
Journal of Machine Learning Research 25 (2024) 1-7 Submitted 5/23; Revised 1/24; Published 3/24

ptwt - The PyTorch Wavelet Toolbox

Moritz Wolter moritz.wolter@uni-bonn.de
High-Performance Computing and Analytics Lab, University of Bonn, Germany

Felix Blanke felix.blanke@scai.fraunhofer.de
Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany

Jochen Garcke garcke@ins.uni-bonn.de
Institute for Numerical Simulation, University of Bonn
and Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, Germany

Charles Tapley Hoyt cthoyt@gmail.com

Northeastern University, Boston, USA

Editor: Sebastian Schelter

Abstract

The fast wavelet transform is an important workhorse in signal processing. Wavelets are
local in the spatial- or temporal- and the frequency-domain. This property enables fre-
quency domain analysis while preserving some spatiotemporal information. Until recently,
wavelets rarely appeared in the machine learning literature. We provide the PyTorch
Wavelet Toolbox to make wavelet methods more accessible to the deep learning commu-
nity. Our PyTorch Wavelet Toolbox is well documented. A pip package is installable with
pip install ptwt.

Keywords: PyTorch, wavelet, wavelet-packets, wavelet-analysis, wavelet-transform

1. Introduction

Nowadays, wavelets are used to extract information from many different kinds of data, with
a particular focus on audio signals and images. They are similar to Fourier analysis since
a signal is decomposed, but wavelets are localized in time –or space– and frequency, which
means that they can capture information about a signal at different scales and resolutions.
This is useful for analyzing signals that contain both high-frequency and low-frequency
components, such as speech or images (Torrence and Compo, 1998). The Fast Wavelet
Transform (FWT) is an algorithm to perform the wavelet transform on a digital signal in
an efficient and computationally feasible manner, it has a long and proven track record
as an excellent tool in engineering and science (Mallat, 2008). For further background on
wavelets, we refer to the excellent textbooks by Strang and Nguyen (1996), Jensen and
la Cour-Harbo (2001), and Daubechies (1992). While initially introduced for signal pro-
cessing tasks, the wavelet transform has started to appear in machine learning contexts.
Some notable tasks include deepfake detection (Huang et al., 2022; Gasenzer and Wolter,
2023) and neural network compression (Wolter et al., 2020). At the intersection of sig-

c©2024 Moritz Wolter, Felix Blanke, Jochen Garcke and Charles Hoyt.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0636.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0636.html

Wolter, Blanke, Garcke, and Hoyt

nal processing and neural network design Recoskie (2018) explored wavelet filter learning,
while Cotter (2020) studied the application of complex wavelets in neural networks. Major
popular machine learning frameworks like PyTorch (Paszke et al., 2017, 2019) and JAX
(Bradbury et al., 2018) lack native Fast Wavelet Transform (FWT)-support. In the Python
ecosystem, separate frameworks like PyWavelets (Lee et al., 2019) and “2D Wavelet Trans-
forms in Pytorch” (Cotter, 2022, 2020) exist. Lee et al. (2019) focus on CPU support
and provide an extensive library of precomputed wavelet filters. Cotter (2022) supports
the padded separable two-dimensional wavelet transform and its complex dual-tree variant.
Both focus on padded transforms. To our knowledge, we are proposing the first toolbox
with boundary wavelet support. The presented code adds Graphics Processing Unit (GPU)
and gradient support for single- and three-dimensional transforms and the fully separable
wavelet transform. Toolbox and documentation are available online. 1

2. Library Design

Our library builds on the PyWavelets (pywt) package (Lee et al., 2019). Among other
features, we add boundary-wavelet as well as automatic differentiation, and Just In Time
Compilation (jit) support. Our package is available for user-friendly installation via,

pip install ptwt

We reuse the pywt.Wavelet data type for access to an extensive collection of predefined
wavelet filters. We have worked hard to make both Application Programming Interfaces
(sAPIs) as compatible as possible. In many cases, migrating from pywt to ptwt or the other
way around requires only a transfer of the data into a torch.Tensor or numpy.ndarray

format. The code snipped below illustrates the similarities.

import torch

import pywt, ptwt

generate an input of even length.

data = torch.tensor([0., 1., 2., 3., 4., 5.])

compare the forward fwt coefficients

print(pywt.wavedec(data.numpy(), "db2", mode="zero", level=2))

print(ptwt.wavedec(data, "db2", mode="zero", level=2))

invert the fwt

print(ptwt.waverec(ptwt.wavedec(data, "db2", mode="zero"), "db2"))

In addition to padded transforms, which all libraries allow, we provide support for
boundary wavelet filters (Strang and Nguyen, 1996). Instead of padding the edges, bound-
ary filter transforms use orthogonalized analysis and synthesis matrices. Efficient orthogo-
nalization relies on a QR decomposition, which is available natively in PyTorch.

At the time of writing, our unit tests ensure Python 3.9 and 3.11 compatibility. Older
versions may run as well, and we intend to provide support for additional future versions
when they become available. We may deprecate older versions when we do. We provide
examples illustrating possible applications of wavelets in machine learning, like deepfake
identification (Wolter et al., 2022) or wavelet optimization (Wolter and Garcke, 2021).

1. https://pypi.org/project/ptwt/, https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/

2

https://pypi.org/project/ptwt/
https://pytorch-wavelet-toolbox.readthedocs.io/en/latest/

ptwt - The PyTorch Wavelet Toolbox

run-time [s]

ours Cotter (2022) Lee et al. (2019)

DWT-1D
CPU 0.40286 ± 0.00638 - 0.25841 ± 0.00907

GPU 0.00887 ± 0.04413 - -

GPU-jit 0.00439 ± 0.00051 - -

DWT-2D
CPU 0.17453 ± 0.01335 - 0.54936 ± 0.00924

GPU 0.01447 ± 0.03995 - -

GPU-jit 0.01110 ± 0.00050 - -

DWT-2D-sep.
CPU 0.52484 ± 0.00790 0.40189 ± 0.00727 0.92772 ± 0.00295

GPU 0.00995 ± 0.00062 0.01474 ± 0.04667 -

GPU-jit 0.00886 ± 0.00171 - -

DWT-3D
CPU 0.39827 ± 0.04912 - 0.81744 ± 0.01047

GPU 0.08047 ± 0.04310 - -

GPU-jit 0.08096 +- 0.00410 - -

Table 1: Run-time comparisons for various implementations of the padded wavelet trans-
formation from one to three dimensions. We compare transformations of 32 · 106

random values. Inputs are shaped as R32×106 , R32×103×103 and R32×102×102×102

transformation run times are reported in seconds. All runs use a Daubechies
five-wavelet. We report mean and standard deviations over 100 repetitions each.
We explore the effect of Just In Time Compilation (jit) additionally to running
on CPU and GPU. The separable (sep.) two-dimensional transform employs two
single-dimensional transforms.

3. Comparison to Existing Work

We provide support for GPUs and gradient propagation for many functions, which used to
be available only on Central Processing Units (sCPUs) without automatic differentiation-
support. Additionally, we support boundary wavelets. The documentation lists all of ptwts
features. Extensive unit testing ensures correct and pywt-consistent results.

3.1 Speed-tests

ptwt inherits GPU and jit support from PyTorch. All speed tests were run on a machine
with an Intel Xeon W-2235 CPU @ 3.80GHz and an NVIDIA RTX A4000 Graphics card.
Table 1 compares run times of Discrete Wavelet Transform (DWT) implementations for
up to three dimensions. Adding GPU support yields significant speedups compared to Lee
et al. (2019). Compared to the two-dimensional code presented in Cotter (2022), we observe
state-of-the-art performance on GPU. Table 2 lists our measurements for the CWT-case.
The input signal has dimensions of R32×103 , with the first dimension the batch- and the
second dimension the time dimension. All experiments use a Shannon wavelet. Here, we

3

Wolter, Blanke, Garcke, and Hoyt

run-time [s]

ours Cotter (2022) Lee et al. (2019)

CWT
CPU 0.16029 ± 0.00925 - 0.94439 ± 0.01742

GPU 0.01957 ± 0.01081 - -

GPU-jit 0.01566 ± 0.00193 - -

Table 2: Run-time comparison for different implementations of the CWT. We report mean
and standard deviations over 100 repetitions each.

see consistent computing-time reductions for each step from CPU, GPU, and jit. On CPUs,
the switch to ptwt leads to a speedup of roughly a factor of four. Since we add the matrix
form to the Python ecosystem, supplementary Figure 3 presents runtime measurements.

4. Conclusion

We presented selected features of the PyTorch Wavelet Toolbox. We extended the set of
available methods on GPU by providing support for single and three-dimensional transforms
in PyTorch. Where our tools overlap with alternative frameworks, we enable GPU and
gradient support. Additionally, we allow Just In Time Compilation (jit). In terms of
runtime, using ptwt leads to improvements in many cases. Last, but not least, our toolbox
supports boundary wavelet computations for the first time in the Python world.

Acknowledgments

MW thanks Stefan Kesselheim for his feedback. MW acknowledges funding from the Bun-
desministerium für Bildung und Forschung under the BntrAInee and WestAI project grants.
The authors gratefully acknowledge access to the Bender cluster hosted by the University of
Bonn as well as the JUWELS Booster Partition at the Jülich Supercomputing Centre. CTH
was funded under the Defense Advanced Research Projects Agency (DARPA) Automating
Scientific Knowledge Extraction and Modeling program [HR00112220036].

Appendix A. Supplementary material

Acronyms

API Application Programming Interface

CPU Central Processing Unit

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

FWT Fast Wavelet Transform

4

ptwt - The PyTorch Wavelet Toolbox

pywt-cpu
ptwt-cpu

ptwt-cpu-jit
ptwt-gpu

ptwt-gpu-jit

10−2

10−1

ru
n
ti

m
e

[s
]

DWT-1D

pywt-cpu
ptwt-cpu

ptwt-gpu

ptwt-gpu-jit

10−2

10−1

ru
n
ti

m
e

[s
]

DWT-2D

Figure 1: Run-time box-plots of our single dimensional (left) and two dimensional (right)
padded DWT speed tests. The first run is typically significantly slower than
subsequent runs. This behavior causes the outliers.

GPU Graphics Processing Unit

jit Just In Time Compilation

A.1 Code quality

We ensure code quality by running pytest, flake8, and mypy within an GitHub workflow.
Nox ensures dependencies are installed correctly for all our tests. Pytest runs more than
4k test cases to ensure correct toolbox operation.

References

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs. http:

//github.com/google/jax, 2018.

Fergal Cotter. Uses of Complex Wavelets in Deep Convolutional Neural Networks. PhD
thesis, University of Cambridge, 2020.

Fergal Cotter. 2d wavelet transforms in Pytorch. https://github.com/fbcotter/

pytorch_wavelets, 2022.

Ingrid Daubechies. Ten lectures on wavelets. SIAM, 1992.

Konstantin Gasenzer and Moritz Wolter. Towards generalizing deep-audio fake detection
networks. arXiv preprint arXiv:2305.13033, 2023.

5

http://github.com/google/jax
http://github.com/google/jax
https://github.com/fbcotter/pytorch_wavelets
https://github.com/fbcotter/pytorch_wavelets

Wolter, Blanke, Garcke, and Hoyt

pywt-cpu
ptwt-cpu

ptwt-gpu

ptwt-gpu-jit

10−1

10−0.5

ru
n
ti

m
e

[s
]

DWT-3D

pywt-cpu
ptwt-cpu

ptwt-gpu

ptwt-gpu-jit

10−1

100

ru
n
ti

m
e

[s
]

CWT-1D

Figure 2: Run-time box-plots of the 3d-speed test (left) and for the continuous transform
(right). The first run is typically significantly slower than subsequent runs. This
behavior causes the outliers.

pywt-cpu
ptwt-cpu

ptwt-gpu

ptwt-gpu-boundary

10−2

10−1

100

101

102

ru
n
ti

m
e

[s
]

DWT-1D-boundary

pywt-cpu
ptwt-cpu

ptwt-gpu

ptwt-gpu-boundary

10−2

10−1

100

ru
n
ti

m
e

[s
]

DWT-2D-boundary

Figure 3: Run-time box-plots of the boundary wavelet code in one and two dimensions.
The first run is typically significantly slower than subsequent runs. This behavior
causes the outliers.

6

ptwt - The PyTorch Wavelet Toolbox

Wei Huang, Michelangelo Valsecchi, and Michael Multerer. Anisotropic multiresolution
analyses for deep fake detection. arXiv preprint arXiv:2210.14874, 2022.

Arne Jensen and Anders la Cour-Harbo. Ripples in mathematics: the discrete wavelet
transform. Springer Science & Business Media, 2001.

Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and Aaron O’Leary. Py-
Wavelets: A Python package for wavelet analysis. Journal of Open Source Software, 4
(36):1237, 2019. URL https://github.com/PyWavelets/pywt.

Stéphane Mallat. A Wavelet Tour of Signal Processing – The Sparse Way. Academic Press,
3rd edition, 2008.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in PyTorch. In 31th International Conference on Artificial Neural Networks, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

Daniel Recoskie. Learning sparse orthogonal wavelet filters. PhD thesis, University of
Waterloo, 2018.

Gilbert Strang and Truong Nguyen. Wavelets and filter banks. SIAM, 1996.

Christopher Torrence and Gilbert P Compo. A practical guide to wavelet analysis. Bulletin
of the American Meteorological society, 79(1):61–78, 1998.

Moritz Wolter and Jochen Garcke. Adaptive wavelet pooling for convolutional neural net-
works. In International Conference on Artificial Intelligence and Statistics, pages 1936–
1944. PMLR, 2021.

Moritz Wolter, Shaohui Lin, and Angela Yao. Neural network compression via learnable
wavelet transforms. In 29th International Conference on Artificial Neural Networks, 2020.

Moritz Wolter, Felix Blanke, Raoul Heese, and Jochen Garcke. Wavelet-packets for deepfake
image analysis and detection. Machine Learning, Special Issue of the ECML PKDD
2022 Journal Track:1–33, August 2022. ISSN 0885-6125. doi: https://doi.org/10.1007/
s10994-022-06225-5. URL https://rdcu.be/cUIRt.

7

https://github.com/PyWavelets/pywt
https://rdcu.be/cUIRt

	Introduction
	Library Design
	Comparison to Existing Work
	Speed-tests

	Conclusion
	Supplementary material
	Code quality

