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Abstract

We show that the error achievable using physics-informed neural networks for solving dif-
ferential equations can be substantially reduced when these networks are trained using
meta-learned optimization methods rather than using fixed, hand-crafted optimizers as
traditionally done. We choose a learnable optimization method based on a shallow multi-
layer perceptron that is meta-trained for specific classes of differential equations. We illus-
trate meta-trained optimizers for several equations of practical relevance in mathematical
physics, including the linear advection equation, Poisson’s equation, the Korteweg–de Vries
equation and Burgers’ equation. We also illustrate that meta-learned optimizers exhibit
transfer learning abilities, in that a meta-trained optimizer on one differential equation can
also be successfully deployed on another differential equation.

Keywords: Scientific machine learning, Physics-informed neural networks, Learnable
optimization, Meta-learning, Transfer learning

1. Introduction

Physics-informed neural networks are a class of methods for solving systems of differen-
tial equations. Originally proposed in the 1990s by Lagaris et al. (1998) and popularized
through the work of Raissi et al. (2019), physics-informed neural networks have seen an
immense raise in popularity in the past several years. This is in part due to the overall
rise in interest in all things related to deep neural networks, see LeCun et al. (2015), but
also due to some practical advantages of this method compared to traditional numerical
approaches such as finite difference, finite elements or finite volume methods. These ad-
vantages include the evaluation of derivatives using automatic differentiation, see Baydin
et al. (2018), their mesh-free nature and an overall ease of implementation through modern
deep-learning frameworks such as JAX (Bradbury et al., 2018), TensorFlow (Abadi et al.,
2015) or PyTorch (Paszke et al., 2019). Given the expressive power of deep neural networks,
cf. Cybenko (1989), neural networks are also a well-suited class of function approximation
for the solution of systems of differential equations.

A main downside of physics-informed neural networks is that a complicated optimization
problem involving a rather involved composite loss function has to be solved Raissi et al.
(2019). The difficulty in solving such so-called multi-task problems is well-documented in the
deep learning literature, see e.g. Yu et al. (2020). Moreover, since essentially all methods
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of optimization for deep neural network used to solve differential equations today are at
most of first-order, such as stochastic gradient descent, and its momentum-based flavours
such as Adam, Kingma and Ba (2014), the level of error that can typically be achieved
with vanilla physics-informed neural networks as proposed by Lagaris et al. (1998); Raissi
et al. (2019) is often subpar compared to their traditional counterparts used in numerical
analysis. While lower numerical error can be achieved using more involved strategies, such as
domain decomposition approaches, see Jagtap et al. (2020); modified loss functions, see Jin
et al. (2021); Wang et al. (2022); operator-based approaches, see Wang and Perdikaris
(2023); or higher-order optimizers such as L-BFGS, see Nocedal and Wright (1999), all of
these approaches either sacrifice some of the simplicity of vanilla physics-informed neural
networks or substantially increase their training times.

Since a main culprit in the overall unsatisfactory error levels achievable with vanilla
physics-informed neural networks is the optimization method used, it is natural to aim to
find better optimizers. More broadly, optimization is a topic extensively studied in the
field of machine learning, with many new optimizers being proposed that aim to overcome
some of the (performance or memory) shortcomings of the de-facto standard Adam, see
e.g. Lucas et al. (2019); Shazeer and Stern (2018). There has also been growing interest
in the field of learnable optimization, referred to as learning to learn (Chen et al., 2022),
which aims to develop optimization methods parameterized by neural networks, that are
then meta-learned on a suitably narrow class of tasks, on which they typically outperform
generic (non-learnable) optimization methods.

The aim of this paper is to explore the use of learnable optimization for training physics-
informed neural networks. We show that meta-trained learnable optimizers with very few
parameters can substantially outperform standard optimizer in this field. Moreover, once
meta-trained, these optimizers can be used to train physics-informed neural networks with
minimal computational overhead compared to traditional optimizers.

The further organization of this paper is as follows. In Section 2 we present a more
formalized review on how neural networks can be used to solve differential equations. Sec-
tion 3 presents a short overview of the relevant previous work on both physics-informed
neural networks and learnable optimization. The main Section 4 introduces the class of
learnable optimizers used in this work. Section 5 contains the numerical results obtained
by using these meta-trained optimizers for solving a variety of differential equations us-
ing physics-informed neural networks. The transfer learning capabilities of the proposed
learnable optimizers are investigated in Section 6. A summary with a discussion on further
possible research directions can be found in the final Section 7.

2. Solving differential equations with neural networks

The numerical solution of differential equations with neural networks was first proposed
in Lagaris et al. (1998). In this algorithm, the trial solution is brought into a form that
accounts for initial and/or boundary conditions (as hard constraints), with the actual solu-
tion being found upon minimizing the mean-squared error that is defined as the residual of
the given differential equations evaluated over a finite number of collocation points which
are distributed over the domain of the problem. This method was recently popularized
by Raissi et al. (2019), coining the term physics-informed neural networks, and extended to
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also allow for the identification of differential equations from data. A recent review on this
subject can be found in Cuomo et al. (2022).

More formally, consider the following initial–boundary value problem for a general sys-
tem of L partial differential equations of order n,

∆l(t,x,u(n)) = 0, l = 1, . . . , L, t ∈ [0, tf ], x ∈ Ω,

Ili(x,u(ni)|t=0
) = 0, li = 1, . . . , Li, x ∈ Ω,

Blb(t,x,u(nb)) = 0, lb = 1, . . . , Lb, t ∈ [0, tf ], x ∈ ∂Ω,

(1)

where t ∈ [0, tf ] is the time variable, x = (x1, . . . , xd) ∈ Ω is the tuple of spatial independent
variables, u = (u1, . . . , uq) is the tuple of dependent variables, and u(n) is the tuple of all
derivatives of the dependent variables with respect to the independent variables of order not
greater than n. The initial value operator is denoted by I = (I1, . . . ILi) and B = (B1, . . . ,BLb)
denotes the boundary value operator. The spatial domain is Ω and the final time is tf .

In the following, we consider evolution equations for which the initial value operator
reduces to

I = u(0,x)− f(x),

where f(x) = (f1(x), . . . , f q(x)) is a fixed vector-valued function. We also consider Dirichlet
boundary conditions of the form

B = u(t,x)− g(t,x),

where g(t,x) = (g1(t,x), . . . , gq(t,x)) is another fixed vector-valued function.
Solving system (1) with a neural network N θ requires the parameterization of the so-

lution of this system in the form uθ = N θ(t,x), where the weights θ of the neural network
are found upon minimizing the loss function

L(θ) = L∆(θ) + γiLi(θ) + γbLb(θ). (2a)

Here
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are the mean squared error losses corresponding to the differential equation, the initial
condition and the boundary value residuals, respectively, and γi and γb are positive scaling

constants. These losses are evaluated over the collection of collocation points
{
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for the initial data, and
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i=1
for the boundary data,

respectively. Upon successful minimization, the neural network N θ provides a numerical
parameterization of the solution of the given initial–boundary value problem.
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3. Related work

Physics-informed neural networks were proposed by Lagaris et al. (1998), and popularized
through the work of Raissi et al. (2019), and have since been used extensively for solving
differential equations in science and engineering. While the general algorithm for training
neural networks to solve differential equations is straightforward, several complications arise
in practice. Firstly, balancing the individual loss contributions in (2b) so that all the
initial values, the boundary values, and the differential equations are adequately enforced
simultaneously constitutes a multi-task learning problem which may not be properly solved
by minimizing the composite loss function (2a), see Sener and Koltun (2018); Yu et al.
(2020) for some work on multi-task learning problems. Secondly, it is well-known that
training neural networks using gradient descent methods leads to a spectral bias in the form
of low frequencies being learned first and high-frequencies requiring longer training times,
see Rahaman et al. (2019). Correspondingly, oscillatory solutions or stiff problems may not
be accurately learned using standard physics-informed neural networks. Lastly, the general
setup (2) requires proportionally more collocation points the larger the spatio-temporal
domain of the differential equation being solved is. Training neural networks for solving
differential equations over large spatio-temporal domains can destabilize training, which is
frequently encountered in practice. In most cases, physics-informed neural networks for such
problems incorrectly converge to a trivial constant solution of the given differential equation,
see e.g. Bihlo and Popovych (2022); Penwarden et al. (2023); Wang et al. (2022). One
straightforward solution for this problem is to break the entire domain into multiple sub-
domains, and solve a sequence of smaller problems with multiple neural networks instead.
This multi-model approach has recently been used for solving the shallow-water equations
on a rotating sphere by Bihlo and Popovych (2022).

Learnable optimization has been the topic of research since the works by Bengio et al.
(1990, 1995), with Andrychowicz et al. (2016) popularizing the use of neural network based
learning to learn optimization. The latter paper specifically introduced an LSTM-type
neural network optimizer that is being trained using gradient descent. Subsequent work
focussed on improving the performance of learnable neural network based optimizers by
improving their training strategies, see e.g. Lv et al. (2017); Vicol et al. (2021), improving
the LSTM architecture of the optimizer (Wichrowska et al., 2017), or replacing the LSTM-
based architecture in favour of a simpler MLP-based one, cf. Harrison et al. (2022); Metz
et al. (2022). Also, exploratory work has been done that aims to understand what exactly
these learnable optimizers are learning (Maheswaranathan et al., 2021). Below, we will use
the optimizer proposed in Harrison et al. (2022), as this optimizer was found to be both
stable and fast to meta-train, and able to generalize to problems that are different from
those the optimizer was trained on, all of which are properties desirable for physics-informed
neural networks. For a more comprehensive review on learnable optimization consult the
recent review paper by Chen et al. (2022).

To the best of our knowledge, the use of learnable optimization for physics-informed
neural networks has not been pursued so far. The related field of using meta-learning to
accelerating the training of physics-informed neural networks has been investigated in Liu
et al. (2022) and Psaros et al. (2022) recently. Specifically, in these works the authors used
meta-learning to discover suitable initialization methods and physics-informed neural net-
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work loss functions that generalize across relevant task distributions, respectively, thereby
speeding up training of individual physics-informed neural networks from these task distri-
butions.

4. Meta-learnable optimization for physics-informed neural networks

A main goal of meta-learned optimization it to improve hand-designed optimization rules
such as the Adam optimizer introduced by Kingma and Ba (2014) for updating the weight
vector θ of a neural network with loss function L(θ). Recall that the Adam update rule is
given by

mt = β1mt−1 + (1− β1)∇θL(θt−1), vt = β2vt−1 + (1− β2)(∇θL(θt−1))2,

m̂t = mt/(1− βt1), v̂t = vt/(1− βt2),

θt = θt−1 − ηwadam = θt − ηm̂t/(
√

v̂t + ε),

where t = 1, . . . , is the optimization time step, m and v are the first and second moment
vectors, with β1, β2 ∈ [0, 1) being the exponential decay rates for the moment estimates, ε
being a regularization constant, and η being the learning rate.

Similarly, the parameter updates of a meta-learned optimizer is structured as

θt = θt−1 − f(zt;ϑ), (3)

where f is the parametric update function with zt referring to the input features of the
learnable optimizer, and ϑ are the trainable meta-parameters of the optimizer, usually the
weights of a neural network. To allow for the learnable optimizer to be transferable to
neural networks of different sizes it is customary to have the parameter update rule (3)
act component-wise, with each weight θi of the weight vector θ being updated in the same
way. Thus, in the following we describe the parameteric update formula in terms of scalar
variables, rather than vectorial quantities.

While there are several optimizer architectures that have been proposed in the literature,
cf. Chen et al. (2022), here we use a relatively simple multi-layer perceptron for the optimizer
architecture. Notably, we follow the work by Harrison et al. (2022) and structure the
parametric update formula for each weight θi as

f = λ1 exp(λ2s
adam
ϑ ))wadam +

λ3√
vt + ε

dbb
ϑ exp(λ4s

bb
ϑ ), (4)

where λi, i = 1, . . . , 4 are positive constants, wadam corresponds to the Adam update step
and sadam

ϑ , sbb
ϑ and dbb

ϑ are to the output heads of the meta-learned optimizer with neural
network weights ϑ.

On a high level, the first term in the learnable update formula (4) can be seen as a nomi-
nal term derived from the Adam update formula with scalable learning rate λ1 exp(λ2s

adam
ϑ )),

which guarantees an update step in a descent direction, and the second term corresponds to
a blackbox update term structured as the product of a directional and magnitudinal term,
dbb
ϑ and exp(λ4s

bb
ϑ ), respectively, with the denominator

√
vt + ε acting as a pre-conditioner

that should guarantee that the overall update formula leads corresponds to a descending on
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the loss surface. For more details on the rationale behind the update rule (4), consult (Har-
rison et al., 2022).

The inputs zt at optimization step t to the multi-layer perceptron optimizer with output
heads sadam

ϑ , sbb
ϑ and dbb

ϑ are chosen as follows:

1. The weights θt;

2. The gradients ∇θL(θt);

3. The second momentum accumulators vt with decay rates β2 ∈ {0.5, 0.9, 0.99, 0.999};
4. One over the square root of the above four second momentum accumulators;

5. The time step t.

Here, we build upon the extensive study carried out in Metz et al. (2022), with the above
input parameters heuristically being found to perform well for the physics-informed neural
networks that were trained in this work.

All input features (except the time step) were normalized to have a second moment of
one. The time step is converted into a total of 11 features by computing tanh(t/x) where
x ∈ {1, 3, 10, 30, 100, 300, 1000, 3000, 10k, 30k, 100k}. All features were then concatenated
and passed through a standard multi-layer perceptron to yield the above three output heads.

It is also interesting to point out that the work by Choi et al. (2019) has shown that
upon the right choice of hyper-parameters, a more general optimizer including another
optimizer as a specific case, should never perform worse than this specific optimizer. Since
for the choice of λ1 = 1, λ2 = λ3 = 0 the learnable optimizer reduces to standard Adam
as a specific case, upon the right tuning of parameters of the learnable optimizer (which is
done with a persistent evolutionary strategy here, see the following Section 5 for a further
discussion), the learnable optimizer should always outperform Adam. We show below that
this is indeed the case.

5. Numerical results

In this section we showcase the use of meta-learned optimization for solving some well-known
differential equations from mathematical physics, that have been extensively studied using
physics-informed neural networks. In all of the following examples we use the vanilla version
of physics-informed neural networks as laid out in Lagaris et al. (1998); Raissi et al. (2019).
As discussed in Section 3, it is well-understood by now that this formulation can suffer from
several drawbacks which to remedy is currently an active research field. As such, the goal
of this section is not to obtain the best possible numerical solution for each given model,
but to show how meta-learned optimization can improve the results obtainable using vanilla
physics-informed neural network when compared to using standard optimization. Our base
optimizer we compare against is the Adam optimizer, the de-facto standard being used in
the field of physics-informed neural networks today. In Section 6, when investigating the
transfer learning capabilities of learnable optimizers, we then will show a more sophisticated
training strategy for physics-informed neural networks.

In all the examples below, the output heads of the meta-learned optimizer were initialized
using a normal distribution with zero mean and variance of 10−3, to guarantee that the
neural network output is close to zero at the beginning of meta-training of the optimizer.
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Due to the form of the meta-learned optimizer (4), this means that before meta-training
starts, the meta-learned optimizer is very close to the standard Adam optimizer.

For all examples, the multi-layer perceptron being used for the meta-learned optimizer
has two hidden layers with 32 units each, using the swish activation function. This architec-
ture was found using hyperparameter tuning to give a good balance between computational
overhead of meta-training the optimizer and error level of the resulting optimizer. We should
like to note here that in contrast to the application of meta-learned optimization in areas of
modern deep learning, such as computer vision or natural language processing, which work
with neural networks with up to hundreds of hidden layers and billions of weights, the neural
networks arising in physics-informed neural networks are typically relatively small. In fact,
all of the architectures considered in this paper have less than 10,000 trainable parameters.
This allows for larger neural networks being used for the meta-learned optimizer, without
incurring computationally infeasible costs. Still, the underlying multi-layer perceptron of
the meta-learned optimizer is relatively small, having only 2,115 trainable parameters.

We train this optimizer using the persistent evolutionary strategy, a zeroth-order stochas-
tic optimization method described in Vicol et al. (2021). This algorithm has several hyper-
parameters, including the total number of particles N used for gradient computation, the
partial unroll length K of the inner optimization problem before a meta-gradient update is
computed, the standard deviation of perturbations σ and the learning rate α for the meta-
learned weight update. Using hyperparamter tuning, we determined N = 2 (antithetic)
particles, K = 1 epochs and a learning rate of α = 10−4 to be the best hyperparameters
for our problem, but it would be interesting to carry out a more in-depth study on the
hyperparameters of this algorithm. For more details, see Algorithm 2 in Vicol et al. (2021).

For each problem, unless otherwise specified, we then sample a total of 20 different tasks
and meta-train the learnable optimizer for a total of 50 epochs on the associated tasks. Each
task corresponds to a new instantiation of the particular neural network architecture, where
we also slightly perturb the parameters for each equation during meta-training, which we
found useful in aiding the generalization capabilities of the learned optimizers. Specifically,
for each task we sample uniformly randomly c ∈ [0.9, 1.1] for the advection velocity in the
linear advection equation ν ∈ [0, 0.1] for the dispersion coefficient in the KdV equation and
µ ∈ [0, 0.01] for the diffusion coefficient for Burgers’ equation. We found empirically that
training the meta-learned optimizer for relatively few epochs (50 epochs compared to using
the learned optimizer for more than 1,000 epochs at testing stage) provided a good balance
between performance and meta-training cost. We also note that due to the stochastic nature
of the training algorithm and task sampling strategies, the learnable optimizer may at times
converge to a suboptimal solution. If this occurs, we simply re-train the optimizer again to
be able to show the best possible results obtainable with the learnable optimizer under the
chosen parameter and training regime. To guarantee a fair comparison at testing time, the
initial weights and biases of all neural networks being trained with the respective optimizers
are the same for any experiment.

In Table 1 we summarize the parameters of the physics-informed neural networks trained
in this section. We use hyperbolic tangents as activation function for all hidden layers. We
use mini-batch gradient computation with a total of 10 batches per epoch.

We report both the time series of the loss for the standard Adam optimizer and the
meta-learned optimizer, and the point-wise error e = unn − uref , where uref is either the
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Linear adv. Poisson KdV Burgers Shallow-water adv.

# hidden layers 2 4 6 6 4

# units 20 20 20 20 20

# PDE points 10,000 10,000 10,000 10,000 100,000

# IC/BC points 100 400 100 100 10,000

# epochs 6,000 2,000 1,500 3,000 3,000

Table 1: Parameters of the physics-informed neural networks trained below.

analytical solution (if available), or a high-resolution numerical reference solution obtained
from using a pseudo-spectral method for the spatial discretization and an adaptive Runge–
Kutta method for time stepping using the method of lines approach, see Durran (2010).

The algorithm described here has been implemented using TensorFlow 2.11 and the
codes will be made available on GitHub1.

5.1 One-dimensional linear advection equation

As a first example, consider the one-dimensional linear advection equation

ut + cux = 0,

where we consider t ∈ [0, 3] and x ∈ [−1, 1] with c = 1 being the advection velocity. We
set u(0, x) = u0(x) = sinπx and use periodic boundary conditions. We enforce the periodic
boundary conditions as hard constraint in the physics-informed neural networks, using the
strategy introduced by Bihlo and Popovych (2022). We set γi = 1 in the loss function (2a).

To establish standard Adam as a strong baseline for all subsequent problems, we test
a total of 7 different optimizers for this equation, namely momentum SGD (with β = 0.9),
standard Adam, Adam with square root learning rate decay, a hyper-parameter tuned
version of Adam, NAdam, and the proposed learnable optimizer as well as the learnable
optimizer using square root learning rate decay. The learning rate for all standard optimizers
was set to η = 5 · 10−4. For the hyper-parameter tuned version of Adam we were using
a tree-structured Parzen Estimator algorithm implemented in optuna, see Akiba et al.
(2019). The search space for the parameters were the intervals β1, β2 ∈ [0.1, 0.99999] and
η ∈ [10−5, 10−2]. To keep the computational cost between the hyper-parameter tuned
version of Adam and the learnable optimizer comparable, we optimize the hyper-parameter
tuned version of Adam for 50 epochs over a total of 50 trials. The optimal parameters
found were then β1 = 0.347, β2 = 0.424 and η = 7.65 · 10−3. The constants of the learnable
optimizer were chosen as λ1 = 5 · 10−4 and λi = 10−3, i = 2, . . . , 4. We then use each
optimizer to train a physics-informed neural network for the linear advection equation until
the learnable optimizers have converged, which is after about 1,900 and 2,800 epochs for
the learnable optimizer with and without learning rate decay, respectively. To provide a
comparison for the best obtainable numerical solutions for all optimizers, we in addition
continue training the physics-informed neural networks by all other optimizers for a total
of 6,000 epochs, whence they have converged to the point that any further improvements
would require an excessive amount of additional training steps.

1. https://github.com/abihlo/LearnableOptimizationPinns
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(a) Training loss for all optimizers. (b) Mean optimizer step updates.

Figure 1: Time series of losses for the standard and meta-learned optimizers (left), and
mean update step sizes for the meta-learned optimizer and the standard Adam
optimizer with fixed learning rates (right), as used for the linear advection equa-
tion. See also Table 2.

The numerical results for this example are depicted in Figures 1 and 2. For this par-
ticular example, the meta-learned optimizers considerably outperform all baseline standard
optimizers, resulting in a training loss and point-wise error that is more than 10 times
smaller by the time they have converged to their final solutions. Both learnable optimizers
still outperform all standard optimizers by the time they have obtained their final solu-
tions. Adding in a learning-rate decay also shows that the performance of the learnable
optimizer can be further boosted, to the point that it achieves an error of the same level as
the learnable optimizer with fixed learning rate after less than 2,000 epochs. This situation
somewhat parallels the case of Adam with learning rate decay, which does converge slightly
faster than standard Adam with fixed learning rate.

From Fig. 1a it is also interesting to note that the hyper-parameter tuned version of
Adam has a lower loss than all other optimizers for the first several hundred epochs, but
flattens out at a significantly higher loss level than the learnable optimizers. This is note-
worthy, as both the hyper-parameter tuned version of Adam and the learnable optimizer
have been trained/optimized for the same number of epochs. This result illustrates that
the learnable optimizer used here is more than just an optimally hyper-parameter tuned
version of the standard Adam optimizer.

Fig. 2 and Table 2 then illustrate that these substantially different loss values also result
in quite different numerical solutions. Notably, even after 6,000 epochs the numerical errors
obtained by the Adam optimizer family is still higher than the numerical error obtained by
the learnable optimizers in less than half the number of training steps. Momentum SGD
stalls at a loss of around 10−1, much worse than all other optimizers.

Fig. 1b depicts the mean gradient step updates corresponding to the standard Adam
optimizer, the scaled Adam part of the learnable optimizer (the first term in Eqn. (4)) and
the blackbox term of the learnable optimizer (the second term in Eqn. (4)). For the first
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Figure 2: Numerical results for the linear advection equation. Top row: Standard Adam
optimizer after 2,845 epochs, the number of training steps required for the learn-
able optimizer to converge. Middle row: Adam after 6,000 epochs, the number
of training steps required for Adam to converge. Bottom row: Meta-learned
optimizer. Left to right shows the numerical solution obtained from the physics-
informed neural networks, the exact solution, and the difference between the
numerical solution and the exact solution.

500 epochs, the Adam part of the learnable optimizer closely follows the standard Adam
optimizer, but once the blackbox term starts to dominate the overall gradient step update,
also the Adam part of the learnable optimizer behaves differently from the standard Adam
optimizer, indicating that these optimizers indeed follow different paths to their respective
minima. It is also noteworthy that the rather steep increase in the blackbox part after
1,000 epochs followed by an equally steep decrease after 2,000 epochs corresponds directly
to the substantially better performance of the learnable optimizer compared to the Adam
optimizer in this period of the training regime.

A quantitative evaluation of the numerical solutions themselves is given in Table 2.
This table shows that the two learnable optimizers with fixed and learning rate decay,
respectively, give the best numerical solutions among all optimizers tested. This table also
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Epochs L2O L2O decay Adam Adam decay Adam tuned NAdam SGDM

1,925 1.33 · 10−4 1.33 · 10−5 1.16 · 10−1 1.98 · 10−3 5.79 · 10−3 1.60 · 10−1 3.09 · 10−1

2,845 3.58 · 10−5 — 3.54 · 10−4 2.69 · 10−4 3.91 · 10−3 2.94 · 10−4 2.48 · 10−1

6,000 — — 7.80 · 10−5 7.68 · 10−5 3.41 · 10−3 1.57 · 10−4 1.48 · 10−1

Table 2: Numerical results for the linear advection equation. Shown are the l2-errors of
the obtained solutions for three experiments: i) After training with all optimizers
for 1,925 epochs, i.e. when the learnable optimizer with learning rate decay (L2O
decay) has converged. ii) After training with all but the L2O decay optimizer for
2,845 epochs, i.e. when the learnable optimizer with fixed learning rate (L2O) has
converged. iii) After training with all standard optimizers for 6,000 epochs, i.e.
when the comparison optimizers have converged as well.

shows that the standard Adam optimizers with or without learning rate decay give the best
numerical results among all standard optimizers tested, provided they have been given more
than twice the number of optimization steps than the learnable optimizers.

In view of these results, in the following examples we will only show the comparison
between standard Adam, the optimizer of choice for virtually all physics-informed neural
networks today, and the learnable optimizer proposed above although the results obtained
for the linear advection equation do hint at further improvements that are possible with
suitable learning rate decay strategies.

5.2 Poisson equation

As an example for a boundary-value problem, consider the two-dimensional Poisson equation

uxx + uyy = f(x, y),

over the domain Ω = [−1, 1]× [−1, 1] for the exact solution

uexact(x, y) = (0.1 sin 2πx+ tanh 10x) sin 2πy,

with the associated right-hand side using Dirichlet boundary conditions. This problem
was considered in Kharazmi et al. (2021). Since this is a boundary value problem, there
is no initial loss in the loss function (2a) and we use γb = 1000. This value was chosen
heuristically to balance the differential equation and boundary value losses. The learning
rate for Adam for this example was set to η = 5 ·10−4 and the constants of the meta-learned
optimizer, were λ1 = 5 · 10−4 and λi = 10−3, i = 2, . . . , 4.

The training loss for this example is shown in Fig. 3, the numerical results as compared
to the exact solution with the associated point-wise error are depicted in Fig. 4. As with
the linear advection equation from the previous example, also for the Poisson equation the
meta-learned optimization method leads to better results both in terms of a lower training
loss and smaller point-wise errors compared to the standard Adam optimizer.
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Figure 3: Training loss for the Adam and meta-learned optimizers for the two-dimensional
Poisson equation.

Figure 4: Numerical results for the Poisson equation. Top row: Standard Adam optimizer.
Bottom row: Meta-learned optimizer. Left to right shows the numerical solution
obtained from the physics-informed neural networks, the exact solution, and the
difference between the numerical solution and the exact solution.

5.3 Korteweg–de Vries equation

We next consider the Korteweg–de Vries equation

ut + uux − νuxxx = 0,

12
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with initial condition u(0, x) = cosπx using periodic boundary conditions over the domain
x ∈ [−1, 1] and t ∈ [0, 1], setting ν = 0.0025. This equation has been extensively studied
using physics-informed neural networks, see e.g. Jagtap et al. (2020); Raissi et al. (2019).
Again, we enforce the periodic boundary conditions as hard constraint and set γi = 1 in
the loss function (2a). The learning rate of the Adam optimizer was chosen as η = 5 · 10−4,
and the constants of the meta-learned optimizer were set to λ1 = 5 · 10−4 and λi = 10−3,
i = 2, . . . , 4.

Figure 5: Training loss for the Adam and meta-learned optimizers for the Korteweg–de
Vries equation.

Figure 5 contains the respective training losses of the Adam and meta-learned optimiz-
ers. The numerical solutions for the associated trained physics-informed neural networks as
compared against the numerical solution obtained from a pseudo-spectral numerical inte-
gration method are featured in Figure 6. These plots again illustrate that the meta-learned
optimizer reduces the training loss considerably faster than the standard Adam optimizer,
which also improves upon the point-wise error of the numerical solution compared to the
reference solution. In fact, the training loss after about 1,100 epochs is lower for the meta-
learned optimizer than what the Adam optimizer achieves at the end of training.

5.4 Burgers’ equation

As our next example we consider Burgers’ equation

ut + uux − µuxx = 0,

over the temporal-spatial domain [0, 1]× [−1, 1] with initial condition u(0, x) = − sinπx and
periodic boundary conditions in x-direction. The diffusion parameter was set as µ = 0.01/π.
Burgers equation is also one of the most prominent examples considered using physics-
informed neural networks, see Raissi et al. (2019) for some results.

As for the Korteweg–de Vries equation, we enforce the periodic boundary conditions
as hard constraints, use γi = 1 in the loss function (2a), and set the learning rate of
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Figure 6: Numerical results for the Kortweg–de Vries equation. Top row: Standard Adam
optimizer. Bottom row: Meta-learned optimizer. Left to right shows the numer-
ical solution obtained from the physics-informed neural networks, the numerical
reference solution, and the difference between the numerical solution and the
reference solution.

the Adam optimizer to η = 10−4, and the constants of the meta-learned optimizer to
λ1 = 10−4 and λi = 10−3, i = 2, . . . , 4. The meta-learned optimizer is being trained as for
the previous examples, i.e. using Burgers’ equation on 20 tasks, which each task being a
newly instantiated neural network with different random initial weights.

Figure 7: Training loss for the Adam and meta-learned optimizers for Burgers’ equation.
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Figure 8: Numerical results for Burgers’ equation. Top row: Standard Adam optimizer.
Bottom row: Meta-learned optimizer using Burgers equation. Left to right shows
the numerical solution obtained from the physics-informed neural networks, a
numerical reference solution, and the difference between the numerical solution
and the reference solution.

Figures 7 and 8 contain the associated numerical results for this example, showing
the training loss of the respective optimizers and the actual numerical results for solving
Burgers’ equation using the trained neural networks. Figures 7 illustrates that the meta-
learned optimizer again outperforms the Adam optimizer with the final loss value of the
Adam optimizer being reached already after 2,200 epochs by the meta-learned optimizer.

The loss values are also consistent with the numerical results shown in Fig. 8, illustrating
that the meta-learned optimizer using Burgers’ equation leads to a much more accurate
solution in the vicinity of the developing shock, which is failed to be captured by the
standard Adam optimizer.

5.5 Linear advection on the sphere

The last example we consider here is the shallow-water advection on a sphere. This is
one of the standard test cases from Williamson et al. (1992) for numerical methods for the
shallow-water equations on the sphere. Specifically, the equation to solve reads:

ht +
u

a cos θ
hλ +

v

a
hθ = 0,
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where h = h(t, λ, θ) is the height field in spherical geometry with longitude λ ∈ [−π, π] and
latitude θ ∈ [−π/2, π/2], u and v are prescribed velocity fields of the form

u = U(cos θ cosα+ sin θ cosλ sinα),

v = −U sinλ sinα,

and a is the radius of Earth. The initial condition for h is chosen as a cosine bell of the
form

h(0, λ, θ) =

{
H(1 + cos(πr/R))/2 if r < R

0 if r > R,

where r = a arccos(sin θc sin θ + cos θc cos θ cos(λ − λc). We choose the constants as U =
2πa/12 m · days−1, H = 1000 m and R = a/3. The centre of the bell is placed at (λc, θc) =
(π/2, 0). We set α = 0 making the bell traverse alone the equator. The boundary conditions
on the sphere are enforced using hard constraints, as discussed in Bihlo and Popovych
(2022), with the equations being solved for t ∈ [0, 2] days. The learning rate for the Adam
optimizer was set to η = 10−3 and the constants of the meta-learned optimizer are all
λi = 10−3, i = 1, . . . , 4. The meta-learned optimizer is trained for 100 tasks for a total of
20 steps, with each task being a newly instantiated neural network.

Figure 9: Training loss for the Adam and meta-learned optimizers for the shallow-water
advection equation on the sphere.

The numerical results for this test case are summarized in Figs. 9 and 10. As in the
previous examples, the meta-learned optimizer again drastically outperforms the standard
Adam optimizer. Here, the minimum is reached after about 600 epochs, by which time the
Adam optimizer is still stuck in a plateau on the loss surface. Thus, to provide a more
reasonable comparison we train the comparison physics-informed neural network with the
Adam optimizer for 3,000 epochs instead, by which time the loss is starting to level out.
Still, it is evident from Fig. 10 that the meta-learned optimizer still outperforms Adam
despite the latter having had roughly 5 time more compute on the evaluation problem.
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Figure 10: Numerical results for the shallow-water advection equation on the sphere. Top
row: Standard Adam optimizer after 3,000 epochs of training. Bottom row:
Meta-learned optimizer after 600 epochs of training. Left to right shows the error
of the numerical solution obtained from the physics-informed neural networks at
days zero (initial condition), one and two, when compared to the exact reference
solution.

6. Transfer learning

The previous section illustrated the potential of meta-learnable optimization to outperform
standard optimizers for training physics-informed neural networks. We should like to re-
mind here that physics-informed neural networks follow a different ideology from traditional
machine learning, in that these networks are not trained with generalization capabilities in
mind. Physics-informed neural networks are meant to be solution interpolants, whereas in
traditional machine learning, extrapolation (from the training to the testing dataset) is the
main goal of learning.

Still, having accomplished this goal, in this section we ask the following wider question:
Do meta-learnable optimizers for physics-informed neural networks generalize across similar
tasks or do they only overfit the single task they were trained on? While it is non-trivial to
properly define the notion of similarity for partial differential equations in this context, in
this section we provide a first investigation into the transfer learning capabilities of meta-
learned optimization for physics-informed neural networks.

6.1 Transfer learning across similar tasks: Different initial conditions

A common task in the numerical solution of differential equations is to change the initial
condition of a given system of equations. For standard physics-informed neural networks
this requires re-training of the network, which is computationally costly. We thus investigate
here the transfer learning abilities of meta-learnable optimizers that have been trained on
an ensemble of initial conditions for one fixed differential equation.

For the sake of illustration, we choose the Korteweg–de Vries equation here. More specif-
ically, we sample our task distribution for meta-training the optimizer from an ensemble of
initial conditions here, where for the sake of simplicity we consider initial conditions of the
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form
u(0, x) = cos(kx+ φ),

where k is sampled from integers between 1 and 3 and φ is sampled uniformly from
[−π/2, π/2]. We choose a relatively narrow task distribution to speed up meta-learning.
Once trained, we evaluate the optimizer on the unseen test problem with k = 2 and
φ = −π/4. Since this is a harder problem than using the meta-learned optimizer on the
same problem (i.e. same initial condition and same differential equation), we meta-train the
optimizer on a total of 50 tasks here instead of the 20 tasks used so far.

Figure 11: Training loss for the Adam and meta-learned optimizers for the Korteweg–de
Vries equation using transfer learning.

The results of this experiment are depicted in Figures 11 and 12. These figures again
show improvement of the meta-learned optimizer when compared to the results obtained
using Adam. The meta-learned optimizer is able to generalize to the unseen test problem,
by reaching both lower loss values and a smaller overall point-wise error in the solution
of the KdV equation. This example demonstrates that transfer learning across the same
equation class, i.e. choosing different initial values but keeping the equation the same, is
indeed feasible.

6.2 Transfer learning across similar tasks: Longer time integrations

In this paper we have focussed exclusively on improving vanilla physics-informed neural
networks using learnable optimization. However, as was reviewed in Section 3, numerous
modified training methodologies were put forth in the literature that aim to improve some
of the shortcomings of vanilla physics-informed neural networks. Among these strategies,
we focus on the multi-model approach here: Rather than training a single neural network
for the entire spatio-temporal domain, we split the domain into smaller sub-domains and
train one neural network for each sub-domain, taking into account the interface conditions
between sub-domains in a suitable manner. As we focus exclusively on evolution equations
here, we consider the splitting into temporal slices only, and do not consider spatial domain
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Figure 12: Numerical results for the Kortweg–de Vries equation using transfer learning.
Top row: Standard Adam optimizer. Bottom row: Meta-learned optimizer.
Left to right shows the numerical solution obtained from the physics-informed
neural networks, the numerical reference solution, and the difference between
the numerical solution and the reference solution.

decomposition here. The initial conditions for later neural networks are then derived from
the final solutions of earlier neural networks, with training proceeding in a sequential fashion.
For more details on this approach, see e.g. Bihlo and Popovych (2022).

In particular, we consider solving the linear advection equation for twice the size of the
temporal domain considered in Section 5.1, i.e. here t ∈ [0, 6], and we use two sub-models
trained for t ∈ [0, 3] and t ∈ [3, 6], respectively, to patch together the solution over the
entire domain. Notably, the meta-learned optimizer is trained only for the first sub-domain
t ∈ [0, 3], and then applied for both sub-domains t ∈ [0, 3] and t ∈ [3, 6], i.e. the optimizer
has never seen any solution on the temporal interval t ∈ [3, 6].

The numerical results of this investigation are depicted in Figures 13 and 14. These
results illustrate that the optimizer trained for one particular solution (or task), the solution
of the linear advection equation over the interval t ∈ [0, 3], generalizes to another particular
solution (or task), the solution of the same equation over the interval t ∈ [3, 6]. This
is especially useful as the multi-model approach is currently one of the best possibilities
of improving numerical solutions obtainable using physics-informed neural networks, as
training many neural networks over shorter time intervals generally leads to a more accurate
solution than training a single neural network over a longer time interval.

In Fig. 13 it is also interesting to note that the Adam optimizer has lower loss for the
second model during the first 1,200 epochs of training. This is, however, not a reflection
of the standard optimizer outperforming the learnable one in this first part of training the
second model; rather, it is a reflection that failure to learn the solution over the initial
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Figure 13: Training loss for the Adam and meta-learned optimizers for solving the linear
advection equation over the temporal domain t ∈ [0, 6] using the multi-model
approach with two sub-models. We train the meta-learned optimizer for the
temporal domain t ∈ [0, 3] and then apply the learned optimizer for training a
physics-informed neural network for the initial temporal domain t ∈ [0, 3] and a
second network for the subsequent temporal domain t ∈ [3, 6].

interval adequately results in a simpler solution that will be used as an initial condition at
time t = 3 for the second model.

6.3 Transfer learning across different tasks

As the last investigation into transfer learning capabilities of learnable optimizers, we in-
vestigate the capabilities of meta-learned optimizers across different tasks. Specifically, we
investigate the abilities of a meta-learned optimizer trained on one particular class of partial
differential equations to generalize across different partial differential equations.

For this, we meta-train a new learnable optimizer on each of the evolutionary equations
from Section 5 and then apply it to all the evolutionary equations presented in that section.
We exclude the Poisson equation from this study as this is a boundary-value problem and as
such requires a different training setup from the other equations from Section 5. Specifically,
the loss function to be minimized for the initial value problems is L(θ) = L∆(θ) + γiLi(θ)
while for the Poisson equation it is L(θ) = L∆(θ) + γbLb(θ).

For all experiments, we use neural networks with 6 hidden layers and 20 units per layer.
A learning rate of η = 2 · 10−4 was used, and the constants of the meta-learned optimizer
were set to λ1 = 2 · 10−4 and λi = 10−3, i = 2, . . . , 4. Each optimizer is trained and applied
five times, with mean values and standard deviations of the errors reported in Table 3.
These errors are the final l2-errors of the numerical solution obtained after 1,000 epochs of
training, as compared to the reference solutions for these problems, which were the same
as in Section 5.
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Figure 14: Numerical results for the Adam and meta-learned optimizers for solving the
linear advection equation over the temporal domain t ∈ [0, 6] using the multi-
model approach with two sub-models.

Evaluated for →
LA KdV Burgers

Trained on ↓
LA 4.01 · 10−3 ± 4.52 · 10−3 5.52 · 10−2 ± 1.52 · 10−2 2.48 · 10−3 ± 1.88 · 10−3

KdV 7.36 · 10−2 ± 6.34 · 10−2 5.48 · 10−2 ± 3.14 · 10−2 7.45 · 10−3 ± 4.67 · 10−3

Burgers 5.86 · 10−2 ± 5.28 · 10−2 5.81 · 10−2 ± 3.65 · 10−2 2.26 · 10−3 ± 9.71 · 10−4

Adam 1.39 · 10−1 ± 3.48 · 10−2 1.14 · 10−1 ± 1.66 · 10−2 5.91 · 10−3 ± 2.55 · 10−3

Table 3: Transfer learning abilities for the meta-learned optimizers across different tasks.
Shown are the l2-errors for meta-learned optimizers that have been trained on one
particular class of evolution equations from Section 5 and then being used for all
the evolution equations from Section 5.

Similar as shown in Section 5, Table 3 again shows that each meta-learned optimizer
outperforms Adam if it was trained and evaluated on the same equation. Interestingly,
with the exception of the KdV-trained learnable optimizer evaluated for Burgers’ equation,
all meta-learned optimizers trained on one equation but evaluated for a different equation
outperform the standard Adam optimizer for that different equation, hinting at these op-
timizers being able to learn transferable features beyond the class of equations they have
been trained on. Note also that the optimizer trained for the linear advection equation
performs close to optimal for all models. This suggest that meta-learning an optimizer on
easier equations (such as the linear advection equation), and then applying them to more
complicated equations is preferable compared to training them on more complicated equa-
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tions (such as Burgers’ or the KdV equation) and then applying them to simpler equations.
This is physically reasonable, as both Burgers’ equation and the KdV equation have some
characteristics of the simple advection equation, which the meta-learned optimizer trained
on the linear advection equation appears to be able to leverage when applied to these more
complicated models. Conversely, the optimizers trained on the more complicated equations
seem to learn the specifics of those models, which then do not readily generalize to other
models.

7. Conclusion

We have investigated the use of meta-learned optimization for improving the training of
physics-informed neural networks in this work. Meta-learned optimization, or learning-to-
learn, has become an increasingly popular topic in deep learning and thus it is natural to
investigate its applicability to scientific machine learning as well. We have done so here by
illustrating that meta-learned optimization can be used to improve the numerical results
obtainable using physics-informed neural networks, which is a popular machine learning-
based method for solving differential equations. We have also shown that meta-learned
optimization exhibits transfer learning capabilities that could be leveraged to further speed
up training of physics-informed neural networks by allowing learned optimizers to be reused
for different classes of equations.

The goal of this paper was to illustrate that meta-learned optimization alone can sub-
stantially improve the vanilla form of physics-informed neural networks, which was laid
out in the seminal works by Lagaris et al. (1998) and Raissi et al. (2019). This form has
been extensively studied, and we have shown here that meta-learned optimization can give
(sometimes substantially) better numerical results compared to standard hand-crafted op-
timization rules. This means that meta-learned optimizers are able to reach a particular
error level quicker than standard optimizers, resulting in either shorter training times (for
a given target computational error) or better numerical accuracy (for the same number of
training epochs). It is also possible that these learnable optimizers reach a minimum not
achievable with a standard optimizer.

There are several avenues for future research that would provide natural extensions to
the present work. Firstly, one could investigate the use of meta-learned optimization for
other formulations of physics-informed neural networks. Here we have shown that meta-
learned optimization improves vanilla physics-informed neural networks, and also works
for temporal domain decomposition approaches. The latter is a main remedy for training
issues encountered in physics-informed neural networks. However, there is also a zoo of
other variations to the main physics-informed neural network approach that are applicable
to different classes of differential equations. This list of methods includes, to name a few,
variational formulations, see e.g. Kharazmi et al. (2021), formulations based on spatio-
temporal domain decompositions, see e.g. Jagtap et al. (2020), techniques based on improved
loss functions, such as shown by Psaros et al. (2022); Wang et al. (2022), re-sampling
strategies as introduced by Wu et al. (2023), and operator-based formulations as described
in Wang and Perdikaris (2023). It should also be stressed that not all of these methods
substantially outperform vanilla physics-informed networks, and the latter are still being
used extensively in the literature today, see e.g. Cuomo et al. (2022) for a recent review.
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Secondly, there is a multitude of other meta-learned optimization algorithms based on neural
networks that have been proposed in the literature, see the review paper by Chen et al.
(2022) for an extensive list of such optimizers. There are also several training strategies
available for meta-learned optimization, including gradient descent, evolutionary strategies
and reinforcement learning based ones, see again Chen et al. (2022). Together, this provides
a rich set of training strategies, meta-learnable optimizer architectures and physics-informed
model formulations that could be explored together to possibly find more accurate solutions
of differential equations using physics-informed neural networks. We plan to explore some
of these possibilities in the near future.
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