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Abstract

We study the complexity of producing (δ, ε)-stationary points of Lipschitz objectives which
are possibly neither smooth nor convex, using only noisy function evaluations. Recent
works proposed several stochastic zero-order algorithms that solve this task, all of which
suffer from a dimension-dependence of Ω(d3/2) where d is the dimension of the problem,
which was conjectured to be optimal. We refute this conjecture by providing a faster
algorithm that has complexity O(dδ−1ε−3), which is optimal (up to numerical constants)
with respect to d and also optimal with respect to the accuracy parameters δ, ε, thus solving
an open question due to Lin et al. (2022). Moreover, the convergence rate achieved by our
algorithm is also optimal for smooth objectives, proving that in the nonconvex stochastic
zero-order setting, nonsmooth optimization is as easy as smooth optimization. We provide
algorithms that achieve the aforementioned convergence rate in expectation as well as
with high probability. Our analysis is based on a simple yet powerful lemma regarding
the Goldstein-subdifferential set, which allows utilizing recent advancements in first-order
nonsmooth nonconvex optimization.

Keywords: nonsmooth nonconvex optimization, stochastic optimization, zero-order,
gradient-free, Goldstein subdifferential

1. Introduction

We consider the problem of optimizing a stochastic objective of the form

f(x) = Eξ∼Ξ[F (x; ξ)]

where the stochastic components F ( · ; ξ) : Rd → R are Lipschitz continuous, yet possibly
not smooth nor convex. We consider stochastic zero-order (also known as gradient-free or
derivative-free) algorithms that have access only to noisy function evaluations. At each
time step, the algorithm draws ξ ∼ Ξ and can observe F (x, ξ) for points x ∈ Rd of its
choice. Problems of this type arise throughout machine learning, control theory and finance,
in applications in which gradients are expensive (or even impossible) to evaluate, see for
example the book by Spall (2005) for an overview. Although in the convex setting the
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complexity of such algorithms is relatively well understood (Agarwal and Dekel, 2010; Duchi
et al., 2015; Nesterov and Spokoiny, 2017; Shamir, 2017), much less is known about the
nonsmooth nonconvex setting. This challenging setting is of major interest in modern deep
learning applications, where objective functions of interest are typically neither smooth or
convex. For example, stochastic zero-order optimization methods were applied to fine-tune
large language models (Malladi et al., 2023).

Recently, Lin et al. (2022) proposed a gradient-free algorithm that produces a (δ, ε)-
stationary point using O(d3/2δ−1ε−4) function evaluations. Following Zhang et al. (2020),
recall that a point x is called a (δ, ε)-stationary point if there exists a convex combination of
gradients in a δ-neighborhood of x whose norm is less than ε (see Section 2 for a reminder
of relevant definitions). Lin et al. (2022) posed the question as to whether this super-
linear dimension dependence is inevitable or not. The aforementioned complexity was very
recently improved to O(d3/2δ−1ε−3) by Chen et al. (2023), yet notably, this result still
suffers from the same super-linear dimension dependence.

In particular, as pointed out by Lin et al., this dimension dependence is Ω(
√
d) worse

than that of stochastic zero-order smooth nonconvex optimization, a setting in which it
is possible to find an ε-stationary point (i.e. x such that ‖∇f(x)‖ ≤ ε) using O(dε−4)
noisy function evaluations (Ghadimi and Lan, 2013). This led the authors to conjecture
that stochastic zero-order nonsmooth nonconvex optimization is “likely to be intrinsically
harder” than its smooth counterpart.

Our main contribution resolves this open question, showing that this is actually not
the case. We propose a faster zero-order algorithm for nonsmooth nonconvex optimization,
which requires only O(dδ−1ε−3) noisy function evaluations. As we will soon argue, this
complexity has an optimal linear-dependence on the dimension d, while also obtaining the
optimal dependence with respect to the accuracy parameters δ and ε. All of these depen-
dencies are known to be optimal even if f(·) is smooth, implying that in the stochastic
zero-order setting, nonsmooth nonconvex optimization is as easy as smooth nonconvex op-
timization. Moreover, when the objective is smooth, our proposed algorithm automatically
recovers the O(dε−4) complexity of stochastic gradient-free smooth nonconvex optimization
(Ghadimi and Lan, 2013). Whether this adaptivity property is possible was originally raised
as an open question by Zhang et al. (2020) in the context of first-order algorithms (that
have access to gradient information), and was recently confirmed by Cutkosky et al. (2023).
Our result extends the resolution of this question to the case of zero-order algorithms.

As previously mentioned, the dependencies on d, δ and ε we obtain are all optimal.
Indeed, the linear dimension dependence is well-known to be inevitable for gradient-free
algorithms even in the strictly-easier cases of smooth or convex optimization (Duchi et al.,
2015), while the implied ε−4 factor is known to be inevitable even in the strictly-easier case of
stochastic first-order smooth optimization with exact function evaluations (Arjevani et al.,
2023).1 Interestingly, in terms of the dependence on δ and ε, the convergence rate we obtain
is as fast as the currently best-known deterministic first-order algorithms for nonsmooth
nonconvex optimization (Zhang et al., 2020; Tian et al., 2022; Davis et al., 2022). This
is in stark contrast to smooth nonconvex optimization, in which optimal stochastic and
deterministic methods have disparate complexities on the order of ε−4 and ε−2, respectively

1. Technically, the lower bound construction in Arjevani et al. (2023) is not globally Lipschitz, yet a slight
modification of it which appears in Cutkosky et al. (2023, Appendix F) is.
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(Arjevani et al., 2023; Carmon et al., 2020). We also note that our algorithm is a factor
of Ω(

√
d) faster even than the previously best-known rate for deterministic (i.e. noiseless,

when Ξ = {ξ}) zero-order nonsmooth nonconvex optimization, and that it also obtains
an improved dependence on the Lipschitz parameter when compared to the previously
mentioned works in this setting. Finally, we remark that while the dependence on each
parameter by itself (i.e. d, δ and ε) is already known to be optimal, currently there is no
result in the literature formally proving a lower bound jointly in these parameters, namely
of the form Ω(dδ−1ε−3), which will automatically follow from a smooth (joint) lower bound
of the form Ω(dε−4). We conjecture these results should be obtainable by modifying the
analysis of Arjevani et al. (2023) to incorporate zero-order oracles.

2. Preliminaries.

Notation. We use bold-faced font to denote vectors, e.g. x ∈ Rd, and denote by ‖x‖
the Euclidean norm. We denote by [n] := {1, . . . , n}, B(x, δ) := {y ∈ Rd : ‖y − x‖ ≤ δ},
and by Sd−1 ⊂ Rd the unit sphere. We denote by conv(·) the convex hull operator, and by
Unif(A) the uniform measure over a set A. We use the standard big-O notation, with O(·),
Θ(·) and Ω(·) hiding absolute constants that do not depend on problem parameters, Õ(·)
and Ω̃(·) hiding absolute constants and additional logarithmic factors.

Nonsmooth analysis. We call a function f : Rd → R L-Lipschitz if for any x,y ∈ Rd :
|f(x) − f(y)| ≤ L ‖x− y‖, and H-smooth if it is differentiable and ∇f : Rd → Rd is H-
Lipschitz, namely for any x,y ∈ Rd : ‖∇f(x)−∇f(y)‖ ≤ H ‖x− y‖. By Rademacher’s
theorem, Lipschitz functions are differentiable almost everywhere (in the sense of Lebesgue).
Hence, for any Lipschitz function f : Rd → R and point x ∈ Rd the Clarke subgradient set
(Clarke, 1990) can be defined as

∂f(x) := conv{g : g = lim
n→∞

∇f(xn), xn → x} ,

namely, the convex hull of all limit points of ∇f(xn) over all sequences of differentiable
points which converge to x. Note that if the function is continuously differentiable at a
point or convex, the Clarke subdifferential reduces to the gradient or subgradient in the
convex analytic sense, respectively. We say that a point x is an ε-stationary point of f(·)
if min{‖g‖ : g ∈ ∂f(x)} ≤ ε. Furthermore, given δ ≥ 0 the Goldstein δ-subdifferential
(Goldstein, 1977) of f at x is the set

∂δf(x) := conv
(
∪y∈B(x,δ)∂f(y)

)
,

namely all convex combinations of gradients at points in a δ-neighborhood of x. We denote
the minimum-norm element of the Goldstein δ-subdifferential by

∂̄δf(x) := arg ming∈∂δf(x) ‖g‖ .

Definition 1 A point x is called a (δ, ε)-stationary point of f(·) if
∥∥∂̄δf(x)

∥∥ ≤ ε.
Note that a point is ε-stationary if and only if it is (δ, ε)-stationary for all δ ≥ 0 (Zhang

et al., 2020, Lemma 7). Moreover, if f is H-smooth and x is a ( ε
3H ,

ε
3)-stationary point of

f , then it is also ε-stationary (Zhang et al., 2020, Proposition 6).

3



Kornowski and Shamir

Randomized smoothing. Given a Lipschitz function f : Rd → R, we define its uniform
smoothing

fρ(x) := Ez∼Unif(B(0,1))[f(x + ρz)] .

It is well known (cf. Yousefian et al., 2012) that if f is L0-Lipschitz, then

• fρ is L0-Lipschitz;

• fρ is O(
√
dL0ρ

−1)-smooth;

• |f(x)− fδ(x)| ≤ ρL0 for all x ∈ Rd.

Setting. We consider optimization objectives of the form f(x) = Eξ∼Ξ[F (x; ξ)], where
ξ ∼ Ξ is a random variable. We impose the assumption that the stochastic components
F ( · ; ξ) : Rd → R are Lipschitz continuous, possibly with a varying Lipschitz constant:

Assumption 2 For any ξ, the function F ( · ; ξ) is L(ξ)-Lipschitz. Moreover, we assume
L(ξ) has a bounded second moment: Namely, there exists L0 > 0 such that

Eξ∼Ξ[L(ξ)2] ≤ L2
0 .

We note that Assumption 2 is weaker than assuming F ( · ; ξ) is L0-Lipschitz for all ξ.
We also remark that in case Ξ is supported on a single point then the optimization problem
reduces to that of a L0-Lipschitz objective using exact evaluations.

3. Algorithms and Main Results

Before formally presenting our main result, we find it insightful to stress out the key idea,
and in particular how our algorithm differs than those of Lin et al. (2022); Chen et al.
(2023). The main strategy employed by both of these papers is based on the following
result.

Proposition 3 (Lin et al., 2022, Theorem 3.1) For any ρ ≥ 0 : ∇fρ(x) ∈ ∂ρf(x).
Hence, for ρ = δ, if x is an ε-stationary point of fδ, then it is a (δ, ε)-stationary point of f .

Following this observation, both papers set out to design algorithms that produce an ε-
stationary point of fδ. A well known technique (which we formally recall later on) allows to
use two possibly noisy evaluations of f in order to produce a stochastic first-order oracle of fδ
whose second moment is bounded by σ2 = O(d). Noting that fδ is L1 = O(

√
d/δ)-smooth,

the standard analysis of stochastic gradient descent (SGD) for smooth nonconvex optimiza-
tion shows that it obtains an ε-stationary point of fδ within O(σ2L1ε

−4) = O(d3/2δ−1ε−4)
oracle calls, recovering the main result of Lin et al. (2022). The improved ε-dependence
due to Chen et al. (2023) was achieved by employing a variance-reduction method instead
of plain SGD, though other than that, their main algorithmic strategy and analysis are the
same.

Moreover, the algorithmic strategy we have described seems to reveal a barrier, (mistak-
enly) suggesting the d3/2 dependence is unavoidable. Indeed, it is relatively straightforward
to see that any gradient estimator which is based on a constant number of function eval-
uations must have variance of at least σ2 = Ω(d), while it is also known that any efficient
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smoothing technique must suffer from a smoothness parameter of at least L1 = Ω(
√
d)

(Kornowski and Shamir, 2022). Since the complexity of any stochastic first-order method
for smooth nonconvex optimization must scale at least as Ω(σ2L1) (Arjevani et al., 2023)
which in this case is unavoidably Ω(d3/2), we are stuck with this factor.

The main technical ingredient that allows us to reduce this factor is the following re-
sult (to be proved in Section 4), which examines the Goldstein δ-subdifferential set under
randomized smoothing.

Lemma 4 For any ρ, ν ≥ 0 : ∂νfρ(x) ⊆ ∂ρ+νf(x). Hence, if x is an (ν, ε)-stationary point
of fρ, then it is a (ρ+ ν, ε)-stationary point of f . In particular, as long as ρ+ ν ≤ δ it is a
(δ, ε)-stationary point of f .

Note that the lemma above strictly generalizes Proposition 3 (Lin et al., 2022, Theorem
3.1) which is readily recovered by plugging ν = 0. The utility of this result is that it allows
to replace the task of finding an ε-stationary point of fδ to that of finding a (δ, ε)-stationary
point of it (disregarding a constant factor multiplying δ). To see why this is beneficial, recall
that while fδ is O(

√
dL0δ

−1)-smooth, it is merely L0-Lipschitz! Thus using a stochastic first-
order nonsmooth nonconvex algorithm which scales with the Lipschitz parameter (instead of
the smoothness parameter), we save a whole Ω(

√
d) factor, yielding the optimal dimension

dependence. In particular, using the optimal stochastic first-order algorithm of Cutkosky
et al. (2023) that has complexity O(σ2δ−1ε−3), as described in Algorithm 1, results in the
following convergence guarantee:2

Theorem 5 Let δ, ε ∈ (0, 1), and suppose f(x0) − infx f(x) ≤ ∆. Under Assumption 2,
there exists

T = O

(
dL2

0∆

δε3

)
such that setting

ρ = min

{
δ

2
,

∆

L0

}
, ν = max

{
δ

2
, δ − ∆

L0

}
, D =

(
(∆ + ρL0)

√
ν√

dL0T

)2/3

, η =
∆ + ρL0

dL2
0T

,

and running Algorithm 1 with Algorithm 2 as a subroutine, outputs a point xout satisfying
E
[∥∥∂̄δf(xout)

∥∥] ≤ ε using 2T noisy function evaluations.

Parallel complexity. At each iteration, Algorithm 1 determines gt by calling Algorithm 2
(GradEstimator), which requires 2 evaluations of F ( · ; ξt). More generally, gt can be set
as the average of k independent, possibly parallel calls to this subroutine, which would
require 2k function evaluations. By an easy generalization of the second-order moment
bound which we present in Lemma 7 (as part of the proof of Theorem 5), this averaging
would decrease the second-moment on the order of

E[‖gt‖2 |xt, st,∆t] .
dL2

0

k
+ ‖E[gt]‖2 ≤ L2

0

(
d

k
+ 1

)
.

2. It is interesting to note that using the stochastic algorithm of Zhang et al. (2020) (instead of Algorithm 1),
when paired with our analysis, yields the desired linear dimension dependence as well – albeit with with
a worse convergence rate with respect to ε, on the order of dδ−1ε−4.
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Algorithm 1 Optimal Stochastic Nonsmooth Nonconvex Optimization Algorithm

1: Input: Initialization x0 ∈ Rd, smoothing parameter ρ > 0, accuracy parameter ν > 0,
clipping parameter D > 0, step size η > 0, iteration budget T ∈ N.

2: Initialize: ∆1 = 0
3: for t = 1, . . . , T do
4: Sample ξt ∼ Ξ
5: Sample st ∼ Unif[0, 1]
6: xt = xt−1 + ∆t

7: zt = xt−1 + st∆t

8: gt = GradEstimator(zt, ρ, ξt) . Uses two noisy function evaluations

9: ∆t+1 = min
(

1, D
‖∆t−ηgt‖

)
· (∆t − ηgt)

10: end for
11: M = b νDc, K = b TM c
12: for k = 1, . . . ,K do
13: xk = 1

M

∑M
m=1 z(k−1)M+m

14: end for
15: kout ∼ Unif{1, . . . ,K}
16: xout = xkout
17: Output: xout, (z(kout−1)M+m)Mm=1.

Algorithm 2 GradEstimator(x, ρ, ξ)

1: Input: Point x ∈ Rd, smoothing parameter ρ > 0, random seed ξ.
2: Sample w ∼ Unif(Sd−1)
3: Evaluate F (x + ρw; ξ) and F (x− ρw; ξ)
4: g = d

2ρ(F (x + ρw; ξ)− F (x− ρw; ξ))w . Unbiased estimator of ∇fρ(x)
5: Output: g.

With the rest of the proof of Theorem 5 as is, this yields an expected number of rounds of

T = O

((
d

k
+ 1

)
· ∆L2

0

δε3

)
,

though the total number of queries would be k times larger than above, and equal to

O

(
(d+ k) · ∆L2

0

δε3

)
.

In particular, letting k = Θ(d) removes the dimension dependence in the parallel complexity
altogether, while maintaining the same complexity overall (up to a constant). Notably, this
even matches the currently best-known complexity for deterministic first-order algorithms
under the discussed setting (Zhang et al., 2020; Tian et al., 2022; Davis et al., 2022).

The trick of averaging gradient estimators in order to reduce the dimension-factor in
the parallel complexity is applicable to smooth or convex optimization as well, though
under those settings the resulting overall complexity is still significantly worse (in terms
of the ε-dependence) than optimal deterministic first-order methods, as mentioned in the
introduction (cf. Duchi et al., 2018; Bubeck et al., 2019).
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High probability guarantee. While Theorem 1 shows that Algorithm 1 yields the de-
sired expected complexity, many practical applications require high probability bounds,
namely producing a point x such that

Pr
[∥∥∂̄δf(x)

∥∥ ≤ ε] ≥ 1− γ

for some small γ > 0. A naive application of Markov’s inequality to the expected complexity
shows that Algorithm 1 produces such a point within

T = O

(
dL2

0∆

δε3γ3

)
(1)

noisy function evaluations, which is rather crude with respect to the probability parameter
γ. Adapting a technique due to Ghadimi and Lan (2013) to our setting, we can design an
algorithm with a significantly tighter high-probability bound. The original idea of Ghadimi
and Lan (2013) for the case of smooth stochastic optimization, which was also used by
Lin et al. (2022), consists of several independent calls to the main algorithm, yielding a
list of candidate points. Subsequently, a post-optimization phase estimates the gradient
norm of any such point, returning the minimal — which is proved likely to succeed due
to a concentration argument. We note that adapting this technique to our setting is not
trivial, since the post-optimization phase should attempt at estimating

∥∥∂̄δf(·)
∥∥ rather than

‖∇f(·)‖, which is hard in general. Luckily, using Lemma 4, the former can be bounded
by
∥∥∂̄νfρ(·)∥∥, which in turn can be bounded (with high probability) using a sequence of

evaluations at nearby points. This procedure is described in Algorithm 3, whose convergence
rate is presented in the following theorem.

Theorem 6 Let γ, δ, ε ∈ (0, 1), and suppose f(x0) − infx f(x) ≤ ∆. Under Assump-

tion 2, there exist T = O
(
d∆L2

0
δε3

)
, R = O(log(1/γ)), S = O

(
log(1/γ)

γ

)
such that setting

ρ = min
{
δ
2 ,

∆
L0

}
, ν = max

{
δ
2 , δ −

∆
L0

}
, D =

(
(∆+ρL0)

√
ν√

dL0T

)2/3
, η = ∆+ρL0

dL2
0T

, and running

Algorithm 3 outputs a point xout satisfying

Pr
[∥∥∂̄δf(xout)

∥∥ ≤ ε] ≥ 1− γ

using

O

(
dL2

0∆ log(1/γ)

δε3
+
dL2

0 log2(1/γ)

γε2

)
noisy function evaluations.

Notably, the number of function evaluations guaranteed by the theorem above is signif-
icantly smaller than in Eq. (1). We also remark that even in the easier case in which the
function evaluations are noiseless, when relying on a local information (e.g. zero-order or
even first-order evaluations), a lack of smoothness or convexity provably necessitates the
use of randomization in the optimization algorithm when applied to Lipschitz objectives,
thus resorting to high probability guarantees is inevitable (Jordan et al., 2023).
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Algorithm 3 Algorithm with Post-Optimization Validation

1: Input: Initialization x0 ∈ Rd, smoothing parameter ρ > 0, accuracy parameter ν > 0,
clipping parameter D > 0, step size η > 0, iteration budget per round T ∈ N, number
of rounds R ∈ N, validation sample size S ∈ N.

2: Initialize: M = b νDc
3: for r = 1, . . . , R do
4: xrout, (zrm)Mm=1 = Algorithm 1(x0, ρ, ν,D, η, T )
5: for s = 1, . . . , S do
6: for m = 1, . . . ,M do
7: Sample ξm,s ∼ Ξ
8: grm,s = GradEstimator(zrm, ρ, ξm,s) . Unbiased estimator of ∇fρ(zrm)
9: end for

10: ĝrs = 1
M

∑M
m=1 grm,s

11: end for
12: ĝr = 1

S

∑S
s=1 grs

13: end for
14: r∗ = arg minr∈[R] ‖ĝr‖
15: Output: xr

∗
out.

4. Proof of Theorem 5

As previously discussed, the key to obtaining the improved rate is Lemma 4. We start by
proving it, followed by two additional propositions, after which we combine the ingredients
in order to conclude the proof.

Proof [Proof of Lemma 4] Let g ∈ ∂νfρ(x). Then, by definition, there exist y1, . . . ,yk ∈
B(x, ν) (for some k ∈ N) such that g =

∑
i∈[k] λi∇fρ(yi), where λ1, . . . , λk ≥ 0 with∑

i∈[k] λi = 1. By Proposition 3 we have for all i ∈ [k] :

∇fρ(yi) ∈ ∂ρf(yi) . (2)

Further note that since ‖yi − x‖ ≤ ν, then by definition

∂ρf(yi) ⊆ ∂ρ+νf(x) . (3)

By combining Eq. (2) and Eq. (3) we get that for all i ∈ [k] : ∇fρ(yi) ∈ ∂ρ+νf(x). Since
∂ρ+νf(x) is a convex set, we get that

g =
∑
i∈[k]

λi∇fρ(yi) ∈ ∂ρ+νf(x) .

The following lemma is essentially due to Shamir (2017), showing that it is possible
to construct a gradient estimator whose second moment scales linearly with respect to the
dimension d.
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Lemma 7 Let

gt =
d

2ρ
(F (xt + st∆t + ρwt; ξt)− F (xt + st∆t − ρwt; ξt)) wt ,

as generated by GradEstimator (Algorithm 2) when called at iteration t of Algorithm 1.
Then

Eξt,wt [gt|xt−1, st,∆t] = ∇fρ(xt−1 + st∆t) = ∇fρ(zt)

and
Eξt,wt [‖gt‖

2 |xt−1, st,∆t] ≤ 16
√

2πdL2
0 .

Proof For the sake of notational simplicity, we omit the subscript t throughout the proof.
For the first claim, since −w ∼ w are identically distributed, we have

Eξ,w[g|x, s,∆] = Eξ,w
[
d

2ρ
(F (x + s∆ + ρw; ξ)− F (x + s∆− ρw; ξ)) w |x, s,∆

]
=

1

2

(
Eξ,w

[
d
ρF (x + s∆ + ρw; ξ)w |x, s,∆

]
+ Eξ,w

[
d
ρF (x + s∆ + ρ(−w); ξ)(−w) |x, s,∆

] )
= Eξ,w

[
d
ρF (x + s∆ + ρw; ξ)w |x, s,∆

]
.

Using the law of total expectation, we get

Eξ,w[g|x, s,∆] = Ew

[
d
ρEξ [F (x + s∆ + ρw; ξ)w |w,x, s,∆] |x, s,∆

]
= Ew

[
d
ρf(x + s∆ + ρw)w |x, s,∆

]
= ∇fρ(x + s∆) ,

where the last equality is due to Flaxman et al. (2005, Lemma 2.1). The second moment
bound follows from Shamir (2017, Lemma 10), with the explicit constant pointed out by
Lin et al. (2022, Lemma E.1).

The following result of Cutkosky et al. (2023) provides a stochastic first-order nonsmooth
nonconvex optimization method, whose convergence scales linearly with the second-moment
of the gradient estimator.

Theorem 8 (Cutkosky et al., 2023) Let ν, ε ∈ (0, 1), and let h : Rd → R be an L-
Lipschitz function such that h(x0) − infx h(x) ≤ ∆h. Suppose GradEstimator(x, ξ) re-
turns an unbiased gradient estimator of ∇h(x) whose second moment is bounded by σ2.

Then there exists T = O
(
σ2∆h
νε3

)
such that setting η = ∆h

σ2T
, D =

(
(ν)1/2∆h

σT

)2/3
and running

Algorithm 1 uses T calls to GradEstimator and satisfies

• z(k−1)M+m ∈ B(xk, ν) for all m ∈ [M ], k ∈ [K] (where M,K, (zt)
T
t=1 are defined in

the algorithm).
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• Ez1,...,zT

[
1
K

∑K
k=1

∥∥∥ 1
M

∑M
m=1∇h(z(k−1)M+m)

∥∥∥] ≤ ε .

In particular, its output xout ∼ Unif{x1, . . . ,xK} satisfies E
[∥∥∂̄νf(xout)

∥∥] ≤ ε.
We are now ready to complete the proof of Theorem 5. By Lemma 7, GradEstimator

(Algorithm 2) returns an unbiased estimator of ∇fρ whose second moment is bounded
by σ2 = O(dL2

0), using two evaluations of F ( · ; ξ). Thus applying Theorem 8 to h = fρ
ensures that Algorithm 1 returns a (ν, ε)-stationary point of fρ, which by Lemma 4 is a
(ν + ρ, ε)-stationary point of f . Recall that ‖f − fρ‖∞ ≤ ρL0 and f(x0) − infx f(x) ≤ ∆,
thus fρ(x0) − infx fρ(x) ≤ ∆ + ρL0 =: ∆h. Overall we have obtained a (ν + ρ)-stationary
point of f using 2T function evaluations, where

T = O

(
σ2∆h

νε3

)
= O

(
dL2

0(∆ + ρL0)

νε3

)
.

Setting ρ = min
{
δ
2 ,

∆
L0

}
and ν = δ − ρ = max

{
δ
2 , δ −

∆
L0

}
completes the proof, since

ν + ρ = δ and

T = O

dL2
0(∆ + min

{
δ
2 ,

∆
L0

}
L0)

max
{
δ
2 , δ −

∆
L0

}
ε3

 = O

(
dL2

0(∆ + ∆
L0
· L0)

δ
2 · ε3

)
= O

(
dL2

0∆

δε3

)
.

5. Proof of Theorem 6

Recall that we saw in the proof of Theorem 5 that ∂νfρ(·) ⊆ ∂ν+ρf(·) according to Lemma 4,
and that for all m ∈ [M ] : zr

∗
m ∈ B(xr

∗
out, ν) by according to Theorem 8. Thus

∥∥∥∂̄δf(xr
∗

out)
∥∥∥ =

∥∥∥∂̄ν+ρf(xr
∗

out)
∥∥∥ ≤ ∥∥∥∂̄νfρ(xr∗out)

∥∥∥ ≤
∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇fρ(zr
∗
m )

∥∥∥∥∥∥ .

By denoting gr := 1
M

∑
m∈[M ]∇fρ(zrm), r ∈ [R] we get that it suffices to show that

Pr

[∥∥∥gr∗∥∥∥2
≤ ε2

]
= Pr

[∥∥∥gr∗∥∥∥ ≤ ε] ≥ 1− γ . (4)

By definition of r∗ we have∥∥∥ĝr∗∥∥∥2
= min

r∈[R]
‖ĝr‖2 ≤ min

r∈[R]

(
2 ‖gr‖2 + 2 ‖ĝr − gr‖2

)
≤ 2

(
min
r∈[R]

‖gr‖2 + max
r∈[R]

‖ĝr − gr‖2
)
,

thus ∥∥∥gr∗∥∥∥2
≤ 2

∥∥∥ĝr∗∥∥∥2
+ 2

∥∥∥ĝr∗ − gr
∗
∥∥∥2

≤ 4

(
min
r∈[R]

‖gr‖2 + max
r∈[R]

‖ĝr − gr‖2
)

+ 2
∥∥∥ĝr∗ − gr

∗
∥∥∥2

≤ 4 · min
r∈[R]

‖gr‖2 + 6 ·max
r∈[R]

‖ĝr − gr‖2 . (5)

10
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We now turn to bound each of the summand above with high probability. First, by The-

orem 5 we can set T = O
(
d∆L2

0
δε3

)
so that E[‖gr‖] ≤ ε

8 for any r ∈ [R], hence by Markov’s

inequality

Pr

[
4 ·min

r∈R
‖gr‖2 > ε2

4

]
= Pr

[
min
r∈R
‖gr‖ > ε

4

]
≤
∏
r∈[R]

Pr
[
‖gr‖ > ε

4

]
≤ 2−R .

By setting R ≥ dlog2(2/γ)e so that 2−R ≤ γ
2 , we conclude that

Pr

[
4 ·min

r∈R
‖gr‖2 > ε2

4

]
≤ γ

2
. (6)

For the second summand in Eq. (5), note that for all r ∈ [R] :

E [ĝr] = E

[
1

S

S∑
s=1

grs

]
=

1

S

S∑
s=1

(
1

M

M∑
m=1

E
[
grm,s

])

=
1

M

M∑
m=1

(
1

S

S∑
s=1

E
[
grm,s

]) Lemma 7
=

1

M

M∑
m=1

∇fρ(zrm) = gr ,

thus E[ĝr − gr] = 0, and that it follows from the second claim in Lemma 7 that for any
r ∈ [R], s ∈ [S] :

E
[
‖ĝrs − gr‖2

]
≤ 16

√
2πdL2

0

M
.

Noting that (gr1−gr), . . . , (grS−gr) are independent as they are functions of the independent
samples ξm,1, . . . , ξm,S , m ∈ [M ], we apply a simple tail bound for the norm of a sum of
independent vectors (Lemma 9 in the appendix) to get for any λ > 0 :

Pr

[
‖ĝr − gr‖2 ≥ λ16

√
2πdL2

0

MS

]
= Pr

∥∥∥∥∥ 1

S

S∑
s=1

(grs − gr)

∥∥∥∥∥
2

≥ λ16
√

2πdL2
0

MS


= Pr

∥∥∥∥∥
S∑
s=1

(grs − gr)

∥∥∥∥∥
2

≥ λS · 16
√

2πdL2
0

M

 ≤ 1

λ
,

hence by the union bound

Pr

[
max
r∈[R]

‖ĝr − gr‖2 ≥ λ16
√

2πdL2
0

MS

]
≤ R

λ
.

Setting λ := d2R
γ e so that R

λ ≤
γ
2 , we see that S & dL2

0 log(1/γ)
Mε2γ

suffices for having λ
16
√

2πdL2
0

MS ≤
ε2

4 , under which the inequality above shows that

Pr

[
max
r∈[R]

‖ĝr − gr‖2 ≥ ε2

4

]
≤ γ

2
. (7)
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By combining Eq. (6) and Eq. (7) and applying the union bound to get Eq. (5), we have
proved Eq. (4) as required. Finally, recalling that GradEstimator (Algorithm 2) requires
2 noisy function evaluations, it is clear that the total number of evaluations performed by
Algorithm 3 is bounded by

2R · (T +MS) = O

(
dL2

0∆ log(1/γ)

δε3
+
dL2

0 log2(1/γ)

γε2

)
.
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Appendix A.

Lemma 9 Let X1, . . . , XN ∈ Rd be independent random vectors such that for all i ∈ [N ] :

E[Xi] = 0, E[‖Xi‖2] ≤ σ2
i . Then E

[∥∥∥∑N
i=1Xi

∥∥∥2
]
≤
∑N

i=1 σ
2
i . In particular, for any λ > 0 :

Pr

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
2

≥ λ ·
N∑
i=1

σ2
i

 ≤ λ−1 .

Proof By linearity of expectation we have

E

∥∥∥∥∥∥
∑
i∈[N ]

Xi

∥∥∥∥∥∥
2 =

∑
i∈[N ]

E
[
‖Xi‖2

]
+

∑
i 6=j∈[N ]

E[〈Xi, Xj〉] =
∑
i∈[N ]

E
[
‖Xi‖2

]
≤
∑
i∈[N ]

σ2
i ,

where we used the assumption that for any i 6= j : Xi, Xj are independent, thus E[〈Xi, Xj〉] =
0. The second claim follows from Markov’s inequality.
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