptotic convergence to stationary
points is only subsequential. See Theorem 2.

In a unified manner, we provide an extensive convergence analysis on the proposed al-
gorithm in all three cases mentioned above, which we derive under possibly dependent data
streams, relaxing the standard i.i.d. assumption on data samples. We obtain global con-
vergence to stationary points of rate O((log n)1+ε/n1/2), matching the optimal convergence
rates for SGD-based methods Sun et al. (2018); Davis and Drusvyatskiy (2019), where ε > 0
is an arbitrary constant. Interestingly, our analysis shows that SRMM (and hence SMM)
is more adapted to solve empirical loss minimization than expected loss minimization, in
the sense that the aforementioned rate of convergence holds for the empirical loss functions,
but for the empirical loss function, a slower rate of O((log n)1+ε/n1/4) is obtained. This is
the opposite of SGD-based methods, which converges almost surely for the expected loss at
rate O((log n)2/n1/2) and rate O((log n)1+ε/n1/4) for the empirical loss. However, we also
show that the optimal almost sure convergence rate O((log n)1+ε/n1/2) is obtained when
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the stationary points of the surrogate functions are in the interior of the constraint set. See
Theorems 2, 3, and 4 for the full statements.

Our general framework of SRMM can be specialized to various stochastic optimization
algorithms. The examples include

• Double-averaging projected gradient descent Nesterov and Shikhman (2015) and its gen-
eralizations (Sec. 5.1.1)

• Proximal point empirial loss minimization Frostig et al. (2015); Lin et al. (2015) (Sec.
5.1.2)

• Online (Nonnegative) Matrix Factorization Mairal et al. (2010); Lyu et al. (2020) (Sec.
5.1.3)

• Subsampled Online (Nonnegative) Matrix Factorization Mensch et al. (2017) (Sec. 5.1.4)
• Online Nonnegative CP-dictionary learning Lyu et al. (2022) (Sec. 5.1.5)

As an immediate corollary, our general results yield the first convergence rate bounds for
the above algorithms in the general setting with nonconvex objectives with constraints and
possibly non-i.i.d. data samples. For all of the above algorithms, there have not been
any convergence rate results for nonconvex objectives even in the special case of i.i.d. data
samples. For the first two examples above, even asymptotic convergence to stationary points
for nonconvex objectives was not known.

In Section 5.2, we also experimentally validate the efficacy of SRMM for two tasks: Net-
work Dictionary Learning Lyu et al. (2024) and image classification with deep convolutional
neural networks for the CIFAR-10 dataset Krizhevsky et al. (2009).

1.2 Related work

In Mairal (2013b), convergence analysis of SMM with i.i.d. data samples are given. There,
it is shown that when the objective function f is convex, SMM converges to the global
minimum with a rate of convergence in expectation of order O(log n/

√
n) (see (Mairal,

2013b, Prop 3.1)) and of order O(1/n) when f is strongly convex (see (Mairal, 2013b, Prop
3.2)). Also, when f is nonconvex, SMM is shown to converge almost surely to the set of
stationary points of f over a convex constraint set (see (Mairal, 2013b, Prop 3.4)) but no
result on the rate of convergence is given. The latter nonconvex result was later extended
to SMM with approximate surrogate functions in Mensch et al. (2017), which was applied
to developing subsampled online matrix factorization algorithms.

In Lyu et al. (2020), the classical online matrix factorization algorithm in Mairal et al.
(2010) is shown to converge when the input data matrices are given by a function of some
underlying Markov chain. A similar almost sure global convergence in the Markovian setting
for online tensor factorization is obtained in Lyu et al. (2022). In both works, bounds on
the rate of convergence are not given. In Lyu and Li (2023), block coordinate descent with
diminishing radius is proposed for deterministic nonconvex problems and shown to converge
to the stationary points of the objective function. Also, a rate of convergence of order
O(log n/

√
n) is obtained.

Stochastic Gradient Descent (SGD) is another popular method for various optimization
problems. In Sun et al. (2018), a convergence of SGD under the Markovian data assumption
is obtained. For the convex case, (Sun et al., 2018, Thm. 1) shows the convergence of SGD
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to a global minimum with the rate of convergence of order O((log n)1+ε/
√
n) for each fixed

ε > 0 . Moreover, (Sun et al., 2018, Thm. 2) shows that SGD for unconstrained nonconvex
optimization converges almost surely to the stationary points with rate O((log n)1+ε/

√
n)

for each fixed ε > 0. A similar rate of convergence for nonconvex and constrained projected
SGD is also known in Davis and Drusvyatskiy (2019). In Zhao et al. (2017), an online NMF
algorithm based on projected SGD with general divergence in place of the squared `2-loss is
proposed, and convergence to stationary points to the expected loss function for i.i.d. data
samples is shown.

One of the key features of SMM-type algorithms is that the chosen majorizing surro-
gates in each iteration are recursively averaged. However, MM-type algorithms without
such recursive averaging have also been investigated extensively. For instance, for convex
objectives, an iteration complexity of O(ε−2) is known for block successive upper-bound
minimization (BSUM) algorithm Hong et al. (2017).

1.3 Organization

In Section 2, we state the problem settings of empirical and expected loss minimization and
introduce background on majorization-minimization (MM) and stochastic MM (SMM). We
also introduce the proposed method of stochastic regularized MM (SRMM) at a high level.
In Section 3, we state our SRMM algorithm in Algorithm 1. Next in Section 4, we state our
main results (Theorems 2, 3, and 4) and their corollaries (Corollaries 5 and 6). In Section
5, we discuss applications of our general framework on various special instances of SRMM
– double averaged PSGD and its generalizations, (subsampled) online matrix factorization,
and online CP-dictionary learning. In Section 5.2, we provide numerical experiments of
SRMM on network dictionary learning and image classification using deep convolutional
neural networks.

The rest of the sections are devoted to convergence analysis for SRMM. In Section 6
we establish some preliminary lemmas. Following in Section 7, we state five key lemmas
(Lemmas 20, 21, 22, 23, and 24) and derive all main results stated in Section 4 from them.
The first three key lemmas will be proved in Section 8, whereas the other two key lemmas
will be established in Sections 9 and 10.

Lastly, we give some backgrounds on Markov chains and Markov chain Monte Carlo
(MCMC) sampling in Appendix A, provide examples of various surrogate functions in Ap-
pendix B, and give some auxiliary lemmas in Appendix C.

1.4 Notation

In this paper, Rp denote the ambient space for the parameter space Θ equipped with stan-
dard dot product 〈·, ·〉 and the induced Euclidean norm ‖·‖. We denote 1(A) the indicator
function of event A, which takes value 1 on A and 0 on Ac. For each J ⊆ {1, . . . , p}, we
denote RJ by the |J |-dimensional subspace of Rp generated by the coordinates in J . We
identify R{1,...,p} and Rp. We call a subset J ⊆ 2{1,...,p} \ {∅} a set of coordinate blocks if⋃
J = {1, . . . , p}. In this case, each element J ∈ J is called a coordinate block (or block

coordinate). Note that two distinct coordinate blocks do not need to be disjoint. For
Θ ⊆ Rp, θ ∈ Rp, and a block coordinate J ⊆ {1, . . . , p}, denote ΘJ := ProjRJ (Θ) and
θJ := ProjRJ (θ).
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2. Problem statement

2.1 Empirical Loss Minimization

Suppose we have a loss function ` : X×Θ→ [0,∞) that measures the fitness of a parameter
θ ∈ Θ ⊆ Rp with respect to an observed data x ∈ X. Consider a sequence of newly
observed data (xn)n≥1 in X, where X can be a general topological space. We would like to
estimate a sequence of parameters (θn)n≥1 such that θn is in some sense the best fit to all
data x1, · · · ,xn up to time n. In the empirical loss minimization framework, one seeks to
minimize a recursively defined empirical loss function as new data arrives:

Upon arrival of xn: θn ∈ arg min
θ∈Θ

(
f̄n(θ) := (1− wn)f̄n−1(θ) + wn `(xn,θ)

)
, (2.1)

where (wn)n≥1 is a sequence of adaptivity weights in (0, 1] and the function f̄n is the empirical
loss function recursively defined by the weighted average as in (2.1) with f0 ≡ 0. More
explicitly, we can write

f̄n(θ) =
n∑
k=1

`(xk,θ)wnk , wnk := wk

n∏
i=k+1

(1− wi). (2.2)

The adaptivity weight wn in (2.1) controls how much we want our new estimate θn
deviate from minimizing the previous empirical loss f̄n−1 to adapting to the newly observed
tensor data xn. In the extreme case of wn ≡ 1, θn is a minimizer of the time-n loss `(xn, ·)
and ignores the past f̄n−1. If wn ≡ α ∈ (0, 1) then the history is forgotten exponentially
fast, that is, f̄n(·) =

∑n
k=1 α(1 − α)n−k `(xk, ·). On the other hand, the ‘balanced weight’

wn = 1/n makes the empirical loss be the arithmetic mean: f̄n(·) = 1
n

∑n
k=1 `(xs, ·), which

is the canonical choice in the literature including maximum likelihood estimation and online
NMF problem in Mairal et al. (2010). Hence, one may choose the sequence of weights
(wn)n≥1 in (2.1) to decay fast for learning average features and decay slow (or keep it
constant) for learning trending features). See Figure 2 for illustration.
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Figure 2: Schematic plot of empirical loss f̄n(·) = (1−wn)f̄n−1(·) +wn`(xn, ·) when the adaptivity
weight wn is small (‘slow adaptation’ regime) or large (‘fast adaptation’ regime).

For instance, consider the linear regression problem where `(x,θ) = ‖x −Dθ‖2, where
x ∈ Rq and D ∈ Rq×p is a fixed matrix of basis features. Then by writing `(x,θ) =
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θTDTDθ − 2θTDTx + xTx, it is easy to see that

f̄n(θ) = ‖x̄n −Dθ‖2 + Cn, (2.3)

where x̄n :=
∑n

k=1 xkw
n
k and Cn depends only on x1, . . . ,xn. Hence θn in (2.1) in this case

is the vector of best linear regression coefficients that fits the basis D to the averaged data
point x̄n.

2.2 Expected Loss Minimization

Instead of fitting the model underlying the loss function ` to a sequence of data points
(xn)n≥1, consider fitting it to a single but random data point x following some probability
distribution π. Then we would be seeking a single estimate θ∗ that minimizes the expected
loss function f as below:

θ∗ ∈ arg min
θ∈Θ

(f(θ) := Ex∼π [`(x,θ)]) . (2.4)

We call the above problem setting expected loss minimization. This is a popular setting
in the optimization literature for stochastic programs. A popular optimization algorithm
for solving (2.4) is projected stochastic gradient descent, which proceeds by first drawing a
sample xn ∼ π, estimating the full gradient ∇f(θn) by the stochastic gradient ∇`(xn,θn−1),
and then updating θn ← ProjΘ(θn−1−αn∇`(xn,θn−1)), where αn is a chosen stepsize and
ProjΘ is the projection operator onto the parameter space Θ.

In the context of linear regression we discussed before, we have

f(θ) = ‖Ex∼π[x]−Dθ‖2 + C ′n, (2.5)

where C ′n does not depend on θ and D. By comparing the empirical (2.3) and the expected
(2.5) loss functions for linear regression, one can see that the two problem settings are
asymptotically equivalent when x̄n → Ex∼π[x] as the sample size n for the empirical loss
minimization tends to infinity. This is certainly true when xk’s are i.i.d. from π and wk = 1/k
by the strong law of large numbers. This holds true in a more general setting where xn form
a Markov chain with stationary distribution π and the weights wn are non-increasing and
decay sufficiently faster than 1/

√
n (see Lemma 42).

2.3 Stochastic Regularized Majorization-Minimization

Majorization-minimization (MM) is a large class of classical approaches for solving noncon-
vex optimization problems (see Lange et al. (2000) for a recent review) that includes classical
gradient descent algorithms as well as expectation-maximization (EM) for solving maximum
likelihood estimate (MLE) problems in statistics Cappé and Moulines (2009); Neal and Hin-
ton (1998). A key idea is local convex relaxation. For an illustration, suppose we would
like to minimize a differentiable function f with L-Lipschitz gradient (i.e., L-smooth) and
the current estimate is θn−1. In order to compute the new estimate θn, instead of directly
minimizing f near θn−1, we may minimize its quadratic expansion

gn(θ) : θ 7→ f(θn−1) + 〈∇f(θn−1), θ − θn−1〉+
1

2η
‖θ − θn−1‖2,
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where η > 0 is a parameter. It is easy to see that gn is minimized at θn := θn−1−η∇f(θn−1),
yielding the classical gradient descent update with stepsize η. In fact, if one chooses η ≤ L,
then gn majorizes f (i.e., gn ≥ f , see Lemma 34) and the resulting gradient descent algorithm
converges to the global minimum at rate O(1/k) when f is convex (see, e.g., Bottou (2010)).
In general, MM algorithms proceed by iteratively minimizing a majorizing surrogate (such
as gn above) of the objective function f .

Next, consider using a similar idea for solving the ELM problem (2.1). There, instead
of a single objective function f , we have a sequence of empirical loss functions f̄n to be
minimized online. It would be natural to first find a majorizing surrogate gn of the one-
point loss function fn(·) := `(xn, ·) at the current estimate θn and then undergo the same
recursive averaging step as in (2.1) to compute an averaged surrogate ḡn so that ḡn is a
majorizing surrogate of the current objective f̄n. We can then minimize ḡn to compute the
next estimate θn. This method is called the stochastic marjorization-minimization (SMM)
Mairal (2013b), which we state concisely as follow:

(SMM) Upon arrival of xn: (2.6){
gn ← Strongly convex majorizing surrogate of fn(·) = `(xn, ·)
θn ∈ arg minθ∈Θ

(
ḡn(θ) := (1− wn)ḡn−1(θ) + wn gn(θ)

)
.

SMM has been successful in a variety of settings including online versions of dictionary
learning, matrix factorization, proximal gradient, and DC programming (see Mairal et al.
(2010); Mairal (2013a); Mensch et al. (2017)).

A premise of SMM is that ḡt is strongly convex so that it is easy to find a unique
minimizer, which is the case for online matrix factorization problems Mairal et al. (2010);
Mairal (2013a). When the surrogate ḡn is only block multi-convex, that is, ḡn : Θ =
Θ(1) × · · · × Θ(m) → [0,∞) and it is convex in each of the m blocks, then finding a global
minimum of ḡn is not easy, if not impossible. Moreover, even when ḡn is convex, one can
still exploit its block multi-convex structure and use a more efficient coordinate descent
method to minimize ḡn. After all, it may be enough to minimize ḡn only approximately at
each n using a cheap coordinate descent method since we are interested in solving an online
problem.

To this end, we propose the following generalization of SMM, where the surrogate gn
functions can only be block-convex (not necessarily jointly convex) and the averaged surro-
gate ḡn can only be approximately minimized (e.g., by using a single round of block coordi-
nate descent) within a trust region. We call our algorithm Stochastic Block Marjorization-
Minimizaiton (SRMM):

(SRMM) Upon arrival of xn: (2.7)
gn ← (Weakly convex or multi-convex) Majorizing surrogate of fn(·) = `(xn, ·)
ḡn(θ) ← (1− wn)ḡn−1(θ) + wn gn(θ)

θn ≈ arg minθ∈Θ (ḡn(θ) + Ψn(‖θ − θn−1‖))

where Ψn(·) is a regularizer that penalizes having a large value ‖θn − θn−1‖ of parameter
change.

10
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Amotivating example for SRMM is the recent work on online nonnegative CP1-dictionary
learning in Lyu et al. (2022), which includes online nonnegative tensor CP-decomposition
as a special case. There, the variational surrogate is only convex in each of the n loading
matrices. The method developed in Lyu et al. (2022) in order to handle a similar issue for
a tensor factorization setting is that, at each round, we only approximately minimize the
surrogate ḡn by a single round of cyclic block coordinate descent (BCD) in the n loading
matrices. This additional layer of relaxation causes a number of technical difficulties in
convergence analysis. One of the key innovations used to ensure convergence of the algo-
rithm is the use of “search radius restriction” developed in Lyu and Li (2023), which can be
regarded as a trust region method Yuan (2015); Conn et al. (2000) with diminishing radius.
In this paper, we generalize and significantly improve this approach and analysis in Lyu
et al. (2022). Most importantly, we will establish a rate of convergence of SRMM in the
general nonconvex, constrained, and Markovian data setting. As a corollary, we obtain a
rate of convergence results for the classical SMM in the Markovian data case, which has not
been available even in the i.i.d. data case.

3. Statement of the algorithm

To state the main algorithm, we first define the class of surrogate functions we use in this
paper. Recall the notations in Subsection 1.4.

Definition 1 (First-order ρ-multi-convex Surrogates) Fix a set J of coordinate blocks
and parameters L > 0, ρ ∈ R, and ε ≥ 0. A function g : Rp → R is a (first-order) ρ-multi-
convex ε-approximate surrogate of f : Rp → R at θ∗ ∈ Rp on block coordinates in J if the
following hold:

(i) (ε-majorization) g(θ) + ε ≥ f(θ) for all θ ∈ Rp;

(ii) (Smoothness of error) The approximation error h := g − f is differentiable and ∇h is
L-Lipschitz continuous. Furthermore, h(θ∗) ≤ ε and ‖∇h∗(θ)‖≤ ε.

(iii) (Block ρ-multi-convexity) For each J ∈ J, θ 7→ g(θ) − ρ
2‖θ‖

2 is convex on RJ . (We
allow ρ < 0.)

Note that the parameter ρ is not necessarily positive and we allow it to be any value in
R. Then (iii) states that in each block J , the function g is ρ-strongly convex If ρ > 0; convex
if ρ = 0; (−ρ)-weakly convex if ρ < 0. To conveniently refer to all these cases, we call a
function g ρ-convex for each ρ ∈ R if the function θ 7→ g(θ)− ρ

2‖θ‖
2 is convex. If this holds

on RJ for each coordinate block J ∈ J, we call g ρ-multi-convex. Denote SrgJL,ρ(f,θ
∗, ε)

for the set of all ρ-multi-convex ε-approximate surrogates of f at θ∗ with parameters L and
ρ and coordinate blocks J. If J consists of the single coordinate block {1, . . . , p}, then we
write SrgL,ρ(f,θ

∗, ε) := SrgJL,ρ(f,θ
∗, ε), which consists of ρ-convex surrogates g of f at θ∗.

Lastly, we denote SrgJL,ρ(f,θ
∗) := SrgJL,ρ(f,θ

∗, 0).

1. CANDECOMP/PARAFAC for tensor decomposition
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Algorithm 1 Stochastic Regularized Majorization-Minimization (SRMM)
1: Input: θ0 ∈ Θ ⊆ Rp (initial estimate); N (number of iterations); (wn)n≥1, (non-increasing

weights in (0, 1]); (εn)n≥1, (non-increasing surrogate tolerance in [0, 1]); J ∈ 2{1,...,p} (set of
coordinate blocks); L > 0 (surrogate smoothness parameter); (ρn)n≥1 (surrogate convexity
parameters in [0,∞));

2: Initialize the approximate surrogate ḡ0 : θ 7→ ρ
2‖θ − θ0‖2; θ̄0 = θ0; θ̂ = θ0;

3: for n = 1, · · · , N do
4: sample a training point xn ∈ X; define fn : θ 7→ `(xn,θ);
5: choose a surrogate function gn ∈ SrgJL,ρn(fn,θn−1, εn);
6: update the average surrogate: ḡn = (1− wn)ḡn−1 + wngn;
7: use Algorithm 2 or 3 to compute updated estimate θn near θn−1:

θn ≈ arg min
θ∈Θ

(ḡn(θ) + Ψn(‖θ − θn−1‖)) ;

(
.
Inexact surrogate minimization

with regularization

)
(3.1)

8: end for
9: output: θN

Now we state our main algorithm, Algorithm 1, which iteratively executes the following:
1) Sample a new data point xn ∈ X using an a priori sampling algorithm (e.g., MCMC);
2) Choose a new surrogate gn of the loss function θ 7→ `(xn,θ); 3) Update and aggregate
surrogate ḡn by taking a weighted average of ḡn−1 and gn; 4) Find an approximate minimizer
of ḡn plus a regularizer Ψn(‖θ−θn−1‖). In the simplest case when gn’s are strongly convex,
we directly minimize the strongly convex function ḡn over Θ; When gn’s are ρ-weakly convex,
then we minimize the strongly convex function ḡn (θ)+ λn

2 ‖θ−θn−1‖2 over Θ, where λn > ρ.
These two cases are covered by Algorithm 2.

Algorithm 2 Surrogate Minimization with Proximal Regularization
1: Input: all input of Algorithm 1; θn−1 ∈ Θ (current estimate); m ∈ N (number of sub-

iterations); ρ̂ > −ρ (proximal regularization parameter);
2: Require: ρ ≤ 0 (i.e., θ 7→ gn(θ) + |ρ|

2 ‖θ‖
2 is convex for each n ≥ 1)

3: Do:

θn ∈ arg min
θ∈Θ

[
ḡn (θ) +

ρ̂

2
‖θ − θn−1‖2

]
; (3.2)

4: output: θn ∈ Θ

12
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Algorithm 3 Block Surrogate Minimization with Diminishing Radius
1: Input: all input of Algorithm 1; θn−1 ∈ Θ (current estimate); m ∈ N (number of sub-

iterations);
2: Require: gn is block multi-convex with block structure J for each n ≥ 1;
3: θn ← θn−1;
4: for i = 1, · · · ,m do:
5: choose a block coordinate J = Ji(n) ∈ J independently of everything else;
6: freeze coordinates in Jc:

ΘJ
n ←

{
θ ∈ Θ

∣∣∣∣θJc

= (θn)J
c

}
(3.3)

7: update θn on coordinates in J while holding the rest of coordinates in Jc:

θ(i)
n ∈ arg min

θ∈ΘJ
n

[ḡn (θ) + (∞ · 1(‖θ − θn−1‖ > wn/m))] ; (. Set ∞ · 0 = 0) (3.4)

8: end for
9: output: θn = θ(m)

n ∈ Θ

On the other hand, when the surrogates gn are block multi-convex with respect to the
coordinate blocks in J, then so is their weight average ḡn. Unless ḡn itself is convex, finding
an exact minimizer of ḡn over Θ in step (3.1) is infeasible. In fact, computing an exact
minimizer of ḡn in every step may not be necessary for the convergence of the algorithm, as
it was observed for the problem of online CP-dictionary learning Lyu et al. (2022). Instead,
by exploiting the block multi-convex structure of ḡn, we may solve a fixed number of convex
sub-problems over deterministically or randomly chosen blocks in J.

In each step of solving (3.1), it is crucial to ensure that the new estimate θn obtained
by approximately minimizing ḡn is not too far from the previous estimate θn−1. When
ḡn is strongly convex on full coordinates and if θn is an exact minimizer of ḡn, a simple
argument shows that ‖θn − θn−1‖ = O(wn) (see (Mairal, 2013b, Lem. B.8)). In this case,
we may directly find an exact minimizer θn of ḡn over Θ as in Algorithm 2 with ρ̂ = 0.
This specialization corresponds to the original SMM algorithm in Mairal (2013b). However,
such property is not a priori satisfied in the general case when ḡn is nonconvex or θn is an
inexact minimizer of ḡn over Θ.

A key idea behind Algorithms 2 and 3 for averaged surrogate minimization is to use an
additional regularization that penalizes large values of ‖θ−θn−1‖ in (3.1). We consider two
such regularization schemes stated in Algorithm 3: A ‘hard’ regularization of Diminishing
Radius (DR) and a ‘soft’ regularization of Proximal Regularization (PR). DR can also be
viewed as a trust region method, where our trust-region takes the form of the Euclidean ball
of diminishing radius rn = O(wn) in the order of adaptivity weights wn used for iterated av-
eraging of the objective functions. PR is a standard regularization scheme that quadratically
penalizes the distance from the old estimate Parikh and Boyd (2014). The first-order opti-
mality conditions for these two regularization schemes are equivalent assuming the solution
of the latter lies in the interior of the trust region, but not necessarily in general. Another
difference between the two regularization methods is that DR does not change the objective
gradient but PR does. Nonetheless, in the context of block coordinate descent (BCD), both
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regularization methods guarantee convergence to stationary points Grippo and Sciandrone
(2000); Xu and Yin (2013); Lyu and Li (2023).

Note that each of the block minimization problems in (3.2) and (3.4) is a constrained
convex optimization problem so it can be easily solved by a number of known algorithms
(e.g., projected gradient descent Beck (2017), LARS Efron et al. (2004), LASSO Tibshirani
(1996), and feature-sign search Lee et al. (2007)). Indeed, for (3.2), the averaged surrogate
ḡn is −ρ-weakly convex (recall ρ < 0) and so its proximal point modification with ρ̂ > −ρ
is (ρ̂ + ρ)-strongly convex; Also, (3.4) is equivalent to minimizing ḡn over the convex set
Θn ∩{θ | ‖θ−θn−1‖ ≤ wn/m} restricted on RJ , where the retriction of ḡn on RJ is convex.
In particular, using standard projected gradient descent algorithms, one can decrease the
optimality gap sub-linearly for convex sub-problems and linearly if the restricted objectives
are strongly convex (see, e.g., (Beck, 2017, Thm. 10.29)).

4. Main results

4.1 Optimality conditions and convergence measures

In this subsection, we introduce some notions on optimality conditions and related quantities.
Here we denote f to be a general objective function Θ → R, but elsewhere f will denote
the expected loss function in (2.4) unless otherwise mentioned.

Recall that we say θ∗ ∈ Θ is a stationary point of f over Θ if

sup
θ∈Θ, ‖θ−θ∗‖≤1

〈−∇f(θ∗), θ − θ∗〉 ≤ 0, (4.1)

where 〈·, ·〉 denotes the dot project on Rp ⊇ Θ. (The restriction ‖θ − θ∗‖ ≤ 1 in (4.1) is
vacuous by rescaling θ − θ∗.) Equivalently, let NΘ(θ) := {η : 〈η, θ′ − θ〉 ≤ 0 ∀θ′ ∈ Θ}
denote the normal cone of Θ at θ. Then θ∗ is a stationary point of f over Θ if and only
if −∇f(θ∗) ∈ NΘ(θ). If θ∗ is in the interior of Θ, then it implies ‖∇f(θ∗)‖ = 0. For
iterative algorithms, such a first-order optimality condition may hardly be satisfied exactly
in a finite number of iterations, so it is important to know how the worst-case number of
iterations required to achieve an ε-approximate solution scales with the desired precision ε.
More precisely, we say θ∗ ∈ Θ is an ε-approxiate stationary point of f over Θ if

sup
θ∈Θ, ‖θ−θ∗‖≤1

〈−∇f(θ∗), θ − θ∗〉 ≤ ε. (4.2)

This notion of ε-approximate solution is consistent with the corresponding notion for un-
constrained problems. Indeed, if θ∗ lies sufficiently deep the interior of Θ, then

sup
θ∈Θ, ‖θ−θ∗‖≤1

〈−∇f(θ∗), θ − θ∗〉 = ‖f(θ∗)‖. (4.3)

There are alternative ways to define ε-stationary points for constrained problems. We
have the equivalence between the following two stationary measures (see (Alacaoglu and
Lyu, 2023, Prop. B.1) and (Rockafellar and Wets, 2009, Prop. 8.32)):

sup
θ∈Θ\{θ∗}

〈
−∇f(θ∗),

θ − θ∗

‖θ − θ∗‖

〉
= dist(0,∇f(θ) +NΘ(θ)), (4.4)
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where the right-hand side is a standard measure of stationarity (e.g., see Nesterov (2013)).
The stationary measures in (4.4) do not behave continuously as one approaches stationary
points at the boundary of the constraint set from the interior. Indeed, when θ∗ is in the
interior of Θ, then the quantities in (4.4) always equal to ‖∇f(θ∗)‖, whereas the left-hand
side of (4.3) can be much smaller than ‖∇f(θ∗)‖ when θ∗ is close to the boundary of Θ. This
was partly the motivation for Davis and Drusvyatskiy to use a ‘near-stationary measure’
incorporating Moreu envelop in their seminal work for constrained stochastic optimization
Davis and Drusvyatskiy (2019). Namely, if the gradient norm of the Moreau envelope is
small at a parameter θ, then the proximal point θ̂ is close to being stationary and is near
θ. In comparison, the stationarity measure we introduced in (4.2) is a ‘direct’ measure of
approximate stationarity (since it does not involve an additional proximal operator) and it
behaves continuously near the boundary.

Next, for each ε > 0 we define the iteration complexity Nε of an algorithm for minimizing
f over Θ with initialization θ0 ∈ Θ as

Nε = Nε(f,θ0) := inf {n ≥ 1 |θn is an ε-approximate stationary point of f over Θ},

where (θn)n≥0 is a sequence of estimates produced by the algorithm with an initial estimate
θ0. An upper bound on Nε can be regarded as the worst-case bound on the number of
iterations for an algorithm to achieve an ε-approximate solution.

4.2 Assumptions

In this subsection, we state all assumptions we use for establishing the main results. Through-
out this paper, we denote by Fn the σ-algebra generated by the data points x1, . . . ,xn as
well as the choice of coordinate blocks J1(k), . . . , Jm(k) for 1 ≤ k ≤ m. Clearly (Fn)n≥1

defines a filtration, that is, F0 ⊆ F1 ⊆ · · · .

(A1) (Per-sample loss function) There exists constants R,L > 0 such that for each data
point x ∈ X, the function θ 7→ `(x, θ) over θ ∈ Θ is R-Lipscthiz continuous and its gradient
is L-Lipschitz continuous.

(A2) (Data sampling) The observed data points xn ∈ X are given by xn = ϕ(Yn), where
Yn is Markov chain on state space Ω and ϕ : Ω → Rp is a function with compact image.
Furthermore, Yn has a unique stationary distribution π and satisfies exponential mixing with
some rate λ ∈ [0, 1):

sup
y∈Ω
‖Pm(y, ·)− π‖TV ≤ λm. (4.5)

(A3) (Constraint sets for parameters) The constraint set Θ is a compact and convex subset
of Rp. Let J ⊆ 2{1,...,p} \ {∅} denote the set of coordinate blocks used in Algorithm 1. Then
for each block coodinate J ∈ J, ΘJ contains an open ball in RJ .

(A4) (Adaptivity weight decay) The weights wn ∈ (0, 1] are non-increasing and satisfy
w−1
n −w−1

n−1 ≤ 1 for all sufficiently large n ≥ 1,
∑∞

n=1wn =∞, and wn
√
n = O(1/(log n)1+ε)
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for some ε > 0. Also, there exists a constant C > 0 such that for an = bC log nc, the
following hold:

∞∑
n=1

w2
n

n+1∑
k=1

E[εk] <∞,
∞∑
n=1

anwnwn−an <∞,
∞∑
n=1

wnλ
an <∞,(

optionally,
∞∑
n=1

wnwn−an
√
n <∞

)
,

where (εn)n≥1 is given in Algorithm 1 and λ ∈ (0, 1] is given in (A2).

(A5) (Surrogate minimization) If Algorithm 2 is used for (3.1), define

∆n =∆(1)
n := Ḡn(θ(i)

n )− Ḡn(θ(i?)
n ), θ(i?)

n := arg min
θ∈Θ

Ḡn(θ),

Ḡn(θ) := ḡn(θ) +
ρ̂

2
‖θ − θn−1‖2.

If Algorithm 3 is used for (3.1), define

∆n :=

m∑
i=1

∆(i)
n , ∆(i)

n := ḡn(θ(i)
n )− ḡn(θ(i?)

n ), θ(i?)
n := arg min

θ∈Θ
Ji
n

ḡn(θ),

where ΘJi
n is defined in (3.3). Then in both cases, E [

∑∞
n=1 ∆n] <∞.

(A6) (Block coordinate sampling) If Algorithm 3 is used for (3.1), then the joint distribution
of coordinate blocks (J1(n), . . . , Jm(n)) chosen in Algorithm 3 at iteration n of Algorithm
1 does not depend on n. Furthermore, the coordinate blocks are disjoint, and the expected
number of each coordinate in {1, . . . , p} appearing in all coordinate blocks J1(n), . . . , Jm(n)
is constant.

(A7) (Parameterized surrogates) The averaged surrogates ḡn are parameterized by some
variable κn in some compact set K. That is, there exists a function ḡ : K × Θ → [0,∞)
such that ḡn(θ) = ḡ(κn,θ, εn) for some κn ∈ K. Furthermore, ḡ is Lipschitz in the first
coordinate.

Assumptions (A1) and (A3) are standard in the literature of constrained stochastic
nonconvex optimization and online dictionary learning Mairal et al. (2010); Mairal (2013b);
Mensch et al. (2017); Lyu et al. (2020, 2022).

(A2) states a relaxation of the standard i.i.d. data sampling assumption in Mairal et al.
(2010); Mairal (2013b); Mensch et al. (2017), where we assume the data samples are obtained
by some underlying Markov chain with exponential mixing to the stationary distribution
π (geometric ergodicity). It states that the m-step empirical distribution converges to the
stationary distribution π at a geometric rate λ, which holds trivially (with λ = 0) when
the underlying Markov chain Yn is in fact drawn i.i.d. from π. When the Markov chain is
irreducible and aperiodic on a finite state space, then (4.5) holds with some constant λ > 0
Levin and Peres (2017). In the case when the underlying Markov chain Yn has countably
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infinite or uncountable state space, there are a number of sufficient conditions for geometric
ergodicity (see, e.g., (Meyn and Tweedie, 2012, Sec. 15)). See Lyu et al. (2020) and Sun
et al. (2018) for concrete applications and sampling methods that satisfy this assumption.
This assumption is common in the literature Bhandari et al. (2018); Sun et al. (2018); ?);
Lyu et al. (2020, 2022); Nagaraj et al. (2020); Alacaoglu and Lyu (2023) and i.i.d. sampling
is another special case.

Assumption (A4) states that the sequence of weights wn ∈ (0, 1] we use to recursively
define the empirical loss (2.1) and surrogate loss (2.7) does not decay too fast so that∑∞

n=1wn =∞ but decay fast enough so that
∑∞

n=1w
2
n <∞. This is analogous to require-

ments for stepsizes in stochastic gradient descent algorithms, where the stepsizes are usually
required to be non-summable but square-summable (see, e.g., Sun et al. (2018)). Note that
our general results do not require the stronger assumption

∑∞
n=1w

2
n

√
n <∞, which is stan-

dard in the literature Mairal et al. (2010); Mairal (2013b); Mensch et al. (2017); Lyu et al.
(2020, 2022). Also, the condition w−1

n − w−1
n−1 ≤ 1 for all suficiently large n is equivalent

for the recursively defined weights wnk in (2.2) being non-decreasing in k for all sufficiently
large k, which is required to use Lemma 42. We also remark that (A4) is implied by the
following simpler condition:

(A4’) The sequence of non-increasing weights wn ∈ (0, 1] in Algorithm 1 satisfy either
wn = n−1 for n ≥ 1 or wn = Θ(n−β(log n)−δ) for some δ > 1 and β ∈ [1/2, 1) (Optionally,
β ∈ [3/4, 1)). Also, the sequence (εn)n≥1 in Algorithm 1 satisfies

∑∞
n=1w

2
n+1

∑n+1
k=1 E[εk+1] <

∞.

If we consider the weight wn = n−β/(log n)δ for some β ∈ [1/2, 1) and δ > 1 as in (A4’), we
have (

n∑
k=1

wn

)−1

= O(nβ−1(log n)δ). (4.6)

Hence the above bound is optimized when β = 1/2 for each fixed δ > 1.
Next, we give some remarks on (A5). When the averaged surrogate ḡn is strongly

convex on each coordinate block Ji(n), then the expected optimality gap in (A5) decays
exponentially fast in the number of iterations of standard constrained convex optimization
algorithms such as projected gradient descent (see, e.g., (Beck, 2017, Thm. 10.29)). See
also stochastic gradient descent or random coordinate descent (see, e.g., (Bottou et al.,
2018, Thm 4.6) and (Wright, 2015, Thm. 1)) for unconstrained cases. Hence, for instance,
one can ensure E[∆n] = O(n−2) in O(m log n) sub-iterations for computing θ

(1)
n , . . . ,θ

(m)
n

in Algorithm 3. Consequently, the total computational cost of Algorithm 1 would be the
iteration complexity times a log factor, which is negligible.

On the other hand, when Algorithm 2 is used for (3.1) in Theorem 2, we will always
be minimizing a strongly convex function over Θ to find θn, so the same remark applies.
In a special case when the surrogates gn are strongly convex and Algorithm 2 is used with
ρ̂ = 0, then one can ensure E[∆n] = O(w2

n) in O(1) sub-iterations, instead of O(log n) (see
Lemma 39). More precisely, (A5) is implied by the following simple condition, which was
also used in (Mensch et al., 2017, Assumption (I)) to analyze SMM with inexact surrogate
minimization:
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(A5’) (Surrogate optimality gap decay) Suppose the surrogates gn are ρ-strongly convex for
some ρ > 0 Algorithm 2 is used with ρ̂ = 0. Then there exists a constant µ ∈ (0, 1] such that
for all n ≥ 1,

E
[
ḡn(θn)− ḡn(θ?n)

∣∣∣∣Fn−1

]
≤ (1− µ) [ḡn(θn−1)− ḡn(θ?n)] ,

where θ
(?)
n denotes the exact minimizer of ḡn over Θ.

(A6) asserts some properties of a random sampling of block coordinates J1(n), . . . , Jm(n)
in Algorithm 3, which are crucially used in the proof of Lemma 28 that is pivotal to estab-
lishing a rate of convergence results in Theorems 3 and 4. We note that (A6) is trivially
satisfied if the deterministic cyclic block coordinate descent is used. Namely, if each sur-
rogate gn is block multi-convex with block structure J = {J1, . . . , Jm} where J1 ∪ · · · ∪ Jm
gives a partition of full coordinates {1, . . . , p}, then we can deterministically cycle through
the m coordinate blocks by setting Ji(n) = Ji for 1 ≤ i ≤ m. Then (A6) is satisfied. Such
cyclic block coordinate descent was used in the online CP-dictionary learning Lyu et al.
(2022). Hence the present work generalizes such a deterministic block coordinate schedule
to a possibly randomized schedule.

Lastly, (A7) asserts that the averaged surrogates ḡn can be parameterized by a compact
index set K, which is satisfied by most practical use cases of SMM-type algorithms Mairal
(2013b) including online matrix factorization (see Subsection 5.1.3) and online CP-dictionary
learning (see Subsection 5.1.5 as well as (Lyu et al., 2022, Alg. 2)). While (A7) is crucially
used in deriving some of the main results (Theorem 2), it is also of practical importance
since it allows one to store averaged surrogates ḡn only by storing some sufficient statistics
living in a compact set K, without needing to store all past data x1, . . . ,xn. This is the case
for the double-averaging PSGD (Sec. 5.1.1) and online matrix/tensor factorization (Sec.
5.1.3 and 5.1.5).

4.3 Statement of main results

Throughout this section, let (θn)n≥1 denote the output of Algorithm 1 with arbitrary ini-
tialization θ0. We will consider one of the following instances:

C1 (Strongly convex surrogates without regularization) gn ∈ SrgL,ρ(fn,θn−1, εn) for n ≥ 1
for some L, ρ > 0. Use Algorithm 2 with ρ̂ = 0 for solving (3.1). In this case, assume (A5’).

C2 (Multi-convex surrogates with radius restriction) gn ∈ SrgLL,0(fn,θn−1, εn) for n ≥ 1
for some set J of coordinate blocks and for some L > 0. Use Algorithm 3 for solving (3.1).
Assume (A5)-(A6) and rn+1/rn = O(1).

C3 (Weakly convex surrogates with proximal regularization) gn ∈ SrgL,ρ(fn,θn−1, εn) for
n ≥ 1 for some L > 0 and ρ ≤ 0. Use Algorithm 2 with ρ̂ > −ρ for solving (3.1). Assume
(A5) and that the data sequence (xn)n≥1 is i.i.d. from the stationary distribution π.

Now we state our first main result, Theorem 2, which states that Algorithm 1 converges
globally (w.r.t. initialization) to the set of stationary points of both the empirical loss f̄n and
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the expected loss f . Moreover, it also states that the averaged surrogate ḡn is asymptotically
an accurate approximation of the empirical and the expected loss functions at θn both in
the function values and gradients.

Theorem 2 (Global Convergence) Assume (A1)-(A4) and (A7) hold. Then for cases
C1-C2, the following hold:

(i) (Empirical Loss Minimization) Both |ḡn(θn)− f̄n(θn)| and ‖∇ḡn(θn)−∇f̄n(θn)‖ con-
verge to zero almost surely. Furthermore, θn is asymptotically a stationary point of f̄n
over Θ almost surely.

(ii) (Expected Loss Minimization) |ḡn(θn)−f(θn)|, ‖∇ḡn(θn)−∇f(θn)‖ and ‖E[∇ḡn(θn)]−
∇f(θn)‖ converge to zero alsmot surely. Furthermore, θn converges to the set of a
stationary points of f over Θ almost surely.

For the case C3, the following subsequential versions of (i)-(ii) hold:

(iii) All five quantities in (i)-(ii) converge to zero almost surely on some subsequence of
(θn)n≥1. Furthermore, θn is asymptotically a stationary point of ḡn over Θ almost
surely.

We note that standard convergence results in the literature of SMM Mairal et al. (2010);
Mairal (2013a); Lyu et al. (2020) asserts that the SMM algorithm converges globally to the
set of the stationary points of the expected loss function f almost surely, which is recovered
by Theorem 2 (ii) for the first case of strongly convex surrogates without radius restriction.
Note that we establish Theorem 2 without the optional condition in (A4), which essentially
states that

∑∞
n=1w

2
n

√
n < ∞. Such condition was standard in the literature (see, e.g.,

(Mairal, 2013b, Assumption (E))). The same statement for the second case of block multi-
convex surrogates with radius restriction was recently obtained in Lyu et al. (2022) for the
context of online CP-dictionary learning.

The convergence of gradient norms ‖∇ḡn(θn)−∇f̄n(θn)‖ and ‖∇ḡn(θn)−∇f(θn)‖ are
new and the asymptotic stationarity for the empirical loss functions in Theorem 2 (i) has not
been elaborated very much in the aforementioned literature, since the main focus of using
SMM was to solve the expected loss minimization. It is worth noting that the hypothesis
for the expected loss minimization stated in Theorem 2 (ii) is a bit stronger than that for
the empirical loss minimization stated in Theorem 2 (i). This is an indication that SRMM
(and hence SMM) is generically more suited to solve the empirical loss minimization than
the expected loss minimization, which we will elaborate on in the forthcoming results.

In the following two results, Theorems 3 and 4, we establish bounds on the rate of
convergence of surrogate gaps as well as approximate optimality. Below, we denote by E[·]
the coditional expectation E[· | F0] with respect to the time-0 information that contains the
initial estimate θ0.

Theorem 3 (Rate of Convergence of Surrogate Gaps and Variation) Let (θn)n≥1 be
an output of Algorithm 1. Make the same assumption as in Theorem 2. Then the following
hold:
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(i) (Empirical Loss Minimization) Asymptotically almost surely,

min
1≤k≤n

(∣∣ḡk(θk)− f̄k(θk)∣∣+ ‖∇ḡk(θk)−∇f̄n(θk)‖2
)

= O

( n∑
k=1

wk

)−1
 . (4.7)

Furthermore, if the optional condition in (A4) holds, then asymptotically almost surely,

min
1≤k≤n

( ∣∣E[ḡk(θk)]− f̄k(θk)
∣∣+ ‖E[∇ḡk(θk)]−∇f̄k(θk)‖2

)
= O

( n∑
k=1

wk

)−1
 .(4.8)

(ii) (Expected Loss Minimization) Asymptotically almost surely,

min
1≤k≤n

(
|E[ḡk(θk)]− f(θk)|+ ‖E[∇ḡk(θk)]−∇f(θk)‖2

)
= O

( n∑
k=1

wk

)−1
 . (4.9)

Furthermore, if the optional condition in (A4) holds, then asymptotically almost surely,

min
1≤k≤n

(
|ḡk(θk)− f(θk)|+ ‖∇ḡk(θk)−∇f(θk)‖2

)
= O

( n∑
k=1

wk

)−1
 . (4.10)

Theorem 4 (Rate of Convergence to Stationarity) Let (θn)n≥1 be an output of Algo-
rithm 1. Make the same assumption as in Theorem 2. Then the following hold:

(i) (Surrogate and Empirical Loss Stationarity) Asymptotically almost surely,

min
1≤k≤n

[
sup

θ∈Θ, ‖θ−θk‖≤1
〈−∇ḡk(θk), θ − θk〉

]
= O

( n∑
k=1

wk

)−1
 , (4.11)

min
1≤k≤n

[
sup

θ∈Θ, ‖θ−θk‖≤1

〈
−∇f̄k(θk), θ − θk

〉]
= O

( n∑
k=1

wk

)−1/2
 . (4.12)

(ii) (Expected Loss Stationarity) It holds that

min
1≤k≤n

E

[
sup

θ∈Θ, ‖θ−θk‖≤1
〈−∇f(θk), θ − θk〉

]
= O

( n∑
k=1

wk

)−1/2

+ wn
√
n

 . (4.13)

Further assume the optional condition in (A4) holds. Then asymptotically almost
surely,

min
1≤k≤n

[
sup

θ∈Θ, ‖θ−θk‖≤1
〈−∇f(θk), θ − θk〉

]
= O

( n∑
k=1

wk

)−1/2
 . (4.14)
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To our best knowledge, the rate of convergence results in Theorems 3 and 4 (for noncon-
vex objectives) are entirely new for SMM-type algorithms even under the classical setting
with i.i.d. data and strongly convex surrogates. Only almost sure convergence to stationary
points was known before Mairal et al. (2010); Mairal (2013b); Zhao et al. (2017); Lyu et al.
(2020, 2022) in such cases. Moreover, (4.8) and (4.9) in Theorem 3 give bounds on the vari-
ation of the random objective values f̄n(θn) and f(θn) against the deterministic quantity
E[ḡn(θn)] with respect to the randomness of data samples x1, . . . ,xn and of Algorithm 1
(e.g., possibly randomized choice of blocks in Algorithm 3). We remark that (A7) in fact is
not necessary for deriving Theorems 3 and 4.

Next, we state a corollary of Theorems 3 and 4, which specializes these results to a more
familiar setting of unconstrained nonconvex optimization.

Corollary 5 Let (θn)n≥1 be an output of Algorithm 1. Make the same assumption as in
Theorem 2. Further, assume that for some ε > 0, open ε-ball centered at θn lies in the
interior of Θ for all n ≥ 1. Then asymptotically almost surely,

min
1≤k≤n

‖∇ḡk(θk)‖2 = O

( n∑
k=1

wk

)−2
 , min

1≤k≤n

∥∥∇f̄k(θk)∥∥2
= O

( n∑
k=1

wk

)−1
 , (4.15)

min
1≤k≤n

‖∇f(θk)‖2 = O

( n∑
k=1

wk

)−1
 .

Below we unpack the above results and give some remarks. For a more direct interpre-
tation of our results, we will consider the weight wk = k−β/(log k)1+ε for some β ∈ [1/2, 1)
and ε > 0 as in (A4’). Then the bound in (4.6) is optimized at β = 1/2 for each fixed ε > 0
to (

n∑
k=1

wk

)−1

= O(n−1/2(log n)1+ε). (4.16)

Suppose all iterate θn are in the interior of Θ. This would be a reasonable assumption
when all stationary points of the averaged surrogates ḡn are in the interior of Θ. Then by
Corollary 5,

min
1≤k≤n

‖∇ḡk(θk)‖ = O

(
(log n)1+ε

n1/2

)
, min

1≤k≤n

∥∥∇f̄k(θk)∥∥ = O

(
(log n)(1+ε)/2

n1/4

)
, (4.17)

min
1≤k≤n

‖∇f(θk)‖ = O

(
(log n)(1+ε)/2

n1/4

)
.

The last asymptotic expresses a well-known rate of convergence bound for nonconvex and
unconstrained SGD Sun et al. (2018); Ward et al. (2019). A similar rate of convergence
for nonconvex and constrained projected SGD is also known in Davis and Drusvyatskiy
(2019), although a different measure (using Moreu envelope) of the rate of convergence for
the constrained nonconvex problems was used. We also remark that, in the finite-horizon
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setting where one knows the total number n of iterations ahead of the time, one can choose
wk = Θ(n−1) for 1 ≤ k ≤ n and eliminate the (log n)1+ε factors in (4.16)-(4.17).

For the general case when ḡn may have its stationary points at the boundary of Θ, we
cannot measure first-order optimality simply by the gradient norms as above. In this case,
for the empirical loss minimization, (4.12) in Theorem 4 states that

min
1≤k≤n

[
sup

θ∈Θ, ‖θ−θk‖≤1

〈
−∇f̄k(θk), θ − θk

〉]
= O

(
(log n)(1+ε)/2

n1/4

)
,

which obtains the same asymptotic rate of convergence as in the interior stationary points
case above. As for the expected loss minimization, we need to assume the strong er condition∑∞

n=1w
2
n

√
n <∞ (i.e., the optional condition in (A4)). In this case, the optimal value of β

is 3/4, in which case we obtain a rate

min
1≤k≤n

[
sup

θ∈Θ, ‖θ−θk‖≤1
〈−∇f(θk), θ − θk〉

]
= O

(
(log n)(1+ε)/2

n1/8

)

which is slower than the bound in (4.15). While the n−1/4 bound on the rate of convergence
for the expected loss in the general case may not be sharp, this discussion gives a more
quantitative indication that SRMM (and hence SMM) is generically more suited to solve the
empirical loss minimization than the expected loss minimization for constrained nonconvex
objectives.

Lastly, we state a corollary of the earlier results on the iteration complexity of Algorithm
1. Corollary 6 gives a “worst-case” rate of convergence of Algorithm 1 until reaching an ε-
stationary points of the objective functions.

Corollary 6 (Iteration Complexity) Let (θn)n≥1 be an output of Algorithm 1. Make the
same assumption as in Theorem 2. Then the following hold:

(i) (Empirical Loss Minimization) Suppose wn = n−1/2(log n)δ for some δ > 1. Then we
have the following worst-case iteration complexity for Algorithm 1 with the empirical
loss objective:

Nε(f̄n) = O(ε−4(log ε−1)δ).

(ii) (Expected Loss Minimization) Suppose wn = n−3/4(log n)δ for some δ > 1. Then we
have the following worst-case iteration complexity for Algorithm 1 with the expected
loss objective:

Nε(f) = O(ε−8(log ε−1)δ).

Furthermore, suppose θn is in the interior of Θ for n ≥ 1. Then we may choose
wn = n−1/2(log n)δ for some δ > 1 and obtain

Nε(f) = O(ε−4(log ε−1)δ).
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4.4 Remarks on main results

Here we give some remarks regarding the main results stated in the previous subsection.

Remark 7 (SRMM vs. PSGD on empirical and expected loss minimization)
Theorem 3 gives an upper bound on the rate of convergence of our proposed algorithm of
SRMM (Algorithm 1) both for empirical and expected loss minimization. It is interesting
to compare the rate of convergence bounds for SRMM and projected stochastic gradient
descent (PSGD) algorithms with respect to both empirical and expected loss minimization.
In this discussion, we omit log factors in all error bounds for simplicity and use Õ notation
for big-O modulo ploy-log factors.
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Figure 3: Diagram of upper bounds of the rate of convergence Õ(n−δ) of algorithms SRMM (red)
and PSGD (blue) for empirical loss minimization (denoted ‘emp’ in solid lines) with adaptivity
weight wn = n−β , for expected loss minimization (denoted ‘exp’ in dashed lines), and for surrogate
loss minimization (denoted ‘sur’ in dotted line). The red solid line SRMM/exp* is the case when the
iterates are assumed to be in the interior of the constraint set. The red dotted line linearly extends
to β = 1/2.

It is known that the optimal asymptotic rate of convergence of SGD for nonconvex
problems measured in terms of gradient norm squared is Õ(1/

√
n) (Bottou et al., 2018;

Xu et al., 2019). Similarly, PSGD for constrained nonconvex problems also has the same
optimal rate of convergence (Davis and Drusvyatskiy, 2019), although a direct comparison
is not immediate in this case since a near-stationarity measure using gradient norm squared
of Moreau envelope is used (see Sec. 4.1). It should be noted that all these convergence
rate bounds are with respect to the expected loss functions and considering (P)SGD rate
of convergence for empirical loss is less standard in the literature. Nonetheless, one can
transfer the rate of convergence between these two objectives, at least in expectation, using
the following inequality:

E

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θk‖≤1

〈
−∇f̄k(θk), θ − θk

〉
− sup

θ∈Θ, ‖θ−θk‖≤1
〈−∇f(θk), θ − θk〉

∣∣∣∣∣
]

≤ E
[

sup
θ∈Θ
‖∇f̄(θ)−∇f(θ)‖

]
= O(wn

√
n).
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Indeed, the inequality follows from the Cauchy-Schwarz inequality and the equality is from
Lemma 20. Assuming wn = n−β for β ∈ [0, 1], this implies

min
1≤k≤n

E

[
sup

θ∈Θ, ‖θ−θk‖≤1

〈
−∇f̄k(θk), θ − θk

〉]

≤ min
1≤k≤n

E

[
sup

θ∈Θ, ‖θ−θk‖≤1
〈−∇f(θk), θ − θk〉

]
+O(n−β+1/2).

For PSGD (also for SGD), the first term on the right-hand side is of Õ(n−1/4), so this
implies that the rate of convergence for PSGD with respect to the empirical loss function is
bounded by Õ(n−δ) with δ = min(1/2, 2β−1). Note that δ stays constant 1/2 for β ∈ [3/4, 1]
and decays linearly to 0 when β decreases from 3/4 to 1/2 (see the solid blue line in Figure
3). This means the upper bound on the rate of convergence of PSGD for empirical loss
minimization becomes degenerate when β is closed to 1/2.

On the contrary, according to Theorem 4, the upper bound on the rate of convergence
of SRMM for the empirical loss function in fact improves linearly as β decays from 1 to 1/2,
with a better rate than PSGD over the interval β ∈ [1/2, 2/3), achieving rate Õ(n−1/2) at
β = 1/2. (See the solid red line in Figure 3). In our analysis, for SRMM, we obtain twice the
rate of convergence Õ(n−2(1−β)) when the averaged surrogates are minimized approximately
(see the red dotted line in Figure 3), and then we transferred it to a rate bound for the
empirical loss and then to the expected loss. This comparison perhaps indicates that SRMM
could be more adapted to and also more effective in minimizing empirical loss function than
PSGD is, but PSGD may in general be more adapted to minimizing the expected loss than
SRMM is.

Our analysis of SRMM critically relies on the fact that we can compare the averaged
surrogate loss ḡn with the empirical loss f̄n, as stated in Lemma 20. This result is only
valid in what we call the ‘slow adaptation regime’ β ∈ (1/2, 1]. This is where we can use
CLT-type arguments to connect the empirical and the expected loss minimization. Hence,
it is an interesting open problem to analyze the rate of convergence of SRMM in the ‘fast
adaptation regime’ of β ∈ [0, 1/2], which is depicted as the grey region in Figure 3. Empirical
loss in this regime will quickly adapt to newly observed data, so minimizing it will capture
more fast-paced, short-time-scale features from streaming data. We speculate that SRMM
is more effective than PSGD in such a regime.

Remark 8 (Iterate stability and regularization) We give some remarks on the use of
proximal regularization and diminishing radius in Algorithms 3 and 2, and also why we need
to assume i.i.d. data sampling for the case C3 of weakly convex surrogates with proximal
regularization.

As we mentioned earlier in Section 3, a key property of Algorithm 1 for cases C1-C2
stated in Theorem 2 is the iterate stability ‖θn − θn−1‖ = O(wn) (see Lemma 17), which
was critically used in the SMM literature Mairal et al. (2010); Mairal (2013b); Mensch
et al. (2017); Lyu et al. (2020, 2022). It is crucial in deducing asymptotic convergence to
stationary points stated in Theorem 2 by using Lemma 19. Since wn’s are square summable
(see (A4)), it implies the ‘weak iterate stability’,

∑∞
n=1‖θn − θn−1‖2 < ∞. Our analysis

shows that we can still retain the rate of convergence results stated in Theorems 3 and 4 if we
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only had this weak iterate stability. While in the classical block coordinate descent setting
of non-stochastic optimization the weak iterate stability is sufficient to derive asymptotic
stationarity of the iterates (see, e.g., Grippo and Sciandrone (2000), Xu and Yin (2013)), it
does not seem to be immediate for the stochastic setting we consider in this work.

The technique of diminishing radius constraints we used in Algorithm 3 to handle multi-
convex surrogates was first introduced in Lyu and Li (2023) to analyze convergence and
complexity of cyclic BCD algorithms for minimizing block multi-convex functions on convex
constraint sets. Enforcing additional trust region condition ‖θn − θn−1‖ = O(wn) with
diminishing radii O(wn) bakes iterate stability directly into the algorithm, although that
this auxiliary constraint is weak enough to retain asymptotic stability with respect to the
original objective function needs to be argued (Lemma 23). In comparison, with proximal
regularization in Algorithm 2, we were able to only show weak asymptotic stability of the
form E[

∑∞
n=1‖θn − θn−1‖2] < ∞ (see Lemma 21 (vi)). This was assuming i.i.d. data

sampling assumption in comparison to the more general Markovian data assumption for
cases C1-C2. In order to handle Markovian dependence (especially in proving Lemma 21),
we use the technique of ‘conditioning on distant past’ first introduced in Lyu et al. (2020). It
is to bound the error involving θn+1 by conditioning on the past σ-algebra Fn−N and using
Markov chain mixing during the interval [n−N,n]. This requires to control ‖θn − θn−N‖,
which is difficult without a priori iterate stability with proximal regularization. However,
when the data samples are i.i.d., then we can condition directly on Fn so that we avoid
using iterate stability.

Remark 9 (Asymptotic stationarity and inexact surrogate minimization) We dis-
cuss the effect of using inexact minimization of block multi-convex surrogates on convergence
rates. First, consider the case C1 in Theorem 2 together with identically zero optimality
gaps (see (A5)). In this case, each θn is the minimizer of the strongly convex surrogates
ḡn over Θ so that −∇ḡn(θn) is in the normal cone of Θ at θn. Hence Theorem 3 can be
directly used to obtain (4.12) and (4.14). In particular, ‖∇ḡn(θn)‖ is identically zero when
there are no boundary stationary points of ḡn.

In all other cases covered in C1-C3 in Theorem 2, each estimate θn is only an approxi-
mate minimizer of the averaged surrogate ḡn over Θ due to the combination of the following
factors: non-convexity of ḡn; the use of regularization in surrogate minimization in Algo-
rithms 2 and 3; possible nonzero optimality gap (see (A5)) in solving convex subproblems in
surrogate minimization. Hence, −∇ḡn(θn) is not necessarily in the normal cone of Θ at θn
in the general case. However, (4.11) shows that −∇ḡn(θn) should subsequentially converge
to some vector in the normal cone of Θ at θn at rate O((

∑n
k=1wk)

−1), and by (4.14), the
bound on the rate of subsequential convergence to stationary points of f over Θ is slower
at order O((

∑n
k=1wk)

−1/2). We can ensure that these two convergence rates are achieved
over the same subsequence. Hence, the asymptotic rate of convergence is unchanged when
we relax strongly convex surrogates to weakly convex or block multi-convex surrogates.
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5. Applications and Experiments

5.1 Applications

In this subsection, we discuss some applications of our general results in the setting of online
matrix and tensor factorization problems.

5.1.1 Double-averaging PSGD and its generalization

In this section, we will apply our general framework of SRMM (2.7) to derive convergence
results for variants of PSGD such as the ‘double-averaging PSGD’ due to Nesterov and
Shikhman (Nesterov and Shikhman, 2015) as well as its generalization.

Suppose we have a prescribed weight sequence (wn)m≥1 and hyperparameters L, λ ≥ 0.
Consider the following iterates

∇n ← (1− wn)∇n−1 + wn∇θ`(xn,θn−1) (∇0 := 0)

θ̄n−1 ← (1− wn)θ̄n−2 + wnθn−1 (θ̄0 := θ0)

θ̃n−1 ← L
L+λ θ̄n−1 + λ

L+λθn−1 (θ̃0 := θ0)

θn ← ProjΘ
(
θ̃n−1 − 1

L+λ∇n
)
.

(5.1)

Setting λ = 0 reduces (5.1) to the following ‘double-averaging PSGD’, which was first
investigated by Nesterov and Shikhman (Nesterov and Shikhman, 2015):

∇n ← (1− wn)∇n−1 + wn∇θ`(xn,θn−1) (∇0 := 0)

θ̄n−1 ← (1− wn)θ̄n−2 + wnθn−1 (θ̄0 := θ0)

θn ← ProjΘ
(
θ̄n−1 − 1

L∇n
)
.

(5.2)

Compared to the standard PSGD update θn ← ProjΘ
(
θn−1 − 1

L∇θ`(xk,θk−1)
)
with

fixed step size 1/L, the algorithm (5.2) uses the recursively averaged gradient ∇n as well as
the recursively averaged iterate θ̄n−1. The update θn ← ProjΘ

(
θn−1 − 1

L∇n
)
, where one

uses the averaged gradients in place of the stochastic gradient, is known as ‘dual-averaging’
Nesterov (2009); Xiao (2009). For convex objectives in the online setting with i.i.d. observa-
tions, Xiao (2009) obtained a bound on the regret of this method of order O(

√
t). Compared

to such dual-averaging methods, the double-averaging method (5.2) uses additional inline
averaging of the iterates, which is known to be equivalent to using a momentum (Defazio,
2020).

In Nesterov and Shikhman (2015), Nestrove and Shikhman showed that for convex (possi-
bly non-smooth) objective functions in the offline setting, the double-averaging method (5.2)
generates a sequence of iterates that decreases the optimality gap in the objective value as
O(t−1/2). Moreover, such a rate of convergence is justified for the whole sequence of test
points for the first time for subgradient methods. However, to the author’s best knowledge,
the double-averaging method has not been analyzed in the stochastic non-convex setting.
This is in contrast to the standard PSGD case, which has been analyzed for general non-
smooth nonconvex objectives under i.i.d. (Davis and Drusvyatskiy, 2019) and Markovian
(Alacaoglu and Lyu, 2023) data assumption. As an application of our general SRMM anal-
ysis, we will derive very general convergence and complexity results for the iterates (5.1)
(and hence for its specialization (5.2) as well).
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Assuming the per-sample loss function fn(θ) := `(x,θ) is L-smooth for each data point
x, the following prox-linear surrogate (see Ex. 3) is indeed a majorizing surrogate of fn:

gn(θ) := `(xn,θn−1) + 〈∇θ`(xn,θn−1), θ − θn−1〉+
L

2
‖θ − θn−1‖2. (5.3)

Now we claim that the generalized double-averaging scheme (5.1) is in fact equivalent to the
following SRMM iterate

θn = arg min
θ∈Θ

(
ḡn(θ) +

λ

2
‖θ − θn−1‖2

)
, (5.4)

where ḡn(θ) := (1− wn)ḡn−1(θ) + wngn(θ) denotes the recursive average of the surrogates
as in (2.7). Indeed, letting θ̃n−1 := L

L+λ θ̄n−1 + λ
L+λθn−1, one can easily see that (5.4) is

equivalent to

θn = arg min
θ∈Θ

〈∇n, θ〉+
L+ λ

2
‖θ‖2 − (L+ λ)

〈
θ, θ̃n−1

〉
= arg min

θ∈Θ

∥∥∥∥θ − (θ̃n−1 −
1

L+ λ
∇n)

∥∥∥∥2

= ProjΘ

(
θ̃n−1 −

1

L+ λ
∇n
)
,

verifying the claim. The above discussion also shows that SRMM with prox-linear surrogates
(5.3) satisfies (A7), as one only needs to carry the averaged gradients ∆n and averaged
iterates θn for executing (5.1). In particular, SRMM in this case has bounded per-iteration
cost, as other first-order methods (e.g., SGD, Adam) do. See 5.2.2 for more discussion.

Interestingly, the above derivation also tells us that the double-averaging scheme (5.2)
is equivalent to the SMM update θn = arg minθ∈Θ ḡn(θ) with the prox-linear surrogates in
(5.3). Using the additional proximal regularization with parameter λ ≥ 0 as in (5.4) has the
effect of additional averaging of the parameters, giving a constant weight λ

L+λ to the most
recent iterate θn−1 (see (5.1)) instead of the possibly decaying weight wn (see (5.2)).

Now that we have verified the generalized double-averaging PSGD (5.1) is a special
instance of SRMM (2.7) with prox-linear surrogate and proximal regularizer, we obtain the
following general convergence and complexity results for the (5.1) as well as (5.2).

Corollary 10 (Convergence and complexity of double-averaging PSGD) Theorems
2, 3, and 4 hold for the double-averaging PSGD (5.2) (case C1 with prox-linear surrogates)
and its generalization (5.1) (case C3 with prox-linear surrogates and proximal regularization).

Next, our general framework enables us to consider a block coordinate version of the
double-averaging PSGD (5.2), which will be an example of Algorithm 1 in case C2. For
instance, instead of updating the entire parameter θn, we may only update its ith block θ(i)

n

where i is chosen uniformly at random independently at each iteration:
i ∼ Uniform({1, . . . ,m})
∇(i)
n ← (1− wn)∇(i)

n−1 + wn∇θ(i)`(xn,θn−1) (∇(i)
0 := 0)

θ̄
(i)
n−1 ← (1− wn)θ̄

(i)
n−2 + wnθ

(i)
n−1 (θ̄

(i)
0 := θ

(i)
0 )

θ
(i)
n ← Proj

Θ(i)∩{θ : ‖θ−θ(i)n−1‖≤wn}

(
θ̄

(i)
n−1 − 1

L∇
(i)
n

)
.

(5.5)
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Note that in (5.5), we used the diminishing radius regularization to update θ(i)
n . Also notice

that the above block version of (5.2) has the computational advantage that one only needs
to compute the partial stochastic gradient ∇θ(i)`(xk,θk−1) instead of the full stochastic
gradient ∇θ`(xk,θk−1), which could be significant when the parameter dimension p is large.
For instance, here we can choose individual coordinates as single blocks so the per-iteration
computational cost of (5.5) is of O(1) plus the cost of sampling the new data point xn and
for the projection onto the convex set Θ(i) ∩ {θ : ‖θ − θ(i)

n−1‖ ≤ wn}.
As before, our general result immediately implies the following convergence and com-

plexity result for the randomized block variant of the double-averaging PSGD (5.5).

Corollary 11 (Convergence and complexity of double-averaging PSGD) Theorems
2, 3, and 4 hold for the randomized block variant of the double-averaging PSGD (5.5) (case
C2 with prox-linear surrogates and randomized coordinate descent)

We remark that the above corollary holds if we used cyclic block coordinate descent in
(5.5) instead of randomly choosing block coordinates to update.

5.1.2 Proximal point empirical loss minimization

Consider the following iterates (5.6), where we recursively update the empirical loss function
f̄n and minimize is proximal point modification f̃n over the parameter space Θ.{

f̄n(θ) ← (1− wn)f̄n−1(θ) + wn`(xn,θ)

θn ∈ arg minθ∈Θ

(
f̃n(θ) := f̄n(θ) + λ

2‖θ − θn−1‖2
) (5.6)

Under (A1), each f̄n is L-smooth so if λ > L, then the proximal point modification f̃n is
(λ − L)-strongly convex (see Lemma 36). The proximal point method has been used in
empirical loss minimization problems with convex objectives Frostig et al. (2015); Lin et al.
(2015).

It is easy to see that (5.6) is an instance of case C3, where we use the trivial surrogate
gn(·) = `(xn, ·). Hence our general results yield that the proximal point ERM (5.6) in the
general non-convex constrained setting with dependent data.

Corollary 12 (Convergence and complexity of Proximal Point ERM) Theorems 2,
3, and 4 hold for the proximal point ERM (5.6).

5.1.3 Online (Nonnegative) Matrix Factorization

Consider the matrix factorization loss f(W,H) := ‖X −WH‖2 + λ‖H‖1, where X ∈ Rp×d
is a given data matrix to be factorized into the product of dictionary W ∈ Rp×r and the
code H ∈ Rr×d with λ ≥ 0 being the L1-regularization parameter for H. Clearly f is
two-block multi-convex and differentiable with respect to W with gradient ∇W f(W,H) =
(X −WH)HT . Fix compact and convex constraint sets Θ1 ⊆ Rp×r and Θ2 ⊆ Rr×d. Then
W 7→ ∇f(W,H) and H 7→ ∇f(W,H) are both Lipschitz over the compact and convex set
Θ1 ×Θ2.

Suppose we have a sequence of data matrices (Xn)n≥1 and a sequence of weights (wn)n≥1.
For each n ≥ 1, the function fn : W 7→ `(Xn,W ) = infH∈Θ2‖Xn − WH‖2 + λ‖H‖1 is
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the minimum reconstruction error for factorizing Xn using the dictionary matrix W . The
corresponding empirical loss minimization problem is

Wn ∈ arg min
W∈Θ1

f̄n(W ) := (1− wn)f̄n−1(W ) + wn`(Xn,W ).

If we have a target distribution π for the data matrices Xn, then the corresponding expected
loss minimization problem is

W ∈ arg min
W∈Θ1

f(W ) := EX∼π [`(X,W )] . (5.7)

The latter is known as the online matrix factorization problem introduced in Mairal et al.
(2010). A well-known instance is the online nonnegative matrix factorization, which corre-
sponds to (5.7) with nonnegativity constraints for W and H.

In order to apply Algorithm 1 in this setting, denoteHn ∈ arg minH∈Θ2
‖Xn−Wn−1H‖2F+

λ‖H‖1, which is an optimal code for factorizing Xn using the previous dictionary Wn−1.
Then the function gn(W ) = ‖Xn −WHn‖2F + λ‖Hn‖1 is a surrogate of fn : W 7→ `(Xn,W )
at Wn−1 and belongs to SrgL′′,0(fn) for some L′′ > 0 (see Ex. 6.) A simple calculation
shows that the resulting averaged surrogate function ḡn becomes

ḡn(W ) = tr(WAnW
T )− 2tr(WBn) + Cn,

where the matrices An, Bn, Cn are recursively defined as

An = (1− wn)An−1 + wnHnH
T
n ; Bn = (1− wn)Bn−1 + wnHnX

T
n ;

Cn = (1− wn)X̄n−1 + wnXnX
T
n .

Thus Algorithm 1 in this case reduces to

Upon arrival of Xn:


Hn = arg minH∈Θ2⊆Rr×d‖Xn −Wn−1H‖2F + λ‖H‖1
An = (1− wn)An−1 + wnHnH

T
n

Bn = (1− wn)Bn−1 + wnHnX
T
n

Wn = arg minW∈Θ1⊆Rp×r

(
tr(WAnW

T )− 2tr(WBn)
)
,

(5.8)

which is the online matrix factorization algorithm (OMF) proposed in Mairal et al. (2010) for
i.i.d. data matrices. Later in Lyu et al. (2020), this algorithm was analyzed in a Markovian
data setting. The following corollary is a direct consequence of our general results.

Corollary 13 (Rate of convergence of OMF) Theorems 3 and 4 hold for the online
matrix factorization algorithm (5.8) (case C1).

To the author’s best knowledge, such a result was not known for online matrix factor-
ization even under the i.i.d. data setting.
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5.1.4 Subsampled Online Matrix Factorization

While the OMF algorithm (5.8) is efficient in handling matrices with a large number of
columns d, its computational cost with respect to the data dimension p (i.e., the number of
rows) is not reduced. In Mensch et al. (2017), subsampled OMF was proposed to improve
the computational efficiency with respect to p, by using only a random subsample of rows.
For a preliminary version, consider the following variant of the online matrix factorization
algorithm 5.8, which uses a random coordinate descent on subsampled rows of Wn:

Upon arrival of Xn:

Hn = arg minH∈Θ2⊆Rr×d‖Xn −Wn−1H‖2F + λ‖H‖1
An = (1− wn)An−1 + wnHnH

T
n

Bn = (1− wn)Bn−1 + wnHnX
T
n

J ← Random subset of {1, . . . , p}
Wn = arg minW∈Θ1⊆Rp×r

(
tr(WAnW

T )− 2tr(WBn)
)

while freezing rows of Wn not in J to the rows of Wn−1.

(5.9)

For instance, J may be taken as the uniform subset of {1, . . . , p} of a fixed size p′ < p or it
may contain each index i ∈ {1, . . . , p} independently with a fixed probability. All our main
results in this paper (Theorems 2, 3, and 4) apply to the OMF algorithm in (5.9).

However, note that the code computation for Hn in (5.9) still involves solving a least
squares problem with p dimensional data matrixXn. In order to fully reduce the dependency
on p, one may also use row subsampling to compute only p′ rows of Hn. The approach used
in Mensch et al. (2017) was to replace Xn with an averaged p′-dimenisonal matrix X̄

(i)
n

assuming Xn = X(i), where a finite pool of data matrices X = {X(1), . . . , X(l)} was assumed
and X̄(i)

n is a recursively defined matrix of size p′ × d based on previous occurances of the
matrix X(i). See (Mensch et al., 2017, Alg. 3) for more details.

An almost sure convergence to stationary points of subsampled OMF algorithm under
i.i.d. data samples was shown in Mensch et al. (2017). The analysis there is based on a
general convergence result on stochastic approximate majorization-minimization algorithm
(2.6) using strongly convex ε-approximate surrogate functions (see (Mensch et al., 2017,
Prop. 3)). A similar convergence result is retained by Theorem 2, although the assumptions
are slightly different. In addition, Theorems 3-4 also provide a rate of convergence, as stated
in the following corollary.

Corollary 14 (Rate of convergence of Subsampled OMF) Theorems 3 and 4 hold for
the subsampled online matrix factorization algorithm (5.9) (case C1 with randomized block
coordinate descent).

5.1.5 Online CP-dictionary Learning

Suppose we have X1, . . . ,XN ∈ RI1×···×Im≥0 , which are N observed m-mode tensor-valued
signals. Consider the following tensor-valued dictionary learning problem

[X1, . . . ,Xb] ≈ [D1, . . . ,Dr]×m+1 H,
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where ×m+1 denotes the mode-(m + 1) tensor-matrix product and we impose the tensor
dictionary atoms D1, . . . ,Dr ∈ RI1×···×Im×r to be of rank-1 and H ∈ RR×b is called a
code matrix. Equivalently, we assume that there exist loading matrices [U (1), . . . , U (n)] ∈
RI1×r≥0 × · · · × RIn×r≥0 such that

[D1, . . . ,Dr] = Out(U (1), . . . , U (m))

:=

[
m⊗
k=1

U (k)(:, 1),

m⊗
k=1

U (k)(:, 2), . . . ,

m⊗
k=1

U (k)(:, r)

]
∈ RI1×···×Im×r≥0 ,

where U (k)(:, j) denotes the ith column of the Ik × r matrix U (k) and ⊗ denotes the outer
product. Since we impose a CANDECOMP/PARAFAC (CP) Tucker (1966); Harshman
(1970); Carroll and Chang (1970) structure for the tensor-valued dictionary [D1, . . . ,Dr],
the above is called a CP-dictionary learning problem introduced in Lyu et al. (2022). When
m = 1, it reduces to the standard vector-valued dictionary learning problem.

In Lyu et al. (2022), the following online CP-dictionary learning problem was proposed
and analyzed. Fix compact and convex constraint sets for code and loading matrices Ccode ⊆
RR×b and C(i) ⊆ RIi×r, i = 1, . . . , n, respectively. Write Θ := C(1) × · · · × C(n). For each
X ∈ RI1×···×In×b≥0 , U := [U (1), . . . , U (n)] ∈ RI1×r × · · · × RIn×r, H ∈ RR×b, define

`(X ,U, H) := ‖X − Out(U)×n+1 H‖2F + λ‖H‖1, (5.10)
`(X ,U) := inf

H∈Ccode
`(X ,U, H),

where λ ≥ 0 is a regularization parameter. Fix a sequence of non-increasing weights (wt)t≥0

in (0, 1]. Here X denotes a minibatch of b tensors in RI1×···×In , so minimizing `(X ,U) with
respect to U amounts to fitting the CP-dictionary Out(U) to the minibatch of b tensors in
X . The corresponding empirical loss minimization problem is

Un ∈ arg min
U∈Θ

(
f̄n(U) := (1− wn)f̄n−1(U) + wn`(Xn,U)

)
. (5.11)

If we have a target distribution π for the data tensors Xn, then the corresponding expected
loss minimization problem is

U ∈ arg min
U∈Θ

(f(W ) := EX∼π [`(X ,U)]) . (5.12)

In order to solve (5.11) and (5.12), the following online CP-dictionary learning algorithm
was proposed and analyzed in Lyu et al. (2022):

Upon arrival of Xn: (5.13)

Hn = arg minH∈Ccode⊆Rr×b `(Xn,Un−1, H)

ḡn(U) = (1− wn)ḡn−1(U) + wn`(Xn,U, Hn)

for i = 1, . . . ,m :

U
(i)
n ∈ arg min U∈C(i)

‖U−U(i)
n−1‖≤wn

ḡn(U
(1)
n , . . . , U

(i−1)
n , U, U

(i+1)
n−1 , . . . , U

(m)
n−1).
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An almost sure convergence to the stationary points of the above algorithm under the Marko-
vian data setting was obtained in Lyu et al. (2022). In fact, the algorithm (5.13) is a special
case of Algorithm 1 with m-block multi-convex variational surrogate corresponding (see Ex-
ample 7) to the function ` in (5.10) with J = {J1, . . . , Jm}, where Ji denotes the coordinate
block corresponding to the ith loading matrix in RIi×r with cyclic block coordinate descent
in Algorithm 3.

Our generalized algorithm and refined analysis improve the results in Lyu et al. (2022) in
multiple ways. First, Theorems 3 and 4 provide a rate of convergence results for the online
CP-dictionary learning algorithm (5.13), which has not been known before.

Corollary 15 (Rate of convergence of OCPDL) Theorems 3 and 4 hold for the online
CP-dictionary learning algorithm (5.13) (case C2).

Second, due to the flexibility of using approximate surrogate functions, the convergence
results of (5.13) hold under inexact code or factor matrix computation, following a similar
argument as in Mensch et al. (2017). Third, one can only optimize a small number of
subsampled rows when updating the factor matrices U (i)

n in (5.13) by using a refined block
coordinate structure (see Example 8). A similar idea of using subsampling for tensor CP-
decomposition was also used recently in Kolda and Hong (2020).

Lastly, we remark that random row subsampling can be utilized for the code computation
for Hn in (5.13), which essentially involves solving a least-squares problem with the mode-
(m+1) unfolding of Xn, which has size (I1×· · ·×Im)×b. Since the number of rows of a such
matrix I1 × · · · × Im can be very large, the computational gain in this approach should be
significant. We believe it would be straightforward to adapt the approach in Mensch et al.
(2017) for subsampled online matrix factorization for a subsampled online CP-dictionary
learning setting. For our theoretical results to apply, one only needs to verify that the
resulting inexact code computation for Hn yields εn-approximate surrogates ḡn that verifies
the assumption (A4). We do not proceed with this line of research in the present paper.

5.2 Experiments

In this section, we provide experimental results of SRMM on two tasks - Network Dictionary
Learning ? and Image classification with Deep Convolutional Neural Networks for the
CIFAR-10 dataset Krizhevsky et al. (2009).

5.2.1 Network Dictionary Learning

Network Dictionary Learning (NDL) Lyu et al. (2020); ? is the task of learning a fixed
number of ‘latent motifs’ from a large number of connected k-node subgraphs in a given large
and possibly sparse networks. The learned latent motifs provide a concise description of a
network’s mesoscale structure and can be used for reconstructing and denoising networks
(see ? for more details). NDL is naturally formulated as a nonconvex and constrained
stochastic optimization problem, where the input data is a stream of k-node subgraphs
sampled by the MCMC motif-sampling algorithm Lyu et al. (2023).

The standard optimization algorithm for NDL is based on SMM for online nonnegative
matrix factorization (see Sec. 5.1.3). We compare the performance of SMM (with adaptivity
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weights wt = 1/t) with that of various stochastic optimization algorithms – PSGD, PSGD
with momentum (PSGD-HB) (with step size schedule αt = 1/t) and AdaGrad Ward et al.
(2020).

 

Figure 4: Plot of reconstruction error vs. elapsed time for four algorithms for online NMF: AdaGrad,
PSGD-Heavy Ball, PSGD, and SRMM. The data stream is a sequence of 4-node subgraph adjacency
matrices sampled by an MCMC motif-sampling algorithm in Lyu et al. (2023) from three college
Facebook networks Traud et al. (2012). The shaded region represents one standard deviation from
ten runs.

We consider three facebook networks of schools Caltech, UCLA, and Wisconsin from the
Facebook100 dataset (Traud et al., 2012), following a similar setup to (Lyu et al., 2020).
We then used the MCMC motif-sampling algorithm of (Lyu et al., 2023) to generate 300
correlated subgraphs from the networks. This gives a stream of 300 k × k binary subgraph
adjacency matrices, from which the latent motifs need to be learned by solving an online
nonnegative matrix factorization problem. We ran each stochastic optimization algorithm
on this streaming data (in the order that each subgraph is sampled) exactly once (e.g., one
epoch). We used four subgraph sizes: k ∈ {5, 10, 20, 30}.

In Fig. 4, we see the convergence of all the algorithms with respect to the normalized
reconstruction error, which is in line with our theoretical results. We observe that SMM
shows significantly faster convergence in all cases except the smallest subgraph size k = 4,
in which case AdaGrad seems to converge faster than all the other methods. Overall SMM
seems to be providing robust performance for NDL with various choices of subgraph sizes.
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Figure 5: Plot of training and test accuracies for CIFAR-10 image classification using DenseNet-121
and ResNet-34 with various optimization algorithms – SRMM, SMM, SGD, AdaGrad, Adam, and
AMSGrad.

5.2.2 Image classification using CNN

Using DenseNet-121 (Huang et al., 2017) and ResNet-34 (He et al., 2016), we then consider
the task of image classification on the standard CIFAR-10 dataset (Krizhevsky et al., 2009).
We compared six different optimization algorithms: (1) The generalized double-averaging
scheme (5.1) (labeled as SRMM); (2) The double-averaging scheme (5.2) (labeled as SMM);
(3) SGD-HB (SGD with momentum); (4) AdaGrad (Duchi et al., 2011); (5) Adam (Kingma
and Ba, 2015); and (6) AMSGrad (Reddi et al., 2018). We use these algorithms for a
total of 130 epochs and report the train and test accuracies in Figure 5. The particular
implementation of SMM/SRMM with prox-linear surrogates that we use here ((5.2) and
(5.1)) have bounded per-iteration cost and also satisfy (A7).

We see that SRMM achieves the highest train and test accuracies (around 93%) the
most rapidly both for DenseNet and ResNet. SMM also shows a competitive performance
against the benchmark methods for DenseNet, and outperforms SGD-HB for ResNet in test
accuracy. In the experiments reported in Figure 5, the hyperparameters are chosen as follows.
(1) SRMM: wn = n−1/2 for n ≥ 1, L ∈ {10, 1}, and λ ∈ {10, 1, 10−1, 10−2, 10−3}; (2) SMM:

34



Stochastic Regularized Majorization-Minimization

wn = n−1/2 for n ≥ 1 and L ∈ {10, 1}; (3) SGD-HB: step sizes in {10−2, 10−1, 1, 10, 102}
and momentum parameter of 0.9; (4) AdaGrad: stepsizes in {5e-4, 1e-3, 5e-3, 5e-2, 1e-1} and
accumulator value 0; (5)-(6) Adam and AMSGrad: step sizes in {1e-4, 5e-4, 1e-3, 5e-3, 1e-2},
β1 ∈ {0.9, 0.99}, and β2 ∈ {0.99, 0.999}. For SRMM and SMM, we reset the iteration
counter to zero at the beginning of each epoch in order to avoid the adaptivity weight wn
becoming too small after many epochs.

6. Preliminary analysis

In this section, we give some preliminary lemmas that we will use in our analysis in the
following sections. Recall the definition of the optimality gaps ∆

(i)
n in (A5). Also, we assume

throughout that gn ∈ SrgLL,ρ(fn,θn−1, εn) for n ≥ 1 for some fixed set J of coordinate blocks,
L > 0, and ρ ∈ R.

We first observe some regularity properties of the surrogate gradients ∇gn and ∇ḡn.

Proposition 16 Assume (A1) and (A3). Suppose that the data sequence (xn)n≥1 is con-
tained in some compact subset X0 ⊆ X. Then the following hold for all n ≥ 1:

(i) Both ∇gn and ∇ḡn are L-Lipschitz over Θ;

(ii) gn, ḡn, ∇gn, and ∇ḡn are uniformly bounded over Θ;

(iii) There exists a constant L′ > 0 such that for all n ≥ 1, gn, ḡn are L′-Lipschitz continuous
over Θ and ‖∇ḡn+1(θ)−∇ḡn(θ)‖ ≤ L′wn+1.

Proof Denote fn = `(xn, ·) for n ≥ 1. Note that ∇`(·, ·) is L-Lipscthiz continuous (see
(A1)). Also, ∇(gn−fn) is L-Lipscthiz by Definition 1. It follows that ∇gn is also L-Lipschitz
over Θ. This holds for all n ≥ 1, so by an induction, ∇ḡn is also L-Lipschitz over Θ for
n ≥ 1. This shows (i).

Note that by Definition 1, ∇(gn−fn) is L-Lipschitz continuous and has norm bounded by
εn ≤ 1 at θn−1. Since the parameter space Θ is compact by (A3), it follws that ∇(gn − fn)
is uniformly bounded by some constant L′ > 0 over Θ. Also, by the assumption, the
continuous map (x,θ) 7→ ‖∇`(x,θ)‖ over the compact domain X0 ×Θ assumes bounded
values. Hence ∇` is uniformly bounded over Θ by (A1) and (A3). It follows that ∇fn is
uniformly bounded, so ∇gn is also uniformly bonded. Then by induction, it follows that
∇ḡn is also uniformly bounded. Similarly, as ‖gn(θn−1) − fn(θn−1)‖ ≤ εn ≤ 1 and fn is
uniformly bounded, it follows that gn is bounded over Θ. By induction, it follows that ḡn
is also uniformly bounded over Θ.

To show (iii), we first let L′ > 0 be a uniform bound on ‖∇gn‖ and ‖∇ḡn‖ over Θ. Fix
θ,θ′ ∈ Θ and consider the linear curve t 7→ γ(t) := tθ′ + (1− t)θ in Θ. Then

‖gn(θ)− gn(θ′)‖ =

∣∣∣∣∫ 1

0
〈∇gn(γ(t)), θ − θ′〉 dt

∣∣∣∣ ≤ L′‖θ − θ′‖.

This shows that gn is L′-Lipscthiz for all n ≥ 1. From this, one also concludes that ḡn is
L′-Lipscthiz for all n ≥ 1.
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Lastly, note that ∇ḡn+1 = (1 − wn+1)∇ḡn + wn+1∇gn. Hence by (ii), there exists
L′ ∈ (0,∞) such that

‖∇ḡn+1(θ)−∇ḡn(θ)‖ ≤ wn+1‖∇ḡn(θ)−∇gn(θ)‖ ≤ L′wn+1

for all θ ∈ Θ. This shows (iii).

Define a sequence (ε̄n)n≥1 recursively as

ε̄n = (1− wn)ε̄n−1 + wnεn, ε̄0 = 0,

where (εn)n≥1 is the sequence of surrogate error tolerance in Algorithm 1. Then

ε̄n =

n∑
k=1

wnkεk ≤ wn
n∑
k=1

εk, (6.1)

where wnk is defined in (2.2) and the inequality above uses wn1 ≤ wn2 ≤ · · · ≤ wnn = wn under
(A4). Since gn − fn ≥ −εn for all n ≥ 1, it follows that

ḡn − f̄n ≥ −ε̄n ≥ −wn
n∑
k=1

εk. (6.2)

Lemma 17 Let (θn)n≥1 be an output of Algorithm 1. Assume (A5). Then for all n ≥ 1,
the following hold:

(i) (Forward Monotonicity) ḡn(θn−1)− ḡn(θn) ≥ Ψn(‖θn − θn−1‖)−∆n;

(ii) (Stability of Estimates I) Under case C1 in Theorem 2, ‖θn − θn−1‖ = O(wn);

(iii) (Stability of Estimates II) Under case C2 in Theorem 2, ‖θn − θn−1‖ ≤ wn.

Proof First suppose Algorithm 2 is used for (3.1). By the definition of the optimality gap
∆n in (A5),

ḡn(θn) + Ψn(‖θn − θn−1‖) ≤ ḡn(θn−1) + ∆n.

On the other hand, suppose Algorithm 3 is used for (3.1). Consider the computation of
θn in Algorithm 3. Let J1, . . . , Jm ∈ J denote the coordinate blocks used in order, and let
θ

(1)
n , . . . ,θ

(m)
n (= θn) denote the outputs of (3.4) after each block minimization in Algorithm

3. Denote θ
(0)
n = θn−1. Note that θ(i)

n is an approximate minimizer of the convex function
θ 7→ ḡn(θ) over the convex set ΘJi . Also note that θ

(i−1)
n ∈ ΘJi , by definition of the

optimality gap ∆
(i)
n in (A5), for 1 ≤ i ≤ m,

ḡn(θ(i)
n ) + Ψn(‖θ(i)

n − θn−1‖) ≤ ḡn(θ(i−1)
n ) + Ψn(‖θ(i−1)

n − θn−1‖) + ∆(i)
n ,

Summing over all i = 1, . . . ,m then gives ḡn(θn−1)− ḡn(θn) ≥ −∆n. Recall that in this case
we take the regularizer Ψn(‖θ−θn−1‖) equals zero if ‖θ−θn−1‖ ≤ wn/m and∞ otherwise.
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Hence this shows (i). Note that (iii) is trivial by the search radius restriction in Algorithm
1.

It remains to show (ii). We show the assertion under zero surrogate optimality gap
∆n ≡ 0 (see (A5)) so that each θn is the exact minimizer of the ρ-strongly convex function
ḡn over Θ. Indeed, by the second-order growth property (Lemma 37) and using L′-Lipschitz
continuity of gn (see Lemma 16), almost surely,

ρ

2
‖θn − θn−1‖2 ≤ ḡn(θn−1)− ḡn(θn)

= (1− wn) (ḡn−1(θn−1)− ḡn−1(θn)) + wn (gn(θn−1)− gn(θn))

≤ wn (gn(θn−1)− gn(θn)) ≤ wnL′‖θn − θn−1‖.

This shows ‖θn − θn−1‖ = O(wn), as desired. The proof for the general nonzero surrogate
optimality gap can be found in Appendix C (see Lemma 39).

Proposition 18 Let (θn)n≥1 be an output of Algorithm 1. Assume (A4). Then for each
n ≥ 0, the following hold:

(i) ḡn+1(θn+1)− ḡn(θn) ≤ wn+1

(
`(xn+1,θn)− f̄n(θn)

)
+ w2

n

(∑n+1
k=1 εk

)
+
∑m

i=1 ∆
(i)
n+1.

(ii) 0 ≤ wn+1

(
ḡn(θn)− f̄n(θn)

)
≤ wn+1

(
`(xn+1,θn)− f̄n(θn)

)
+ ḡn(θn) − ḡn+1(θn+1) +

w2
n

(∑n+1
k=1 εk

)
.

Proof We begin by observing that

ḡn+1(θn) = (1− wn+1)ḡn(θn) + wn+1`(xn+1,θn) + wn+1(gn+1(θn)− `(xn+1,θn))

for all t ≥ 0. Hence

ḡn+1(θn+1)− ḡn(θn) (6.3)
= ḡn+1(θn+1)− ḡn+1(θn) + ḡn+1(θn)− ḡn(θn)

= ḡn+1(θn+1)− ḡn+1(θn) + (1− wn+1)ḡn(θn) + wn+1`(xn+1,θn)− ḡn(θn)

= ḡn+1(θn+1)− ḡn+1(θn) + wn+1(`(xn+1,θn)− f̄n(θn))

+ wn+1(f̄n(θn)− ḡn(θn)) + wn+1(gn+1(θn)− `(xn+1,θn)).

Now note that ḡn+1(θn+1) − ḡn+1(θn) ≤
∑m

i=1 ∆
(i)
n+1 by Lemma 17 (i). Also, recall that

ḡn − f̄n ≥ −wn
∑n

k=1 εk from (6.2) and 0 ≤ gn+1(θn) − `(xn+1,θn) ≤ εn+1 since gn+1 is a
multi-convex εn-approximate surrogate of fn+1 = `(xn+1, ·) at θn. Thus the inequalities in
both (i) and (ii) follow using wn+1 ≤ wn.

Lemma 19 Let (an)n≥0 and (bn)n≥0 be sequences of nonnegative real numbers such that∑∞
n=0 anbn <∞. Then the following hold.
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(i) min
1≤k≤n

bk ≤
∑∞

k=0 akbk∑n
k=1 ak

= O

( n∑
k=1

ak

)−1
.

(ii) Further assume
∑∞

n=0 an =∞ and |bn+1 − bn| = O(an). Then limn→∞ bn = 0.

Proof (i) follows from noting that(
n∑
k=1

ak

)
min

1≤k≤n
bk ≤

n∑
k=1

akbk ≤
∞∑
k=1

akbk <∞.

The proof of (ii) is omitted and can be found in (Mairal, 2013b, Lem. A.5).

7. Key lemmas and proofs of main results

In this section, we state all key lemmas without proofs and derive the main results (Theorems
2, 3, and 4) assuming them. The key lemmas stated in this section will be proved in the
subsequent sections.

7.1 Key Lemmas

In this subsection, we state all key lemmas that are sufficient to derive the main results in
this paper.

First, Lemma 20 states some general concentration inequalities of recursively defined
functions similar to the empirical and the surrogate loss functions in (2.1) and (2.7). One
may regard them as the classical Glivenko-Cantelli theorem for a general weighting scheme.
We state the lemma in a self-contained manner so that it may be more convenient to be
used for other purposes.

Lemma 20 (Uniform concentration of parameterized empirical observables) Fix com-
pact subsets X ⊆ Rq, Θ ⊆ Rp and a bounded Borel measurable function ψ : X×Θ→ Rr. Let
(xn)n≥1 denote a sequence of points in X such that xn = ϕ(Xn) for n ≥ 1, where (Xn)n≥1 is
a Markov chain on a state space Ω and ϕ : Ω→ X is a measurable function. Fix a sequence
of weights wn ∈ (0, 1], n ≥ 0 and define functions ψ̄(·) := Ex∼π [ψ(x, ·)] and ψ̄n : Θ → Rr
recursively as ψ̄0 ≡ 0 and

ψ̄n(·) = (1− wn)ψ̄n−1(·) + wnψ(xn, ·).

Assume the following:

(a1) The Markov chain (Xn)n≥1 mixes exponentially fast to its unique stationary distri-
bution and the stochastic process (xn)n≥1 on X has a unique stationary distribution
π.

(a2) wn is non-increasing in n and w−1
n − w−1

n−1 ≤ 1 for all sufficiently large n ≥ 1.

38



Stochastic Regularized Majorization-Minimization

Then there exists a constant C > 0 such that for all n ≥ 1,

sup
θ∈Θ

∥∥ψ̄(θ)− E[ψ̄n(θ)]
∥∥ ≤ Cwn, E

[
sup
θ∈Θ

∥∥ψ̄(θ)− ψ̄n(θ)
∥∥] ≤ Cwn√n. (7.1)

Furthermore, if wn
√
n = O(1/(log n)1+ε) for some ε > 0, then supθ∈Θ

∥∥ψ̄(θ)− ψ̄n(θ)
∥∥→ 0

as t→∞ almost surely.

We remark that a similar result for the i.i.d. case appeared in (Mairal, 2013b, Lem B.7),
which states the second inequality in (7.1) as well as the last almost sure convergence
statement under the stronger condition of

∑∞
n=1wn = ∞ and

∑∞
n=1w

2
n

√
n < ∞. We will

refer to the latter condition as the ‘strong square-summability’ condition. These conditions
were necessary in order to use Lemma 19 (ii) to deduce the almost sure convergence. We
give a direct argument using Borel-Cantelli lemma without this additional condition, for
which the weaker condition of wn

√
n = O(1/(log n)1+ε) for some ε > 0 is sufficient.

Next, Lemma 21 states a series of finite variation statements that provide a basis for the
forthcoming arguments. Most of the statements also appeared in the literature (see, e.g.,
Mairal et al. (2010); Mairal (2013b); Lyu et al. (2020, 2022)) in some special cases, where
the strong square summability condition was used. We give an improved argument only
using the square summability condition except for the last item.

Lemma 21 (Variation of functions) Let (θn)n≥1 be an output of Algorithm 1 under any
of the three cases C1-C3 in Theorem 2. Suppose (A1)-(A4). The following hold:

(i)
∞∑
n=1

E
[
wn+1

(
`(xn+1,θn)− f̄n(θn)

)]+
<∞;

(ii)
∞∑
n=0

(E [ḡn+1(θn+1)− ḡn(θn)])+ <∞;

(iii) E

[ ∞∑
n=1

wn
∣∣ḡn(θn)− f̄n(θn)

∣∣] <∞;

(iv)
∞∑
n=0

wn+1

∣∣E [f(θn)− f̄n(θn)
]∣∣ <∞;

(v) Suppose the optional condition in (A4) holds. Then

E

[ ∞∑
n=0

wn+1

∣∣f(θn)− f̄n(θn)
∣∣] <∞.

(vi) E
[∑∞

n=1‖θn − θn−1‖2
]
<∞.

The following lemma is one of the key innovations in the present work, which allows us
to obtain convergence rate bounds stated in Theorems 3 and 4. Roughly speaking, it gives
gradient versions of the finite variation statements in Lemma 21.
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Lemma 22 (Variation of gradients) Let (θn)n≥1 be the output of Algorithm 1 under any
of the three cases C1-C3 in Theorem 2. Suppose (A1)-(A4). The following hold:

(i) E

[ ∞∑
n=1

wn

(
‖∇ḡn(θn)−∇f̄n(θn)‖2 +

∥∥E [∇f̄n(θn)
]
− E [∇f(θn)]

∥∥2
)]

<∞.

(ii) If in addition the optional condition in (A4) holds, then

E

[ ∞∑
n=1

wn+1

(
‖∇ḡn(θn)−∇f̄n(θn)‖2 + ‖∇f̄n(θn)−∇f(θn)‖2

+‖∇ḡn(θn)−∇f(θn)‖2
)]

<∞.

Based on Lemmas 20, 21, and 22, one can deduce Theorem 3 as well as Theorem 2 for
case C1. A nice property of Algorithm 1 with convex surrogates gn with identically zero
regularization (Ψn ≡ 0 in (3.1)) and optimality gaps (see (A5)) is that the iterates θn are
exact minimizers of the convex averaged surrogates ḡn over Θ. Hence −∇ḡn(θn) lies in the
normal cone of Θ at θn for each n ≥ 1. Thus, in order for asymptotic stationarity with
respect to the empirical loss f̄n or the expected loss f , one only needs to show that every
convergent subsequence of ‖∇ḡn(θn)−∇hn(θn)‖ vanish almost surely, where hn ∈ {f̄n, f}
for n ≥ 1.

However, when ḡn is (approximately) minimized with proximal regularization (Algorithm
2) or within a diminishing radius (Algorithm 3), −∇ḡn(θn) may be close to but not within
the normal cone of Θ at θn. For instance, even though each convex sub-problem in Algorithm
3 is exactly solved, the technique of radius restriction in Algorithm 3 introduces additional
radius constraints so that −∇ḡn(θn) may be normal to the trust region boundary, which is
the sphere of distance wn/m centered at θn−1; Similarly, using proximal regularization in
Algorithm 2 tilts the surrogate gradient. In order to handle these issues, in Lemma 23, we
will show that the sequence θn, n ≥ 1 still verifies stationarity for ḡn in an asymptotic sense.
For this, we need to take ‘convergent subsequences‘ of the averaged surrogate functions ḡn,
which can be easily done under the compact parameterization assumption in (A7).

Lemma 23 (Asymptotic Surrogate Stationarity) Assume (A1)-(A4) and (A7) and let
(θn)n≥1 be an output of Algorithm 1 under any of the three cases C1-C3 in Theorem 2.
Let (tk)k≥1 be any sequence such that θtk and ḡtk converges almost surely. Then θ∞ =
limk→∞ θtk is almost surely a stationary point of ḡ∞ := limk→∞ ḡtk over Θ.

Finally, Lemma 24 is the last ingredient for proving Theorem 4, which states that the
optimality for the averaged surrogates ḡn is summable with weights wn.

Lemma 24 (Finite variation of surrogate optimality) Let (θn)n≥1 be an output of Al-
gorithm 1 under any of the three cases C1-C3 in Theorem 2. Assume (A1)-(A4). Then for
each initialization θ0, we have

E

[ ∞∑
n=1

wn+1

∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣
]
<∞.
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7.2 Proof of Theorem 3

In this subsection, we will assume Lemmas 20, 21, and 22 and prove Theorem 3.
Proof of Theorem 3. Suppose (A1)-(A4) and any of the cases C1-C3 stated in Theorem
2. By Lemma 21 (iii) and Lemma 22 (i), we get

E

[ ∞∑
n=1

wn+1

(∣∣ḡn(θn)− f̄n(θn)
∣∣+ ‖∇ḡn(θn)−∇f̄n(θn)‖2

)]
<∞. (7.2)

Recall that E[|X|] <∞ implies |X| <∞ almost surely for any random variable X. It follows
that the summation above is almost surely finite. Then (4.7) follows from Lemma 19.

Next, we show (4.9). First, we deduce some intermediate bounds. By Lemma 21 (iii)-
(iv) and Jensen’s inequality, we get

E

[ ∞∑
n=1

wn |E[ḡn(θn)]− E[f(θn)]|

]
(7.3)

≤ E

[ ∞∑
n=1

wn
(
E
[∣∣ḡn(θn)− f̄n(θn)

∣∣]+
∣∣E[f̄n(θn)]− E[f(θn)]

∣∣)] <∞.
Similarly, using Lemma 22 (i), we can deduce

∞∑
n=1

wn ‖E [∇ḡn(θn)]− E [∇f(θn)]‖2 <∞. (7.4)

Now recall that by Lemma 20, there exists a constant C > 0 such that for all n ≥ 1,

sup
θ∈Θ

∣∣f(θ)− E[f̄n(θ)]
∣∣ ≤ Cwn, sup

θ∈Θ

∥∥∇f(θ)− E[∇f̄n(θ)]
∥∥ ≤ Cwn. (7.5)

Using (7.3) and the first bound in (7.5), we get

|E[ḡn(θn)]− f(θn)|2 ≤
(
|E[ḡn(θn)]− E[f̄n(θn)]|+ sup

θ∈Θ
|E[f̄n(θ)]− f(θ)|

)2

≤
∣∣E[ḡn(θn)]− E[f̄n(θn)]

∣∣2 + Cwn+1

∣∣E[ḡn(θn)]− E[f̄n(θn)]
∣∣+ C2w2

n+1.

Recalling that ḡn and f̄n are uniformly bounded over Θ by (A1), using (7.3) we get

E

[ ∞∑
n=1

wn+1 |E[ḡn(θn)]− f(θn)|2
]
<∞. (7.6)

An identical argument using (7.4) as well as the second bound in (7.5) shows

E

[ ∞∑
n=1

wn+1 ‖E[∇ḡn(θn)]−∇f(θn)‖2
]
<∞. (7.7)

Combining the above two bounds and using Lemma 19 give (4.9).
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It remains to show (4.8) and (4.10). Suppose the optional condition in (A4) holds. Then
by Lemma 21 (v) and Lemma 22 (ii), we deduce

E

[ ∞∑
n=1

wn+1

(
|ḡn(θn)− f(θn)|+ ‖∇ḡn(θn)−∇f(θn)‖2

)]
<∞. (7.8)

Then (4.10) follows from Lemma 19.
Lastly, recall that by Lemma 20 and see (A4), there exists a constant C > 0 such that

for all n ≥ 1,

E
[

sup
θ∈Θ

∣∣f(θ)− f̄n(θ)
∣∣] ≤ Cwn√n ≤ 2C, E

[
sup
θ∈Θ

∥∥∇f(θ)−∇f̄n(θ)
∥∥] ≤ Cwn√n ≤ 2C.(7.9)

Then note that

E
[
|E[ḡn(θn)]− f̄n(θn)|2

]
≤ E

[(
|E[ḡn(θn)]− f(θn)]|+ sup

θ∈Θ
|f̄n(θ)− f(θ)|

)2
]

≤ E
[
|E[ḡn(θn)]− f(θn)|2 + 2C |E[ḡn(θn)]− E[f(θn)]|

]
+ C2(n+ 1)w2

n+1.

Then multiply wn on both sides sum over all n ≥ 1. The first two terms in the resulting
infinite sum in the righthand side are finite by (7.6) and (7.3). For the last term, note that
since wn

√
n = o(1) (see (A4)) and using the optional condition in (A4),

∞∑
n=1

(n+ 1)w3
n+1 =

∞∑
n=1

(
wn+1

√
n+ 1

)
w2
n+1

√
n+ 1 ≤ C ′

∞∑
n=1

w2
n+1

√
n+ 1 <∞

for some constant C ′ > 0. It follows that

E

[ ∞∑
n=1

wn+1

∣∣E[ḡn(θn)]− f̄n(θn)
∣∣2] <∞.

An identical argument using the second bound in (7.9) as well as (7.4) shows

E

[ ∞∑
n=1

wn+1

∥∥E[∇ḡn(θn)]−∇f̄n(θn)
∥∥2

]
<∞.

Combining the above two bounds gives (4.8). This completes the proof.

7.3 Proof of Theorem 2

Next, we prove Theorem 2 assuming Lemmas 20, 21, 22, and 23.
Proof of Theorem 2. Suppose (A1)-(A4). First assume cases C1 or C2 in Theorem 2.
We will first show the assertion except for the asymptotic stationarity statements.

We first show the first part of (i). By Lemma 21 (iii) and Lemma 22 (i), we get

E

[ ∞∑
n=1

wn+1

(∣∣ḡn(θn)− f̄n(θn)
∣∣+ ‖∇ḡn(θn)−∇f̄n(θn)‖2

)]
<∞. (7.10)
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Denote h(1)
n := ḡn− f̄n and h(2)

n := ‖∇ḡn−∇f̄n‖2. We claim that |h(i)
n+1(θn+1)−h(i)

n (θn)| =
O(wn+1) for i = 1, 2. Then by Lemma 19, it holds that |h(i)

n (θn)| → 0 almost surely as
n→∞ for i = 1, 2.

To show the claim, recall the recursive definitions of ḡn and f̄n and that θ 7→ `(x,θ)

is R-Lipschitz continuous by (A1) for each x ∈ X. Also, h(1)
n (θ) = (1 − wn)h

(1)
n−1(θ) +

wn(gn(θ) − fn(θ)), where fn(·) = `(xn, ·) and gn ∈ SrgLL,ρ(fn,θn−1) (see Definition 1) and
∇(gn−fn) is L-Lipschitz continuous and has norm ≤ εn at θn−1. Since the parameter space
Θ is compact by (A3), it follws that ∇(gn − fn) is uniformly bounded by some constant
L′ > 0 over Θ. Then gn − fn is L′-Lipschitz, and by induction, h(1)

n is also L-Lipschitz for
n ≥ 1. Now note that

|h(1)
n+1(θn+1)− h(1)

n (θn)| ≤ |h(1)
n+1(θn+1)− h(1)

n+1(θn)|+ |h(1)
n+1(θn)− h(1)

n (θn)|
≤ L′‖θn+1 − θn‖+

∣∣(ḡn+1(θn)− ḡn(θn))−
(
f̄n+1(θn)− f̄n(θn)

)∣∣
≤ L′wn + wn+1

∣∣gn+1(θn)− ḡn(θn+1)− fn+1(θn) + f̄n(θn)
∣∣

= L′‖θn+1 − θn‖+ wn+1

∣∣ḡn(θn+1)− f̄n(θn)
∣∣ ,

where the third inequality uses Lemma 17 (iii) as well as the recursive definitions of ḡn+1

and f̄n+1. Then note that ` : X × Θ → R is bounded by (A1), so ḡn and f̄n are also
uniformly bounded in n. This shows |h(1)

n+1(θn+1)− h(1)
n (θn)| = O(wn+1).

Next, we verify |h(2)
n (θn) − h

(2)
n (θn−1)| = O(wn+1). Note that by linearity of gra-

dients, ∇ḡn and ∇f̄n satisfy the same recursion as ḡn and f̄n. Moreover, ∇h(2)
n (θ) =

(1 − wn)∇h(2)
n−1(θ) + wn∇(gn − fn)(θ) and since ∇(gn − fn) is L-Lipschitz, so is ∇h(2)

n

for all n ≥ 1. Then by using a similar argument as above,∣∣∣∣√h(2)
n+1(θn+1)−

√
h

(2)
n (θn)

∣∣∣∣
= ‖∇h(2)

n+1(θn+1)−∇h(2)
n+1(θn)‖+ ‖∇h(2)

n+1(θn)−∇h(2)
n (θn)‖

≤ L‖θn+1 − θn‖+ wn+1‖∇(gn+1 − fn+1)(θn) +∇f̄n(θn)−∇ḡn(θn)‖
≤ Lwn+1 + wn+1‖∇h(2)

n (θn)‖.

But recall that ∇h(2)
n is uniformly bounded by L′ over Θ. To conclude, write

|h(2)
n (θn)− h(2)

n (θn−1)| =
∣∣∣∣√h(2)

n (θn)−
√
h

(2)
n−1(θn−1)

∣∣∣∣ · ∣∣∣∣√h(2)
n (θn) +

√
h

(2)
n−1(θn−1)

∣∣∣∣ .
Noting that h(2)

n is uniformly bounded for all n ≥ 1, we conclude that |h(2)
n (θn)−h(2)

n (θn−1)| =
O(wn+1), as desired.

Next, we show the first part of (ii). Recall that under (A4) (without the optional
condition), by Lemma 20 (se also Lemma 42), we have supθ∈Θ |f̄n(θ) − f(θ)| → 0 and
supθ∈Θ‖∇f̄n(θ)−∇f(θ)‖ → 0 almost surely as n→∞. Then by (i), we have

|ḡn(θn)− f(θn)| ≤ |ḡn(θn)− f̄n(θn)|+ sup
θ∈Θ
|f̄n(θ)− f(θ)| → 0 a.s. as n→∞. (7.11)
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Similarly, by triangle inequality and (i),

‖∇ḡn(θn)−∇f(θn)‖ (7.12)
≤ ‖∇ḡn(θn)−∇f̄n(θn)‖+ sup

θ∈Θ
‖∇f̄n(θ)−∇f(θ)‖ → 0 a.s. as n→∞.

Now we show the second parts of (i) and (ii), the asymptotic stationarity. Assume
case C1. Then each θn is an exact minimizer of ḡn over Θ, so −∇ḡn(θn) is in the normal
cone of Θ at θn for each n ≥ 1. Since we have shown that ‖∇f̄n(θn) − ∇ḡn(θn)‖ and
‖∇f(θn) −∇ḡn(θn)‖ both converges to zero almost surely as n → ∞, it follows that both
−∇f̄n(θn) and −∇f(θn) belong to the normal cone of Θ at θn asymptotically almost surely
as n→∞.

Assume case C2. Further assume (A7). Let θ∞ ∈ Θ be an arbitrary limit point of the
sequence (θt)t≥1 and let (tk)k≥1 be a (random) sequence such that θtk → θ∞ almost surely as
n→∞. Since Θ×K is compact, we may choose a further sequence of (tk)k≥1, which we will
denote the same, so that κtk converges to some element κ∞ ∈ K. Hence ḡ∞ := limk→∞ ḡtk
is well-defined almost surely. It is important to note that θ∞ is a stationary point of ḡ∞
over Θ by Lemma 23. Hence −∇ḡ∞(θ∞) is in the normal cone of Θ at θ∞. But since we
have shown that h(i) → 0 almost suresly as n→∞ for i = 2, 4, we must have

lim
k→∞

∇f̄tk(θ∞) = ∇ḡ∞(θ∞) = ∇f(θ∞).

Since θ∞ was an arbitrary limit point of (θn)n≥1, this completes the proof of (i)-(ii).
Lastly, assume C3 in Theorem 2. In this case, we do not have iterate stability ‖θn −

θn−1‖ = O(wn) so we cannot use Lemma 19 (ii) to deduce the whole sequence conver-
gence as we did before. However, we can still deduce subsequential convergence. Indeed,
by Lemma 21 (iii) and Lemma 22 (i), we have (7.10). Then by Lemma 19 (i) and noting
that

∑∞
n=1wn = ∞, we conclude that there exists a subsequence (θnk

)k≥1 of (θn)n≥1 such
that almost surely,

∣∣ḡnk
(θnk

)− f̄nk
(θnk

)
∣∣+ ‖∇ḡn(θnk

)−∇f̄nk
(θnk

)‖2 → 0 as k →∞. Also,
using a similar argument as before in (7.11) and (7.12), we can deduce that almost surely
along the same subsequence, |ḡnk

(θnk
)− f(θnk

)|+ ‖∇ḡn(θnk
)−∇f(θnk

)‖2 → 0 as k →∞.
Lastly, asymptotic stationarity for ḡn is given by Lemma 23.

Remark 25 Without appealing to Lemma 20 and using the convergence results for the
empirical loss minimization stated in Theorem 2, one can directly prove Theorem 2 (ii)
using a similar argument as in the proof of (i). This amounts to use the finite sum (7.8)
in place of (7.2) and showing the bounds |h(i)

n+1(θn+1) − h(i)
n (θn)| = O(wn+1) for i = 3, 4,

where h(3) = ḡn+1 − f and h(4)
n = ‖∇ḡn −∇f‖2. However, (7.8) holds under the additional

optional condition in (A4), which essentially says
∑∞

n=1w
2
n

√
n <∞. While this condition is

standard in the literature (see, e.g., (Mairal, 2013b, (E))), (Lyu et al., 2020, (M2)), and (Lyu
et al., 2022, (A3)), our proof above avoids it and only relies on the more standard square
summability condition

∑∞
n=1(log n)w2 < ∞ (see (A4)). However, the stronger condition∑∞

n=1w
2
n

√
n <∞ as well as the finite sum (7.8) is crucial in our proof of Theorem 4.

44



Stochastic Regularized Majorization-Minimization

7.4 Proof of Theorem 4

Next, we prove Theorem 4 assuming Lemmas 21, 22, and 24.
Proof of Theorem 4. We first show (i). Note that (4.11) follows immediately from
Lemmas 24 and 19. Next, we show (4.12). By Cauchy-Schwarz inequality, for all θ ∈ Θ,∣∣〈∇ḡn(θn), θ − θn〉 −

〈
∇f̄n(θn), θ − θn

〉∣∣ ≤ ‖∇ḡn(θn)−∇f̄n(θn)‖.

It follows that for all n ≥ 1,∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈
−∇f̄n(θn), θ − θn

〉∣∣∣∣∣ ≤
∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣ (7.13)

+ ‖∇ḡn(θn)−∇f̄n(θn)‖.

On the other hand, by Lemmas 24 and 22 (i), we have

∞∑
n=1

wn+1

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣+ ‖∇ḡn(θn)−∇f̄n(θn)‖2
]
<∞.

Then by Lemma 19, we have

min
1≤k≤n

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θk‖≤1

〈−∇ḡk(θk), θ − θk〉

∣∣∣∣∣+ ‖∇ḡk(θk)−∇f̄k(θk)‖2
]

= O

( n∑
k=1

wk

)−1
 .

Let tn ∈ {1, . . . , n} for n ≥ 1 be such that the minimum above is achieved. Namely, denoting
the term in the minimum above by Ak, we have Atn = O

(
(
∑n

k=1wk)
−1
)
. Since all terms in

Ak are nonnegative, it follows that there exists a constant c1, c2 > 0 such that for all n ≥ 1,
alsmot surely, ∣∣∣∣∣ sup

θ∈Θ, ‖θ−θtn‖≤1
〈−∇ḡtn(θtn), θ − θtn〉

∣∣∣∣∣ ≤ c1∑n
k=1wk

,

‖∇ḡtn(θtn)−∇f(θtn)‖ ≤ c2√∑n
k=1wk

.

Hence from (7.13), it follows that there exists some constant c3 > 0 such that for all n ≥ 1,∣∣∣∣∣ sup
θ∈Θ, ‖θ−θtn‖≤1

〈
−∇f̄tn(θtn), θ − θtn

〉∣∣∣∣∣ ≤ c3√∑n
k=1wk

.

This completes the proof of (i).
Next, we show (4.13) in (ii). Recall that by Lemma 20 and see (A4), there exists a

constant C > 0 such that for all n ≥ 1,

E
[

sup
θ∈Θ

∥∥∇f(θ)−∇f̄n(θ)
∥∥] ≤ Cwn√n. (7.14)
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Then first observe that by Cauchy-Schwarz and triangle inequalities,

|〈∇ḡn(θn), θ − θn〉 − 〈∇f(θn), θ − θn〉|
≤ ‖∇ḡn(θn)−∇f(θn)‖
≤ ‖∇ḡn(θn)−∇f̄n(θn)‖+ sup

θ∈Θ
‖∇f̄n(θ)−∇f(θ)‖.

It follows that for all n ≥ 1,∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇f(θn), θ − θn〉

∣∣∣∣∣ ≤
∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣ (7.15)

+ ‖∇ḡn(θn)−∇f̄n(θn)‖
+ sup

θ∈Θ
‖∇f̄n(θ)−∇f(θ)‖.

Note that by Lemmas 24, 22 (i), we have

∞∑
n=1

wn

(
E

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣
]

+ E
[
‖∇ḡn(θn)−∇f̄n(θn)‖2

])
<∞.

By Lemma 19, similarly as before, we can take a sequence tn ∈ {1, . . . , n} for n ≥ 1 such
that for some constants c3, c4 > 0 and for all n ≥ 1,

E

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θtn‖≤1

〈−∇ḡtn(θtn), θ − θtn〉

∣∣∣∣∣
]
≤ c3∑n

k=1wk
,

E [‖∇ḡtn(θtn)−∇f(θtn)‖] ≤ c4√∑n
k=1wk

.

Hence taking expectation on (7.15) and using this sequence tn with (7.14), we get

E

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θtn‖≤1

〈−∇f(θtn), θ − θtn〉

∣∣∣∣∣
]
≤ c5√∑n

k=1wk
+ wn

√
n.

for all n ≥ 1 for some constant c5 > 0. This shows (4.13).
It remains to show (4.14) in (ii). Assume the optional condition in (A4) holds. Using a

similar argument as before, for all n ≥ 1,∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇f(θn), θ − θn〉

∣∣∣∣∣ ≤
∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣
+ ‖∇ḡn(θn)−∇f(θn)‖.

Also, by Lemmas 24 and 22 (ii), almost surely,

∞∑
n=1

wn+1

[∣∣∣∣∣ sup
θ∈Θ, ‖θ−θn‖≤1

〈−∇ḡn(θn), θ − θn〉

∣∣∣∣∣+ ‖∇ḡn(θn)−∇f(θn)‖2
]
<∞.

The rest of the argument is identical to the proof of (i).
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7.5 Proofs of Corollaries 5 and 6

Lastly in this section, we prove Corollaries 5 and 6.
Proof of Corollary 5. Suppose that there exists ε > 0 such that the iterates θn are all
in the ε-interior of Θ, that is, the open ε-ball centered at θn lies in Θ, for all n ≥ 1. Then
in Theorem 4 (4.11), we may choose θ ∈ Θ in a way that θ − θn = ε∇ḡn(θn). Then (4.11)
reduces to the first bound in (4.15). The same argument shows the second bound in (4.15).
For the last bound in (4.15), we use (7.7) we derived in the proof of Theorem 3. Combining
it with Lemma 22 and using Fubini’s theorem, we get

∞∑
n=1

wn+1

(
E [‖∇ḡn(θn)‖] +

∥∥E[∇ḡn(θn)]−∇f̄n(θn)
∥∥2
)
<∞.

Then by Lemma 19, we have

min
1≤k≤n

[
E [‖∇ḡn(θn)‖] + ‖∇E[ḡk(θk)]−∇f(θk)‖2

]
= O

( n∑
k=1

wk

)−1


Choose a subsequence tn along which the above minimum is achieved for all n ≥ 1. Then
we have

E [‖∇ḡtn(θtn)‖] = O

( tn∑
k=1

wk

)−1
 ,

‖∇E[ḡtn(θtn)]−∇f(θtn)‖ = O

( tn∑
k=1

wk

)−1/2
 .

Therefore by using Jensen’s inequality and the above bound, we deduce

‖∇f(θtn)‖ ≤ E [‖∇ḡtn(θtn)‖] + ‖∇E[ḡtn(θtn)]−∇f(θtn)‖ = O

( tn∑
k=1

wk

)−1/2
 .

This completes the proof.

Proof of Corollary 6. First, suppose wn = n−1/2(log n)δ for some δ > 1. Then the upper
bound on the rate of convergence in Theorem 4 is of order O(n−1/2(log n)δ). Then one
can conclude by using the fact that n ≥ ε−2(3 log ε−1)2δ implies n−1/2(log n)δ ≤ ε for all
sufficiently small ε > 0. Indeed, assuming n ≥ ε−2(3 log ε−1)2δ,

n−1/2(log n)δ ≤ ε

(3 log ε−1)δ
(2 log ε−1 + 2δ log(3 log ε−1))δ

and the last expression is at most ε for all sufficiently small ε > 0. This shows (i). A similar
argument using Theorem 4 (ii) as well as Corollary 5 shows (ii).

47



Lyu

8. Proof of Lemmas 20, 21, and 22

Recall that for each n ≥ 0, Fn denotes the σ-algebra generated by the history of underlying
Markov chain Y0, Y1, . . . , Yn as well as the possible randomness in Algorithm 1 up to iteration
n. Note that xn = ϕ(Yn) for n ≥ 1 by (A2).

We first prove Lemma 20 below. Our proof uses an auxiliary lemma, Lemma 42 in the
appendix.
Proof of Lemma 20. Recall that xk = ϕ(Yk) under (A2). Let πk denote the distribution
of Yk. Let M := supx,θ‖ψ(x,θ)‖ <∞. Note that, by a change of measure,

E [ψ(xn,θ)] =
∑
y∈Ω

ψ(ϕ(y),θ)Pn(Y0,y)

=
∑
y∈Ω

ψ(ϕ(y),θ)π(y) +
∑
y∈Ω

ψ(ϕ(Y0),θ)(Pn(Y0,y)− π(y))

= ψ̄(θ) +
∑
y∈Ω

ψ(ϕ(Y0),θ) (Pn(Y0,y)− π(y)).

By the triangle inequality, it follows that∥∥E [ψ(xn,θ)]− ψ̄(θ)
∥∥ ≤∑

y∈Ω

‖ψ(ϕ(Y0),θ)‖ |Pn(Y0,y)− π(y)|

≤M
∑
y∈Ω

|Pn(Y0,y)− π(y)|

≤ 2M‖Pn(Y0, ·)− π‖TV ,

where the last inequality follows from the relation 2‖µ−ν‖TV =
∑

x |µ(x)−ν(x)| where µ, ν
are probability distributions on the same sample space (see (Levin and Peres, 2017, Prop.
4.2)).

Now recall that under the hypothesis in (A4), wnk = wk
∏n
i=k+1(1−wi) is non-decreasing

in k ∈ {1, . . . , n}. So, wn1 ≤ · · · ≤ wnn = wn. Then using (A2), we have

∥∥ψ̄(θ)− E
[
ψ̄n(x,θ)

]∥∥ ≤ ∥∥∥∥∥
n∑
k=1

(
ψ̄(θ)− E[ψ(xk,θ)]

)
wnk

∥∥∥∥∥
≤

n∑
k=1

∥∥ψ̄(θ)− E[ψ(xk,θ)]
∥∥wnk

≤ 2M

n∑
k=1

‖P k(Y0, ·)− π‖TV wnk

≤ 2Mwn

n∑
k=1

sup
y∈X
‖P k(y, ·)− π‖TV ≤

2Lλwn
1− λ

.

This shows the first bound in (7.1).
Finally, for d = 1, the second inequality in (7.1), as well as the last part of the statement,

are direct consequences of Lemma 42, nothing that wn1 ≤ · · · ≤ wnn = wn. Applying this
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to each of the d coordinates of ψ and applying triangle inequality will imply the assertion.
Namely, write ψ = (ψ(1), . . . , ψ(d))T . Then noting that ψ, ψ̄n are uniformly bounded by
some constant M > 0, we have

sup
θ∈Θ

∥∥ψ̄(θ)− ψ̄n(θ)
∥∥2 ≤

d∑
i=1

sup
θ∈Θ

∣∣∣ψ̄(i)(θ)− ψ̄(i)
n (θ)

∣∣∣2 ≤ 2M
d∑
i=1

sup
θ∈Θ

∣∣∣ψ̄(i)(θ)− ψ̄(i)
n (θ)

∣∣∣ .
Note that by Lemma 42, the expectation of each summand in the last expression is of order
O(wn

√
n). Hence the second inequality in (7.1) follows. Lastly, the summands in the last

expression above converge to zero almost surely if wnn
√
n = O(1/(log n)1+ε) for some ε > 0

by Lemma 42. Note that wnn = wn. Hence the left-hand side above converges to zero almost
surely wn

√
n = O(1/(log n)1+ε). This completes the proof.

To handle the issue of dependence in signals, we adopt the strategy developed in Lyu
et al. (2020) in order to handle a similar issue for vector-valued signals (or matrix factoriza-
tion). The key insight in Lyu et al. (2020) is that, while the 1-step conditional distribution
P (Yt−1, ·) may be far from the stationary distribution π, the N -step conditional distribu-
tion PN (Yt−N , ·) is exponentially close to π under mild conditions. Hence we can condition
much early on – at time t − N for some suitable N = N(t). Then the Markov chain runs
N + 1 steps up to time t+ 1, so if N is large enough for the chain to mix to its stationary
distribution π, then the distribution of Yt+1 conditional on Ft−N is close to π. The error of
approximating the stationary distribution by the N + 1 step distribution can be controlled
using total variation distance and Markov chain mixing bound. We refine the analysis for
(Lyu et al., 2020, Lem. 12) and obtain a more improved version below.

Proposition 26 Assumptions (A1)-(A4) hold. Let (θn)n≥1 be an output of Algorithm and
denote L = ‖`(·, ·)‖∞. Then there exists a constant C > 0 such that for all 0 ≤ N ≤ n, it
holds that

E

[
E
[
`(xn+1,θn−N )− f̄n(θn−N )

∣∣∣∣Fn−N]+
]
≤ Cwn−N + 2LλN+1,

where λ ∈ [0, 1) is the exponential mixing rate of the underlying Markov chain in (A2).
Furthermore, if xn’s are i.i.d. from π, then the assertion holds with N = 0 and λ = 0.

Proof Fix y ∈ Ω and suppose Yn−N = y. By the Markov property, the distribution of
Yn+1 conditional on Fn−N equals PN+1(Yn−N , ·), where P denotes the transition kernel of
the chain (Yn)n∈N. Then by the Markov property, the distribution of Yn+1 conditional on
Fn−N equals PN+1(y, ·), where P denotes the transition kernel of the chain (Yn)t∈N. Denote
L := ‖`(·, ·)‖∞. Denote θ := θn−N , which is deterministic with respect to Fn−N .

We first claim that∣∣∣∣E [`(xn+1,θ)

∣∣∣∣Fn−N]− f(θ)

∣∣∣∣ ≤ 2L‖PN+1(y, ·)− π‖TV ≤ 2LλN+1. (8.1)

This would yield

E
[
`(xn+1,θ)

∣∣∣∣Fn−N] ≤ f(θ) +

∣∣∣∣E [`(xn+1,θ)

∣∣∣∣Fn−N]− f(θ)

∣∣∣∣ ≤ f(θ) + 2LλN+1.
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To justify (8.1), note that by a change of measure,

E
[
`(xn+1,θ)

∣∣∣∣Fn−N] =
∑
y′∈Ω

`(ϕ(y′),θ)PN+1(y,y′)

=
∑
y′∈Ω

`(ϕ(y′),θ)π(y′) +
∑
y′∈Ω

`(ϕ(y′),θ)(PN+1(y,y′)− π(y′))

= f(θ) +
∑
y′∈Ω

`(ϕ(y′),θ)(PN+1(y,y′)− π(y′)).

Then the claim follows by bouding `(ϕ(y′),θ) ≤ ‖·,θ‖∞ for all y′ ∈ Ω and

∑
y′∈Ω

∣∣PN+1(y,y′)− π(y′)
∣∣ = 2‖PN+1(y, ·)− π‖TV .

Next, we analyze E
[
−f̄n(θ) | Fn−N

]
using a different approach. Namely, we decompose

the times interval [0, n] into two intervals [1, n − N ] and [n − N + 1, t] and consider the
trajectory (xk)1≤k≤n restricted onto each of these intervals. Since we are conditioning on
Fn−N , the trajectory (xk)1≤k≤n−N is fully observed and may be far from the average behav-
ior. The distribution of xk then becomes close to the stationary distribution π during the
second interval of length at an exponential mixing rate of λ (see (A2)). We first compare
the trajectory on the second interval using the Markov chain mixing, and then compare the
mean of the trajectory of the first interval with the stationary trajectory by integrating out
the conditioning on Fn−N . See Figure 6 for illustration.

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝑛 0 𝑛 − 𝑁 

Conditioned 

 

Exponential mixing 

Figure 6: Illustration of the decomposition of the process used to bound the positive variation.

We proceed with the sketch given above. Denote f̂n:N :=
∑n

k=n−N+1 `(xk, ·)wnk . Write

E
[
−f̄n(θ)

∣∣∣∣Fn−N] = −E

[
n∑
k=1

`(xk,θ)wnk

∣∣∣∣Fn−N
]

= −

(
n−N∑
k=1

`(xk,θ)wnk

)
− E

[
f̂n:N

∣∣∣∣Fn−N]

50



Stochastic Regularized Majorization-Minimization

Next, denote CN =
∑n

k=n−N+1w
n
k . Using Markov property, we have∣∣∣∣CNf(θ)− E

[
f̂n:N (θ)

∣∣∣∣Fn−N]∣∣∣∣ ≤ n∑
k=t−N+1

∣∣f(θ)− Ey∼πk−N
[`(ϕ(y),θ)]

∣∣wnk
≤ 2L

n−N∑
k=1

‖P k(Yn−N , ·)− π‖TV wnk

≤ 2Lwn

n∑
k=1

sup
y∈X
‖P k(y, ·)− π‖TV ≤

2Lwn
1− λ

,

by using wn1 ≤ · · · ≤ wnn = wn ≤ 1 under (A4) and also (A2) to bound the total variation
distance terms. Hence by triangle inequality,

E
[
−f̄n(θ)

∣∣∣∣Fn−N] ≤ − n−N∑
k=1

`(xk,θ)wnk − CNf(θ) + E
[∣∣∣CNf(θ)− f̂n:N (θ)

∣∣∣ ∣∣∣∣Fn−N](8.2)
≤ −

n−N∑
k=1

`(xk,θ)wnk −
n∑

k=n−N+1

f(θ)wnk +
2L

1− λ
.

Then combining the above bounds with (8.1) and a triangle inequality gives(
E
[
`(xn+1,θ)− f̄n(θ)

∣∣∣∣Fn−N])+

≤ f(θ) +

∣∣∣∣E [`(xn+1,θ)

∣∣∣∣Fn−N]− f(θ)

∣∣∣∣+ E
[
−f̄n(θ)

∣∣∣∣Fn−N]
≤

(
n−N∑
k=1

(f(θ)− `(xk,θ))wnk

)
+

2Lwn
1− λ

+ 2LλN+1

≤

(
n−N∑
k=1

(f(θ)− `(xk,θ))wn−N+M
k

)
+

2Lwn−N
1− λ

+ 2LλN+1,

where we have used that wk is non-increasing in k and wnk = wk
∏n
i=k+1(1−wi) ≤ wk

∏m
i=k+1(1−

wi) = wmk for k ≤ m ≤ n. Then by Lemma 20, we have

E

[
n−N+M∑
k=1

(f(θ)− `(xk,θ))wn−N+M
k

]
≤ Cwn−N (8.3)

Therefore, the assertion follows from (8.2) by integrating it with respect to Fn−N and using
(8.3).

Lastly, suppose the data sequence xn is i.i.d. from the stationary distribution π. We can
then take Yn = xn, so Yn is a Markov chain with mixing rate λ = 1, since for any y ∈ Ω, the
one-step conditional distribution P (y, ·) exactly equals the stationary distribution π. This
shows the assertion.
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Next, we give proof of Lemma 21.
Proof of Lemma 21. We will first show (i)-(v) under cases C1-C2 in Theorem 2. We will
then show these statements for case C3 in Theorem 2. After that, we will finally prove (vi).

Denote V (x,θ) := `(x,θ)− f̄n(θ). By (A1), V is Lipschitz in θ for some R > 0. Under
cases C1-C2, by Lemma 17, we have ‖θk − θk−1‖ ≤ c0wk for all k ≥ 1 for some constant
c0 > 0. Since wk is non-increasing in k, by triangle inequality we get ‖θn−N − θn‖ ≤
c0
∑N

k=n−N wk ≤ c0Nwn−N . This yields

E [V (xn+1,θn) | Fn−N ]

= E [V (xn+1,θn−N ) | Fn−N ] + E [V (xn+1,θn)− V (xn+1,θn−N ) | Fn−N ]

≤ E [V (xn+1,θn−N ) | Fn−N ] +RE [‖θn−N − θn‖ |Fn−N ]

≤ E [V (xn+1,θn−N ) | Fn−N ] + c0RNwn−N .

Note that θn−N is deterministic with respect to Fn−N . Hence multiplying by wn+1 ≤ wn,
taking positive parts, and using Proposition 26, we get
∞∑
n=1

E
[
E [wn+1V (xn+1,θn) | Fn−an ]+

]
≤
∞∑
n=1

Cwnwn−an + 2Lwnλ
an+1 + c0Ranwnwn−an .(8.4)

Now we show (i). Denote Zn = wn+1V (xn+1,θn). Then by iterated expectation and
Jensen’s inequality, it follows that

∞∑
n=1

E[Zn]+ =
∞∑
n=1

(
E
[
E
[
Zn

∣∣∣∣Fn−at]])+

≤
∞∑
t=1

E

[(
E
[
Zt

∣∣∣∣Ft−at])+
]
. (8.5)

Notice that the first expression above is the summation in (i) that we want to bound, and
the last expression above equals the left-hand side of (8.4). This shows (i).

Next, we show (ii). Note that the left hand side in (ii) is bounded by the left hand side
of (i) plus

∑∞
n=1w

2
n

(∑n+1
k=1 E[εk]

)
< ∞ by Proposition 18 and (A4). So (ii) follows from

(i).
For (iii), observe from Proposition 18 and (6.2),

∞∑
n=1

wn+1

(
ḡn(θn)− f̄n(θn)

)
≤ ḡ1(θ1) +

∞∑
n=1

wn+1

(
`(xn+1,θn)− f̄n(θn)

)
+

∞∑
n=1

w2
n

(
n+1∑
k=1

εk

)
.

Then (iii) follows from taking expectation and using (i) with (A4).
Next, we show (iv). The argument is similar. Since the loss function ` is R-Lipstchitz

by (A1), so is f − f̄n. Then, as before, we can ‖θn − θn−1‖ ≤ c0wn and wn non-increasing
to show∣∣∣∣E [f(θn)− f̄n(θn)

∣∣∣∣Fn−N]∣∣∣∣ ≤ ∣∣∣∣E [f(θn−N )− f̄n−N (θn)

∣∣∣∣Fn−N]∣∣∣∣+ c0RNwn−N .

Note that θn−N is deterministic with respect to Fn−N . Hence using Proposition 26 with
N = an where an as in (A4), it follows that∣∣∣∣E [f(θn)− f̄n(θn)

∣∣∣∣Fn−an]∣∣∣∣ ≤ 2Lwn−an
1− λ

+ c0Ranwn−an .
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Multiplying by wn+1 and integrating with respect to Fn−an , we get

wn+1E
[∣∣∣∣E [f(θn)− f̄n(θn)

∣∣∣∣Fn−an]∣∣∣∣] ≤ 2Lwnwn−an
1− λ

+ c0Ranwnwn−an . (8.6)

By (A4), the right-hand side is summable. Then the assertion follows from Jensen’s inequal-
ity similarly as in the proof of (i).

We turn to prove (v). Suppose the optional condition in (A4) holds, that is,
∞∑
n=1

wnwn−an
√
n <∞,

where an is the sequence in (A4). As in the proof of (iv), and using the second inequality
in Lemma 20,

E
[∣∣f(θn)− f̄n(θn)

∣∣ ∣∣∣∣Fn−N] ≤ E
[∣∣f(θn−N )− f̄n−N (θn)

∣∣ ∣∣∣∣Fn−N]+ c0RNwn−N

≤ Cwn−N
√
n−N + c0RNwn−N ,

where C > 0 is a constant in Lemma 20. Then letting N = an in (A4) integrating out
Fn−N , multiplying by wn+1 ≤ wn and summing over all n ≥ 1 gives

∞∑
n=0

wn+1E
[∣∣f(θn)− f̄n(θn)

∣∣] ≤ ∞∑
n=1

Cwnwn−an
√
n− an + c0Ranwnwn−an <∞.

Now, we establish (i)-(v) under case C3 in Theorem 2. This case must be dealt with
separately since the stability of estimates ‖θn− θn−1‖ = O(wn) is not readily available (see
Lemma 17). In this case, we rely on ‘instant mixing’ (λ = 0) of the i.i.d. data sequence xn
stated in the second part of Proposition 26. Namely, we condition on Fn and use λ = 0
while avoiding using ‖θn − θn−1‖ = O(wn). For (i), we first use (8.4) with an = 0 = N to
get

∞∑
n=1

E
[
E [wn+1V (xn+1,θn) | Fn]+

]
≤
∞∑
n=1

Cw2
n <∞.

The rest follows from (8.5). Then (ii)-(iii) can be deduced similarly as in the previous
case using (i). Also, (iv) follows from (8.6) using λ = 0 and N = 0. (v) can be deduced
similarly.

Lastly, we show (vi). For cases C1-C2 in Theorem 2, this is trivial since we have
‖θn−θn−1‖ = O(wn) and

∑∞
n=1w

2
n <∞ by (A4). Suppose C3. By Lemma 17 (i), we have

ḡn(θn−1)− ḡn(θn) ≥ ρ̂

2
‖θn − θn−1‖2 −∆n.

Moreover, using (6.3) and (6.2), we get

−∆n+1 ≤ ḡn+1(θn)− ḡn+1(θn+1)

≤ ḡn(θn)− ḡn+1(θn+1) + wn+1(`(xn+1,θn)− f̄n(θn)) + w2
n

n∑
k=1

εk.
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Taking expectation and summing over n ≥ 1 and using (i) as well as (A4),∣∣∣∣∣
∞∑
n=1

E [ḡn+1(θn)− ḡn+1(θn+1)]

∣∣∣∣∣ <∞.
Using (A5), this implies

E

[
N∑
n=1

ρ̂

2
‖θn − θn−1‖2

]
≤
∞∑
n=1

E [ḡn(θn−1)− ḡn(θn)] + E

[ ∞∑
n=1

∆n

]
<∞,

as desired.

Lastly in this section, we prove Lemma 22.
Proof of Lemma 22. Denote αn = ∇ḡn(θn)−∇f̄n(θn) and βn = ∇f̄n(θn)−∇f(θn). Fix
θ ∈ Rp and ε > 0. With (A1) and a recursion, f̄n and gn are also R-Lipschitz continuous.
By Lemma 34, we can write

|ḡn(θn + εθ)− ḡn(θn)− 〈∇ḡn(θn), εθ〉| ≤ Lε2

2
‖θ‖2,∣∣f̄n(θn + εθ)− f̄n(θn)− 〈∇f̄n(θn), εθ〉

∣∣ ≤ Lε2

2
‖θ‖2,

for some uniform constant L > 0 that does not depend on θ, ε and n. Recall that ḡn ≥ f̄n−ε̄n
for all n ≥ 1. Hence

−Lε
2

2
‖θ‖2 + f̄n(θn) + 〈∇f̄n(θn), εθ〉 ≤ f̄n(θn + εθ)

≤ ḡn(θn + εθ) + ε̄n

≤ ḡn(θn) + 〈∇ḡn(θn, εθ〉+
Lε2

2
‖θ‖2 + ε̄n,

so, we obtain the following key inequality

〈αn, εθ〉 = tr
((
∇ḡn(θn)−∇f̄n(θn)

)T
(εθ)

)
≥ (f̄n(θn)− ḡn(θn)− ε̄n)− Lε2‖θ‖2.

Choosing θ = −αn, we get

−ε‖αn‖2 ≥ (f̄n(θn)− ḡn(θn)− ε̄n)− cε2‖αn‖2.

Rearranging, we get

(ε− cε2)‖αn‖2 ≤ (ḡn(θn) + ε̄n − f̄n(θn)).

Recall that this holds for all ε > 0 and n ≥ 1. Taking expectation, multiplying by wn, and
summing up in n,

(ε− cε2)

∞∑
n=1

wnE
[
‖αn‖2

]
≤
∞∑
n=1

wnE
[
ḡn(θn)− f̄n(θn)

]
+

∞∑
n=1

wnE[ε̄n] <∞,
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where the finiteness above uses Lemma 21 and (A4) with (6.1). Since ε > 0 was arbitrary,
this shows

∞∑
n=1

wnE
[
‖αn‖2

]
<∞. (8.7)

Next, we will analyze the sums
∑∞

n=1wn ‖E [βn]‖2 and
∑∞

n=1wnE
[
‖βn‖2

]
. To this end,

note that

∇f(θ) = ∇Ex∼π [`(x,θ)] = Ex∼π [∇2`(x,θ)] .

Define ψ : (x,θ) 7→ ∇2`(x,θ). Then by the linearity of gradients and induction, we can
show

ψ̄n(θ) = ∇f̄n(θ).

Thus by Lemma 20, there exists a constant C > 0 such that for all n ≥ 1,

sup
θ∈Θ

∥∥E [∇f(θ)]− E
[
∇f̄n(θ)

]∥∥2 ≤ Cwn, E
[

sup
θ∈Θ

∥∥∇f(θ)−∇f̄n(θ)
∥∥2
]
≤ Cwn

√
n.

By (A4), this implies
∞∑
n=1

wn ‖E [βn]‖2 ≤
∞∑
n=1

wn sup
θ∈Θ

∥∥E [∇f(θ)]− E
[
∇f̄n(θ)

]∥∥2 ≤ C
∞∑
n=1

w2
n <∞.

Similarly, we also get
∞∑
n=1

wn E
[
‖βn‖2

]
≤
∞∑
n=1

wn sup
θ∈Θ

E
[
‖∇f(θ)]− E

[
∇f̄n(θ)

∥∥2
]
≤ C

∞∑
n=1

w2
n

√
n. (8.8)

Now we conclude the assertions. For (i), by Jensen’s inequality, we have
∞∑
n=1

wnE
[
‖αn‖2

]
≤
∞∑
n=1

wn‖E [αn]‖2 <∞.

Hence by Fubini’s theorem, we get

E

[ ∞∑
n=1

wn

(
‖αn‖2 + ‖E [βn]‖2

)]
=
∞∑
n=1

wnE
[
‖αn‖2

]
+
∞∑
n=1

wn ‖E [βn]‖2 <∞.

This shows (i).
Next, assume the optional condition in (A4) holds. since wn is non-increasing in n, it

follows that
∑∞

n=1w
2
n

√
n <∞. Then (8.8) shows

∑∞
n=1wnE

[
‖βn‖2

]
<∞. We have shown

that
∑∞

n=1wnE
[
‖αn‖2

]
< ∞ in (8.7). Then noting that ‖αn + βn‖2 ≤ 2‖αn‖2 + 2‖βn‖2,

using Fubini’s theorem, we get

E

[ ∞∑
n=1

wn
(
‖αn‖2 + ‖βn‖2 + ‖αn + βn‖2

)]
<∞.

Since ḡn(θn)−∇f(θn) = αn + βn, this is the desired conclusion.
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9. Proof of Lemma 24

The goal of this section is to prove Lemma 24. Throughout this and the following sections, let
(θn)n≥1 be an output of Algorithm 1, where each update θn−1 → θn uses either Algorithm
2 (full coordinate descent with proximal regularization) or Algorithm 3 (block coordinate
descent with diminishing radius). For the latter case, decompose the update θn−1 → θn

into θn−1 = θ
(0)
n → θ

(1)
n → · · · → θ

(m)
n = θn, where each θ

(i)
n is the output of (3.4) at

sub-iteration i of Algorithm 3. Namely, let J denote the set of coordinate blocks used in
Algorithm 1 and let J1(n), . . . , Jm(n) ∈ J denote the coordinate blocks used in the ith
iteration of Algorithm 3 for the update θn−1 → θn. Then θ

(i)
n is an approximate minimizer

of ḡn(θ) + Ψn(‖θ − θn−1‖) over the convex set Θ
Ji(n)
n (see (3.3)) with optimality gap ∆

(i)
n

(see (A5)), where Ψn(x) takes value 0 if x ≤ wn/m and ∞ otherwise (radius restriction).
Let θ(i?)

n denote an exact minimizer of ḡn(θ) + Ψn(‖θ − θn−1‖) over Θ
Ji(n)
n .

For a unified treatment, we also use the same notation when Algorithm 2 is used in-
stead of Algorithm 3. In this case, we take m = 1 (single update), J = {{1, . . . , p}},
J

(1)
n = {1, . . . , p} , and Θ

J1(n)
n = Θ (no frozen coordinates), and Ψn(x) ≡ ρ̂

2x
2 (proximal

regularization). In this case, the optimality gap is denoted as ∆
(1)
n = ∆n (see (A5)).

The starting point of the analysis in this section is the following proposition, which states
that the linear variation of ḡn over the sequence (θn;i)n≥1,1≤i≤m is finite.

Proposition 27 Assume (A1)-(A4). Under any of the three cases C1-C3 in Theorem 2,
we have

E

[ ∞∑
n=1

|〈∇ḡn(θn−1), θn − θn−1〉|

]
<∞. (9.1)

Furthermore, almost surely,

∞∑
n=1

EJ1(n),...,Jm(n)

[
|〈∇ḡn(θn−1), θn − θn−1〉|

∣∣∣∣Fn−1

]
<∞.

Proof Fix i = 1, . . . ,m. By Proposition 16, ∇ḡn over Θ is L-Lipschitz for all n ≥ 1. Hence
by Lemma 34, for all t ≥ 1,∣∣∣ḡn(θ(i)

n )− ḡn(θn−1)−
〈
∇ḡn(θn−1), θ(i)

n − θn−1

〉∣∣∣ ≤ L

2
‖θ(i)

n − θn−1‖2.

Note that for 1 ≤ i ≤ m,

ḡn(θ(i)
n ) + Ψn(‖θ(i)

n − θn−1‖) ≤ ḡn(θ(i−1)
n ) + Ψn(‖θ(i−1)

n − θn−1‖) + ∆(i)
n .

By induction, we get

ḡn(θ(i)
n ) ≤ ḡn(θ(i)

n ) + Ψn(‖θ(i)
n − θn−1‖) ≤ ḡn(θn−1) +

i∑
j=1

∆(j)
n .

56



Stochastic Regularized Majorization-Minimization

Hence

|ḡn(θ(i)
n )− ḡn(θn−1)| ≤ ḡn(θn−1)− ḡn(θ(i)

n ) + 2
i∑

J=1

∆(j)
n ,

so it follows that

∣∣∣〈∇ḡn(θn−1), θ(i)
n − θn−1

〉∣∣∣ ≤ L

2
‖θ(i)

n − θn−1‖2 + ḡn(θn−1)− ḡn(θ(i)
n ) + 2

i∑
j=1

∆(j)
n

≤ L

2
‖θ(i)

n − θn−1‖2 + ḡn(θn−1)− ḡn(θn) + 3
m∑
j=i

∆(j)
n .

On the other hand, using (6.3) and ḡn ≥ f̄n, note that

0 ≤ ḡn+1(θn)− ḡn+1(θn+1) ≤ ḡn(θn)− ḡn+1(θn+1) + wn+1(`(xn+1,θn)− f̄n(θn)).

Hence using Lemma 21, we have

∞∑
n=1

E [ḡn+1(θn)− ḡn+1(θn+1)] <∞.

Next, by Lemma 21, we have

∞∑
n=1

E
[
‖θn − θn+1‖2

]
<∞.

Moreover, we have E [
∑∞

n=1 ∆n] < ∞ by (A5) for cases C2 and C3 and by Lemma 39 for
case C1. Thus the above inequalities yield

∞∑
n=1

E
[∣∣∣〈∇ḡn(θn−1), θ(i)

n − θn−1

〉∣∣∣] <∞.
Taking i = m and using Fubini’s theorem, we obtain the first assertion (9.1). Furthermore,
one can rewrite (9.1) as

E

[ ∞∑
n=1

EJ1(n),...,Jm(n)

[
|〈∇ḡn(θn−1), θn − θn−1〉|

∣∣∣∣Fn−1

]]
<∞.

Since the random variable inside the expectation above is nonnegative, it has to be finite
almost surely. This shows the second part of the assertion.

Next, we show that the block coordinate descent we use to obtain θn should always give
the optimal first-order descent up to a small additive error.
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Lemma 28 (Approximate first-order optimality) Assume (A1)-(A4). Assume cases
C1-C3 in Theorem 2. Then there exists constants c1, . . . , c4 > 0 such that almost surely, for
any sequence (bn)n≥1, 0 < bn ≤ wn/m,

bn sup
θ∈Θ, ‖θ−θn−1‖≤1

〈−∇ḡn−1(θn−1), θ − θn−1〉

≤ E
[
〈−∇ḡn(θn−1), θn − θn−1〉

∣∣∣∣Fn−1

]
+ E

[
∆n

∣∣∣∣Fn−1

]
+ c1bnwn + c2b

2
n + c3E

[
‖θn − θn−1‖2

∣∣∣∣Fn−1

]
+ c4w

2
n.

Furthermore, the above holds for all bn > 0 for cases C1 and C3.

Proof We first show the assertion for cases C1 and C3. Fix arbitrary θ = Θ such that
‖θ − θn−1‖ ≤ bn. Recall that θn is an inexact minimizer of ḡn(θ) + Ψn(‖θ − θn−1‖) over
Θ. Let θ?n denote an exact minimizer of the same problem. Then

ḡn(θn)−∆n ≤ ḡn(θn) + Ψn(‖θ − θn−1‖)−∆n

≤ ḡn(θ?n) + Ψn(‖θ?n − θn−1‖)
≤ ḡn (θn−1 + (θ − θn−1)) + Ψn(‖θ − θn−1‖).

Note that by Proposition 16, ∇ḡn is L-Lipschitz and ‖∇gn+1 − ∇gn‖ ≤ L′wn+1 for some
constant L′ > 0. Hence subtracting ḡn(θn−1) from both side, we get

〈∇ḡn(θn−1), θn − θn−1〉 −
L

2
‖θn − θn−1‖2 −∆n

≤ 〈∇ḡn(θn−1), θ − θn−1〉+
(L+ ρ̂)

2
‖θ − θn−1‖2

≤ 〈∇ḡn−1(θn−1), θ − θn−1〉+
(L+ ρ̂)

2
‖θ − θn−1‖2 + L′wn‖θ − θn−1‖,

where we have used Ψn(x) ≡ ρ̂
2x

2 for the first inequality. Rearranging, we get

〈∇ḡn(θn−1), θn − θn−1〉 ≤ 〈∇ḡn−1(θn−1), θ − θn−1〉+
(L+ ρ̂)

2
‖θ − θn−1‖2

+ L′wn‖θ − θn−1‖+
L

2
‖θn − θn−1‖2 + ∆n.

It follows that

sup
θ∈Θ, ‖θ−θn−1‖≤bn

〈−∇ḡn−1(θn−1), θ − θn−1〉 (9.2)

≤ sup
θ∈Θ, ‖θ−θn−1‖≤bn

〈−∇ḡn(θn−1), θn − θn−1〉+
(L+ ρ̂)b2n

2

+ L′bnwn +
L

2
‖θn − θn−1‖2 + ∆n.
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Now observe that by the convexity of Θ, if θn−1 + av ∈ Θ for a scalar a ≥ 1 and v ∈ Rp,
then θn + v ∈ Θ. Hence we get

sup
‖u‖≤1,θn−1+u∈Θ

〈−∇ḡn(θn−1), u〉 = sup
‖v‖≤bn,θn−1+b−1

n v∈Θ

〈
−∇ḡn(θn−1), b−1

n v
〉

≤ b−1
n sup
‖v‖≤bn,θn−1+v∈Θ

〈−∇ḡn(θn−1), v〉 . (9.3)

Then the assertion follows from combining (9.3) and (9.2) then taking the conditional ex-
pectation with respect to Fn−1.

Next, we show the assertion for case C2. The argument is similar but a bit more com-
plicated due to the use of randomized block coordinate descent in Algorithm 3. As before,
fix arbitrary θ = Θ such that ‖θ−θn−1‖ ≤ bn. We will suppress the dependency of random
block coordinate Ji(n) on n below and denote it Ji. Let ΘJi

n be as in (3.3), which is a convex
subset of Θ that contains both θ

(i−1)
n and θ

(i−1)
n +

∑
j∈Ji(θ−θ

(i−1)
n )jej , where ej denote the

jth standard basis vector of Rp. Recalling that θ
(i)
n is an approximate minimizer of ḡn(θ)

over ΘJi
n with gap ∆

(i)
n (see (A5)),

ḡn(θ(i)
n )−∆(i)

n ≤ ḡn(θ(i?)
n ) ≤ ḡn

θ(i−1)
n +

∑
j∈Ji

(θ − θ(i−1)
n )jej

 ,

where θ
(i?)
n denotes an exact minimizer of ḡn over ΘJi

n . Then subtract ḡn(θ
(i−1)
n ) from both

sides and use Lemma 34. Note that by Proposition 16, ∇ḡn is L-Lipschitz and ‖∇gn+1 −
∇gn‖ ≤ L′wn+1 for some constant L′ > 0. Also, note that the coordinate blocks J1, . . . , Jm
are disjoint so that each coordinate of θn−1 is updated at most once, see (A6). This implies

∑
j∈Ji

(θ − θ(i−1)
n )jej =

∑
j∈Ji

(θ − θn−1)jej ,

‖θ(i−1)
n − θn−1‖, ‖θ(i)

n − θ(i−1)
n ‖ ≤ ‖θn − θn−1‖.

So it follows that〈
∇ḡn(θ(i−1)

n ), θ(i)
n − θ(i−1)

n

〉
− L

2
‖θ(i)

n − θ(i−1)
n ‖2 −∆(i)

n

≤

〈
∇ḡn(θ(i−1)

n ),
∑
j∈Ji

(θ − θn−1)jej

〉
+
L

2
‖θ − θn−1‖2

≤

〈
∇ḡn−1(θ(i−1)

n ),
∑
j∈Ji

(θ − θn−1)jej

〉
+
L

2
‖θ − θn−1‖2 + L′wn‖θ − θn−1‖

≤

〈
∇ḡn−1(θn−1),

∑
j∈Ji

(θ − θn−1)jej

〉
+
L

2
b2n + L′wnbn + Lbn‖θn − θn−1‖.
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Also, by Cauchy-Schwarz inequality and Proposition 16,〈
∇ḡn(θ(i−1)

n ), θ(i)
n − θ(i−1)

n

〉
≥
〈
∇ḡn(θn−1), θ(i)

n − θ(i−1)
n

〉
− L‖θ(i−1)

n − θn−1‖ ‖θ(i)
n − θ(i−1)

n ‖

≥
〈
∇ḡn−1(θn−1), θ(i)

n − θ(i−1)
n

〉
− L‖θn − θn−1‖2 − L′w2

n.

Thus combining the above inequalities, we obtain〈
∇ḡn(θn−1), θ(i)

n − θ(i−1)
n

〉
≤

〈
∇ḡn−1(θn−1),

∑
j∈Ji

(θ − θn−1)jej

〉
+ c1‖θn − θn−1‖2 + c2b

2
n + c3wnbn + c4w

2
n + ∆(i)

n ,

where c1, · · · , c4 > 0 are constants. Hence summing over i = 1, . . . ,m,

〈∇ḡn(θn−1), θn − θn−1〉 (9.4)

≤

〈
∇ḡn−1(θn−1),

m∑
i=1

∑
j∈Ji

(θ − θn−1)jej

〉
+ c′1‖θn − θn−1‖2 + c′2Lb

2
n + c′3wnbn + c′4w

2
n + ∆n,

where we denoted c′i = mci for i = 1, 2, 3. Note that by (A6), for any θ ∈ Θ,

EJ1(n),...,Jm(n)

 m∑
i=1

∑
j∈Ji(n)

(θ − θn−1)jej

∣∣∣∣Fn−1

 = c̄(θ − θn−1), (9.5)

where c̄ denotes the common expected number of each coordinate j ∈ {1, . . . ,m} appearing
in the coordinate blocks J1(n), . . . , Jm(n). Thus taking the conditional expectation with
respect to Fn−1 on both sides of (10.3), and taking supremum for θ ∈ Θ with ‖θ−θn−1‖ ≤
bn, we get

sup
θ∈Θ, ‖θ−θn−1‖≤bn

c̄ 〈−∇ḡn−1(θn−1), θ − θn−1〉

≤ E
[
〈−∇ḡn−1(θn−1), θn − θn−1〉

∣∣∣∣Fn−1

]
+ c′1E

[
‖θn − θn−1‖2

∣∣∣∣Fn−1

]
+ c′2Lb

2
n + c′3wnbn + c′4w

2
n + E [∆n | Fn−1] .

Then combining the above with (9.3) finishes the proof.

Now we show Lemma 24.
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Proof of Lemma 24. By using Lemma 28 with deterministic bn = wn and taking the
conditional expectation with respect to Fn, we have

wn+1

[
sup

θ∈Θ, ‖θ−θn‖≤1
〈−∇ḡn(θn), θ − θn〉

]
≤ E

[
〈∇ḡn+1(θn), θn+1 − θn〉

∣∣∣∣Fn] (9.6)

+ cw2
n+1 + E [∆n+1] + E

[
‖θn+1 − θn‖2

∣∣∣∣Fn]
for some constant c > 0 for all n ≥ 1. By Proposition 27 and (A4), the right-hand side
above except for the last term is summable. For the last term, note that by Lemma 21 (vi)
and Fubini’s theorem, we have

E

[ ∞∑
n=1

E
[
‖θn+1 − θn‖2

∣∣∣∣Fn]
]

= E

[ ∞∑
n=1

‖θn+1 − θn‖2
]
<∞.

Hence
∑∞

n=1 E
[
‖θn+1 − θn‖2

∣∣∣∣Fn] <∞ almost surely. Thus the right-hand side of (9.6) is

summable almost surely.

10. Proof of Lemma 23

In this section, we prove the only remaining key lemma, Lemma 23, on asymptotic station-
arity of the iterates with respect to the averaged surrogate loss functions. We proceed by
first proving the assertion for cases C1 and C3 and then for the case C2 in Theorem 2.

Throughout this section, we will make use of the parameterized surrogate assumption
(A7). From this, there exists a compact set K and a function ĝ : K × Θ → [0,∞) such
that for all n ≥ 1, ḡn(θ) = ĝ(κn,θ) for some κn ∈ K. Furthermore, ĝ is Lipschitz in the
first coordinate. Hence by taking a subsequence of (tk)k≥1, we may assume that κ∞ :=
limk→∞ κtk . Hence the function ḡ∞ := limk→∞ ḡtk = ĝ(κ∞, ·) is well-defined. By continuity
of ∇ḡn (see Lemma 34), we also have ∇gtk → ∇g∞ almost surely.

10.1 Proof of Lemma 23 for cases C1 and C3 in Theroem 2.

In this subsection, we prove Lemma 23 assuming cases C1 and C3 in Theroem 2. The
argument for case C3 may require a bit of care since we cannot use per-iteration stability
‖θn−θn−1‖ = O(wn) (see Lemma 17) and rely on the total stability E [

∑∞
n=1‖θn − θn−1‖] <

∞ (see Lemma 21 (vi)). Nontheless, Lemma 23 for both cases C1 and C3 can be shown
using a simple argument that only uses ‖θn − θn−1‖ = o(1).

We begin with a simple observation.

Proposition 29 Assume the cases C1 or C3 in Theorem 2. Take ρ̂ = 0 for case C1 and
ρ̂ > −ρ for case C2. For each n ≥ 1, let θ?n be the minimizer of the strongly convex function
θ 7→ Ḡn(θ) := ḡn(θ) + ρ̂

2‖θ − θn−1‖2 over the convex set Θ. Then there exists a constant
α > 0 such that for all n ≥ 1,

‖θn − θ?n‖2 ≤ α∆n.
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Proof Note that Ḡn is γ-strongly convex with modulus of convexity γ = ρ > 0 for case C1
and γ = (ρ̂− |ρ|) for case C2. Then the assertion follows from

γ

2
‖θn − θ?n‖2 ≤ Ḡn(θn)− Ḡn(θ?n) ≤ ∆n

for n ≥ 1. Indeed, the first inequality follows from the second-order growth property (see
Lemma 37) since Ḡ(n)

n is a γ-weakly convex function minimized at θn over Θ, and the second
inequality follows from the definition of optimality gap ∆n in (A5).

We are now ready to give proof of Lemma 23 for no regularization (case C1) and proximal
regularization (case C3).
Proof of Lemma 23 for cases C1 and C3 in Theorem 2. Assume (A1)-(A4), (A7),
and one of the cases C1 or C3 in Theorem 2. Fix an arbitrary convergent subsequence
(θtk)k≥1 of (θn)n≥1 denote θ∞ := limk→∞ θtk . By taking a further subsequence, we may
assume that the following limits ḡ∞ := limk→∞ ḡtk and ∇ḡ∞ := limk→∞∇ḡtk exist almost
surely. It suffies to show that θ∞ is a stationary point of ḡ∞ over Θ.

We keep the same notation for ρ̂ as in Proposition 29. By using the first-order optimality
of θ?n ∈ arg minθ∈Θ

(
ḡn(θ) + ρ̂

2‖θ − θn−1‖2
)
, we have

〈∇ḡn(θ?n) + ρ̂(θ?n − θn−1), θ − θn〉 ≥ 0 ∀θ ∈ Θ.

On the other hand, using Cauchy-Schwarz inequality and Proposition 29,

|〈∇ḡn(θn) + ρ̂(θn − θn−1), θ − θn〉 − 〈∇ḡn(θ?n) + ρ̂(θ?n − θn−1), θ − θn〉|
≤ |〈∇ḡn(θn)−∇ḡn(θ?n) + ρ̂(θn − θ?n), θ − θn〉|
≤ (‖∇ḡn(θn)−∇ḡn(θ?n)‖+ ρ̂‖θn − θ?n‖) ‖θ − θn‖
≤ (L+ ρ̂)‖θ − θn‖ ‖θ?n − θn‖

≤ (L+ ρ̂)‖θ − θn‖
√
α∆n.

Similarly, also note that

| 〈ρ̂(θ?n − θn−1), θ − θn〉 | ≤ ρ̂‖θ − θn‖ ‖θ?n − θn‖ ≤ ρ̂‖θ − θn‖‖θ − θn‖
√
α∆n.

Note that from (A5), E[
∑∞

n=1 ∆n] <∞, and by Fubini’s theorem, this implies that
∑∞

n=1 ∆n <
∞ almost surely. Hence ∆n = o(1). Furthermore, since θtk converges, the sequence (θtk)k≥1

is bounded. So the above inequalities imply

lim inf
k→∞

〈∇ḡtk(θtk), θ − θtk〉 ≥ 0 ∀θ ∈ Θ.

Since ∇ḡtk → ∇ḡ∞ as k → ∞, we conclude that 〈∇ḡ∞(θ∞), θ − θ∞〉 ≥ 0 for all θ ∈ Θ,
which means that θ∞ is a stationary point of ḡ∞ over Θ.
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10.2 Proof of Lemma 23 for cases C2 in Theroem 2.

A key property of the iterates (θn)n≥1 for cases C1-C2 in Theroem 2 is their stability,
‖θn − θn−1‖ = O(wn), which is given in Lemma 17. For C2, which we consider in this
subsection, we have an extra complication due to the use of an additional diminishing radius
condition. Roughly speaking, for each limit point θ∞ of the iterates (θn)n≥1, we will need
to show that θ∞ is not touching any trust region boundary we used along the way and it
is indeed a stationary point of some limiting function of the averaged surrogates ḡn. The
argument we provide here is adapted from Lyu and Li (2023), which was first developed for
(deterministic) block coordinate descent with diminishing radius.

Recall that during the update θn−1 = θ
(0)
n → θ

(1)
n → · · · → θ

(m)
n = θn in Algorithm 3,

each block coordinate changes by at most wn/m in the Euclidean norm. Each θ
(i)
n is found

by approximately solving (3.3), while an exact minimizer is denoted as θ
(i?)
n (if there are

multiple exact minimizers, then we choose an arbitrary one). We say θ?n := θ
(m?)
n is a short

point if ‖θ(i−1)
n − θ

(i?)
n ‖ < wn/m for i = 1, . . . ,m and long point otherwise. Observe that if

θ?n is a short point, then imposing the search radius restriction in (3.4) has no effect, and
θ?n is obtained from θn−1 by a single cycle of exact block minimization of ḡn over Θ with
no trust-region constraints.

Lemma 30 below is a slight modification of Lemma 28 where we compare the optimality
gap (the supremum in the left-hand side of (10.1)) to the expected first-order variation
with respect to the optimal parameter change θ?n− θn−1 instead of the approximate change
θn − θn−1.

Lemma 30 (Approximate first-order optimality for inexact trust-region) Assume
(A1)-(A4). Assume case C2 in Theorem 2. Then there exists a constant c > 0 such that
almost surely,

wn sup
θ∈Θ, ‖θ−θn−1‖≤1

〈−∇ḡn−1(θn−1), θ − θn−1〉 (10.1)

≤ E
[
〈−∇ḡn(θn−1), θ?n − θn−1〉

∣∣∣∣Fn−1

]
+ cw2

n.

Proof The proof is similar to the one for Lemma 28. Fix θ ∈ Θ with ‖θ−θn−1‖ ≤ wn/m.
Then we have

ḡn(θ(i?)
n ) ≤ ḡn

θ(i−1)
n +

∑
j∈Ji

(θ − θ(i−1)
n )jej

 .

Subtract ḡn(θ
(i−1)
n ) from both sides and use Lemma 34. Note that by Proposition 16, ∇ḡn

is L-Lipschitz and ‖∇gn+1 −∇gn‖ ≤ L′wn+1 for some constant L′ > 0. Also, note that the
coordinate blocks J1, . . . , Jm are disjoint so that each coordinate of θn−1 is updated at most
once, see (A6). This implies∑

j∈Ji

(θ − θ(i−1)
n )jej =

∑
j∈Ji

(θ − θn−1)jej ,∑
j∈Ji

(θ(i?)
n − θ(i−1)

n )jej =
∑
j∈Ji

(θ(i?)
n − θn−1)jej . (10.2)
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So it follows that〈
∇ḡn(θ(i−1)

n ), θ(i?)
n − θ(i−1)

n

〉
− L

2
‖θ(i?)

n − θ(i−1)
n ‖2

≤

〈
∇ḡn−1(θn−1),

∑
j∈Ji

(θ − θn−1)jej

〉
+
L

2
b2n + L′wnbn + Lbn‖θn − θn−1‖.

Also, by Cauchy-Schwarz inequality and L-Lipschitz continuity of ∇ḡn, we have〈
∇ḡn(θ(i−1)

n ), θ(i?)
n − θ(i−1)

n

〉
≥
〈
∇ḡn−1(θn−1), θ(i?)

n − θ(i−1)
n

〉
− c1w

2
n

for some constant c1 > 0. Thus combining the above inequalities, we obtain〈
∇ḡn(θn−1), θ(i?)

n − θ(i−1)
n

〉
≤

〈
∇ḡn−1(θn−1),

∑
j∈Ji

(θ − θn−1)jej

〉
+ c1w

2
n.

Note that (10.2) implies
m∑
i=1

θ(i?)
n − θ(i−1)

n =
m∑
i=1

∑
j∈Ji(n)

(θ(i?)
n − θn−1)jej = θ?n − θn−1.

Hence summing over i = 1, . . . ,m and taking the conditional expectation with respect to
Fn−1,

〈∇ḡn(θn−1), θ?n − θn−1〉 ≤

〈
∇ḡn−1(θn−1),

m∑
i=1

∑
j∈Ji

(θ − θn−1)jej

〉
+mc1w

2
n.

By using (9.5), taking the conditional expectation with respect to Fn−1 on both sides of
(10.3), and taking supremum for θ ∈ Θ with ‖θ − θn−1‖ ≤ bn,

sup
θ∈Θ, ‖θ−θn−1‖≤bn

c̄ 〈−∇ḡn−1(θn−1), θ − θn−1〉 (10.3)

≤ E
[
〈−∇ḡn−1(θn−1), θ?n − θn−1〉

∣∣∣∣Fn−1

]
+ c′1w

2
n.

Then combining the above with (9.3) finishes the proof.

We first show a sufficient condition for a subsequence (θtk)k≥1 to converge to a stationary
point of a limiting averaged surrogate function.

Proposition 31 Assume (A1)-(A4), (A7), and the case C2 in Theorem 2. Assume rn+1/rn =
O(1). Suppose there exists a sequence (tk)k≥1 in N such that almost surely, either

∞∑
k=1

‖θtk+1 − θtk‖ =∞ or lim inf
k→∞

E
[∣∣∣∣〈∇ḡtk+1(θtk),

θtk+1 − θtk
‖θtk+1 − θtk‖

〉∣∣∣∣ ∣∣∣∣Ftk] = 0. (10.4)

Then there exists a further subsequence (sk)k≥1 of (tk)k≥1 such that ḡ∞ := limk→∞ ḡsk and
θ∞ := limk→∞ θsk exist almost surely and θ∞ and is a stationary point of ḡ∞ over Θ.
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Proof By Proposition 27, we have that for all i = 1, . . . ,m, almost surely,

∞∑
k=1

‖θtk+1 − θtk‖E

[
m∑
i=1

∣∣∣∣〈∇ḡtk+1(θtk),
θtk+1 − θtk
‖θtk+1 − θtk‖

〉∣∣∣∣ Ftk
]
<∞.

Thus the former condition in the assertion implies the latter almost surely. Thus it suffices to
show that this latter condition implies the assertion. Assume this condition, and let (sk)k≥1

be a subsequence of (tk)k≥1 for which the liminf in (10.4) is achieved. Using (A7), we may
take a subsequence along which the following limits θ∞ = limk→∞ θsk , ḡ∞ := limk→∞ ḡsk ,
and ∇ḡ∞ := limk→∞∇ḡsk exist.

Now suppose for contradiction that θ∞ is not a stationary point of ḡ∞ over Θ. Then
there exists θ′ ∈ Θ and δ > 0 such that〈

∇ḡ∞(θ∞), θ′ − θ∞
〉
< −δ < 0.

Denote θt := tθ′ + (1− t)θ∞ for t ∈ [0, 1]. Then

〈∇f(θ∞), θt − θ∞〉 = t〈∇f(θ∞), θ′ − θ∞〉 < t δ < 0 for all t ∈ [0, 1].

Choose t sufficiently small so that ‖θt − θ∞‖ < 1/2 and denote θ∗ for such θt. Note that
θ∗ ∈ Θ by convexity of Θ. Necessarily θ∗ 6= θ∞. By the triangle inequality,

‖〈∇ḡsk+1(θsk), θ? − θsk〉 − 〈∇ḡ∞(θ∞), θ? − θ∞〉‖
≤ ‖∇ḡsk+1(θsk)−∇ḡ∞(θ∞)‖ · ‖θ? − θsk‖+ ‖∇ḡ∞(θ∞)‖ · ‖θ∞ − θsk‖.

By the choice of the subsequence sk, we see that the right-hand side goes to zero as k →∞.
Hence for all sufficiently large k ≥ 1, we have

〈∇ḡsk+1(θsk), θ? − θsk〉 < −δ/2.

Note that by Lemma 17, ‖θn − θn−1‖ = O(wn). Hence by Lemma 30, there is a constant
c > 0 such that for al n ≥ 1,

‖θ?sk+1 − θsk‖
wsk

E
[〈
∇ḡsk+1(θ?sk+1),

θ?sk+1 − θsk
‖θ?sk+1 − θsk‖

〉 ∣∣∣∣Fsk]
≤ inf

θ∈Θ, ‖θ−θsk
‖≤1
〈∇ḡsk+1(θsk), θ − θsk〉+ c

r2
sk+1

rsk
.

Since ‖θ?n+1 − θn‖ ≤ wn+1, by using the hypothesis, the left-hand side above converges to
zero almost surely as k → ∞. All terms on the right-hand side above except the first one
vanish as k → ∞. Also note that ‖θ∗ − θsk‖ ≤ ‖θ

∗ − θ∞‖ + ‖θ∞ − θsk‖ < 1 for all k
sufficiently large. Hence we obtain

0 ≤ lim inf
k→∞

inf
θ∈Θ, ‖θ−θsk

‖≤1
〈∇ḡsk+1(θsk), θ − θsk〉 ≤ lim inf

k→∞
〈∇ḡsk+1(θsk), θ∗ − θsk〉

= 〈∇ḡ∞(θ∞), θ∗ − θ∞〉 < 0,

which is a contradiction. This shows the assertion.
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Proposition 32 Assume (A1)-(A4), (A7), and the case C2 in Theorem 2. If (tk)k≥1 is
such that θtk is a short point for all k ≥ 1, ḡ∞ := limk→∞ ḡtk and θ∞ := limk→∞ θtk exist
almost surely, then θ∞ is a stationary point of ḡ∞ over Θ.

Proof The argument is similar to that of (Bertsekas, 1997, Prop. 2.7.1). However, here
we do not need to assume the uniqueness of solutions to minimization problems of ḡt in
each block coordinate due to the added search radius restriction, and also note that we are
considering a random choice of block coordinates in each application of Algorithm 3.

Recall that J1(n), . . . , Jm(n) denotes the coordinate blocks chosen by Algorithm 3 at
iteration n of Algorithm 1, and by (A6), their joint distribution does not depend on n and
also they are independent of everything else. Fix a coordinate block J ∈ J that has a positive
probability of being chosen by J1(n). Then J1(tk) = J for infinitely many k’s almost surely
by a Borel-Cantelli lemma. We may refine the subsequence (tk)k≥1 so that J1(tk) = J for
all k ≥ 1 almost surely. For each θ ∈ Θ, we write θ = [θJ , θJ

c
], where θJ is the projection

of θ onto the coordinate block J and similarly for the complementary coordinate block Jc.
In this fashion, we denote θn = [θJn , θ

Jc

n ] and θ∞ = [θJ∞, θ
Jc

∞ ]. Recall the block update
θtk−1 → θ

(1)
tk
→ · · · → θ

(m)
tk

= θtk and denote θtk;1 := θ
(1)
tk

. Then since θtk is a short point,

ḡtk
(
θJtk;1, θ

Jc

tk;1

)
≤ ḡtk

(
θ, θJ

c

tk;1

)
for every θ ∈ ΘJ = ProjRJ (Θ). Indeed, in this case, his is because θJtk;1 is a minimizer of
θ 7→ ḡtk+1(θ, θctk;1) over ΘJ . Noting that ‖θn − θn−1‖ = O(wn) = o(1), it follows that

ḡtk
(
θJ∞, θ

Jc

∞
)
≤ ḡtk

(
θ, θJ

c

∞
)

for all θ ∈ ΘJ . Since θJ is convex, it follows that〈
∇J ḡ∞(θ∞), θ − θJ∞

〉
≥ 0 for all θ ∈ ΘJ .

By using a similar argument for the subsequent coordinate blocks J2(n), . . . , Jm(n), one can
show that the above holds for every coordinate block J that has a positive chance of being
chosen by some of the blocks among J1(n), . . . , Jm(n). The union of all such J covers the
entire coordinates {1, . . . , p} by (A6). Hence we deduce that 〈∇ḡ∞(θ∞),θ − θ∞〉 ≥ 0 for
all θ ∈ Θ. This shows the assertion.

The following proposition gives a key property of a hypothetical non-stationary limit
point of the iterates (θn)n≥1, if exists.

Proposition 33 Assume (A1)-(A4), (A7), and the case C2 in Theorem 2. Suppose there
exists a sequence (nk)k≥1 such that ḡ∞ := limk→∞ ḡnk

and θ∞ := limk→∞ θnk
exist almost

surely and θ∞ is not a stationary point of ḡ∞ over Θ. Then there exists ε > 0 such that the
ε-neighborhood Bε(θ∞) := {θ ∈ Θ | ‖θ − θ∞‖ < ε} with the following properties:

(a) Bε(θ∞) does not contain any stationary points of ḡ∞ over Θ;

(b) There exists infinitely many θt’s outside of Bε(θ∞).
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Proof We will first show that there exists an ε-neighborhood Bε(θ∞) of θ∞ that does not
contain any short points of Λ. Suppose for contradiction that for each ε > 0, there exists a
short point Λ in Bε(θ∞). Then one can construct a sequence of short points converging to
θ∞. But then by Proposition 32, θ∞ is a stationary point, a contradiction.

Next, we show that there exists ε > 0 such that Bε(θ∞) satisfies (a). Suppose for
contradiction that there exists no such ε > 0. Then we have a sequence (θ∞;k)k≥1 of
stationary points of Λ that converges to θ∞. Denote the limiting surrogate loss function
associated with θ∞;k by ḡ∞;k. Recall that each ḡ∞;k is parameterized by elements in a
compact set according to (A7). Hence by choosing a subsequence, we may assume that
ḡ∞ := limk→∞ ḡ∞;k is well-defined. Fix θ ∈ Θ note that by Cauchy-Schwarz inequality,

〈∇ḡ∞(θ∞), θ − θ∞〉 ≥ −‖∇ḡ∞(θ∞)−∇ḡ∞;k(θ∞;k)‖ · ‖θ − θ∞‖
− ‖∇ḡ∞;k(θ∞;k)‖ · ‖θ∞ − θ∞;k‖+ 〈∇ḡ∞;k(θ∞;k),θ − θ∞;k〉 .

Note that 〈∇ḡ∞;k(θ∞;k), θ − θ∞;k〉 ≥ 0 since θ∞;k is a stationary point of ḡ∞;k over Θ.
Hence by taking k → ∞, this shows 〈∇ḡ∞(θ∞),θ − θ∞〉 ≥ 0. Since θ ∈ Θ was arbitrary,
this shows that θ∞ is a stationary point of ḡ∞ over Θ, a contradiction.

Lastly, from the earlier results, we can choose ε > 0 such that Bε(θ∞) has no short points
of Λ and also satisfies (b). We will show that Bε/2(θ∞) satisfies (b). Then Bε/2(θ∞) satis-
fies (a)-(b), as desired. Suppose for contradiction there are only finitely many θt’s outside of
Bε/2(θ∞). Then there exists an integerM ≥ 1 such that θt ∈ Bε/2(θ∞) for all t ≥M . Then
each θn for n ≥M is a short point of Λ. By definition, it follows that ‖θn− θn−1‖≥ wn for

all t ≥M . This implies αn =

√∑n
i=1‖θ

(i)
n − θn−1‖2 ≥ ‖θn+1 − θn‖ ≥ wn+1 for all n ≥M .

Then by Proposition 31, since
∑∞

n=1wn =∞, there exists a subsequence (sk)k≥1 such that
θ′∞ := limk→∞ θtk exists and is stationary. But since θ′∞ ∈ Bε(θ), this contradicts (a) for
Bε(θ). This completes the proof.

We are now ready to give proof of Lemma 23 for the diminishing radius case.

Proof of Lemma 23 for cases C1-C2 in Theorem 2. Assume (A1)-(A4), (A7), and the
case C2 in Theorem 2. (As mentioned at the beginning of this subsection, C1 is a special
case of C2.) Suppose there is a non-stationary limit point θ∞ of Λ. By Proposition 33,
we may choose ε > 0 such that Bε(θ∞) satisfies the conditions (a)-(b) of Proposition 33.
Choose M ≥ 1 large enough so that wt < ε/4 whenever t ≥M . We call an integer interval
I := [`, `′] a crossing if θ` ∈ Bε/3(θ∞), θ`′ /∈ B2ε/3(θ∞), and no proper subset of I satisfies
both of these conditions. By definition, two distinct crossings have empty intersections. Fix
a crossing I = [`, `′], it follows that by triangle inequality,

`′−1∑
t=`

‖θt+1 − θt‖ ≥ ‖θ`′ − θ`‖ ≥ ε/3. (10.5)

Note that since θ∞ is a limit point of Λ, θt visits Bε/3(θ∞) infinitely often. Moreover, by
condition (a) of Proposition 33, θt also exits Bε(θ∞) infinitely often. It follows that there
are infinitely many crossings. Let tk denote the kth smallest integer that appears in some
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crossing. Then tk →∞ as k →∞, and by (10.5),

∞∑
k=1

‖θtk+1 − θtk‖ ≥ (# of crossings)
ε

3
=∞.

Then by Proposition 31, there is a further subsequence (sk)k≥1 of (tk)k≥1 such that θ′∞ :=
limk→∞ θsk exists and is stationary. However, since θtk ∈ B2ε/3(θ∞), we have θ′∞ ∈ Bε(θ∞).
This contradicts the condition (b) of Proposition 33 for Bε(θ∞) that it cannot contain any
stationary point of Λ. This shows the assertion.
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Appendix A. Background on Markov chains and MCMC

A.1 Markov chains

Here, we provide a brief overview of Markov chains on a countable state space (refer to, for example,
Levin and Peres (2017)). Let Ω be a countable set. A function P : Ω2 → [0,∞) is called a Markov
transition matrix if each row of P sums to 1. A sequence of random variables (Xt)t≥0 taking values
in Ω is called a Markov chain with transition matrix P if, for any x0, x1, . . . , xn ∈ Ω,

P(Xn = xn |Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn |Xn−1 = xn−1) = P (xn−1, xn). (A.1)

A probability distribution π on Ω is called a stationary distribution for the Markov chain (Xt)t≥0

if π = πP , meaning

π(x) =
∑
y∈Ω

π(y)P (y, x).

The chain (Xt)t≥0 is called irreducible if, for any x, y ∈ Ω, there exists an integer t ≥ 0 such that
P t(x, y) > 0. For each x ∈ Ω, let T (x) = {t ≥ 1 | P t(x, x) > 0} denote the set of times at which
the chain can return to x. The period of x is the greatest common divisor of T (x), and the chain
is called aperiodic if all states have period 1. A chain is positive recurrent if, for some x ∈ Ω, the
expected time to return to x (starting from x) is finite. An irreducible, aperiodic Markov chain has
a unique stationary distribution if and only if it is positive recurrent (Levin and Peres, 2017, Thm
21.21).

Given two probability distributions µ and ν on Ω, the total variation distance between them is
defined as

‖µ− ν‖TV = sup
A⊆Ω
|µ(A)− ν(A)|.

If a Markov chain (Xt)t≥0 starts at x0 ∈ Ω, then by (A.1), the distribution of Xt is P t(x0, ·). If
the chain is irreducible and aperiodic, and has a stationary distribution π, the convergence theorem
(see, e.g., (Levin and Peres, 2017, Thm 21.14)) states that as t→∞, the distribution of Xt converges
to π in total variation distance:

sup
x0∈Ω

‖P t(x0, ·)− π‖TV → 0.

In the case of a finite state space, this convergence is exponential in t (see (Levin and Peres,
2017, Thm 4.9)), meaning there are constants λ ∈ (0, 1) and C > 0 such that for all t ≥ 0,

max
x0∈Ω
‖P t(x0, ·)− π‖TV ≤ Cλt. (A.2)

A.2 Markov chain Monte Carlo Sampling

Suppose we have a finite sample space Ω and probability distribution π on it. We would like to sample
a random element ω ∈ Ω according to the distribution π. Markov chain Monte Carlo (MCMC) is a
sampling algorithm that leverages the properties of Markov chains we mentioned in Subsection A.1.
Namely, suppose that we have found a Markov chain (Xt)t≥0 on state space Ω that is irreducible,
aperiodic2, and has π as its unique stationary distribution. Denote its transition matrix as P . Then

2. Aperiodicity can be easily obtained by making a given Markov chain lazy, that is, adding a small
probability ε of staying at the current state. Note that this is the same as replacing the transition
matrix P by Pε := (1 − ε)P + εI for some ε > 0. This ‘lazyfication’ does not change stationary
distributions, as πP = π implies πPε = π.
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by (A.2), for any ε > 0, one can find a constant τ = τ(ε) = O(log ε−1) such that the conditional
distribution of Xt+τ given Xt is within total variation distance ε from π regardless of the distribution
of Xt. Recall such τ = τ(ε) is called the mixing time of the Markov chain (Xt)t≥1. Then if one
samples a long Markov chain trajectory (Xt)t≥1, the subsequence (Xkτ )k≥1 gives approximate i.i.d.
samples from π.

We can further compute how far the thinned sequence (Xkτ )k≥1 is away from being independent.
Namely, observe that for any two nonempty subsets A,B ⊆ Ω,

|P(Xkτ ∈ A, Xτ ∈ B)− P(Xkτ ∈ A)P(Xτ ∈ B)|
= |P(Xkτ ∈ A)− P(Xkτ ∈ A |Xτ ∈ B)| |P(Xτ ∈ B)|
≤ |P(Xkτ ∈ A)− P(Xkτ ∈ A |Xτ ∈ B)|
≤ |P(Xkτ ∈ A)− π(A)|+ |π(A)− P(Xkτ ∈ A |Xτ ∈ B)| ≤ λkτ + λ(k−1)τ .

Hence the correlation between Xkτ and Xτ is O(λ(k−1)τ ).
For the lower bound, let us assume that Xt is reversible with respect to π, that is, π(x)P (x, y) =

π(y)P (y, x) for x, y ∈ Ω (e.g., random walk on graphs). Then τ(ε) = Θ(log ε−1) (see (Levin and
Peres, 2017, Thm. 12.5)), which yields supx∈Ω‖P t(x, ·)− π‖TV = Θ(λt). Also, P(Xτ ∈ B) > δ > 0
for some δ > 0 whenever τ is large enough under the hypothesis. Hence

|P(Xkτ ∈ A, Xτ ∈ B)− P(Xkτ ∈ A)P(Xτ ∈ B)|
≥ δ−1 |P(Xkτ ∈ A)− P(Xkτ ∈ A |Xτ ∈ B)|
≥
∣∣ |P(Xkτ ∈ A)− π(A)| − |π(A)− P(Xkτ ∈ A |Xτ ∈ B)|

∣∣ ≥ cλ(k−1)τ

for some constant c > 0. Hence the correlation between Xkτ and Xτ is Θ(λ(k−1)τ ). In particular,
the correlation between two consecutive terms in (Xkτ )k≥1 is of Θ(λτ ) = Θ(ε). Thus, we can make
the thinned sequence (Xkτ )k≥1 arbitrarily close to being i.i.d. for π, but if Xt is reversible with
respect to π, the correlation within the thinned sequence is always nonzero.

In practice, one may not know how to estimate the mixing time τ = τ(ε). In order to empirically
assess that the Markov chain has mixed to the stationary distribution, multiple chains are run for
diverse mode exploration, and their empirical distribution is compared to the stationary distribution
(a.k.a. multi-start heuristic). See Brooks et al. (2011) for more details on MCMC sampling.

Appendix B. Example of Surrogate functions

In this section, we list some examples of block-convex surrogate functions, which include the usual
convex surrogate functions in the literature (see, Mairal (2013a,b)).

Example 1 (Proximal surrogates for L-smooth functions) Suppose f is L-smooth, that is,
∇f is L-Lipscthiz continuous. Then f is L-weakly convex, that is, θ 7→ f(θ) + L

2 ‖θ‖
2 is convex (see

Lemma 35). Hence for each ρ ≥ L, the following function g belongs to SrgL+ρ,ρ−L(f,θ?):

g : θ 7→ f(θ) +
ρ

2
‖θ − θ?‖2.

Indeed, g ≥ f , g(θ?) = f(θ?), ∇g(θ?) = ∇f(θ?), and ∇g is (L+ρ)-Lipschtiz. Moreover, g is convex
being some of two convex functions:

f(θ) +
L

2
‖θ − θ?‖2 =

(
f(θ) +

L

2
‖θ‖2

)
+

(
−L〈θ,θ?〉+

L

2
‖θ?‖2

)
.

Minimizing the above function over Θ is equivalent to applying a proximal mapping of f , where the
resulting estimate is denoted as proxf/ρ(θ

?) (see Parikh and Boyd (2014); Davis and Drusvyatskiy
(2019)). N
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Example 2 (Proximal modification of weakly convex surrogates) One can also use proxi-
mal mapping to convert block weakly convex surrogates to multi-convex surrogates. Namely, suppose
g ∈ SrgJL,−ρ(f,θ

?) is a surrogate of f at θ? that is ρ-weakly convex in each block J ∈ J. That
is, θ 7→ g(θ) + ρ

2‖θ‖ is convex in ΘJ for each J ∈ J. In this case, g is nonconvex in each block
coordinate so it cannot be directly block-minimized. In this case, we can add a quadratic term to
make it a multi-convex surrogate. That is, for each ρ′ ≥ ρ, the following function g̃ belongs to
SrgJL+ρ′,ρ′−ρ(f,θ

?):

g̃ : θ 7→ g(θ) +
ρ′

2
‖θ − θ?‖2,

which can be easily verified by expanding out the quadratic term. In the slightly more general case
when the modulus of weak convexity of g depends on the coordinate block J , we may add block-
dependent quadratic terms to reduce the amount of proximal modification. N

Example 3 (Prox-linear surrogates) If f is L-smooth, then the following quadratic function g
belongs to Srg2L,L(f,θ?):

g : θ 7→ f(θ?) + 〈∇f(θ?), θ − θ?〉+
L

2
‖θ − θ?‖2.

(See Lemma 34 in Appendix C.) If in addition f is convex, then g ∈ SrgL,L(f,θ?); If f is µ-strongly
convex, then g ∈ SrgL−µ,L(f,θ?). N

Example 4 (Prox-linear surrogates) Suppose f = f1 + f2 where f1 is differentiable with L-
Lipschitz gradient and f2 is convex over Θ. Then the following function g belongs to Srg2L,L(f,θ?):

g : θ 7→ f1(θ?) + 〈∇f1(θ?), θ − θ?〉+
L

2
‖θ − θ?‖2 + f2(θ).

Minimizing g over Θ amounts to performing a proximal gradient step in Beck and Teboulle (2009);
Nesterov (2013). N

Example 5 (DC programming surrogates) Suppose f = f1 + f2 where f1 is convex and f2 is
concave and differentiable with L2-Lipschitz gradient over Θ. One can also write f = f1 − (−f2)
which is the difference of convex (DC) functions f1 and −f2. Then the following function g belongs
to Srg2L,L(f,θ?):

g : θ 7→ f1(θ) + f2(θ?) + 〈∇f2(θ?), θ − θ?〉 .

Such surrogates are important in DC programming (see, e.g., Horst and Thoai (1999)).
In fact, our method allows f1 to be only multi-convex with respect to the coordinate blocks in

J, that is, f1 is convex on ProjRJ (Θ) for each coordinate block J ∈ J. In this case, g above is a
multi-convex surrogate of f at θ? and belongs to SrgJ2L,L(f,θ?). N

Example 6 (Convex Variational Surrogates) Let f : Rp × Rq → R be a two-block multi-
convex function and let Θ1 ⊆ Rp and Θ2 ⊆ Rq be two convex sets. Define a function f∗ : θ 7→
infH∈Θ2

f(θ, H). Then for each θ? ∈ Θ, the following function

g : θ 7→ f(θ, H?), H? ∈ arg min
H∈Θ2

f(θ?, H)

is convex over Θ1 and satisfies g ≥ f and g(θ?) = f(θ?). Further, assume that

(i) θ 7→ f(θ, H) is differentiable for all H ∈ Θ2 and θ 7→ ∇θf(θ, H) is L′-Lipschitz for all H ∈ Θ2 ;
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(ii) H 7→ ∇θf(θ, H) is L-Lipschitz for all θ ∈ Θ1;

(iii) H 7→ f(θ, H) is ρ-strongly convex for all θ ∈ Rp.

Then g belongs to SrgL′′,ρ(f∗,θ
?) for some L′′ > 0. When f is jointly convex, then f∗ is also convex

and we can choose L′′ = L. N

Example 7 (Multi-convex Variational Surrogates) Let f : Rp1 × · · · × Rpm × Rpm+1 → R be
a (m+ 1)-block multi-convex function and let Θ1 ⊆ Rp and Θi ⊆ Rpi for i = 1, . . . ,m+ 1 be convex
sets. Denote Θ := Θ1 × · · · × Θm. Define a function f∗ : θ 7→ infH∈Θpm+1

f(θ, H). Then for each
θ? ∈ Θ, the following function

g : θ 7→ f(θ, H?), H? ∈ arg min
H∈Θpm+1

f(θ?, H)

is m-block multi-convex over Θ and satisfies g ≥ f and g(θ?) = f(θ?). Further, assume that

(i) θ 7→ f(θ, H) is differentiable for all H ∈ Θpm+1 and θ 7→ ∇θf(θ, H) is L′-Lipschitz for all
H ∈ Θpm+1

;

(ii) H 7→ ∇θf(θ, H) is L-Lipschitz for all θ ∈ Θ;

(iii) H 7→ f(θ, H) is µ-strongly convex for all θ ∈ Rpm+1 .

Let J = {J1, . . . , Jm}, where Ji denotes the ith coordinate block corresponding to Rpi . Then g belongs
to SrgJL′′,µ(f∗,θ

?) for some L′′ > 0. When f is jointly convex, then f∗ is also convex and we can
choose L′′ = L. N

Example 8 (Refining block structure) Suppose f : Θ ⊆ Rp → R with Θ convex, and we have
a convex surrogate g ∈ SrgL,ρ(f,θ

?). Let J denote an arbitrary set of coordinate bloks for Rp
(e.g., J = {{1}, . . . , {p}}). Then one can also view the fuction g as a multi-convex surrogate in
SrgJL,ρ(f∗,θ

?). Instead of minimizing g over the convex set Θ with respect to all p coordinates, one
can block-minimize g with respect to the block structure J. For instance, if J = {{1}, . . . , {p}} and
if Ji(n) in Algorithm 3 is chosen uniformly at random from J, then Algorithm 3 becomes a random
coordinate descent for m iterations, which choses a random coordinate i ∈ {1, . . . , p} and minimize
g over Θ with respect to the ith coordinate. (See, e.g., Wright (2015)).

A similar remark holds for multi-convex surrogates. Namely, suppose g ∈ SrgJL,ρ(f,θ
?), where

J = {J1, . . . , Jm} denotes a set of coordinate blocks for Rp. Let J′ denote an arbitrary set of co-
ordinate bloks for Rp that refines J. Namely, each coordinate block J ∈ J′ is a subset of some Ji,
i = 1, . . . ,m. Then one can also view the fuction g as a multi-convex surrogate in SrgJ

′

L′′,ρ(f∗,θ
?)

and accordingly, one can block-minimize g using the finer block structure given by J′ instead of the
original block structure J. N

See Mairal (2013a) for other types of surrogate functions such as quadratic, Jensen, and saddle
point surrogates.

Appendix C. Auxiliary lemmas

Lemma 34 (Convex Surrogate for Functions with Lipschitz Gradient) Let f : Rp → R be
differentiable and ∇f be L-Lipschitz continuous. Then for each θ, θ′ ∈ Rp,

|f(θ′)− f(θ)− 〈∇f(θ), θ′ − θ〉| ≤ L

2
‖θ − θ′‖2.

Proof This is a classical Lemma. See (Nesterov, 1998, Lem 1.2.3).
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Lemma 35 (Characterization of weak convexity) Let f : Rp → R be a smooth function. Fix
a convex set Θ ⊆ Rp and ρ > 0. The following conditions are equivalent.

(i) (Weak convexity) θ 7→ f(θ) + ρ
2‖θ‖

2 is convex on Θ;

(ii) (Hypermonotonicity) 〈∇f(θ)−∇f(θ′), θ − θ′〉 ≥ −ρ‖θ − θ′‖2 for all θ,θ′ ∈ Θ;

(iii) (Quadratic lower bound) f(θ)− f(θ′) ≥ 〈∇f(θ′), θ − θ′〉 − ρ
2‖θ − θ′‖2 for all θ,θ′ ∈ Θ.

Proof See (Daniilidis and Malick, 2005, Thm. 7) for an equivalent statement for a more general
case of local Lipschitz functions.

(i)⇒(iii): For s ∈ [0, 1], we have

s
(
f(θ) +

ρ

2
‖θ‖2

)
+ (1− s)

(
f(θ′) +

ρ

2
‖θ′‖2

)
≥ f(sθ + (1− s)θ′) +

ρ

2
‖sθ + (1− s)θ′‖2(C.1)

so we get

f(θ)− f(θ′) ≥ f(θ′ + s(θ − θ′))− f(θ′)

s
− ρ

2

(
‖θ‖2 − ‖θ′‖2 − ‖θ

′ + s(θ − θ′)‖2 − ‖θ′‖2

s

)
Taking the limit s→ 0, we get

f(θ)− f(θ′) ≥ 〈∇f(θ′), θ − θ′〉 − ρ

2

(
‖θ‖2 − ‖θ′‖2 − 2〈θ,θ − θ′〉

)
.

This implies (iii).

(iii)⇒(ii): Adding the following two inequalities

f(θ)− f(θ′) ≥ 〈∇f(θ′), θ − θ′〉 − ρ

2
‖θ − θ′‖2

f(θ′)− f(θ) ≥ 〈∇f(θ), θ′ − θ〉 − ρ

2
‖θ − θ′‖2,

we obtain 0 ≥ 〈∇f(θ′)−∇f(θ), θ − θ′〉 − ρ‖θ − θ′‖2. This implies (ii).

(ii)⇒(i): Fix s ∈ [0, 1] and θ,θ′ ∈ Θ. Denote θs := sθ + (1− s)θ′. Note that θs − θ′ = s(θ − θ′)
and θs−θ = (1−s)(θ′−θ). By the mean value theorem, there exists s∗ ∈ [s, 1] and s′∗ ∈ [0, s]
such that

f(θs)− f(θ) = (1− s)〈∇f(θs∗), θ
′ − θ〉, f(θs)− f(θ′) = s〈∇f(θs′∗), θ − θ′〉.

Multiplying by s and 1− s respectively and adding the resulting equations, we get

f(θs)− sf(θ)− (1− s)f(θ′) = −s(1− s)〈∇f(θs∗)−∇f(θs′∗), θ − θ′〉.

Note that since s′∗ ≤ s ≤ s∗ and θs∗ ,θs′∗ are in the secant line between θ and θ′, by (ii),

〈
∇f(θs∗)−∇f(θs′∗), θ − θ′

〉
=
‖θ − θ′‖
‖θs∗ − θs′∗‖

〈
∇f(θs∗)−∇f(θs′∗), θs∗ − θs′∗

〉
≥ −ρ‖θs∗ − θs′∗‖ · ‖θ − θ′‖
≥ −ρ‖θ − θ′‖2.

It follows that

f(θs)− sf(θ)− (1− s)f(θ′) ≤ s(1− s)ρ‖θ − θ′‖2,

which is equivalent to (C.1).
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Lemma 36 Let f : Rp → R be a function such that ∇f is L-Lipscthiz for some L > 0. Then f is
L-weakly convex, that is, θ 7→ f(θ) + L

2 ‖θ‖
2 is convex.

Proof Follows immediately by Lemmas 34 and 35.

Lemma 37 (Second-Order Growth Property) Let f : Rp → [0,∞) be µ-strongly convex and
let Θ is a convex subset of Rp. Let θ∗ denote the minimizer of f over Θ. Then for all θ ∈ Θ,

f(θ) ≥ f(θ∗) +
µ

2
‖θ − θ∗‖2.

Proof See (Mairal, 2013b, Lem. A.4).

Next, we provide some probabilistic lemmas.

Lemma 38 Let (Xn)n≥1 be a sequence of nonnegative random variables adapted to a filtration
(Fn)n≥1 and E[Xn] < ∞ for n ≥ 1. Suppose there exists constants α ∈ [0, 1) and M > 0 such that
for sufficiently large n ≥ 1,

E [Xn | Fn−1] ≤ αXn−1 +M. (C.2)

Then limn→∞Xn exists and finite almost surely. In particular, (Xn)n≥1 is bounded almost surely.

Proof Fix a constant c > 0 and let X̃n := Xn + c for n ≥ 1. Substituting for Xn in (C.2), we get

E[X̃n | Fn−1] ≤ αX̃n−1 + (1− α)c+M

for large enough n ≥ 1. Thus if we choose c = −M/(1−α), then (X̃n)n≥N is a supermartingale with
respect to the filtration (Fn)n≥N for some N ≥ 1. Furthermore, X̃n is uniformly lower bounded
by c = −M/(1 − α) since Xn ≥ 0 for n ≥ 1. By the martingale convergence theorem (see, e.g.,
(Durrett, 2019, Thm. 4.2.11)), X̃n converges almost surely to some random variable, say, X̃∞, such
that E[X̃∞] ≤ E[X̃0] < ∞. In particular, X̃∞ < ∞ almost surely. It follows that Xn converges to
X̃∞ − c almost surely. Lastly, note that

P((Xn)n≥1 is not bounded ) ≤ P(Xn does not converge to X̃∞ − c) = 0.

This shows the assertion.

Lemma 39 Let (θn)n≥1 denote the output of Algorithm 1 with Algorithm 2 used for (3.1) with
λn ≡ 0. Assume (A1), (A3), and (A5’) hold. Suppose that the data sequence (xn)n≥1 is contained
in some compact subset X0 ⊆ X. Then ‖θn−1 − θn‖ = O(wn) and ∆n = O(w2

n) for n ≥ 1. In
particular, if

∑∞
n=1 w

2
n <∞, then (A5) holds.
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Proof The argument here follows the one given in Mensch et al. (2017). Let θ?n be the exact
minmizer of the ρ-strongly convex function ḡn over Θ for n ≥ 1. We introduce the following random
variables

An = ‖θn − θn−1‖, Bn = ‖θn − θ?n‖, Cn = ‖θ?n−1 − θ?n‖, Dn = ḡn(θn)− ḡn(θ?n).

By ρ-strong convexity of ḡn, almost surely, ρ
2B

2
n ≤ Dn. By the second-order growth property

(Lemma 37) and using L′-Lipschitz continuity of gn (see Lemma 16), almost surely,

ρ

2
C2
n ≤ ḡn(θ?n−1)− ḡn(θ?n)

= (1− wn)
(
ḡn−1(θ?n−1)− ḡn−1(θ?n)

)
+ wn

(
gn(θ?n−1)− gn(θ?n)

)
≤ wn

(
gn(θ?n−1)− gn(θ?n)

)
≤ wnL′Cn.

This implise Cn ≤ c1wn for all n ≥ 1 almost surely for some constant c1 > 0. By triangle inequality,
we can write An ≤ Bn +Bn−1 + Cn, so by Cauchy-Schwarz inequality,

A2
n ≤ (Bn +Bn−1 + Cn)2 ≤ 3(B2

n +B2
n−1 + C2

n) (C.3)

≤ 3((2/ρ)(Dn +Dn−1) + (2L′/ρ)2w2
n).

Next, we assume (A5’) and show that Dn = O(w2). Denote D̃n := Dn/w
2
n. We will show that

E
[
D̃n | Fn−1

]
≤ αD̃n−1 +M (C.4)

for all sufficiently large n ≥ 1, where α ∈ [0, 1) and M > 0 are constants. Then by Lemma 38, it
follows that D̃n is uniformly bounded almost surely. This yields Dn = O(w2

n). The assertion then
follows by combining this with (C.3).

It suffices to verify (C.4). First, by using (A5’) and the previous inequalities involving An and
Bn, we have

E [Dn | Fn−1] ≤ (1− µ) (ḡn(θn−1)− ḡn(θ?n))

= (1− µ)wn (gn(θn−1)− gn(θn) + gn(θn)− gn(θ?n))

+ (1− µ)(1− wn)
(
ḡn−1(θn−1)− ḡn−1(θ?n−1)

)
+ (1− µ)(1− wn)

(
ḡn−1(θ?n−1)− ḡn−1(θ?n)

)
≤ (1− µ)L′wn(An +Bn) + (1− µ)Dn−1

≤ (1− µ)c1wn

(√
Dn +Dn−1 + c2w2

n +
√
Dn

)
+ (1− µ)Dn−1,

where c1, c2 > 0 are constants. The second inequality above uses the fact that θ?n−1 is an exact
minimizer of ḡn−1 over Θ. Setting D̃n := Dn/w

2
n, this gives

E
[
D̃n | Fn−1

]
≤ (1− µ)c1

(√
D̃n + D̃n−1(wn−1/wn)2 + c2 +

√
D̃n

)
+ (1− µ)D̃n−1(wn−1/wn)2.

Fix ε > 0. Using the inequality
√
t ≤ εt+ ε−1 for all t ≥ 0, this gives

E
[
D̃n | Fn−1

]
≤ c3εD̃n + (1− µ)(1 + c1ε)(wn−1/wn)2D̃n−1 + c4ε

−1,

where c3, c4 > 0 are constants. Recall the hypothesis that wn−1/wn → 1 as n → ∞. Hence taking
the expectation conditional on Fn−1 and choosing ε > 0 sufficiently small, we verify (C.4), as de-
sired.
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Lemma 40 Fix a bounded and measurable function ψ : X×Θ→ R. Under Assumptions (A2) and
(A3),

E

[
sup
θ∈Θ

√
n

∣∣∣∣∣Ex∼π [ψ(x,θ)]− 1

n

n∑
k=1

ψ(xk,θ)

∣∣∣∣∣
]

= O(1).

Furthermore, supθ∈Θ

∣∣Ex∼π [ψ(x,θ)]− 1
n

∑n
k=1 ψ(xk,θ)

∣∣→ 0 almost surely as t→∞.

Proof Omitted. See (Lyu et al., 2020, Lem. 10)

Lemma 41 Fix a continuous and measurable function ψ : X×Θ→ R. Fix a sequence (wn)n≥1 in
(0, 1] and define functions ψ̄n : Θ→ R by

ψ̄n(θ) =

n∑
k=1

ŵnkψ(xk,θ),

where wnk := wk
∏n
i=k+1(1−wi). Suppose (A2)-(A3) hold. Assume that there exist an integer T ≥ 1

such that wT ≥ 1/2 and w−1
n+1−w−1

n ≤ 1 for all n ≥ T . Suppose wn ≥ cn−γ for some constant c > 0
and γ ∈ (0, 1] for all n ≥ 1.

Then there exists a constant C = C(T ) > 0 such that for all n ≥ 1,

E
[

sup
θ∈Θ

∣∣Ex∼π [ψ(x,θ)]− ψ̄n(θ)
∣∣] ≤ Cwn√n.

Furthermore, if wn
√
n = O(1/(log n)1+ε) for some ε > 0, then supθ∈Θ

∣∣Ex∼π [ψ(x,θ)]− ψ̄n(θ)
∣∣→ 0

almost surely as t→∞.

The following lemma establishes the fluctuation bound in Lemma 20 for univariate observables.

Lemma 42 Fix compact subsets X ⊆ Rq, Θ ⊆ Rp and a bounded Borel measurable function ψ :
X ×Θ→ R. Let (xn)n≥1 denote a sequence of points in X such that xn = ϕ(Xn) for n ≥ 1, where
(Xn)n≥1 is a Markov chain on a state space Ω and ϕ : Ω → X is a measurable function. Fix a
sequence of weights wn ∈ (0, 1], n ≥ 1 and define functions ψ̄(·) := Ex∼π [ψ(x, ·)] and ψ̄n : Θ → R
recursively as ψ̄0 ≡ 0 and

ψ̄n(·) = (1− wn)ψ̄n−1(·) + wnψ(xn, ·).

Assume the following:

(a1) The Markov chain (Xn)n≥1 mixes exponentially fast to its unique stationary distribution and
the stochastic process (xn)n≥1 on X has a unique stationary distribution π.

(a2) wn is non-increasing in n and w−1
n − w−1

n−1 ≤ 1 for all sufficiently large n ≥ 1.

Then there exists a constant C > 0 such that for all n ≥ 1,

E
[

sup
θ∈Θ

∥∥ψ̄(θ)− ψ̄n(θ)
∥∥] ≤ Cwn√n. (C.5)

Furthermore, if wn
√
n = O(1/(log n)1+ε) for some ε > 0, then supθ∈Θ

∥∥ψ̄(θ)− ψ̄n(θ)
∥∥ → 0 as

t→∞ almost surely.
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Proof We first argue for the special case when wn = 1/n for n ≥ 1. In this case, w−1
n − w−1

n−1 ≡ 1
so (a2) is satisfied, and also wnk ≡ 1/n for 1 ≤ k ≤ n so ψ̄n(θ) becomes the sample mean

ψ̄n(θ) =
1

n

n∑
k=1

ψ(xk,θ).

If xk’s are i.i.d. from π, then (C.5) holds by a standard empirical process theory. More generally
under the hypothesis (a1), (C.5) also holds by using a uniform functional central limit theorem for
Markov chains. This statement has been shown in (Lyu et al., 2020, Lem. 10).

Now we consider a more general weighting scheme under (a2). Fix t ∈ N. Define Ψi(θ) =
(t− i+ 1)−1

∑t
j=1 ψ(xj ,θ) for each 1 ≤ i ≤ t. Denote ψ̄(θ) := Ex∼π[ψ(x,θ)]. By the previous case,

there exists a constant c1 > 0 such that

E
[

sup
θ∈Θ
|Ψi(θ)− ψ̄(θ)|

]
≤ c1√

n− i+ 1

for all 1 ≤ i ≤ n. A simple calculation shows the following identity

ψ̄n − ψ̄ =

n∑
i=1

(wni − wni−1)(n− i+ 1)(Ψi − ψ̄),

with the convention of wn0 = 0. Also, suppose T ≥ 1 is such that w−1
k − w

−1
k−1 ≤ 1 for k ≥ T . Note

that for i ≥ 2, wni−1 ≤ wni if and only if wi−1(1−wi) ≤ wi if and only if w−1
i −w

−1
i−1 ≤ 1. Hence for

each n > T and k ≥ T , we have wnk ≤ wnk+1 ≤ · · · ≤ wnn = wn. Then observe that

E
[

sup
θ∈Θ
|ψ̄n(θ)− ψ̄(θ)|

]
≤ E

[
n∑
i=1

|wni − wni−1|(t− i+ 1) sup
W∈Θ

∣∣Ψi(θ)− ψ̄(θ)
∣∣]

=

n∑
i=1

|wni − wni−1|(n− i+ 1)E
[

sup
θ∈Θ

∣∣Ψi(θ)− ψ̄(θ)
∣∣]

≤
n∑
i=1

|wni − wni−1|c1
√
n− i+ 1

≤ c1
√
n

(
T∑
i=1

|wni − wni−1|+
n∑
i=T

(ŵni − ŵni−1)

)

≤ c1
√
n

(
wn +

T∑
i=1

wni

)
.

By using Lemma 43, we have
∑T
i=1 w

n
i = O(1/n). Hence the above shows (C.5). Lastly, note that

(a2) implies wn ≥ c2/n for all n ≥ 1 for some constant c2 > 0 (see the proof of Lemma 43) for
details. Therefore we can conclude (C.5).

To show the second part of the assertion, suppose wn
√
n = O(1/(log n)1+ε) for some fixed ε > 0.

Denote Xn := supθ∈Θ |ψ̄(θ) − ψ̄n(θ)|, which is a nonnegative random variable. We wish to show
Xn → 0 almost surely as n → ∞. Suppose for contradiction that there exists a diverging sequence
n(k) such that Xn(k) does not converge to 0 with some positive probability. According to the first
part, there exists a constant c > 0 such that E[Xn] ≤ c(log n)−1−ε for all n ≥ 1. By Markov
inequality, we have

P
(
|Xn| ≥

1

(log n)ε/2

)
≤ c

(log n)1+(ε/2)
.
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We may choose a subsequence m(r) = n(k(r)) of n(k) such that there exists a constant c′ > 0 for
which m(r) ≥ c′ exp(r) for all r ≥ 1. Then it follows that

P
(
|Xm(r)| ≥

1

(logm(r))ε/2

)
≤ c

r1+(ε/2)
.

Since m(r) diverves, by the Borel-Cantelli lemma, Xm(r) → 0 almost surely as r →∞. This contra-
dicts the assumption that Xn(r) does not converge to zero almost surely. This completes the proof.

The following lemma was used in the proof of Lemma 42.

Lemma 43 Fix a sequence (wn)n≥1 of numbers in (0, 1]. Denote wnk := wk
∏n
i=k+1(1 − wi) for

1 ≤ k ≤ n. Suppose w−1
n −w−1

n−1 ≤ 1 for all sufficiently large n ≥ 1. Fix T ≥ 1. Then for all n ≥ T ,

T∑
i=1

wni = O(1/n).

Proof Suppose w−1
n −w−1

n−1 ≤ 1 for all n ≥ N for some N ≥ 1. It follows that w−1
n −w−1

N ≤ n−N , so
wn ≥ 1

n−N+w−1
N

. Hence for some constant c > 0, wn ≥ 1
n+c for all n ≥ N . Denote a∨ b = max(a, b).

Then note that

wnk = wk exp

(
n∑

i=k+1

log(1− wi)

)
≤ exp

(
−

n∑
i=k+1

wi

)
≤ exp

(
−
∫ n

N∨(k+1)

1

x+ c
dx

)
=

[N ∨ (k + 1)] + c

n+ c
,

where the second inequality uses wk ≤ 1 and the following inequality uses log(1−a) ≤ −a for a < 1.
Hence for each fixed 1 ≤ T ≤ n, we have

T∑
k=1

wnk ≤ T ((N ∨ (T + 1)) + c)
1

n+ c
.

This shows the assertion.

Remark 44 In the original statement of (Mairal, 2013b, Lem B.7), the assumption that w−1
n+1 −

w−1
n ≤ 1 for sufficiently large n was not used, and it seems that the argument in Mairal (2013b)

needs this assumption. To give more detail, the argument begins with writing the empirical loss
fn(·) =

∑n
k=1 w

n
k `(Xk, ·), where wnk := wk(1 − wk−1) · · · (1 − wn), and proceeds with assuming the

monotonicity wn1 ≤ · · · ≤ wnn, which is equivalent to w1 ≥ 1 − w1 and wk ≥ wk−1(1 − wk) for
2 ≤ k ≤ n. In turn, this is equivalent to w−1

k − w
−1
k−1 ≤ 1 for 2 ≤ k ≤ n and w1 ≥ 1/2. Note that

this condition implies w−1
k ≤ k+ 1, or wk ≥ 1

k+1 . This means that, asymptotically, wk cannot decay
faster than the balanced weight 1/k. We have used this observation in the proof of Lemma 43.

Next, we will argue that (A4’) implies (A4). This observation was made in (Lyu et al., 2022,
Remark 20), but we repeat the argument here for completeness. It is clear that if the sequence
wn ∈ (0, 1] satisfies (A4’), then

∑∞
n=1 wn = ∞ and

∑∞
n=1 w

2
n

√
n < ∞. So it remains to verify

w−1
n −w−1

n−1 ≤ 1 for sufficiently large t. Suppose wn = Θ(n−β(log t)−δ) for some β ∈ [0, 1] and δ ≥ 0.
Let c1, c2 > 0 be constants such that wntβ(log t)δ ∈ [c1, c2] for all n ≥ 1. Then by the mean value
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theorem,

w−1
n+1 − w−1

n ≤ c2
(
(n+ 1)β(log(n+ 1))δ − nβ(log n)δ

)
≤ c2 sup

n≤s≤n+1

(
βsβ−1(log s)δ + δsβ−1(log s)δ−1

)
≤ c2 sup

n≤s≤n+1
sβ−1(log s)δ−1 ((log s) + δ) .

Since n ≥ 1, the last expression is of o(1) if β < 1. Otherwise, wn = n−1 for t ≥ 1 by (A4’). Then
w−1
n+1 − w−1

n ≡ 1 for all t ≥ 1.
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