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Abstract

Boosting is one of the most significant developments in machine learning. This paper studies
the rate of convergence of L2-Boosting in a high-dimensional setting under early stopping.
We close a gap in the literature and provide the rate of convergence of L2-Boosting in a
high-dimensional setting under approximate sparsity and without beta-min condition. We
also show that the rate of convergence of the classical L2-Boosting depends on the design
matrix described by a sparse eigenvalue condition. To show the latter results, we derive
new, improved approximation results for the pure greedy algorithm, based on analyzing
the revisiting behavior of L2-Boosting. These results might be of independent interest.
Moreover, we introduce so-called “restricted L2-Boosting”. The restricted L2-Boosting
algorithm sticks to the set of the previously chosen variables, exploits the information
contained in these variables first and then only occasionally allows to add new variables to
this set. We derive the rate of convergence for restricted L2-Boosting under early stopping
which is close to the convergence rate of Lasso in an approximate sparse, high-dimensional
setting without beta-min condition. We also introduce feasible rules for early stopping,
which can be easily implemented and used in applied work. Finally, we present simulation
studies to illustrate the relevance of our theoretical results and to provide insights into the
practical aspects of boosting. In these simulation studies, L2-Boosting clearly outperforms
Lasso. An empirical illustration and the proofs are contained in the Appendix.
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1. Introduction

In this paper we consider L2-Boosting algorithms for regression which are coordinatewise
greedy algorithms that estimate the target function under L2 loss. Boosting algorithms
represent one of the major advances in machine learning and statistics in recent years. Fre-
und and Schapire’s AdaBoost algorithm for classification (Freund and Schapire (1997)) has
attracted much attention in the machine learning community as well as in statistics. Many
variants of the AdaBoost algorithm have been introduced and proven to be very competi-
tive in terms of prediction accuracy in a variety of applications with a strong resistance to
overfitting. Boosting methods were originally proposed as ensemble methods, which rely
on the principle of generating multiple predictions and majority voting (averaging) among
the individual classifiers (Bühlmann and Hothorn (2007)). An important step in the anal-
ysis of boosting algorithms was Breiman’s interpretation of boosting as a gradient descent
algorithm in function space, inspired by numerical optimization and statistical estimation
(Breiman (1996), Breiman (1998)). Building on this insight, Friedman et al. (2000) and
Friedman (2001) embedded boosting algorithms into the framework of statistical estimation
and additive basis expansion. This also enabled the application of boosting for regression
analysis. Boosting for regression was proposed by Friedman (2001), and then Bühlmann
and Yu (2003) defined and introduced L2-Boosting. An extensive overview of the devel-
opment of boosting and its manifold applications is given in the survey of Bühlmann and
Hothorn (2007).

In the high-dimensional setting there are two important but unsolved problems on L2-
Boosting. First, the convergence rate of the L2-Boosting, in particular under early stopping,
has not been thoroughly analyzed. Second, the pattern of the variables selected at each
step of L2-Boosting is unknown. In this paper, we show that these two problems are closely
related. We establish results on the sequence of variables that are selected by L2-Boosting.
We call a step of L2-Boosting “revisiting” if the variable chosen in this step has already
been selected in previous steps. We analyze the revisiting behavior of L2-Boosting, i.e.,
how often L2-Boosting revisits. We then utilize these results to derive an upper bound of
the rate of convergence of the L2-Boosting.1 We show that frequency of revisiting, as well
as the convergence speed of L2-Boosting, depend on the structure of the design matrix,
namely on the minimal and maximal restricted eigenvalue.

Moreover, we introduce the so–called “restricted L2-Boosting”, another variant of the
classical boosting algorithm. The restricted L2-Boosting algorithm sticks to the set of the
previously chosen variables, exploits the information contained in these variables first and
then only occasionally allows to add new variables to this set. We show that the convergence
rate is close to that of Lasso and achieves the same rate as orthogonal L2-Boosting, which
was derived in Kueck et al. (2023), but without the need for orthogonal projections which
are costly to calculate. It should be noted, that all results are shown in an approximate
sparse, high-dimensional setting without beta-min condition. We also introduce feasible,
data-driven rules for early stopping for both algorithms, which can be easily implemented
and used in applied work.

1. Without analyzing the sequence of variables selected at each step of L2-Boosting, only much weaker
results on convergence speed of L2-Boosting are available based on DeVore and Temlyakov (1996) and
Livshitz and Temlyakov (2003).
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Compared to Lasso, boosting uses a somewhat unusual penalization scheme. The penal-
ization is done by “early stopping” to avoid overfitting in the high-dimensional case. In the
low-dimensional case, L2-Boosting without stopping converges to the ordinary least squares
(OLS) solution. In a high-dimensional setting, early stopping is key for avoiding overfit-
ting and for the predictive performance of boosting. We give new stopping rules that are
simple to implement and also works very well in practical settings as demonstrated in the
simulation studies. We prove that such a stopping rule achieves the best bound obtained
in our theoretical results. In a deterministic setting, which is when there is no noise or
error term in the model, boosting methods are also known as greedy algorithms (the pure
greedy algorithm (PGA) and the orthogonal greedy algorithm (OGA)). In signal processing,
L2-Boosting is essentially the same as the matching pursuit algorithm of Mallat and Zhang
(1993). We will employ the abbreviations BA (L2-Boosting algorithm), oBA (orthogonal
L2-Boosting algorithm) and resBA (restricted L2-Boosting algorithm) for the stochastic
versions we analyze. The rate of convergence of greedy algorithms has been analyzed in
DeVore and Temlyakov (1996) and Livshitz and Temlyakov (2003). Temlyakov (2011) is
an excellent survey of recent results on the approximation theory of greedy approximation.
To the best of our knowledge, with an additional assumption on the design matrix, we
establish the first results on revisiting in the deterministic setting and greatly improve the
existing results of DeVore and Temlyakov (1996). These results, which are available in the
appendix, are essential for our analysis of L2-Boosting, but might also be of interest in their
own right.

As mentioned above, boosting for regression was introduced by Friedman (2001). L2-
Boosting was defined in Bühlmann and Yu (2003). Its numerical convergence, consistency,
and statistical rates of convergence of boosting with early stopping in a low-dimensional
setting were obtained in Zhang and Yu (2005). Consistency in prediction norm of L2-
Boosting in a high-dimensional setting was first proved in Bühlmann (2006). The numerical
convergence properties of boosting in a low-dimensional setting are analyzed in Freund
et al. (2016). The orthogonal Boosting algorithm in a statistical setting under different
assumptions is analyzed in Ing and Lai (2011). The rates for the PGA and OGA are
obtained in Barron et al. (2008). For results on orthogonal boosting and modifications, we
refer to the excellent survey by Lai and Yuan (2021). In this paper we consider linear basis
functions. Classification and regression trees, and the widely used neural networks, involve
non-linear basis functions. We hope that our results can serve as a starting point for the
analysis of non-linear basis functions which is left for future research.

The structure of this paper is as follows: In Section 2, the L2-Boosting algorithm
(BA/PGA) is defined together with its modifications, the restricted-L2-Boosting algorithm
(resBA/resPGA) and the orthogonalized version (oBA), which serves as reference. In Sec-
tion 3, we present a new approximation result for the pure greedy algorithm (PGA) and an
analysis of the revisiting behavior of the boosting algorithm. In Section 4, we provide the
main results of our analysis, namely an analysis of the boosting algorithm and some of its
variants. The proofs together with some details of the new approximation theory for PGA
are provided in the appendix. Section 5 contains a simulation study that offers some in-
sights into the methods and also provides some guidance for stopping rules in applications.
Additional empirical examples can be found in the appendix. Section 6 provides concluding
remarks.
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Notation: Let z and y be n-dimensional vectors. Define ||z|| to be the Euclidean
norm, and ||z||2,n :=

√
En[z2] to be the empirical L2-norm with En[z] = 1/n

∑n
i=1 zi.

Define < ·, · >n to be the inner product defined by: < z, y >n= 1/n
∑n

i=1 ziyi. For a
random variable X, E[X] denotes its expectation. The correlation between the random
variables X and Y is denoted by corr(X,Y ). We use the notation a ∨ b = max{a, b} and
a ∧ b = min{a, b}. We also use the notation a - b to mean a ≤ cb for some constant c > 0
that does not depend on n; and a -P b to mean a = OP (b). For a vector β ∈ Rp, supp(β)
denotes the set of indices of which the corresponding element in β is not zero. Further,
given a set of indices T ⊂ {1, . . . , p}, we denote by βT the vector in which βTj = βj if j ∈ T ,
βTj = 0 if j /∈ T .

2. L2-Boosting with componentwise least squares

To define the boosting algorithm for linear models, we consider the following regression
setting:

yi = x′iβ + ri + εi, i = 1, . . . , n, (1)

with vector xi = (xi,1, . . . , xi,pn) consisting of pn predictor variables, β a pn-dimensional
coefficient vector and a random, mean-zero error term εi, E[εi|xi] = 0. We allow the
dimension of the predictors pn to grow with the sample size n, and to be even larger than
the sample size, i.e., dim(β) = pn > n. We impose an approximate sparsity condition. This
means that there is a large set of potential variables, but the number of relevant variables,
which can grow with the sample size, denoted by sn, is small compared to the sample size,
i.e. ‖β‖0 = sn < n. The random variable ri denotes the approximation error of the sparse
model. In the following, we will drop the dependence of sn and pn on the sample size in
the notation and denote it by s and p if no confusion will arise. X denotes the n× p design
matrix where the single observations xi form the rows. Xj denotes the jth column of design
matrix, and xi,j the jth component of the vector xi. We consider a fixed design for the
regressors. We assume that the regressors are standardized with mean zero and variance
one, i.e., En[xi,j ] = 0 and En[x2

i,j ] = 1 for j = 1, . . . , p,
The basic principle of boosting can be described as follows. We follow the interpretation

of Breiman (1998) and Friedman (2001) of boosting as a functional gradient descent opti-
mization (minimization) method. The goal is to minimize a loss function, e.g., an L2 loss
or the negative log-likelihood function of a model, by an iterative optimization scheme. In
each step, the (negative) gradient which is used in every step to update the current solution
is modelled and estimated by a parametric or nonparametric statistical model, the so-called
base learner. The fitted gradient is used for updating the solution of the optimization prob-
lem. A strength of boosting, besides the fact that it can be used for different loss functions,
is its flexibility with regard to the base learners. We then repeat this procedure until some
stopping criterion is met. The literature has developed many different forms of boosting al-
gorithms. In this paper, we consider L2-Boosting with componentwise linear least squares,
as well as two variants. All three are designed for regression analysis. “L2” refers to the loss
function, which is the sum of squares of the residuals Qn(β) =

∑n
i=1(yi − x′iβ)2 typical in

regression analysis. In this case, the gradient equals the residuals. “Componentwise linear
least squares” refers to the base learners. We fit the gradient (i.e. residuals) against each
regressor (p univariate regressions) and select the predictor/variable which correlates most
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highly with the gradient/residual, i.e., decreases the loss function most, and then update
the estimator in this direction. We next update the residuals and repeat the procedure until
some stopping criterion is met. In this paper, we focus on the “classical” L2-Boosting, which
was introduced in Friedman (2001) and refined in Bühlmann and Yu (2003) for regression
analysis, and two modifications: restricted-L2-Boosting and orthogonal L2-Boosting. Fur-
ther, we also provide some results for post-L2-Boosting which is defined in Comment 1. As
far as we know, post-L2-Boosting has not yet been defined and analyzed in the literature.

2.1 L2-Boosting

For L2-Boosting with componentwise least squares, the algorithm is given below.

Algorithm 1 (L2-Boosting (BA/PGA))

(1) Start/Initialization: β0 = 0 (p-dimensional vector), set maximum number of iterations
mstop and set iteration index m to 0.

(2) At the (m+ 1)th step, calculate the residuals Umi = yi − x′iβm.

(3) For each predictor variable j = 1, . . . , p, calculate :

γmj :=

∑n
i=1 U

m
i xi,j∑n

i=1 x
2
i,j

=
< Um, xj >n

En[x2
i,j ]

.

Select the variable jm that is the most correlated with the residuals2, i.e.,

max
1≤j≤p

|γmj |.

(4) Update the estimator: βm+1 := βm + γmjmejm where ejm is the jmth index vector.

(5) Increase m by one. If m < mstop, continue with (2); otherwise stop.

For simplicity, write γm for the value of γmjm at the mth step. The act of stopping is
crucial for boosting algorithms, as stopping too late or never stopping leads to overfitting
and therefore some kind of penalization is required. A suitable solution is to stop early, i.e.,
before overfitting takes place. “Early stopping” can be interpreted as a form of penalization.
Similar to Lasso, early stopping might induce a bias through shrinkage. A potential way
to decrease the bias is by “post-L2-Boosting” which is defined in Comment 1 below. In
general, during the run of the boosting algorithm, it is possible that the same variable is
selected at different steps, which means the variable is revisited. This revisiting behavior is
key to the analysis of the rate of convergence of L2-Boosting. In the next section, we will
analyze the revisiting properties of boosting in more detail.

Remark 1 Post-L2-Boosting is a variant of L2-Boosting, namely, a post-model selection
estimator that applies ordinary least squares (OLS) to the model selected by L2-Boosting
in the first step. To define this estimator formally, we make the following definitions:

2. Equivalently, which fits the gradient best in a L2-sense.
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T := supp(β) and T̂ := supp(βm
∗
), the support of the true model and the support of the

model estimated by L2-Boosting as described above with stopping at m∗. A superscript C
denotes the complement of the set with regard to {1, . . . , p}. In the context of Lasso, OLS
after model selection was analyzed in Belloni and Chernozhukov (2013). Given the above
definitions, the post-model selection estimator or OLS post-L2-Boosting estimator will take
the form

β̃ = arg min
β∈Rp

Qn(β) : βj = 0 for each j ∈ T̂C . (2)

In this paper, we will not focus on post-L2-Boosting.

2.2 Restricted L2-Boosting

In this section, we introduce the so-called restricted L2-Boosting algorithm. The motivation
is that the variable selection behavior of the “pure” greedy algorithm, introduced in the
section before, is challenging to analyze. Related to this and even more important, the pure
greedy algorithm also has a provably slow rate of convergence in general driven by chal-
lenging singular cases, as highlighted by the work of Temlyakov (2011). These cases result
in hard to handle variable selection patterns. In general, boosting first selects the relevant
variables and then the irrelevant variables. But the overall pattern is difficult to analyze,
because the selection of relevant and irrelevant variables can alternate, in particular at an
advanced stage of the algorithm when the correlation of the relevant variables with the re-
mainder is small due to previous extraction. The restricted L2-Boosting algorithm sticks to
the set of the already chosen variables for some time and exploits the information contained
in these variables, i.e. extracts the correlation of these variables with the remainder until
new variables are selected and added to the “consideration” set. The algorithm is given in
the following way:

Algorithm 2 (restricted L2-Boosting Algorithm (resBA/resPGA))

(1) Start/Initialization: β0 = 0 (p-dimensional vector) and set iteration index m to 0.

(2) At the (m + 1)th step, calculate the residuals Umi = yi − x′iβ
m. Define the set of

variables being selected as T̂m.

(3) Set T ∗ := {1, . . . , p} if lm = 0 and T ∗ := T̂m if lm = 1, for lm ∈ {0, 1} being a
sequence of integers indexed by m.3

(4) For each predictor variable j ∈ T ∗, calculate :

γmj :=

∑n
i=1 U

m
i xi,j∑n

i=1 x
2
i,j

=
< Um, xj >n

En[x2
i,j ]

.

Select the variable jm that is the most correlated with the residuals , i.e.,

max
j∈T ∗

|γmj |.

(5) Update the estimator: βm+1 := βm + γmjmejm where ejm is the jmth index vector.

3. This criterion is essentially restricting the algorithm within the set of already selected variables.
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(6) Stopping Criterion: Stop at m∗ which is defined as the first m with

‖Um+1‖22,n/‖Um‖22,n > 1− CU
log(2p/α)

n

when lm = 0 where CU and α are defined in Theorem 17.

Remark 2 A related version of restricted L2-Boosting algorithm is the iterated post-L2-
Boosting algorithm where at certain iterations during the algorithm a projection step is
performed on the already selected variables (Kueck et al. (2023)). By projecting the residuals
on the selected variables, all correlation/information of the variables is taken out. The
restricted L2-Boosting algorithm avoids these projection steps which are computationally
expensive.

2.3 Orthogonal L2-Boosting

A variant of the L2-Boosting algorithm is orthogonal Boosting (oBA) or the orthogonal
greedy algorithm in its deterministic version. Only the updating step is changed: after
each selection step, an orthogonal projection of the response variable is conducted on all
the variables which have been selected up to this point. The advantage of this method is
that any variable is selected at most once in this procedure, while in the previous version
the same variable might be selected at different steps which makes the analysis far more
complicated. More formally, the method can be described as follows by modifying step (4)
in Algorithm 1:

Algorithm 3 (Orthogonal L2-Boosting (oBA))

(1) Start/Initialization: β0 = 0 (p-dimensional vector), set maximum number of iterations
mstop and set iteration index m to 0.

(2) At the (m+ 1)th step, calculate the residuals Umi = yi − x′iβm.

(3) For each predictor variable j = 1, . . . , p, calculate :

γmj :=

∑n
i=1 U

m
i xi,j∑n

i=1 x
2
i,j

=
< Um, xj >n

En[x2
i,j ]

.

Select the variable jm that is the most correlated with the residuals , i.e.,

max
1≤j≤p

|γmj |.

(4) Update the estimator: βm+1 = (XTm+1
′XTm+1)−1XTm+1

′y.

(5) Increase m by one. If m < mstop, continue with (2); otherwise stop.

Remark 3 Orthogonal L2-Boosting (and also post-L2-Boosting) requires, to be well-defined,
that the number of selected variables be smaller than the sample size. This is enforced by
our stopping rule, as we will see later.
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2.4 Comparison

We have introduced different variants of L2-Boosting algorithms. Among them, L2-Boosting
is the most widely used algorithm in empirical applications. As we will see later, the rate
of convergence is slower than the Lasso rate as there are cases for which the convergence,
even in the noiseless case, is too slow. In signal processing and related fields, the noiseless
version of the orthogonal Boosting (“orthogonal matching pursuit”) is also very popular.
It has been shown that for orthogonal L2-Boosting fast convergence rates with a feasible,
data-driven stopping criterion in high dimensions can be obtained even in the case with
noise (see Kueck et al. (2023) without beta-min condition and Stankewitz (2024) under
stronger assumptions like beta-min condition and normality). The restricted L2-Boosting
can be considered as a middle ground between both. It only uses the boosting steps (with-
out orthogonal projection) but, as we will show, it achieves the same rate of convergence
as orthogonal L2-Boosting. By restricting to the set of already selected variables for some
steps, the information of the variables is partialled-out of the target variable y and in the
limit it converges to an orthogonal projection step, as used in orthogonal L2-Boosting. Or-
thogonal L2-Boosting might be interpreted as post-L2-Boosting where the refit takes place
after each step. By only selectively/occasionally adding new variables, where only standard
boosting steps are used, the rate of convergence is improved compared to L2-Boosting. Re-
stricted L2-Boosting can be considered as an approximation to orthogonal Boosting but
without orthogonal projections. Therefore, it offers advantageous computational properties
as orthogonal projections are costly to calculate. The algorithm only employs the default
boosting steps, which are based on univariate regressions and are fast and easy to compute.
Therefore, the proposed restricted L2-Boosting algorithm has excellent theoretical proper-
ties and is computationally superior to orthogonal L2-Boosting. It is also computationally
superior to iterated L2-Boosting, where projection steps are imposed from time to time,
since projections can be dispensed at all.

3. New Approximation Results for the Pure Greedy Algorithm

In approximation theory a key question is how fast functions can be approximated by greedy
algorithms. Approximation theory is concerned with deterministic settings, i.e., the case
without noise:

yi = x′iβ, i = 1, . . . , n. (3)

Nevertheless, to derive rates for the L2-Boosting algorithm in a stochastic setting, the
corresponding results for the deterministic part play a key role. For example, the results
in Bühlmann (2006) are limited by the result used from approximation theory, namely the
rate of convergence of weak relaxed greedy algorithms derived in Temlyakov (2000). For
the pure greedy algorithm, DeVore and Temlyakov (1996) establish a rate of convergence of
m−1/6 in the `2−norm, where m denotes the number of steps iterated in the PGA. This rate
was improved to m−11/62 in Konyagin and Temlyakov (1999), but Livshitz and Temlyakov
(2003) established a lower bound of m−0.27. The class of functions F which is considered
in those papers is determined by general dictionaries D and given by

F =

{
f ∈ H : f =

∑
k∈Λ

ckwk, wk ∈ D, |Λ| <∞ and
∑
k∈Λ

|ck| ≤M

}
,
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where M is some constant, H denotes a Hilbert space, and the sequence (ck) are the coeffi-
cients with regard to the dictionary D. In this section, we discuss the approximation bound
of the pure greedy algorithm where we impose an additional but widely used assumption on
the Gram matrix En[xix

′
i] in high-dimensional statistics to tighten the bounds. We provide

a new lemma on the revisiting behavior of the pure greedy algorithm and a new approxi-
mation result which is the core of this section. The proofs for this section and a detailed
analysis of the revisiting behavior of the algorithm are moved to Appendix A and Appendix
B. Let us define the restricted eigenvalue assumption which is also commonly used in the
analysis of Lasso. To do this, consider

Σ(s,M) := {A|dim(A) ≤ s× s,A is any diagonal submatrices of M},

for any square matrix M .

Definition 4 The smallest and largest restricted eigenvalues are defined as

φs(s,M) := min
W∈Σ(s,M)

φs(W ),

and
φl(s,M) := max

W∈Σ(s,M)
φl(W ).

φs(W ) and φl(W ) denote the smallest and largest eigenvalue of the matrix W .

Assummption A.1 (Sparse Eigenvalue (SE))
Consider the Gram matrix Σ = En[xix

′
i]. Assume that all the elements on the diagonal of

Σ are equal to one. We assume that there exist positive constants cφ ≤ 1 and Cφ > 1 such
that

0 < cφ ≤ φs(s′,Σ) ≤ φl(s′,Σ) ≤ Cφ <∞

holds for s′ ≤Mn, where Mn is a sequence such that Mn →∞ with n and Mn ≥ CMs log(n),
where CM is a large enough fixed constant.

Remark 5 This condition is a variant of the so-called “sparse eigenvalue condition”, which
is used for the analysis of the Lasso estimator. A detailed discussion of this condition is
given in Belloni et al. (2010). Similar conditions, such as the restricted isometry condition
or the restricted eigenvalue condition, have been used for the analysis of the Dantzig Selector
(Candes and Tao (2007)) or the Lasso estimator (Bickel et al. (2009)). An extensive
overview of different conditions on matrices and how they are related is given by van de
Geer and Bühlmann (2009). Assuming that φs(m,En[xix

′
i]) > 0, requires that all empirical

Gram submatrices formed by any m components of xi are positive definite. It is well-known
that Condition SE is fulfilled for many designs of interest.

Define V m = Xαm as the residual for the PGA. Here, αm is defined as the difference
between the true parameter vector β and the approximation at the mth step, βm, i.e.
αm = β − βm. We would like to explore how fast V m converges to 0. In our notation,
||V m+1||22,n = ||V m||22,n − (γm)2, therefore ||V m||22,n is non-increasing in m. As described in

Algorithm 1, the sequence of variables selected in the PGA is denoted by j0, j1, . . .. Define
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Tm := T ∪ {j0, j1, . . . , jm−1} with T := supp(β). Define q(m) := |Tm| as the cardinality of
Tm, m = 0, 1, . . .. It is obvious that q(0) = s and q(m) ≤ m + s where s = ‖β‖0 denotes
the number of relevant regressors. It is essential to understand how PGA revisits the set of
already selected variables. To analyze the revisiting behavior of the PGA, some definitions
are needed to fix ideas.

Definition 6 We say that the PGA is revisiting at the mth step, if and only if jm−1 ∈
Tm−1. We define the sequence of labels A := {A1, A2, ...} with each entry Ai being either
labelled as R(revisiting) or N(non-revisiting).

Lemma 7 Assume that assumption A.1 holds with m < Mn. Consider the sequence of
steps 1, 2, . . . ,m with ||V m||22,n > 0. Denote µa(c) = 1−

(
1 + 1

c

)−c
for any c > 0. Then, for

any δ > 0, the number of Rs in the sequence A at step m, denoted R(m), must satisfy:

|R(m)| ≥
1− (1 + δ)µa(cφ)

2− (1 + δ)µa(cφ)
m−

(1 + δ)µa(cφ)

2− (1 + δ)µa(cφ)
q(0).

The lower bound stated in Lemma 7 has room for improvement, e.g., when cφ = 1,
|R(m)|/m = 1 as it is shown in Lemma 20 in Appendix A, while we get 1/2 in Lemma
7 as lower bounds of |R(m)/m| as m becomes large enough. Deriving tight bounds is an
interesting question for future research. More detailed properties of the revisiting behavior
of L2-Boosting are provided in the Appendix A.

With an estimated bound for the proportion of Rs in the sequence A, we are now able

to derive an upper bound for ||V m||22,n. By Lemma 7, define n∗k(m) :=
m+µa(cφ)q(k)

2−µa(cφ) , where

n∗k(m)(1 + δ) is an upper bound of |q(m+ k)− q(k)| as q(m) is large enough, for any δ > 0.
Before we state the main result of this section, we present an other auxiliary lemma.

Lemma 8 Assume that assumption A.1 holds. Consider the steps numbered as k+1, . . . , k+
m. Assume that m+ k < Mn and let m = λq(k) for a constant λ > 0. Define

ζ(c, λ) :=

c((1−µa(c))λ−µa(c))
2+λ

log
(

2+λ
2−µa(c)

) + c

for all λ ≥ µa(c)
1−µa(c) and c > 0. Then, for any arbitrarily small δ > 0 and q(k) being large

enough, there exists an arbitrarily small δ′ > 0 such that the following statement holds:

||V m+k||22,n ≤ ||V k||22,n
(

q(k)

q(k) + (1 + δ)n∗k(m)

)ζ(cφ,λ)−δ′

.

Based on Lemma 8, we are able to develop our main results on the approximation theory
of the pure greedy algorithm under L2 loss.

Theorem 9 (Approximation Theory of PGA based on revisiting) Assume that as-
sumption A.1 holds. Define ζ∗(c) := max

λ≥ µa(c)
1−µa(c)

ζ(c, λ) as a function of c. Then, for any

κ > 0 and m < Mn, there exists a fixed constant C > 0 such that

||V m||22,n
||V 0||22,n

≤ C
(

s

m+ s

)ζ∗(cφ)−κ

for m large enough.

10
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Remark 10 Our results stated in Theorem 9 depend on the lower bound of |R(m)|/m,
which is the proportion of the Rs in the first m terms in the sequence A. We conjecture
that the convergence rate of PGA is close to exponential as c → 0. Denote the actual
proportion of R in the sequence A by ψ(c), i.e.,

|R(m)| ≥ ψ(c)m− ψ1(c)q(0),

where ψ(c), ψ1(c) are some constants depending on c. If ψ(c)→ 1, it is easy to show that

||V m||22,n - ||V 0||22,n
(

s

s+m

)ζ
,

based on the proof of Theorem 9, for any arbitrarily large ζ. In general, further improve-
ments in the convergence rate of PGA can be achieved by improving the lower bounds of
|R(m)|/m. Table 1 gives different values of the SE constant cφ for the corresponding val-
ues of ζ∗(cφ). The convergence rate of PGA and hence of L2-Boosting is affected by the

Table 1: Relation between cφ and ζ∗

cφ ζ∗(cφ)

1.0 1.19
0.9 1.04
0.8 0.89
0.7 0.76
0.6 0.63
0.5 0.51
0.4 0.40

frequency of revisiting. Since different values of cφ impose different lower bounds on the fre-
quency of revisiting, different values of cφ imply a different convergence rate of the process
in our framework.

Remark 11 As already mentioned, the function ζ∗(c) defined in Theorem 9 is used to
provide a general lower bound of the revisiting behavior which affects the rate of convergence
of boosting algorithms. In some special cases, the PGA algorithm always selects a predictor
from the true set T , indicating that ζ∗(cφ)→∞, and therefore a stronger revisiting behavior
can be shown. This is, for example, the case in a (near) orthogonal design, e.g., when Xj,
j = 1, . . . , p, are i.i.d. standard normally distributed or in an equi-correlated design, where
−1 < corr(Xi, Xj) = ρ < 1 for all i 6= j. A formal discussion of the equi-correlated
design with ρ > 0 is given in Appendix D. In both cases, we achieve the Lasso rate of
convergence. But under more general designs, greedy algorithms can only achieve a slower
rate of convergence (see Temlyakov (2011)), preventing one to achieve the Lasso rate of
convergence, as we discuss in more detail in Section 4.

4. Main Results

In this section, we provide the main results of our paper for L2-Boosting (BA) and restricted
L2-Boosting (resBA) which were introduced in Section 2. To do this, we reconsider the high-

11
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dimensional approximate sparse regression model in (1):

yi = x′iβ + ri + εi, i = 1, . . . , n,

with vector xi = (xi,1, . . . , xi,p) consisting of p predictor variables, β a p-dimensional coef-
ficient vector, and a random, mean-zero error term εi, E[εi|xi] = 0. The random variable
ri denotes the approximation error of the exact sparse model. In Assumption A.2, we pro-
vide the explicit conditions of the approximate sparse regression model, as, for example,
also considered in Belloni et al. (2013) and Belloni et al. (2016). Another sparsity assump-
tion used in the literature is, e.g., weak sparsity (Negahban et al. (2012); Ing (2020)), i.e.∑p

j=1 |βj |
q ≤ Rn, where 0 < q ≤ 1, but in this paper we focus on the approximate sparse

regression model.4 In this section, the following assumptions are employed.

Assummption A.2 (Approximate Sparsity)

(i) ‖β‖0 ≤ s

(ii) ‖r‖2,n := rn ≤
√

Crs log(2p/α)
n for some generic constant Cr > 0 and α > 0.

(iii) There exists a constant K ≥ 1 such that ‖β‖2 ≤ nK−1.

Assummption A.3 (Error term)
For any α small enough, with probability ≥ 1− α, we have:

max
1≤j≤p

|En[xi,jεi]| ≤ σ
√

log(2p/α)

n
:= λn.

In addition, we require that σ̂2 := En[ε2
i ] satisfies that

|σ̂2 − σ2| ≤ ωσ2,

for some small enough constant ω ∈
(
0, 1

2

)
.

Remark 12 The previous assumption is implied, for example, if the error terms are i.i.d.
N(0, σ2) random variables. This in turn can be generalized/weakened to cases of non-
normality by self-normalized random vector theory (de la Peña et al. (2009)) or the approach
introduced in Chernozhukov et al. (2014).

4.1 L2-Boosting with Componentwise Least Squares

First, we analyze the classical L2-Boosting algorithm with componentwise least squares.
For this purpose, the approximation results which we derived in the previous section are
key. While in the previous section the stochastic component was absent, in this section it is
explicitly considered. The following definitions will be helpful for the analysis: Um denotes
the residuals at the mth iteration, Um = y−Xβm = V m+r+ε. Here, βm is the estimator at
the mth iteration. Again, we define the difference between the true and the estimated vector
as αm := β − βm. The prediction error is given by V m = Xαm. For boosting algorithms

4. The extension of our results to different sparsity assumptions is left for future work.

12
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in the high-dimensional setting, it is essential to determine when to stop, i.e. the stopping
criterion. In the low-dimensional case, stopping time is not important: the value of the
objective function decreases and converges to the traditional OLS solution exponentially
fast, as described in Bühlmann and Yu (2003). In the high-dimensional case, such fast
convergence rates are usually not available: the residual ε can be explained by n linearly
independent variables Xj . Thus, selecting more terms only leads to overfitting. Early
stopping is comparable to the penalization in Lasso, which prevents one from choosing too
many variables and hence overfitting. Similarly to Lasso, an (approximate) sparse structure
will be needed for analysis. At each step, we minimize ||Um||22,n along the “most greedy”
variable Xjm . The following lemma establishes the main result of the convergence rate of
L2-Boosting.

Lemma 13 Suppose assumptions A.1–A.3 hold and s log(p)/n → 0. Assume Mn is large
enough, i.e.

log(Mn/s) +

(
ξ +

1

1 + ζ∗(cφ)

)
log

(
s log(2p/α)

n||V 0||22,n

)
> 0

for some ξ > 0. Let m∗ + 1 be the first time that ||V m||2,n ≤ η
√
m+ sλn, where η is a

constant large enough. Then, for any δ > 0, with probability ≥ 1− α,

(1) it holds

m∗ - s

(
s log(2p/α)

n||V 0 + r||22,n

) −1
1+ζ∗(cφ)−δ

and m∗ < Mn; (4)

(2) the prediction error ||V m∗+1|| satisfies:

||V m∗+1||22,n - ||V 0 + r||
2

1+ζ∗(cφ)−δ
2,n

(
s log(2p/α)

n

) ζ∗(cφ)−δ
1+ζ∗(cφ)−δ

. (5)

Remark 14 Lemma 13 shows that the convergence rate of the L2-Boosting depends on the
value of cφ. For different values of cφ, the lower bound of the proportion of revisiting (“R”)
in the sequence A should be different. Such lower bounds on the frequency of revisiting
will naturally determine the upper bound for the deterministic component, which affects our
results on the rate of convergence of L2-Boosting. As ζ∗(cφ)→∞, the statement (5) implies
the usual Lasso rate of convergence.

The bound of the approximation error ||V m||22,n stated in inequality (5) is obtained
under an infeasible stopping criterion. Below we establish another result which employs the
same convergence rate but with a feasible stopping criterion which can be implemented in
empirical studies.

Theorem 15 Suppose all conditions stated in Lemma 13 hold. Let cu > 4 be a constant.
Let m∗1 + 1 be the first time that

||Um||22,n
||Um−1||22,n

> 1− cu log(2p/α)/n.

13
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Then, with probability at least 1− α,

||V m∗1+1||22,n - ||V 0||
2

1+ζ∗(cφ)−δ
2,n

(
s log(2p/α)

n

) ζ∗(cφ)−δ
1+ζ∗(cφ)−δ

for any δ > 0.

Remark 16 As we have already seen in the deterministic case, the rate of convergence
depends on the constant cφ. Table 2 shows for different values of cφ the corresponding rates
when δ is set to zero. Hence, the rates can be interpreted as upper bounds.

Table 2: Relation between c and ζ∗(c)
1+ζ∗(c)

c rate

1.0 0.54
0.9 0.51
0.8 0.47
0.7 0.43
0.6 0.39
0.5 0.34
0.4 0.29

4.2 Restricted L2-Boosting

The following theorem establishes the main result of convergence rate of restricted L2-
Boosting.

Theorem 17 Suppose Assumptions A.1–A.3 hold. Define a sequence of positive integers
mk as follows: For k = 1, 2, . . . , define Lk as a positive integer, and WLOG., we let
Lk = Ln as a constant, and define Fk = bCF |T̂mk−1 | log(n)c for some absolute constant CF
large enough5 with

mk := mk−1 + Lk + Fk

where m0 := 0. As suggested in the restricted L2-Boosting, Algorithm 2 runs on the full set
of variables when lm = 0 and the selected variables when lm = 1. To this end, consider a
sequence of indices lm ∈ {0, 1}, m = 1, 2, . . . , with lm = 0 for m = mk + 1, ...,mk +Lk, and
lm = 1 for m = mk + Lk + 1, ...,mk+1, k ≥ 0. Suppose that Ln < KL

√
s for some generic

positive constant KL > 0. For CU > 4/cφ defined in Algorithm 2, with probability ≥ 1− α,
we have

En
[(
x′i(β

m∗ − β)
)2
]
-
s log(n) log(2p/α)

n
.

Remark 18 The bound of the prediction error of restricted L2-Boosting in Theorem 17 is
obtained under a feasible stopping criterion which can be easily implemented in empirical

5. For example, Fn can be chosen as lnξ(n) for some ξ > 2 for n large enough.
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studies. The constant CU has to be chosen by the practitioner. In contrast to the constant
cu > 4 in Theorem 15, Cu depends on the sparse eigenvalue cφ which can be (pre)-estimated
by data and Cu is chosen accordingly. It is worth noting that the restricted L2-Boosting algo-
rithm is purely gradient based. Hence, there is no need for orthogonal projections which are
computationally costly in high-dimensional settings. Therefore, restricted L2-Boosting com-
bines two desirable properties: computational efficiency and very fast rate of convergence.
In practice, one also needs to specify the sequence of indices lm ∈ {0, 1}, m = 1, 2, . . . , which
depends on Lk and Fk and thus determines the so-called “consideration” set. As already
outlined in Section 2.2, the restricted L2-Boosting algorithm sticks to the set of the already
chosen variables for some time (Fk iterations) and exploits the information contained in
these variables until new variables are added to the “consideration” set. By restricting to
the set of already selected variables for some iterations, the information of the variables is
partialled-out of the target variable y and in the limit it converges to an orthogonal pro-
jection step, as used in orthogonal L2-Boosting. The constant Lk ≥ 1 is the number of
iterations where we allow the algorithm to select new variables.

5. Simulation Study

In this section, we present the results of our simulation study. The goal of this exercise is to
illustrate the relevance of our theoretical results in providing insights into the functionality
of boosting and the practical aspects of boosting. In particular, we demonstrate that the
stopping rules for early stopping we propose work reasonably well in the simulations and
give guidance for practical applications. Moreover, the comparison with Lasso might also
be of interest. First, we start with an illustrative example and later we present further
results, in particular, for different designs and settings.

5.1 Illustrative Example

The goal of this section is to give an illustration of the different stopping criteria. We
employ the following data generating process (dgp):6

y = 5x1 + 2x2 + 1x3 + 0x4 + . . .+ 0x10 + ε, (6)

where ε ∼ N(0, 22) and X = (X1, . . . , X10) ∼ N10(0, I10) with I10 denoting the identity
matrix of size 10×10. To evaluate the methods and, in particular, the stopping criteria, we
conduct an analysis of both in-sample and out-of-sample mean squared error (MSE) defined
in equation (8). For the out-of-sample analysis we draw a new observation for evaluation
and calculation of the MSE. For the in-sample analysis we also repeat the procedure and
form the average over all repetitions. In both cases we employ 60 repetitions. The sample
size is n = 20. Hence, we have 20 observations to estimate 10 parameters. The results
are presented in Figures 1 and 2. Both show how MSE depends on the number of steps
of the boosting algorithm. We see that MSE first decreases with more steps, reaches its
minimum and then starts to increase again due to overfitting. In both graphs the solution
of the L2-Boosting algorithm convergences to the OLS solution. We also indicate the MSE
of Lasso estimators as horizontal lines (with cross-validated choice of the penalty parameter

6. In order to allow comparability the dgp is adopted from Bühlmann (2006).
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and data-driven choice of the penalization parameter). In order to find a feasible stopping
criterion, we have to rely on the in-sample analysis. Figure 2 reveals that the stopping
criterion we introduced in the previous sections performs very well and even better than
stopping based on a corrected AIC value which has been proposed in the literature as a
stopping criterion for boosting. The average stopping steps of our criterion and the corrected
AIC-based criterion (AICc) are presented by the vertical lines. On average our criterion
stops earlier than the AICc based one. As our criterion performs better than the AICc,
we will not report AICc results in the following subsection. For the restricted L2-Boosting
algorithm, similar patterns arise and are omitted.

0 10 20 30 40 50

0
2

4
6

8
10

Out−of−sample Analysis

step

M
S

E

OLS

PGA our

PGA AIC

LASSO

LASSO CV

Figure 1: This figure shows the out-of-sample MSE of the L2-Boosting algorithm depending
on the number of steps. The horizontal lines show the MSE of OLS, Boosting
and Lasso estimates.

5.2 Further Results

In this section, we present results for different designs and settings to give a more detailed
comparison of the methods. We consider the linear model

y =

p∑
j=1

βjxj + ε, (7)

with ε standard normal distributed and i.i.d.. For the coefficient vector β we consider two
designs. First, we consider a sparse design, i.e., the first s elements of β are set equal to one,
all other components to zero (β = (1, . . . , 1, 0, . . . , 0)). Then we consider a polynomial design
in which the jth coefficient given by 1/j, i.e., β = (1, 1/2, 1/3, . . . , 1/p). For the design
matrix X, we consider two different settings: an “orthogonal” setting and a “correlated”
setting. In the former setting, the entries of X are drawn as i.i.d. draws from a standard
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Figure 2: This figure shows the in-sample MSE of the L2-Boosting algorithm depending on
the number of steps. The horizontal lines show the MSE of OLS, Boosting and
Lasso estimates.

normal distribution. In the correlated design, the xi (rows of X) are distributed according
to a multivariate normal distribution where the correlations are given by a Toeplitz matrix
with factor 0.5 and alternating signs. To sum up, we have the following settings:

• X: “orthogonal” or “correlated”

• coefficient vector β: sparse design or polynomial decaying design

• n = 100, 200, 400

• p = 100, 200

• s = 10

• out-of-sample prediction size n1 = 50

• number of repetitions R = 500

We consider the following estimators: L2-Boosting with componentwise least squares, re-
stricted L2-Boosting, orthogonal L2-Boosting and Lasso. For Lasso, we also consider the
post-selection estimator (“p-Lasso”). Here, we consider a data-driven regressor-dependent
choice for the penalization parameter (Belloni et al. (2012)) and cross-validation. Although
cross-validation is very popular, it does not rely on established theoretical results and there-
fore we prefer a comparison with the formal penalty choice developed in Belloni et al.
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Table 3: Simulation results: sparse, iid design (Boosting)

n p BA-oracle BA-our oBA-oracle oBA-our resBA-oracle resBA-our
100 100 0.454 0.599 0.114 0.475 0.168 0.291
100 200 0.543 0.779 0.123 0.704 0.189 0.359
200 200 0.184 0.307 0.052 0.282 0.072 0.168
400 200 0.080 0.135 0.026 0.121 0.032 0.081
800 200 0.037 0.066 0.013 0.058 0.015 0.042

Table 4: Simulation results: sparse, iid design (Lasso)

n p Lasso p-Lasso Lasso-CV p-Lasso-CV
100 100 0.88 0.70 0.54 0.94
100 200 1.02 1.30 0.72 1.02
200 100 0.29 0.28 0.22 0.43
200 200 0.37 0.39 0.30 0.44
400 100 0.13 0.11 0.09 0.18
400 200 0.16 0.20 0.14 0.27

(2012). For our boosting algorithms, we consider two stopping rules: “oracle” and a “data-
dependent” stopping criterion (“our”) which stops when

||Um||22,n
||Um−1||22,n

=
σ̂2
m,n

σ̂2
m−1,n

> 1− C log(p)/n

for some constant C. Using this approach, boosting stops when the ratio of the estimated
variances does not improve upon a certain amount any more. The oracle rule stops when the
mean-squared-error (MSE), defined below, is minimized, which is not feasible in practical
applications. The simulations were performed in R (R Core Team (2014)). For Lasso
estimation the packages hdm by Chernozhukov et al. (2015) and glmnet by Jerome Friedman
(2010) (for cross-validation) were used. The boosting procedures were implemented by
the authors and the code is available upon request.7 To evaluate the performance of the
estimators, we use the MSE criterion. We estimate the models on the same data sets and
use the estimators to predict 50 observations out-of-sample. The (out-of-sample) MSE is
defined as

MSE = E[(f(X)− fm(X))2] = E[(X ′(β − βm))2], (8)

where m denotes the iteration at which we stop, depending on the employed stopping rule.
The MSE is estimated by

1

n1

n1∑
i=1

[(f(xi)− fm(xi))
2] =

1

n1

n1∑
i=1

[(x′i(β − βm))2] (9)

for the out-of-sample predictions. The results of the simulation study are shown in Tables
3 – 10.

As expected, the oracle-based estimators clearly dominate in almost all cases, although
our stopping criterion also gives very good results. Not surprisingly, given our theoretical
results, both restricted L2-Boosting and orthogonal L2-Boosting outperform the standard
L2-Boosting in most cases. A comparison of restricted and orthogonal L2-Boosting does

7. A R package is in preparation.
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Table 5: Simulation results: sparse, correlated design (Boosting)

n p BA-oracle BA-our oBA-oracle oBA-our resBA-oracle resBA-our
100 100 1.501 2.232 0.357 1.255 0.670 2.028
100 200 3.220 3.080 2.516 2.552 2.301 2.968
200 200 0.627 0.753 0.059 0.249 0.144 0.215
400 200 0.195 0.245 0.027 0.113 0.068 0.102
800 200 0.081 0.104 0.013 0.054 0.035 0.051

Table 6: Simulation results: sparse, correlated design (Lasso)

n p Lasso p-Lasso Lasso-CV p-Lasso-CV
100 100 2.63 1.35 0.97 1.37
100 200 2.96 2.04 1.63 2.38
200 100 1.10 0.23 0.33 0.57
200 200 1.64 0.38 0.49 0.87
400 100 0.38 0.10 0.13 0.23
400 200 0.36 0.15 0.16 0.31

Table 7: Simulation results: polynomial, iid design (Boosting)

n p BA-oracle BA-our oBA-oracle oBA-our resBA-oracle resBA-our
100 100 0.411 0.548 0.400 0.658 0.400 0.536
100 200 0.252 0.324 0.248 0.356 0.246 0.312
200 200 0.282 0.399 0.274 0.463 0.271 0.381
400 200 0.182 0.232 0.180 0.251 0.178 0.221
800 200 0.122 0.143 0.121 0.148 0.121 0.140

Table 8: Simulation results: polynomial, iid design (Lasso)

n p Lasso p-Lasso Lasso-CV p-Lasso-CV
100 100 0.43 0.83 0.45 0.84
100 200 0.50 1.06 0.54 0.76
200 100 0.30 0.34 0.26 0.47
200 200 0.34 0.52 0.33 0.52
400 100 0.19 0.19 0.15 0.24
400 200 0.21 0.31 0.20 0.38

Table 9: Simulation results: polynomial, correlated design (Boosting)

n p BA-oracle BA-our oBA-oracle oBA-our resBA-oracle resBA-our
100 100 0.242 0.421 0.228 0.506 0.223 0.380
100 200 0.251 0.531 0.244 0.670 0.238 0.489
200 200 0.193 0.312 0.171 0.337 0.165 0.269
400 200 0.149 0.203 0.113 0.188 0.111 0.161
800 200 0.102 0.126 0.078 0.111 0.077 0.100

Table 10: Simulation results: polynomial, correlated design (Lasso)

n p Lasso p-Lasso Lasso-CV p-Lasso-CV
100 100 0.33 0.53 0.33 0.55
100 200 0.34 0.93 0.36 0.55
200 100 0.27 0.31 0.23 0.41
200 200 0.28 0.47 0.29 0.46
400 100 0.17 0.18 0.14 0.24
400 200 0.16 0.24 0.15 0.29
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not provide a clear answer with advantages on both sides. It is worth noting that the post-
Lasso estimator improves upon Lasso, but there are some exceptions, probably driven by
overfitting. Cross-validation works very well in many settings. An important objective of
the simulation study is to compare L2-Boosting and Lasso. It seems that in the polynomial
decaying setting, L2-Boosting (particulary orthogonal L2-Boosting with our stopping rule)
dominates post-Lasso. This also seems true in the sparse i.i.d. setting. In the sparse
correlated setting, they perform equally well overall. In summary, it seems that L2-Boosting
is a serious contender for Lasso in high-dimensional linear regression models as our new
theoretical results propose.

6. Conclusion

Although boosting algorithms are widely used in research and industry, the analysis of their
properties in high-dimensional settings has been quite challenging. In this paper, the rate
of convergence for the L2-Boosting algorithm and variants under early stopping in a high-
dimensional setting are derived which has been a long-standing open problem until now.
For the analysis of the L2-Boosting algorithm, new approximation results are derived which
improve on previous results and might be of independent interest. The rate of pure greedy
algorithms can be slow in some pathological cases, as shown in Livshitz and Temlyakov
(2003). Therefore, we introduce a new variant called restricted L2-Boosting which achieves
a faster rate of convergence that is comparable to the rate of convergence of Lasso. All results
are derived without beta-min condition and under a feasible early stopping criterion. In
this paper, we focus on linear basis functions. The analysis of nonlinear basis functions,
like trees, is left for future research and the results in this paper might serve as a starting
point.
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Appendix A. A new approximation theory for PGA

A.1 Auxiliary lemmas on approximation theory of PGA

In this section of the appendix, we introduce preparatory results for a new approximation
theory based on revisiting. These results are useful to prove Lemma 7. The proofs of
these lemmas are provided in the next section. For any m1 ≥ m, define L(m,m1) =

||V m1 ||22,n/||V m||22,n ≤ 1. For any integers q1 > q, define ∆(q, q1) := Πq1−q−1
j=0

(
1− cφ

q+j

)
with

cφ defined in Assumption A.1. It is easy to see that for any k1 > k, ∆(k, k1)/(k/k1)cφ < 1
and

∆(k, k1)/(k/k1)cφ → 1 (10)

as k →∞. First of all, we can establish the following naive bounds on L(m,m1):

Lemma 19 Suppose ||V m||2,n > 0, m+ 1 < Mn and m1 < Mn. Under Assumption A.1, it
holds

a) For any m, L(m,m+ 1) ≤ 1− cφ
q(m) ;

b) For any m ≥ 0, m1 > m, L(m,m1) ≤ ∆(q(m), q(m) +m1 −m).

The bound of L(m,m1) established in Lemma 19 is loose. To obtain better results on the
convergence rate of ‖V m‖22,n, the revisiting behavior of the PGA has to be analyzed in
more detail. The revisiting behavior of PGA addresses the question when and how often
variables are selected again which have already been selected before. When PGA chooses
too many new variables, it leads on average to slower convergence rates and vice versa. The
next results primarily focus on analyzing the revisiting behavior of the PGA. The following
lemma summarizes a few basic facts of the sequence of Ai, i ≥ 1.

Lemma 20 Suppose m < Mn and m1 < Mn. Further, assume that Assumption A.1 is
satisfied. It holds

a) If En[x′ixi] is a diagonal matrix, i.e., cφ = 1, then there are only Rs in the sequence
A.

b) Define N(m) := {k|Ak = N, 1 ≤ k ≤ m}, the index set for the non-revisiting steps,
and R(m) := {k|Ak = R, 1 ≤ k ≤ m}, the index set for the revisiting steps. Then
|R(m)| + |N(m)| = m, q(m) = |N(m)| + q(0), and JN (m) := {jk|k ∈ N(m)} has
cardinality equal to |N(m)|.

c) L(0,m) ≤ Π
|N(m)|
i=1

(
1− cφ

q(0)+i−1

)
×
(

1− cφ
q(m)

)|R(m)|
, i.e., the sequence to maximize

the upper bound of L(0,m) stated above is NN . . .NRR . . . R. Consequently, the
sequence {Am+1, ..., Am1} to maximize the upper bound of L(m,m1) for general m1 >
m is also NN . . .NRR . . . R.

The proof of this lemma is obvious and hence omitted. Much more involved is the following
result for characterizing the revisiting behavior.
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Lemma 21 Assume that Assumption A.1 holds and that m < Mn. Consider the sequence
of steps 1, 2, . . . ,m. Set µe(cφ) = (1−exp(−1/c2

φ)). Then, the number of Rs in the sequence
A satisfies:

|R(m)| ≥
1− µe(cφ)

2− µe(cφ)
m−

µe(cφ)

2− µe(cφ)
q(0).

Lemma 21 provides a lower bound of the proportions of Rs. It illustrates that the R
spots occupy at least some significant proportion of the sequence A, with the lower bound
of the proportion depending on cφ. In fact, such a result holds for arbitrary consecutive
sequence Am, Am+1, . . . , Am+k, as long as m+k < Mn. In the main text, we further extend
results stated in Lemma 21.

A.2 Proofs of lemmas in Appendix A.1

Proof [Proof of Lemma 19]
By definition,

||V m||22,n =
∑
j∈Tm

αmj < V m, Xj >n=
∑
j∈Tm

αmj ‖V m‖2,ncorr(V m, Xj).

Define
ρjm := |γm|/‖V m‖2,n = |corr(V m, Xjm)|

since V m = Um in the deterministic case. Therefore,

ρjm
∑
j∈Tm

∣∣αmj ∣∣ ≥ ‖V m‖2,n,

i.e., ρ2
jm

(∑
j∈Tm |αmj |

)2
≥ ‖V m‖22,n. By the Cauchy-Schwarz inequality,∑

j∈Tm
|αmj |

2

≤ q(m)||αm||2.

Therefore,

ρ2
jm ≥

cφ
q(m)

with cφ defined in Assumption A.1 and

||V m+1||22,n = ||V m||22,n(1− ρ2
jm) ≤ ‖V m‖22,n

(
1−

cφ
q(m)

)
, (11)

i.e. L(m,m+ 1) ≤ 1− cφ
q(m) . The second statement follows from statement a) by iteration

and the fact that q(m′ + 1) ≤ q(m′) + 1 for any m′ ≥ 0.

Proof [Proof of Lemma 21]
Define

Ñ(m) := {l : jl /∈ T 0, jl is only visited once within steps 1,2,. . . ,m}
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with T 0 = T = supp(β). It is easy to see that Ñ(m) ⊂ N(m) and |Ñ(m)| ≥ 2|N(m)| −m
since we excluded T 0 in both Ñ and N(m) and

|N(m)| = m− |R(m)|

and
|Ñ(m)| ≥ m− 2|R(m)|

where N(m) := {k|Ak = N, 1 ≤ k ≤ m} is the index set for the non-revisiting steps. For
any jl with l ∈ Ñ(m), it holds αm

jl
= −γl jl /∈ T 0. If |R(m)| ≥ m/2, then the statement of

this lemma trivially holds. Therefore, we can assume that Ñ(m) is non-empty. Hence,

||αm||2 ≥
∑

l∈Ñ(m)

(γl−1)2.

By the sparse eigenvalue condition A1,

1

cφ
||V m||22,n ≥ ||αm||2 ≥

∑
l∈Ñ(m)

(γl−1)2. (12)

Note that by Lemma 19,

(γl−1)2 = ||V l−1||22,n − ||V l||22,n = ||V l−1||22,n (1− L(l − 1, l)) ≥
cφ

q(l − 1)
||V l−1||22,n. (13)

Therefore, (γl−1)2 ≥ cφ
q(l−1) ||V

m||22,n for all l ∈ Ñ(m). Plugging this back into (12), we get:

1

cφ
||V m||22,n ≥ cφ

∑
l∈Ñ(m)

1

q(l − 1)
||V l−1||22,n. (14)

Since l ∈ Ñ(m) are different integers with the maximum value of q(l − 1) being less than
or equal to q(m) = q(0) + |N(m)|, it holds

∑
l∈Ñ(m)

1

q(l − 1)
≥
|Ñ(m)|∑
l=1

1

q(0) + |N(m)| − l
≥ log((q(0)+|N(m)|)/(q(0)+|N(m)|−|Ñ(m)|)).

The inequality above implies that

exp(1/c2
φ) ≥ (q(0) + |N(m)|)/(q(0) + |N(m)| − |Ñ(m)|),

i.e., |Ñ(m)| ≤ (1− exp(−1/(cφ)2))(q(0) + |N(m)|). Set

µe(cφ) = (1− exp(−1/c2
φ)) ∈ (0, 1).

Since we know that |Ñ(m)| ≥ 2|N(m)| −m, we immediately have:

|N(m)| ≤ 1

2− µe(cφ)
(m+ µe(cφ)q(0))

and

|R(m)| ≥
1− µe(cφ)

2− µe(cφ)
m−

µe(cφ)

2− µe(cφ)
q(0).
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Appendix B. Proofs of main results in Section 3

Proof [Proof of Lemma 7]
First of all, WLOG, we can assume that q(0) exceeds a large enough constant Q(δ). Other-
wise, it can be assumed that the true parameter β contains some infinitesimal components
such that q(0) > Q(δ). Let’s revisit inequality (13). It holds∑

l∈Ñ(m)

(γl−1)2 ≥
∑

l∈Ñ(m)

||V l−1||2
cφ

q(l − 1)
.

The right-hand side reaches its minimum when

Ñ(m) = {m− |Ñ(m)|+ 1,m− |Ñ(m)|+ 2, ...,m},

and for the step m− |Ñ(m)|+ l, with l = 1, 2, ..., |Ñ(m)|, we have

q(m− |Ñ(m)|+ l − 1) = q(m)− |Ñ(m)|+ l − 1.

Hence, for any δ > 0, and q(0) large enough,

(1 + δ)
∑

l∈Ñ(m)

(γl−1)2 ≥ (1 + δ)
∑

l∈Ñ(m)

||V l−1||22,n
cφ

q(l − 1)

= (1 + δ)
∑

l∈Ñ(m)

||V m||22,n
1

L(l − 1,m)

cφ
q(l − 1)

≥ (1 + δ)||V m||22,ncφ
|Ñ(m)|∑
l=1

1

q(m− l)
1

L(m− l,m)

≥ ||V m||22,ncφ
|Ñ(m)|∑
l=1

1

q(m)− l

(
q(m)

q(m)− l

)cφ

≥ c2
φ‖αm‖2q(m)cφ

q(m)−1∑
k=q(m)−|Ñ(m)|

(
1

k

)1+cφ

≥ cφ‖αm‖2q(m)cφ((q(m)− |Ñ(m)|)−cφ − q(m)−cφ)

since

cφ

q(m)−1∑
k=q(m)−|Ñ(m)|

(
1

k

)1+cφ

= ((q(m)− |Ñ(m)|)−cφ − q(m)−cφ),

||V m||22,n ≥ cφ‖αm‖2 by Assumption A.1 and ||V l−1||22,n/||V m||22,n = 1/L(l − 1,m), while

L(m− l,m)→
(
q(m)− l
q(m)

)cφ
as q(m)− l ≥ q(m)− |Ñ(m)| ≥ q(0)→∞ by Lemma 19. Using ‖αm‖2 ≥

∑
l∈Ñ(m)

(γl−1)2,

we conclude
(1 + δ) ≥ cφq(m)cφ((q(m)− |Ñ(m)|)−cφ − q(m)−cφ),
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i.e,

|Ñ(m)| ≤ q(m)

[
1−

(
1 +

1 + δ

cφ

)−cφ]
≤ q(m)(1 + δ′)µa(cφ),

for some δ′ > 0, with δ′ → 0 as δ → 0. Since we know that |Ñ(m)| ≥ 2|N(m)|−m, we have
analogous to the proof of Lemma 21,

|N(m)| ≤
(|N(m)|+ q(0))(1 + δ′)µa(cφ) +m

2

which implies

|N(m)| ≤
q(0)(1 + δ′)µa(cφ) +m

2− (1 + δ′)µa(cφ)

and

|R(m)| = m− |N(m)| ≥
1− (1 + δ′)µa(cφ)

2− (1 + δ′)µa(cφ)
m−

(1 + δ′)µa(cφ)

2− (1 + δ′)µa(cφ)
q(0).

Proof [Proof of Lemma 8]
Without loss of generality, we can assume that k = 0. We can also assume that ||V 0||22,n > 0,

because otherwise ||V 0||22,n = ||V m||22,n = 0 so that the conclusion already holds. Set

n0 = |N(m)| ≤
m+ q(0)(1 + δ)µa(cφ)

2− (1 + δ)µa(cφ)
≤ (1 + δ)

m+ µa(cφ)q(0)

2− µa(cφ)
= (1 + δ)n∗0(m)

for any δ > 0 by Lemma 7 when q(0) is large enough. Then, by Lemma 20,

||V m||22,n/||V 0||22,n ≤ Πn0
i=1

(
1−

cφ
q(0) + i− 1

)(
1−

cφ
q(0) + n0

)(m−n0)

where the right hand reaches its maximum when n0 = (1 + δ)n∗0(m). When q(0) is large
enough, we know that for any δ > 0,

Π
(1+δ)n∗0(m)
i=1

(
1−

cφ
q(0) + i− 1

)
≤ (1 + δ)

(
q(0)

q(0) + (1 + δ)n∗0(m)

)cφ
= (1 + δ)

(
2− µa(cφ)

λ(1 + δ) + 2 + δµa(cφ)

)cφ

where
λ = m/q(0) (15)

and

(
1−

cφ
q(0) + (1 + δ)n∗0(m)

)m−(1+δ)n∗0(m)

=

1−
cφ

q(0)
2+(1+δ)λ+δµa(cφ)

2−µa(cφ)

q(0)
((1−δ)−µa(cφ))λ−(1+δ)µa(c)

2−µa(cφ)

≤ exp

(
−
cφ((1− δ)− µa(cφ))λ− (1 + δ)µa(cφ))

2 + (1 + δ)λ+ δµa(cφ)

)
.
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Thus, for any δ > 0, and for q(0) large enough,

||V m||22,n/||V 0||22,n

≤ (1 + δ)

(
2− µa(cφ)

λ(1 + δ) + 2 + δµa(cφ)

)cφ
exp

(
−
cφ((1− δ)− µa(cφ))λ− (1 + δ)µa(cφ))

2 + (1 + δ)λ+ δµa(cφ)

)
= (1 + δ)

(
q(0) + (1 + δ)n∗0(m)

q(0)

)cφ
exp

(
−
cφ((1− δ)− µa(cφ))λ− (1 + δ)µa(cφ))

2 + (1 + δ)λ+ δµa(cφ)

)
where

2− µa(cφ)

λ(1 + δ) + 2 + δµa(cφ)
=
q(0) + (1 + δ)n∗0(m)

q(0)
.

It is worth noting that the bound on the right-hand side does not depend on q(0) or m only
on λ. Hence, for some δ′ > 0 that is small enough that depends on any small enough δ > 0,
and for q(0) large enough,

||V m||22,n ≤ ||V 0||22,n(1 + δ)

(
q(0)

q(0) + (1 + δ)n∗0(m)

)cφ ( q(0)

q(0) + (1 + δ)n∗0(m)

)ζ′(cφ,λ,δ)
≤ ||V 0||22,n

(
q(0)

q(0) + (1 + δ)n∗0(m)

)ζ(cφ,λ)−δ′

with

ζ ′(cφ, λ, δ) :=

cφ((1−δ)−µa(cφ))λ−(1+δ)µa(cφ))
2+(1+δ)λ+δµa(cφ)

log
(

q(0)
q(0)+(1+δ)n∗0(m)

)
and ζ(cφ, λ) defined in the statement of this lemma,

ζ(cφ, λ) :=

cφ((1−µa(cφ))λ−µa(cφ))
2+λ

log
(

2+λ
2−µa(cφ)

) + cφ.

Proof [Proof of Theorem 9]
As in the proof of Lemma 7, WLOG, we can assume that q(0) exceeds a large enough
constant Q(δ). Otherwise, we can consider the true parameter β contains some infinitesimal

components such that q(0) > Q(δ). Let λ∗ ≥ µa(c)
1−µa(c) be the maximizer of

ζ(c, λ) :=

c((1−µa(c))λ−µa(c))
2+λ

log
(

2+λ
2−µa(c)

) + c

given c ∈ (0, 1). Let m0 = 0. Define the sequence mi+1 = 1 + bmi + λ∗q(mi)c with

λ∗ ≤ λi :=
mi+1 −mi

q(mi)
≤ λ∗ +

1

q(mi)
≤ λ∗ +

1

q̄
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and denote

n∗i :=
mi+1 −mi + µa(cφ)q(mi)

2− µa(cφ)
.

By Lemma 8, for q(mi) large enough, e.g., q(mi) ≥ q̄ for some q̄ large enough, there exists
δ > 0 that is small enough, so that

||V mi+1 ||22,n
||V mi ||22,n

≤
(

q(mi)

q(mi) + (1 + δ)n∗i

)ζ(cφ,λi)−δ′
≤
(

q(mi)

q(mi) + (1 + δ)n∗i

)ζ(cφ,λ∗)−δ′′
, (16)

where δ′′ := δ′+maxλ∈[λ∗,λ∗+ 1
q̄

]
∂ζ(cφ,λ)
∂λ

1
q̄ is an arbitrarily small constant, as q̄ is large enough,

δ′ is small enough, ζ is a continuously differentiable function with bounded derivatives, and
(1 + δ)n∗i ≥ q(mi+1) − q(mi). For those m with q(m) ≤ q̄, by (11) in the proof of Lemma
19, we have that

‖V m+1‖22,n
‖V m‖22,n

≤
(

1−
cφ
q(m)

)
.

Therefore,

‖V mi+1‖22,n
‖V mi‖22,n

= Π
mi+1−1
m=mi

‖V m+1‖22,n
‖V m‖22,n

≤ Π
mi+1−1
m=mi

(
1−

cφ
q(m)

)
≤
(

1−
cφ

q(mi+1 − 1)

)mi+1−mi

≤
(

1−
cφ

q(mi+1)

)mi+1−mi
. (17)

Define i∗ as the index of i such that q(mi∗−1) < q̄ and q(mi∗) ≥ q̄. By definition,

q(mi∗) ≤ q(mi∗−1) +mi+1 −mi ≤ (1 + λ∗)q(mi∗−1) + 1 ≤ (1 + λ∗)q̄ + 1 =: q̃. (18)

Assume i ≥ i∗. Since (1+δ)n∗i ≥ q(mi+1)−q(mi), it holds q(mi) ≤ (1+δ)
∑i−1

j=i∗ n
∗
j+q(mi∗).

If i < i∗, the statement follows by (17). As q(mi)
q(mi)+(1+δ)n∗i

is increasing in q(mi), we have

that

q(mi)

q(mi) + (1 + δ)n∗i
≤

(1 + δ)
∑i−1

j=i∗ n
∗
j + q(mi∗)

(1 + δ)
∑i−1

j=i∗ n
∗
j + q(mi∗) + (1 + δ)n∗i

=
(1 + δ)

∑i−1
j=i∗ n

∗
j + q(mi∗)

(1 + δ)
∑i

j=i∗ n
∗
j + q(mi∗)

. (19)
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By (19), we have that:

‖V mi‖22,n
‖V 0‖22,n

≤

(
Πi−1
j=i∗
||V mj+1 ||22,n
||V mj ||22,n

)(
Πi∗−1
j=0

||V mj+1 ||22,n
||V mj ||22,n

)

≤

(
Πi−1
j=i∗

q(mj)

q(mj) + (1 + δ)n∗j

)ζ(cφ,λ∗)−δ′′ (
1−

cφ
q̃

)m∗i
≤

(
q(mi∗)

q(m∗i ) + (1 + δ)
∑i−1

j=i∗ n
∗
j

)ζ(cφ,λ∗)−δ′′ (
1−

cφ
q̃

)m∗i
(20)

with q(mj+1) ≤ q̄ ≤ q̃ when j < i∗. Note that by definition, we have

(1+δ)
i−1∑
j=i∗

n∗j =
(1 + δ)

2− µa(cφ)

mi −mi∗ +

i−1∑
j=i∗

µa(cφ)q(mj)

 ≥ 1

2− µa(cφ)
(mi−mi∗). (21)

Plug in (21), we have that

‖V mi‖22,n
‖V 0‖22,n

≤ Cµ
(

q(mi∗)

q(m∗i ) +mi −mi∗

)ζ(cφ,λ∗)−δ′′ (
1−

cφ
q̃

)m∗i
(22)

where Cµ := (2− µa(cφ))ζ(cφ,λ
∗)−δ′′ . By (18), we have

q(m∗i ) ≤ q̃.

If mi ≥ 2mi∗ , we conclude(
q(mi∗)

q(m∗i ) +mi −mi∗

)
≤ q̃

(
1

q(m∗i ) +mi −mi∗

)
≤ q̃

(
2

q(0) +mi

)
. (23)

Therefore,
‖V mi‖22,n
‖V 0‖22,n

≤ C ′µ
(

q(0)

q(0) +mi

)ζ(cφ,λ∗)−δ′′
, (24)

where

C ′µ = Cµ

(
q̃

q(0)

)ζ(cφ,λ∗)−δ′′
≤ Cµ(2q̃)ζ(cφ,λ

∗)−δ′′

is a fixed constant given q̄ and δ′′. If mi < 2mi∗ , then,

‖V mi‖22,n
‖V 0‖22,n

≤
(

1−
cφ
q̃

)mi
2

≤
(

1

1 +mi

)ζ(cφ,λ∗)−δ′′
≤
(

q(0)

q(0) +mi

)ζ(cφ,λ∗)−δ′′
, (25)

for mi being large enough, as the left hand side of the above inequality decays exponentially
in mi, while the right hand side decays only in fixed polynomial speed of mi. Therefore, in
either case, we have that

‖V mi‖22,n
‖V 0‖22,n

≤ C ′′µ
(

q(0)

q(0) +mi

)ζ(cφ,λ∗)−δ′′
, (26)
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for some fixed C ′′µ > 0. For any m > 0, m < M0, since m0,m1, . . . is an increasing sequence
of positive integers, there exists i such that mi ≤ m < mi+1. Thus, m

mi
≤ mi+1

mi
≤ (2 + λ∗).

Therefore,

‖V m‖22,n
‖V 0‖22,n

≤
‖V mi‖22,n
‖V 0‖22,n

C ′′µ

(
q(0)

q(0) +mi

)ζ(cφ,λ∗)−δ′′
≤ C̃µ

(
q(0)

q(0) +m

)ζ(cφ,λ∗)−δ′′
, (27)

with

C̃µ := C ′′µ(2 + λ∗)ζ(cφ,λ
∗)−δ′′

is a fixed constant. Lastly, by replacing δ′′ with κ, the proof is completed.

Appendix C. Proofs for the L2-Boosting algorithm

C.1 Auxiliary lemmas for L2-Boosting

The two lemmas below state several basic properties of the L2-Boosting algorithm that will
be useful in deriving the main results.

Lemma 22 It holds

||Um+1||22,n = ||Um||22,n− < Um, Xjm >2
n= ||Um||22,n(1− ρ2(Um, Xjm))

and

||V m+1 + r||22,n = ||V m + r||22,n − 2 < V m + r, γmjmXjm >n +(γmjm)2,

where γmjm =< Um, Xjm >n. Moreover, since V m = Um − r − ε,

||V m+1 + r||22,n = ||V m + r||22,n − (2 < Um, Xjm >n< Um − ε,Xjm >n) + < Um, Xjm >2
n

= ||V m + r||22,n + 2γmjm < ε,Xjm >n −(γmjm)2.

Lemma 23 Assume that Assumptions A.1-A.3 hold and m ≤ Mn. Let Zm = ||Um||22,n −
||V m + r||22,n. Then, with probability ≥ 1− α and uniformly in m, it holds

|Zm − σ2
n| ≤

(
2
√

(1 + ω)Crs+ 2

√
m+ s
√
cφ
‖V m‖2,n

)
λn

with σ2
n := ||ε||22,n. Lemma 23 bounds the difference between ||Um||22,n and ||V m + r||22,n.
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Proof [Proof of Lemma 23]
By Assumption A.3, we have that:

|Zm − ||ε||22,n| ≤ 2 < ε, V m + r >n

= 2 < ε, r +Xαm >n

≤ 2‖ε‖2,n‖r‖2,n + 2| < ε,Xαm >n |

≤ 2σn

√
Crs log(2p/α)

n
+ 2‖αm‖1λn

≤ 2
√

(1 + ω)Crsλn + 2
√
m+ s‖αm‖2λn

≤
(

2
√

(1 + ω)Crs+ 2

√
m+ s
√
cφ
‖V m‖2,n

)
λn

as |supp(αm)| ≤ m+ s.

Next, we provide the lemmas that we require for proving our main result in Theorem 17.
Define

UoT := y − PT y
as the residual of projection of y on XT for any T ⊂ {1, 2, ..., p}. Further, we define Pm,T
as the operator of performing m periods of PBA algorithm subject to the subset T , i.e.,

UmT := y − Pm,T y = (I − Pm,T )U0

with U0 := y and V m
T := U0

T −UmT denotes the approximation error. Lemma 24 measures a
bound between the operator Pm,T and the projection operator PT . That said, Pm,T is an
approximation of PT .

Lemma 24 (Iterations) Suppose that Assumption A.1 holds. Suppose T ⊂ {1, 2, ..., p}
with |T | ≤ Mn. Then, starting with U0 = y, the L2-Boosting algorithm that runs on the
restricted subset T satisfies that:

‖Um − UoT ‖22,n ≤ ‖y − UoT ‖22,n exp

(
− 1

|T |
cφm

)
. (28)

Proof [Proof of Lemma 24] Given the L2-Boosting algorithm,

γjm := max
j∈T
|< Um, Xjm >n
‖Xjm‖2,n

| = | < Um, Xjm >n |, (29)

with jm being the largest index. The approximation error can be written as follows:

V m
T := U0

T − UmT = XTα
m
T .

We consider
UmT = V m

T + η

where η = UmT − V m
T = UoT = y − PT y is orthogonal to all the column vectors in XT . Note

that η is never changing when m increases. As a result, we have that:

|γjm |‖αmT ‖1 ≥
∑
j∈T

< UmT , α
m
j Xjm >n= ‖V m

T ‖22,n. (30)
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Therefore,

|γjm |2 ≥
‖V m

T ‖42,n
‖αmT ‖21

≥
‖V m

T ‖42,n
|T |‖αmT ‖22

≥
cφ‖V m

T ‖42,n
|T |‖V m

T ‖22,n
=
cφ‖V m

T ‖22,n
|T |

.

That is to say,

‖V m+1
T ‖22,n = ‖Um+1

T ‖22,n−‖η‖22,n = ‖UmT ‖22,n−|γjm |2−‖η‖22,n ≤ ‖V m
T ‖22,n

(
1−

cφ
|T |

)
. (31)

As a result,

‖V m
T ‖22,n ≤ ‖V 0

T ‖22,n
(

1−
cφ
|T |

)m
≤ ‖V 0

T ‖22,n exp

(
−
cφ
|T |

m

)
(32)

which proves the statement of the lemma.

Lemma 25 (Bounds on Residuals) Assuming that assumptions A.1-A.3 hold, for any
positive integer M ≤Mn, we have:

sup
T⊂{1,2,...,p},|T |≤M

‖ 1

n
Xᵀ
T ε‖

2
2,n ≤Mλ2

n,

sup
T⊂{1,2,...,p},|T |≤M

‖PT ε‖22,n ≤
1

cφ
Mλ2

n,

sup
T⊂{1,2,...,p},|T |≤M

‖PT (r + ε)‖22,n ≤ 2

(
Crs log(2p/α) + σ2/cφ log(2p/α)M

n

)
with probability ≥ 1− α.

The proof is given in Lemma 1 in the appendix of Kueck et al. (2023).

Lemma 26 (lower bound on residuals) Given Assumption A.1. Consider Um = Xαm+
r + ε with ‖αm‖0 ≤Mn. Then,

|γmjm | ≥
√

cφ
‖αm‖0

‖Xαm‖2,n −

√
Crcφs log(2p/α)

n‖αm‖0
− λn

with probability ≥ 1− α.

Proof [Proof of Lemma 26] Denote ρm := maxj=1,2,...,p |corr(Um, Xj)|. It can be shown
that (γmjm)2 = ρ2

m‖Um‖22,n. We know that

< Um, Xαm >n ≥ ‖Xαm‖22,n − ‖r‖2,n‖Xαm‖2,n − λn‖αm‖1

≥ ‖Xαm‖22,n −
√
Crs log(2p/α)

n
‖Xαm‖2,n − λn

√
‖αm‖0
cφ
‖Xαm‖2,n.
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On the other hand, we have that:

< Um, Xαm >n ≤
∑

j∈supp(α)

αmj < U,Xj >n≤ ρm‖Um‖2,n
∑

j∈supp(α)

|αmj |

≤ |γmjm |
√
‖αm‖0‖αm‖2 ≤ |γmjm |

√
‖αm‖0
cφ
‖Xαm‖2,n.

Therefore, we have that:

|γmjm | ≥
√

cφ
|‖αm‖0

‖Xαm‖2,n −

√
Crcφs log 2p/α

n‖αm‖0
− λn. (33)

C.2 Proofs of main results in Section 4

Proof [Proof of Lemma 13]
By assumption A.3, we know that λn ≥ max1≤j≤p | < ε,Xj >n | with probability ≥ 1− α.
According to our definition, m∗ + 1 is the first time

||V m||2,n ≤ η
√
m+ sλn,

where η is a fixed positive constant that is large enough with η > 2σ
√
Cr. We know that in

high-dimensional settings, ||Um||2,n → 0, so ||V m||22,n → σ2. Thus, by fixing p and n, such
an m∗ must exist. Therefore, we can consider any m < m̃ := (m∗ + 1) ∧Mn. Note that
Tm := T0 ∪ {j0, j1, . . . , jm−1} and V m := Xαm = XTmαTm . It holds

|γmjm |‖αTm‖1 ≥< Um, XTmαTm >n

≥ ‖V m‖22,n − | < r,XTmαTm > | − | < ε,XTmαTm > |
≥ ‖V m‖22,n − ‖r‖2,n‖V m‖2,n − λn‖αTm‖1.

As we assume that ‖V m‖2,n > η
√
m+ sλn, with η being large enough, we have that ‖r‖2,n ≤√

Cr
ση ‖V

m‖2,n. Then,

‖V m‖22,n − ‖r‖2,n‖V m‖2,n ≥
(

1−
√
Cr
ση

)
‖V m‖22,n
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which implies that:

|γjm | ≥

(
1−

√
Cr
ση

)
‖V m‖22,n

‖α
T̃m
‖1

− λn ≥

(
1−

√
Cr
ση

)
‖V m‖22,n√

q(m)‖α
T̃m
‖2

− λn

≥
√
cφ

(
1−

√
Cr
ση

)
√
q(m)

‖V m‖2,n − λn

≥
√
cφ

(
1−

√
Cr
ση −

1√
cφη

)
√
q(m)

‖V m‖2,n

≥ CV,1
‖V m + r‖2,n√

q(m)
≥ CV,1

(
η −
√
Cr
σ

)
λn (34)

where ‖V m‖2,n ≥ η
√
m+ sλn ≥ η

√
q(m)λn, and

CV,1 :=
√
cφ

(
1−
√
Cr
ση
− 1
√
cφη

)
1

1 +
√
Cr
ση

is a positive constant when η is large enough, and approaches to
√
cφ as η goes to infinity.

By Lemma 22, it holds that

||V m + r||22,n − ||V m+1 + r||22,n = ||Um||22,n − ||Um+1||2,n − 2γmjm < Xjm , ε >n

= (γmjm)2 − 2γmjm < Xjm , ε >n . (35)

By equation (34), it follows that:

||V m + r||22,n − ||V m+1 + r||22,n ≥ (γmjm)2 − 2γmjm < Xjm , ε >n

≥ (γmjm)2 − 2|γmjm |λn

≥ (γmjm)2

1− 2

CV,1

(
η −

√
Cr
σ

)


≥ CV,2‖V m + r‖22,n,

when η is large enough where

CV,2 :=

1− 2

CV,1

(
η −

√
Cr
σ

)
C2

V,1
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is arbitrarily close to cφ when η is large enough. By the arguments in the proof of Lemma

21, when n is large enough, by (34) and ‖r‖2,n ≤
√
Cr
ση ‖V

m‖2,n, we have that:

1

cφ

(
1−

√
Cr
ση

)2 ‖V
m + r‖22,n ≥

1

cφ
||V m||22,n

≥
∑

k∈Ñ(m)

(γk−1)2

≥
∑

k∈Ñ(m)

C2
V,1

q(k − 1)
||V k−1 + r||22,n

which corresponds to (14) in Lemma 21 considering ‖V m+r‖22,n instead of ‖V m‖22,n. Define

ψ = max

{
cφ − CV,2, cφ − C2

V,1/

(
1−
√
Cr
ση

)2
}

which can be arbitrarily close to 0 as η is large enough. Thus, following the proof of Lemma
7 and Lemma 8, we can treat cφ−ψ as the constant cφ in Theorem 9. Therefore, results of
Lemma 7 and Lemma 8 applies for V m + r with cφ replaced by cφ − ψ. We conclude that

‖V m + r‖22,n
‖V 0 + r‖22,n

≤ C
(

s

s+m

)ζ∗(cφ)−ψ′

, (36)

for some arbitrarily small ψ′ > 0 as η is large enough. By using that ‖V m + r‖2,n ≥
‖V m‖2,n − ‖r‖2,n, we have that(

η −
√
Cr
σ

)
λn
√
m+ s ≤ ‖V m + r‖2,n

for all m < m̃. It follows that(
η −
√
Cr
σ

)2

λ2
n(m̃− 1 + s) ≤ C̃‖V 0 + r‖22,n

(
s

s+ m̃− 1

)ζ∗(cφ)−ψ′

. (37)

Therefore
s log(p)

n
- ||V 0 + r||22,n

(
s

s+ m̃− 1

)ζ∗(cφ)−ψ′′+1

,

where ψ′′ can be arbitrarily close to 0 as m is large enough or equivalently,

m̃ - s

(
s log(2p/α)

n||V 0 + r||22,n

)− 1
1+ζ∗(cφ)−ψ′′

.

By assumption,

log(Mn/s) +

(
ξ +

1

1 + ζ∗(cφ)

)
log

(
s log(2p/α)

n||V 0 + r||22,n

)
> 0
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for some ξ > 0. Thus, asymptotically,

m̃ = Mn ∧ (m∗ + 1) < Mn,

i.e., m∗ + 1 < Mn. Thus,

m∗ - s

(
s log(2p/α)

n||V 0 + r||22,n

)− 1
1+ζ∗(cφ)−ψ′′

(38)

and

||V m∗+1||22,n ≤ η
√
m∗ + 1 + sλn - ||V 0 + r||

2
1+ζ∗(cφ)−ψ′′

2,n

(
s log(2p/α)

n

) ζ∗(cφ)−ψ′′

1+ζ∗(cφ)−ψ′′

,

for any small ψ′′ > 0 if η is large enough.

Proof [Proof of Theorem 15]
At the (m∗1 + 1)th step, we have:

||Um∗1+1||22,n > (1− cu log(2p/α)/n)||Um∗1 ||22,n.

It follows that (γm
∗
1)2 < cu log(2p/α)/n||Um∗1 ||22,n, while (γm)2 ≥ cu log(2p/α)/n||Um||22,n

for all m < m∗1. Consider the m∗ defined in Lemma 13 as a reference point.

Case (a): Suppose m∗1 < m∗: By the proof of Lemma 13, ||V m + r||22,n is decreasing
when m ≤ m∗1 + 1 ≤ m∗. By Lemma 23, it holds

||Um∗1 ||22,n ≤ σ2
n +

(
2
√

(1 + ω)Crs+ 2

√
m∗1 + s
√
cφ

||V m∗1 ||2,n

)
λn + ‖V m∗1 + r‖22,n.

It follows that

(γm
∗
1)2 < cu log(2p/α)/n||Um∗1 ||22,n

< (1 + ω)cuλ
2
n + cu log(2p/α)/n

(
2
√

(1 + ω)Crs+ 2

√
m∗1 + s
√
cφ

||V m∗1 ||2,n

)
λn

+ cu log(2p/α)/n‖V m∗1 + r‖22,n. (39)

By inequality (34), we have that

|γm∗1 | ≥ CV,1
‖V m∗1 + r‖2,n√

q(m∗1)
,
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for η large enough where ‖V m‖2,n ≥ η
√
m+ sλn holds for all m ≤ m∗, including m∗1 by

assumption that m∗1 < m∗. Combining this with inequality (39), we have that:

C2
V,1

‖V m∗1 + r‖22,n
m∗1 + s

≤ cuλ2
n(1 + ω) + 2cuλn

log(2p/α)

n

√
(1 + ω)Crs

+ 2cuλ
3
n

√
m∗1 + s

σ2√cφ
‖V m∗1‖2,n

+ cu log(2p/α)/n‖V m∗1 + r‖22,n. (40)

We show that this leads to a contradiction and hence m∗1 ≥ m∗. First, by Lemma 13, we
know that

√
m∗ + 1 + sλn - ||V 0 + r||

2
1+ζ∗(cφ)−ψ′′

2,n

(
s log(2p/α

n

) ζ∗(cφ)−ψ′′

1+ζ∗(cφ)−ψ′′

→ 0 (41)

as n is large enough since s log(2p/α)
n → 0 by assumption. As a result, for n large enough,

we have that

1

3
C2
V,1

‖V m∗1 + r‖22,n
m∗1 + s

> cu log(2p/α)/n‖V m∗1 + r‖22,n (42)

which corresponds to the third component in (40). Second, since ‖V m∗1‖2,n ≥ η
√
m∗1 + sλn

by construction for η large enough, we have

‖V m∗1 + r‖22,n ≥
(

1−
√
Cr
ση

)2

‖V m∗1‖22,n

as shown in the proof of Lemma 13. Hence, for η being a large enough fixed constant and
n large enough, we have that

1

3
C2
V,1‖V m∗1 + r‖22,n

≥ 1

3
C2
V,1‖V m∗1‖22,n

(
1−
√
Cr
ση

)2

≥ ‖V m∗1‖2,n
1

3
C2
V,1

(
1−
√
Cr
ση

)2√
m∗1 + sλn

= 2‖V m∗1‖2,ncu/(σ2√cφ)λ3
n

√
m∗1 + s

(
σ2√cφC2

V,1

(
1−
√
Cr
ση

)2

/(6cuλ
2
n)

)

> 2cuλ
3
n

√
m∗1 + s

σ2√cφ
‖V m∗1‖2,n (43)
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as σ2√cφC2
V,1

(
1−

√
Cr

2ση

)2
/(6cuλ

2
n)→∞. Third, for η large enough, we have that

1

3
C2
V,1

‖V m∗1 + r‖22,n
m∗1 + s

≥ 1

3
C2
V,1η

2

(
1−
√
Cr
ση

)2

λ2
n

> 2cuλ
2
n(1 + ω)

> cuλ
2
n(1 + ω) + 2cuλn

log(2p/α)

n

√
(1 + ω)Crs, (44)

as 2cu
log(2p/α)

n

√
s = 2cuλn/σ

√
s log(2p/α)

n = o(λn) since s log(2p/α)
n → 0 for n large enough.

Therefore, equations (42)–(44) lead to a contradiction with (40).

Case (b): We know that m∗1 ≥ m∗: It follows that

(γmjm)2 ≥ cu log(2p/α)/n||Um||22,n

for all m < m∗1. Since ||Um||22,n is a decreasing sequence, for δ small enough, there exists

some m2 such that ||Um2 ||22,n > (1− δ)σ2
n for any m ≤ m2, and ||Um2+1||22,n ≤ (1− δ)σ2

n. For
δ small enough and m ≤ m2 ∧m∗1, it holds

||V m+1 + r||22,n − ||V m + r||22,n = −(γmjm)2 + 2γmjm < ε,Xjm >n≤ −(γmjm)2 + 2λn|γmjm |

by Lemma 22. Since cu > 4, for δ small enough, it holds

|γmjm |2 ≥ cu log(2p/α)/n||Um||22,n ≥ cu(1− δ)(1− ω)λ2
n > 4λ2

n

and thus −(γmjm)2+2λn|γm| < 0. Therefore, ‖V m+r‖2,n is strictly decreasing when m ≤ m2.

Case (b.1): Suppose m∗1 < m2: By same arguments as in the proof of Lemma 13, we
have

‖V m∗+1 + r‖2,n -p ||V 0 + r||
1

1+ζ∗(cφ)−ψ′′

2,n

(
s log(2p/α)

n

) ζ∗(cφ)−ψ′′

2(1+ζ∗(cφ)−ψ′′)

for any ψ′′ > 0 since ‖V m + r‖2,n is strictly decreasing for m ≤ m2. As

‖r‖2,n -

(
s log(2p/α)

n

) 1
2

-

(
s log(2p/α)

n

) ζ∗(cφ)−ψ′′

2(1+ζ∗(cφ)−ψ′′)
,

it follows that

||V m∗1+1||2,n ≤ ||V m∗1+1 + r||2,n + ‖r‖2,n ≤ ||V m∗+1 + r||2,n + ‖r‖2,n

-p ||V 0 + r||
1

1+ζ∗(cφ)−ψ′′

2,n

(
s log(2p/α)

n

) ζ∗(cφ)−ψ′′

2(1+ζ∗(cφ)−ψ′′)
+

(
s log(2p/α)

n

) ζ∗(cφ)−ψ′′

2(1+ζ∗(cφ)−ψ′′)

-p ||V 0 + r||
1

1+ζ∗(cφ)−ψ′′

2,n

(
s log(2p/α)

n

) ζ∗(cφ)−δ
2(1+ζ∗(cφ)−ψ′′)
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which concludes the result.

Case (b.2): Suppose m∗1 ≥ m2: We show that this leads to a contradiction. First of
all, we show that m2 ≥ m∗. We know that

||Um||22,n = σ2
n + ||V m + r||22,n + 2 < V m + r, ε >n

for any m. Since ||Um2+1||22,n ≤ (1− δ)σ2
n, it holds that

2 < V m2+1 + r, ε >n +||V m2+1 + r||22,n ≤ −δσ2
n. (45)

Let’s prove m2 ≥ m∗ by contradiction. Suppose m2 < m∗, it follows that m2 +1 ≤ m∗+1 <
M0. Since we know that ||V m2+1||2,n > η

√
m2 + 1 + sλn, it holds

||V m2+1 + r||22,n >
(

1−
√
Cr
ση

)2

‖V m2+1‖22,n.

Also, | < r, ε >n | ≤ ‖r‖2,nσn → 0 as n → ∞. Therefore, for η being a large enough fixed
constant and n being large enough, we have that:

||V m2+1 + r||22,n + 2 < V m2+1, ε >n

≥
(

1−
√
Cr
ση

)2

||V m2+1||22,n − 2

√
m2 + 1 + s
√
cφ

λn‖V m2+1‖2,n > 0

and 2 < r, ε >n> −δσ2
n which leads to a contradiction with (45). Thus, it must hold that

m2 ≥ m∗. Therefore,

||V m + r||22,n ≤ ||V m∗+1 + r||22,n ≤
(

1 +

√
Cr
ση

)2

η(m∗ + s+ 1)λ2
n

for any m∗ + 1 ≤ m ≤ m2 + 1. We also know that by assumption,

(γm)2 ≥ cu log(2p/α)/n‖Um‖22,n ≥ cu log(2p/α)/n(1− δ)σ2
n

≥ cu log(2p/α)/n(1− δ)(1− ω)σ2

≥ cu(1− δ)(1− ω)λ2
n

for any m ≤ m2 ≤ m∗1. Since

||V m + r||22,n − ||V m+1 + r||22,n = (γm)2 − 2γm < Xjm , ε >n≥ cu1λ
2
n > 0

for some constant cu1 > 0 if (1− δ)(1− ω)cu/4 > 4, it follows that

||V m + r||22,n ≥ ||V m+1 + r||22,n − cu1λ
2
n

for m = m∗,m∗+ 1, . . . ,m2. Consequently, ||V m2+1 + r||22,n ≤ ||V m∗+1 + r||22,n. By assump-

tion, at the (m2 + 1)th step, we know that ||Um2+1||22,n ≤ (1− δ)σ2
n. Hence,

2 < V m2+1 + r, ε >n +‖V m2+1 + r‖22,n ≤ −δσ2
n. (46)
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However, ||V m2+1 + r||22,n ≤ ||V m∗+1 + r||22,n, and therefore, by Lemma 13,

2| < V m2+1 + r, ε >n | ≤ ||V m2+1 + r||2,nσn ≤ ||V m∗+1 + r||2,nσn → 0,

which contradicts (46) when n is large enough. Therefore, Case (b.2) can not happen, and
the proof is concluded.

Proof [Proof of Theorem 17] WLOG., we can assume that CF log n is an integer, so that
Fk is a positive integer for k = 1, 2, . . . . For some constant C∗ > 0 that is large enough,
define k∗ := bC

∗s logn
Ln

c. We first show that, if we run the algorithms forever, we have with
probability ≥ 1− α:

En
[(
x′i(β

mk∗ − β0)
)2]

-p
s log(n) log(p)

n
and

En[‖βmk∗ − β0‖22] -p
s log(n) log(p)

n
.

Define T̂m as the set of variables that are selected by the end of time period m. It is
worth noting that |T̂mk | ≤ kLk with Lk = Ln for all k ∈ Z+ by construction. Define
m̌k := mk−1 + Lk. Therefore,

|T̂mk | ≤ kLn ≤ C∗s log n,

for all k ≤ k∗ := bC
∗s logn
Ln

c. As in Lemma 24, Pm,T denotes the operator of performing
m periods of PBA algorithm subject to the subset T . Further, define Rk := (PT̂ m̌k −
PFk,T̂ m̌k )U m̌k . By Lemma 24, we have that

‖Rk‖22,n = ‖(1− PFk,T̂ m̌k )U m̌k − (1− PT̂ m̌k )U m̌k‖22,n

≤ ‖PT̂ m̌kU
m̌k‖22,n exp

(
−
cφFk

|T̂ m̌k |

)
≤ n−2

for Fk ≥ 2
cφ
|T̂ m̌k | log(n · ‖y‖2,n) starting at U m̌k . Note that Rk is a small term that could be

neglected later with ‖y‖2,n = ‖U0‖22,n ≥ ‖Um‖22,n being a decreasing sequence in m. Note
that U m̌k = y − x′βm̌k , Therefore, PT̂ m̌kU

m̌k = PT̂ m̌k y in the projection of vector y on the
columns of X with indices in T m̌k . As a result, we have

Umk = (I − PT̂ m̌k )U m̌k +Rk = (I − PT̂ m̌k )y +Rk (47)

with mk = m̌k + Fk. Define Ṽ k := V mk = X(β − βmk) and Ṽ k
o = Xβ − PT̂ m̌kXβ =

(I − PT̂ m̌k )XT̂ m̌kβT̂ m̌k . Therefore,

Ṽ k = Xβ− (y−Umk) = −(r+ ε) + (I −PT̂ m̌k )y+Rk = (I −PT̂ m̌k )Xβ−PT̂ m̌k (r+ ε) +Rk

It implies that
Ṽ k = Ṽ k

o +Rk − PT m̌k (r + ε). (48)

By definition, ‖Ṽ k
o ‖22,n is a decaying sequence in k as T m̌k ⊂ T m̌k+1 holds for all k ≥ 0. We

need the following proposition:
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Proposition 27 Suppose all conditions in Theorem 17 hold. For Mn large enough, there
exists an absolute constant Ck > 0 such that for some k ≤ bCks log n/Lnc and k(Ln + 1) <
Mn, we have that:

En[
(
x′i(β

mk − β)
)2

] -p
s log(n) log(p)

n
,

and

‖βmk − β‖22 -p
s log(n) log(p)

n
.

Proof [Proof of Proposition 27] Assume that k ≤ k∗ with k∗ = bC
∗s logn
Ln

c. Define T̃mk :=

T0\T̂mk . That said, T̃mk is the set of variables that are in T0 but not yet being selected by
time mk. Then, if T̃mk = ∅, then, all the variables in T0 are already selected. By definition,

V mk = y − Umk −Xβ = y − (I − PFk,T̂ m̌k )U m̌k −XT̂ m̌kβT̂ m̌k .

It implies that:

‖V mk‖22,n = ‖XT̂ m̌kβT̂ m̌k − y + (I − PFk,T̂ m̌k )U m̌k‖22,n
≤ 2‖XT̂ m̌kβT̂ m̌k − y + (I − PT̂ m̌k )U m̌k‖22,n + 2‖(PT̂ m̌k − PFk,T̂ m̌k )U m̌k‖22,n
≤ 2‖PT̂ m̌k (rn + ε)‖22,n + 2‖(PT̂ m̌k − PFk,T̂ m̌k )U m̌k‖22,n

≤
(4Cr log(2p/α) + 4σ2C∗/cφ log(2p/α) log(n))s+ 1

n
(49)

by Lemma 25 since T̂ m̌k ≤ C∗s log(n) and by Lemma 24 since Fk > CF |T̂ m̌k | log n for some
CT large enough, which concludes the result. Now, suppose T̃mk 6= ∅ for k = 0, 1, ..., k∗.
Recall that

Umk := (I − PT̂ m̌k )y +Rk,

with ‖Rk‖2,n ≤ 1
n and

V mk = (I − PT̂ m̌k )Xβ − PT̂ m̌k (r + ε) +Rk = (I − PT̂ m̌k )X
T̃ m̌k

β
T̃ m̌k

.

Suppose that ‖V mk‖22,n >
CV s log(n) log(2p/α)

n for all k ≤ Cks log(n)
Ln

, where Ck ≤ CM is a large

enough constant. For CV large enough, we have that ‖V m‖2,n >
√

Crcφs log(2p/α)
n . By (48)

and Lemma 25, it follows that

‖Ṽ k
o ‖2,n ≥ ‖V mk‖2,n − ‖PT̂ m̌k (r + ε)‖2,n − ‖Rk‖2,n

≥
√
CV s log(2p/α) log(n)

n
−

√
2Crs log(2p/α) + 2σ2/cφ|T̂ m̌k | log(2p/α)

n
− 1

n

≥
√
CV /2s log(2p/α) log(n)

n
(50)

given that CV > 2(2Cr + 2σ2/cφCk + 1) is large enough fixed constant where we used that

|T̂ m̌k | ≤ Lnk ≤ Cks log(n). Define ωn :=
c2φ

4LnC3
φ

. Next, we divide our discussions into two
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cases:

Case (A1):
∑m̌k

t=mk−1+1 γ
2
jt ≥ ωn‖Ṽ

k−1
o ‖22,n. By definition, we have that:

‖Umk‖22,n ≤ ‖U m̌k‖22,n ≤ ‖Umk−1‖22,n −
m̌k∑

t=mk−1+1

γ2
jt ≤ ‖U

mk−1‖22,n − ωn‖Ṽ k−1
o ‖22,n. (51)

Case (A2):
∑m̌k

t=mk−1+1 γ
2
jt ≤ ωn‖Ṽ k−1

o ‖22,n. Define δm,k :=
∑m

t=mk−1+1 γjtejt , where

ejt is the unit vector that is equal to 1 only at the jt-entry, and 0 otherwise, for m ≥ mk−1

and m ≤ m̌k−1. It holds

‖δm,k‖22,n ≤ Ln
m∑

t=mk−1+1

γ2
jt ≤ Lnωn‖Ṽ

k−1
o ‖22,n. (52)

As a result, by definition, for any m = mk−1, ..., m̌k − 1, we have that:

|γjm |‖βT̃mk−1‖1 ≥< Um, X
T̃mk−1βT̃mk−1 >n

= < (I − PT̂mk−1 )X
T̃mk−1βT̃mk−1 , XT̃mk−1βT̃mk−1 >n︸ ︷︷ ︸

ΨV,1

+< (I − PT̂mk−1 )(r + ε), X
T̃mk−1βT̃mk−1 >n︸ ︷︷ ︸

ΨV,2

+< Rk, XT̃mk−1βT̃mk−1 >n︸ ︷︷ ︸
ΨV,3

+< Xδm,k, XT̃mk−1βT̃mk−1 >n︸ ︷︷ ︸
ΨV,4

since

Um = Umk +Xδm,k = (I − PT̂mk−1 +Rk)Y +Xδm,k

= (I − PT̂mk−1 )X
T̃mk−1βT̃mk−1 + (I − PT̂mk−1 )(r + ε) +Rk +Xδm,k.

For ΨV,1, we have that:

ΨV,1 = ‖(I − PT̂mk−1 )X
T̃mk−1βT̃mk−1‖22,n. (53)

There exists a δ ∈ Rp with supp(δ) ⊂ T̂mk−1 such that Xδ = PT̂mk−1XT̃mk−1βT̃mk−1 . By

definition, T̃mk−1 ∩ T̂mk−1 = ∅, we have that:

ΨV,1 = ‖Xδ −X
T̃mk−1βT̃mk−1‖22,n ≥ cφ(‖β

T̃mk−1‖2 + ‖δ‖2)

≥ cφ‖βT̃mk−1‖2 ≥
cφ
Cφ
‖X

T̃mk−1βT̃mk−1‖2. (54)

By (50), we have that

‖X
T̃mk−1βT̃mk−1‖22,n ≥ ‖Ṽ k−1

o ‖22,n ≥
CV s log(2p/α) log(n)

2n
.
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For ΨV,2, we have that:

|ΨV,2| = | < (I − PT̂mk−1 )r,X
T̃mk−1βT̃mk−1 >n + < ε,X

T̃mk−1βT̃mk−1 >n

− < PT̂mk−1ε,XT̃mk−1βT̃mk−1 >n |

≤ ‖r‖2,n‖XT̃mk−1βT̃mk−1‖2,n + ‖β
T̃mk−1‖|T̃mk−1 |

1
2λn +

√
|T̂mk−1 |
cφ

λn‖XT̃mk−1βT̃mk−1‖2,n

≤

(√
4Cr

CV log(n)
+

√
σ2Cφ

CV log(n)
+

√
σ2Ck
cφCV

)
‖X

T̃mk−1βT̃mk−1‖22,n. (55)

For ΨV,3, we have that:

ΨV,3 ≥ −‖Rk‖2,n‖XT̃mk−1βT̃mk−1‖2,n ≥ −

√
2

sn log(2p/α) log(n)CV
‖X

T̃mk−1βT̃mk−1‖22,n.

(56)
For ΨV,4, we have that:

ΨV,4 ≤ ‖Xδm,k‖2,n‖XT̃mk−1βT̃mk−1‖2,n ≤
√
CφLnωn‖XT̃mk−1βT̃mk−1‖22,n. (57)

Combining (54), (55), (56) and (57), we have that:

|γjm |‖βT̃ m̌k−1‖1 ≥
( cφ
Cφ
−

√
4Cr

CV log(n)
−

√
σ2Cφ

CV log(n)
−

√
σ2Ck
cφCV

−

√
2

sn log(2p/α) log(n)CV
−
√
CφLnωn

)
‖X

T̃mk−1βT̃mk−1‖22,n

≥
cφ

4Cφ
‖X

T̃mk−1βT̃mk−1‖22,n, (58)

given that CV >
17C2

φσ
2Ck

c3φ
and n being large enough. As a result, we have that:

|γjm | ≥
cφ

4Cφ

‖X
T̃mk−1βT̃mk−1‖22,n
‖β

T̃mk−1‖1
≥

cφ
4Cφ

‖X
T̃mk−1βT̃mk−1‖22,n√
s‖β

T̃mk−1‖

≥
c

3/2
φ

4Cφ
√
s
‖X

T̃mk−1βT̃mk−1‖2,n, (59)

where the last inequality follows from the sparse eigenvalue condition and |T̃mk−1 | ≤ s.
Therefore, we have that:

m̌k−1∑
m=mk−1+1

|γjm |2 ≥
Lnc

3
φ

16C2
φs
‖X

T̃mk−1βT̃mk−1‖22,n ≥
Lnc

3
φ

16C2
φs
‖Ṽ k−1

o ‖22,n. (60)

Combining both cases (A1) and (A2), we have that:

‖Umk‖22,n ≤ ‖Umk−1‖22,n − κn‖Ṽ k−1
o ‖22,n (61)
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where κn := min

(
c2φ

4LnC3
φ
,
Lnc3φ
16C2

φs

)
≥ κLns with κ := min

(
c2φ

4K2
LC

3
φ
,

c3φ
16C2

φ

)
given that Ln ≤

KL
√
s with KL being a fixed constant, and hence, κ > 0 is a fixed constant. Define

q := d sLn e as the smallest integer ≥ s
Ln

.
WLOG., we can assume that q = s

Ln
for simplicity, i.e., s

Ln
is an integer. By applying (61)

multiple times, we have that:

‖Umk+q‖22,n ≤ ‖Umk‖22,n − κ
Ln
s

k+q−1∑
l=k

‖Ṽ l
o‖22,n. (62)

We again divide our analysis into two cases: Assume that k ≤ k + q ≤ Cs log(n)
Ln

.

Case (B1): ‖Ṽ k+q−1
o ‖22,n > 1

2‖Ṽ
k
o ‖22,n. It implies that ‖Ṽ l

o‖22,n ≥ 1
2‖Ṽ

k
o ‖22,n for all l =

k, . . . , k + q − 1 as

‖Ṽ l
o‖22,n = ‖(I − PT̂ m̌l )Xβ‖

2
2,n

is a decreasing sequence in l. It follows that

‖Umk+q‖22,n ≤ ‖Umk‖22,n −
κLn
s

k+q−1∑
l=k

‖Ṽ l
o‖22,n

≤ ‖Umk‖22,n −
κqLn

2s
‖Ṽ k

o ‖22,n = ‖Umk‖22,n −
κ

2
‖Ṽ k

o ‖22,n.

Recall that by (47), we have:

Umk = Ṽ k
o + (I − PT̂ m̌k )(r + ε) +Rk.

It implies that

‖Ṽ k+q
o ‖22,n ≤

(
1− κ

2

)
‖Ṽ k

o ‖22,n + 2 < Ṽ k
o , (I − PT̂ m̌k )(r + ε) >n

− 2 < Ṽ k+q
o , (I − P

T̂
m̌k+q )(r + ε) >n

+ ‖(I − PT̂ m̌k )(r + ε)‖22,n − ‖(I − PT̂ m̌k+q )(r + ε)‖22,n + ‖Rk‖22,n − ‖Rk+q‖22,n
+ 2 < Ṽ k

o + (I − PT̂ m̌k )(r + ε), Rk >n

− 2 < Ṽ k+q
o + (I − P

T̂
m̌k+q )(r + ε), Rk+q >n .

By (55), replacing k − 1 by k, for n large enough, we have

2 < Ṽ k
o , (I − PT̂ m̌k )(r + ε) >n −2 < Ṽ k+q

o , (I − P
T̂
m̌k+q )(r + ε) >n

≤ 4

(√
4Cr

CV log(n)
+

√
σ2Cφ

CV log(n)
+

√
σ2Ck
cφCV

)
‖X

T̃mk
β
T̃mk
‖22,n

≤
4Cφ
cφ

√
2σ2Ck
cφCV

‖Ṽ k
o ‖22,n ≤

κ

12
‖Ṽ k

o ‖22,n (63)
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given that CV >
64·36·2C2

φσ
2Ck

c3φκ
2 . Here we used that Ṽ k

o := (1−PT̂mk )Xβ = (1−PT̂mk )X
T̃mk

β
T̃mk

as T̃mk = T0\T̂mk . Again, we can find a δ with supp(δ) ⊂ T̂mk such thatXδ = PT̂mkXT̃mk
β
T̃mk

.
Hence, the supports of δ and β

T̃mk
have no intersection and we conclude

‖Ṽ k
o ‖22,n ≥ cφ(‖δ‖2 + ‖β

T̃mk
‖2) ≥ cφ‖βT̃mk‖

2 ≥
cφ
Cφ
‖X

T̃mk
β
T̃mk
‖22,n.

By Lemma 25 and (50), for n large enough, we have that:

‖(I − PT̂ m̌k )(r + ε)‖22,n − ‖(I − PT̂ m̌k+q )(r + ε)‖22,n (64)

= −‖PT̂ m̌k (r + ε)‖22,n + ‖P
T̂
m̌k+q (r + ε)‖22,n

≤ 2

(
Crs log(2p/α) + σ2/cφ log(2p/α)|T̂ m̌k+q |

n

)

≤ 5Ckσ
2

cφCV
‖Ṽ k

o ‖22,n ≤
κ

12
‖Ṽ k

o ‖22,n (65)

given that CV ≥ 60Ckσ
2

cφκ
. And for n large enough, for fixed CV , by (50), we have that:

‖Rk‖22,n − ‖Rk+q‖22,n + 2 < Ṽ k
o + (I − PT̂ m̌k )(r + ε), Rk >n

− 2 < Ṽ k+q
o + (I − P

T̂
m̌k+q )(r + ε), Rk+q >n

≤ 1

n
+

4

n
‖Ṽ k

o ‖2,n +
4

n
‖r + ε‖2,n ≤

κ

12
‖Ṽ k

n ‖22,n. (66)

Combining (63), (65) and (66), we have that:

‖Ṽ k+q
o ‖22,n ≤

(
1− κ

4

)
‖Ṽ k

o ‖22,n. (67)

Hence, we have shown exponential decay of ‖Ṽ k
o ‖22,n in Case (B1).

Case (B2): ‖Ṽ k+q
o ‖22,n ≤ 1

2‖Ṽ
k
o ‖22,n. This automatically proves exponential decay. Note

that κ ≤ 1
4 as Cφ ≥ cφ. Combining Case (B1) and Case (B2), we have that

‖Ṽ k+q
o ‖22,n ≤

(
1− κ

4

)
‖Ṽ k

o ‖22,n.

Therefore, for any kq ≤ Cks log(n), we have that

‖Ṽ kq
o ‖22,n ≤ ‖Ṽ 0

o ‖22,n
(

1− κ

4

)k
. (68)

Since q = s
Ln

, let k = bCkLn log(n)c. WLOG., assume that CkLn log(n) is an integer so

that k = Ckn log(n). For n large enough and Ck ≥ 4K
Lnκ

, we have that

‖Ṽ kq
o ‖22,n ≤ nCkLn ln(1−κ

4
)‖Ṽ 0

o ‖22,n ≤ n−CkLnκ/4nK−1 <
CV s log(n) log(p)

4n
(69)
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given that ‖Ṽ 0
o ‖22,n ≤ nK−1 for some fixed constant K > 0. This leads to a contradictory

to (50). Therefore, for given constant Ck ≥ 4K
Lnκ

, there must exists k ≤ Cks log(n)
Ln

such that

‖V mk‖22,n ≤
CV s log(n) log(2p/α)

n
(70)

which concludes our proof.

By construction of Algorithm 2, we have that

‖Um+1‖22,n = ‖Um‖22,n − γ2
jm

for all non-negative integers m. Therefore,

‖Um+1‖22,n
‖Um‖22,n

= 1−
γ2
jm

‖Um‖22,n
. (71)

It implies that the algorithm will not stop if

γ2
jm

‖Um‖22,n
≥ Cu

log(2p/α)

n
. (72)

Suppose that the algorithm does not stop when k ≤ C′s logn
Ln

≤ kM := CMs logn
Ln

with CM
defined in Assumption 1. If C ′ > Ck, by Proposition 27, it holds

En
[(
x′i(β

mk − β)
)2]

-p
s log(n) log(p)

n

for some k ≤ Cks log n/Ln. By Proposition 27, there also exists a positive constant CV
such that

‖Ṽ k∗‖2,n ≤
CV s log(2p/α) log(n)

n
(73)

with k∗ ≤ C∗s log n/Ln. It implies that |T̂ m̌k∗ | = |T̂mk∗ | ≤ C∗s log n. Therefore, by Lemma
25, we have that

‖(I − PT̂ m̌k∗ )Xβ‖2,n ≤ ‖Ṽ k∗‖2,n + ‖PT̂ m̌k∗ (r + ε)‖2,n + ‖Rk∗‖2,n

≤
(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)√
s log n log(2p/α)

n
. (74)

It implies that for any k ≥ k∗ and k ≤ kM , we have that

‖Ṽ k‖2,n ≤ ‖(I − PT̂ m̌k )Xβ‖2,n + ‖PT̂ m̌k (r + ε)‖2,n + ‖Rk‖2,n

≤ ‖(I − PT̂ m̌k∗ )Xβ‖2,n +

√
2(Crs log(2p/α) + kσ2/cφ log(2p/α)s log n)

n
+

1

n

≤
(
Ck∗ + 1 + 2(Cr + kσ2/cφ)

1
2

)√s log n log(2p/α)

n

45



Luo, Spindler and Kueck

where C∗k := (C
1
2
V + (2Cr + σ2/cφC

∗)
1
2 + 1). By definition, with s logn log(2p/α)

n → 0, for n
large enough, for arbitrarily small η > 0, we have that

‖Umk‖2,n = ‖(ε+ r) + Ṽ k‖2,n ≥ ‖(ε+ r)‖2,n − ‖Ṽ k‖2,n ≥
√

(1− 2η)σ2 (75)

and
‖Umk‖2,n = ‖(ε+ r) + Ṽ k‖2,n ≤ ‖(ε+ r)‖2,n + ‖Ṽ k‖2,n ≤

√
(1 + 2η)σ2. (76)

By definition, since ‖Umk‖2,n is a decreasing sequence, we have that:

γ2
jm ≥ CU

log(2p/α)

n
‖Um‖22,n ≥ CU (1− 2η)σ2 log(2p/α)

n
.

As a result, we have that:

‖Umk‖22,n ≤ ‖Umk∗‖22,n −
∑

mk≤m≤mk∗−1, lm=1

γ2
jm

≤ ‖Umk∗‖22,n − (k − k∗)LnCU (1− 2η)σ2 log(2p/α)

n
. (77)

Therefore, it implies that for any k ≥ k∗, we have:

‖Umk‖22,n − ‖Umk∗‖22,n = ‖(I − PT̂ m̌k )y +Rk‖22,n − ‖(I − PT̂ m̌k∗ )y +Rk∗‖22,n
= ‖(I − PT̂ m̌k )y‖22,n − ‖(I − PT̂ m̌k∗ )y‖22,n︸ ︷︷ ︸

Ψ1

+ 2 < (I − PT̂ m̌k )y,Rk >n − < (I − PT̂ m̌k∗ )y,Rk∗ >n︸ ︷︷ ︸
Ψ2

+ ‖Rk‖22,n − ‖Rk∗‖22,n︸ ︷︷ ︸
Ψ3

. (78)

For Ψ1, we have that:

Ψ1 = ‖(I − PT̂ m̌k )y‖22,n − ‖(I − PT̂ m̌k∗ )y‖22,n
= ‖(I − PT̂ m̌k )Xβ‖22,n − ‖(I − PT̂ m̌k∗ )Xβ‖22,n︸ ︷︷ ︸

Ψ11

−2 < (PT̂ m̌k − PT̂ m̌k∗ )Xβ, (r + ε)) >n︸ ︷︷ ︸
Ψ12

+ ‖PT̂ m̌k∗ (r + ε)‖22,n − ‖PT̂ m̌k (r + ε)‖22,n︸ ︷︷ ︸
Ψ13

.

For Ψ11, by (74), we have that:

Ψ11 ≥ −‖(I − PT̂ m̌k∗ )Xβ‖22,n ≥ −
(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)2 s log n log(2p/α)

n
.

(79)
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For Ψ12, we know that

(PT̂ m̌k − PT̂ m̌k∗ )Xβ = (I − PT̂ m̌k∗ )Xβ − (I − PT̂ m̌k )Xβ.

It is worth noting that (I−PT̂ m̌k )Xβ is a linear combination of columns of X with indices in

Tk := T̂ m̌k ∪T0 where T0 := supp(β). Therefore, we can find a ζk ∈ Rp with supp(ζk) ⊂ Tk,
with Xζk = (I − PT̂ m̌k )Xβ. Since

‖(I − PT̂ m̌k )Xβ‖22,n ≤ ‖(I − PT̂ m̌k∗ )Xβ‖22,n

≤
(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)2 s log n log(2p/α)

n
,

we have that

‖Xζk‖22,n ≤
(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)2 s log n log(2p/α)

n
. (80)

By sparse eigenvalue condition in Assumption A.1, it implies that

‖ζk‖22,n ≤
1

cφ

(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)2 s log n log(2p/α)

n
.

Therefore,

Ψ12 = 2 < Xζk −Xζk∗ , (r + ε) >n

= 2 < Xζk −Xζk∗ , r >n +2 < ζk − ζk∗ , XTk∗ε >n

≥ −2(‖Xζk‖2,n + ‖Xζk∗‖2,n)‖r‖2,n − 2(‖ζk‖2,n + ‖ζk∗‖2,n)|Tk∗ |
1
2λn

≥ −4
√
Cr

(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)
s log(n)

1
2 log(2p/α)

n

− 4σ
√
C∗

√
cφ

(
C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1

)
s log(n) log(2p/α)

n
. (81)

For Ψ13, by Lemma 25, we have that:

Ψ13 ≥ −‖PT̂ m̌k (r + ε)‖22,n ≥ −2

(
Crs log(2p/α) + σ2/cφ log(2p/α)kLn

n

)
. (82)

Combining (79), (81) and (82), we have that:

Ψ1 ≥ −CΨ1

s log n log(2p/α)

n
− 2σ2

cφ

kLn log(2p/α)

n
(83)

where CΨ1 := (4
√
Cr + 2Cr + 4σ

√
C∗/
√
cφ + (C

1
2
V + (2Cr + 2σ2/cφC

∗)
1
2 + 1))(C

1
2
V + (2Cr +

2σ2/cφC
∗)

1
2 + 1) is a fixed constant. For Ψ2 and Ψ3, since ‖Rk‖, ‖Rk∗‖ ≤ 1

n , and by (76),
we have that for n large enough:

Ψ2 ≤ −
4(1 + 2η)σ

n
and Ψ3 ≤ −

2

n2
. (84)
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Therefore, we have that:

‖Umk‖22,n−‖Umk∗‖22,n ≥ −CΨ1

s log n log(2p/α)

n
−σ

2

cφ

kLn log(2p/α)

n
−4(1 + 2η)σ

n
− 2

n2
. (85)

Recall that in equation (77), we have that

‖Umk‖22,n − ‖Umk∗‖22,n ≤ −(k − k∗)LnCU (1− 2η)σ2 log(2pα)

n
. (86)

Therefore, combining (85) and (86), we have that

(k − k∗)LnCU (1− 2η)σ2 log(2pα)

n

≤ CΨ1

s log n log(2p/α)

n
+
σ2

cφ

kLn log(2p/α)

n
+

4(1 + 2η)σ

n
+

2

n2

and by assumption that CU > 4
cφ

, for small enough η > 0, it holds CU (1 − 2η) − 4
cφ
> 0.

Since k∗ ≤ C∗s logn
Ln

, it implies that for n large enough, we have that

k ≤ k∗CU (1− 2η) + CΨ1s log n/Ln + 1

CU (1− 2η)− 4
cφ

≤ C ′ s log n

Ln

where C ′ :=
C∗CU (1−2η)+CΨ1

+1

CU (1−2η)− 4
cφ

s log n/Ln. By assumption that C ′ ≤ CM , all the analysis in

the above that uses the sparse eigenvalue condition applies. Therefore, the algorithm must
stop before mk with k ≤ C ′. Therefore, when we stop at m∗, we have that

γjm∗ ≤
√
CU

log(2p/α)

n
‖Um∗‖2,n ≤

√
CU

log(2p/α)

n
(‖V m∗‖2,n + ‖(r + ε)‖2,n). (87)

By Lemma 26, we have that

|γjm∗ | ≥
√

cφ

(|T̂m∗ |+ s)
‖V m∗‖2,n −

√
Crcφs log 2p/α

n(|T̂m∗ |+ s)
− λn.

It implies that

‖V m∗‖2,n

√cφ −
√
CU

(|T̂m∗ |+ s) log(2p/α)

n


≤

√
CU

(|T̂m∗ |+ s) log(2p/α)

n
(2 + 2η)σ +

√
Crcφs log(2p/α)

n
+

√
(|T̂m∗ |+ s)λn.

Since |T̂m∗ | ≤ C ′s log(n) and s log(n) log(p)
n → 0, we have that for n large enough,√

cφ
2
‖V m∗‖2,n ≤

√
s log(n) log(2p/α)

n

(√
CUC ′′(2 + 2η)σ +

√
Crcφ + σC ′′

)
48



High-Dimensional L2-Boosting

for C ′′ ≤ C ′ + 1. It follows that

‖V m∗‖22,n ≤
2

cφ

(√
CUC ′′(2 + 2η)σ +

√
Crcφ + σC ′′

)2 s log(n) log(2p/α)

n
,

and

‖β − βm∗‖2 ≤ 2

c2
φ

(√
CUC ′′(2 + 2η)σ +

√
Crcφ + σC ′′

)2 s log(n) log(2p/α)

n

follows by sparse eigenvalue condition which concludes the proof.

Appendix D. Discussion of the equi-correlated design

In the equi-correlated design, we assume to have a set of predictors X1, . . . , Xp, such that

Covn(Xi, Xj) = corrn(Xi, Xj) = ρ ∈ (0, 1)

for i 6= j, where Covn represents the empirical covariance and corrn the empirical correla-
tion, respectively. By assumption, all Xj , j = 1, 2, . . . , p, are standardized with mean zero
and variance one. For the case Cov(Xi, Xj) = ρ, the results are similar and can be well
approximated by the case Covn(Xi, Xj) = ρ. To analyze the revisiting behavior of the PGA
algorithm in model (3) in the main text, it is sufficient to consider Xαm = X(β − βm),
which is the approximation error at the mth boosting step. It is worth noting that

Covn(Xαm, Xj) =
∑
i∈Tm

αmi ρ, if j /∈ Tm, (88)

Covn(Xαm, Xj) =
∑
i∈Tm

αmi ρ+ αmj (1− ρ), if j ∈ Tm, (89)

where Tm := T ∪supp(βm) with T := supp(β). WLOG., one can assume that
∑

i∈Tm α
m
i ≥

0. We divide our analysis into two cases:
Case (a): If

∑
i∈Tm α

m
i > 0, there must be a j ∈ Tm such that αmj > 0. Due to Equations

(88) and (89), this implies

|Covn(Xαm, Xj)| > |Covn(Xαm, Xl)|

for all l /∈ T̂m since αmj (1 − ρ) > 0 and
∑

i∈Tm α
m
i ρ > 0. Therefore, the algorithm must

select one predictor from Tm.
Case (b): If

∑
i∈Tm α

m
i = 0, the current approximation error Xαm has a correlation of 0

with all variables j that are not in Tm, see Equation (88). As a result, the algorithm must
either (b1) select a predictor that is in Tm if not all αmi are zero for i ∈ Tm or (b2) stop
since all αmi are 0.
In summary, the algorithm will always tend to select one predictor from the existing Tm

unless it stops as the approximation error is already zero. Therefore,

T = T 0 = T 1 = · · · = Tm.

Hence, we have 100 percent of revisiting, indicating that ζ∗(cφ)→∞.
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Appendix E. Applications

In this section, we present applications from different fields to illustrate the boosting algo-
rithms. We present applications to demonstrate how the methods work when applied to
real data sets and, then compare these methods to related methods, i.e. Lasso. The focus
is on making predictions which is an important task in many applications.

E.1 Riboflavin production

This application involves genetic data and analyzes the production of riboflavin. First, we
describe the data set, then we present the results.

E.1.1 Data set

The data set has been provided by DSM (Kaiserburg, Switzerland) and was made publicly
available for academic research in Bühlmann et al. (2014) (Supplemental Material). The
real-valued response/dependent variable is the logarithm of the riboflavin production rate.
The (co-)variables measure the logarithm of the expression level of 4, 088 genes (p = 4, 088),
which are normalized. This means that the covariables are standardized to have variance
1, and the dependent variable and the resources are “de-meaned”, which is equivalent to
including an unpenalized intercept. The data set consists of n = 71 observations which were
hybridized repeatedly during a fed-batch fermentation process in which different engineered
strains and strains grown under different fermentation conditions were analyzed. For further
details we refer to Bühlmann et al. (2014), their Supplemental Material and the references
therein.

E.1.2 Results

We analyze a data set on the production of riboflavin (vitamin B2). We split the data set
randomly into two samples: a training set and a testing set. We estimate the model with
different methods on the training set and then use the testing set to calculate out-of-sample
mean squared errors (MSE) in order to evaluate the predictive accuracy. The size of the
training set was 60 and the remaining 11 observations were used for forecasting. The table
below shows the MSE for different methods discussed in the previous sections.

Table 11: Results Riboflavin Production (out-of-sample MSE)
BA-our oBA-our Lasso p-Lasso
0.3641 0.1080 0.1687 0.1539

All calculations were performed in R (R Core Team (2014)) with the package hdm
(Chernozhukov et al. (2015)) and our own code. Replication files are available upon request.
The results show, again, that orthogonal L2-Boosting outperforms Lasso and post-Lasso in
this application.
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E.2 Predicting Test Scores

E.2.1 Data Set

Here, the task is to predict the final score in the subjects Mathematics and Portugese in sec-
ondary education. This is relevant, e.g., to identify students which need additional support
to master the material. The data contains both student grades and demographic, social and
school related features and it was collected by using school reports and questionnaires. Two
datasets are provided regarding the performance in two distinct subjects: Mathematics and
Portuguese. The data set is made available at the UCI Machine Learning Repository and
was contributed by Paulo Cortez. The main reference for the data set is Cortez and Silva
(2008).

E.2.2 Results

We employed five-fold cross-validation to evaluate the predictive performance of the data
set. The results remain stable when choosing a different number of folds. The data sets
contain, for both test results, 33 variables, which are used as predictors. The data set for
the Mathematics test scores contains 395 observations, the sample size for Portuguese is
649. The results confirm our theoretical derivations that boosting is comparable to Lasso.

Table 12: Prediction of education (out-of-sample MSE)
subject BA-our oBA-our Lasso p-Lasso

Mathematics 19.1 19.3 18.4 18.4
Protugese 8.0 7.9 7.8 7.8
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