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Abstract
Uplift modelling is a subfield of causal learning that focuses on ranking entities by individual
treatment effects. Uplift models are typically evaluated using Qini curves or Qini scores.
While intuitive, the theoretical grounding for Qini in the literature is limited, and the
mathematical connection to the well-understood Receiver Operating Characteristic (ROC)
curve is unclear. In this paper, we introduce pROCini, a novel uplift evaluation metric
that improves upon Qini in two important ways. First, it explicitly incorporates more
information by taking into account negative outcomes. Second, it leverages this additional
information within the Ordinal Dominance Graph framework, which is the basis behind the
well known ROC curve, resulting in a mathematically well-behaved metric that facilitates
theoretical analysis. We derive confidence bounds for pROCini, exploiting its theoretical
properties. Finally, we empirically validate the improved discriminative power of ROCini
and pROCini in a simulation study as well as via experiments on real data.
Keywords: Uplift modelling, Qini, ROC, Ordinal Dominance Graphs, pROCini

1. Introduction

Accurate prediction of the causal effects of treatments at the individual entity level is leading
to radically improved decision-making in many different fields such as health care (Jaskowski
and Jaroszewicz, 2012; Berrevoets et al., 2020; Verboven and Martin, 2022), marketing (Lo,
2002; Gubela et al., 2017), education (Olaya et al., 2020b) and human resources management
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(Rombaut and Guerry, 2020). Often, the operational setting is subject to constraints, e.g.,
budgetary or capacity-wise condtraints, inducing prioritization of treatment assignment.
Usually, treatment is of the greatest importance, and thus prioritized, to those individuals
for whom the treatment effect is the greatest.

Uplift modelling is a subfield of causal learning that explicitly supports decisions featur-
ing scarcity of treatment capacity through optimizing the causal effect ranking on a target
population. This ranking aspect sets it apart from the classic Individual Treatment Effect
(ITE) (Shalit et al., 2017) and Conditional Average Treatment Effect (CATE) (Athey et al.,
2018) literature which focuses on obtaining well-calibrated point estimates of the causal
effect.

Specialized ranking metrics such as the Qini score have been proposed to evaluate up-
lift models (Radcliffe, 2007; Devriendt et al., 2020; Gutierrez and Gérardy, 2017; Belbahri
et al., 2021). Although initial uplift evaluation metrics lack a solid theoretical basis, only
recently has research attempted to establish connections to existing theoretical frameworks
(Yadlowsky et al., 2024).

Furthermore, although similarity in intuition is claimed, there is no explicit link with
the area under the ROC curve (AUROC), a commonly used ranking evaluation metric for
assessing classification performance. This lack of mathematical grounding makes it chal-
lenging to assess the significance of metric outcomes correctly. For example, many papers
have reported the unstable behaviour of uplift models (Olaya et al., 2020a; Diemert et al.,
2018; Devriendt et al., 2018). This instability has previously been attributed to the char-
acteristics of the data set, the models, and the evaluation metric. The main roadblock to a
deeper understanding of uplift modelling results is the lack of well-understood mathematical
evaluation. Introducing such a metric for causal effect ranking that allows for theoretical
grounding thus represents a fundamental step for uplift modelling to mature as a field of
study, and is the key research objective and contribution of this paper.

In the next section, we review the preliminaries of uplift modelling and its evaluation.
Afterwards, we turn to the Qini score and set up a simulation protocol to study the properties
of the distribution of the Qini score. In Section 3, we review the connection between the Qini
curve and the ROC curve. As a stepping stone towards our main contribution, we introduce
the ROCini score. This measure lays the foundation for our primary innovation, the pROCini
score, by illustrating how to capture more relevant information within an uplift evaluation
metric. Using Ordinal Dominance Graphs, we then present a mathematical foundation
to extend the ROCini score to the pROCini score, a mathematically well-behaved metric
that allows for theoretical grounding. Furthermore, through its direct connection to the
ROC curve, the pROCini curve can be linked to work on the ROC curve of the past fifty
years. We demonstrate the superior theoretical properties of the pROCini score by deriving
confidence bounds in Section 3.3. In Section 3.4, we propose a simulation study that can be
used to compare the performance of various uplift modelling metrics. We report that the
ROCini and pROCini scores outperform the existing Qini scores in terms of discriminative
power. Finally, in Section 4, we present experiments on real data revealing that in realistic
scenarios the choice of the evaluation metric impacts the model selection.
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2. Preliminaries and Background

2.1 Uplift modelling

Uplift modelling aims to inform optimal treatment assignment by ranking individuals ac-
cording to their estimated net benefit from treatment, often using methods related to CATE
estimation but optimized for decision-making rather than pure estimation accuracy (Gubela
et al., 2020; Fernández and Provost, 2019; De Vos et al., 2024). We focus on uplift modelling
with binary treatments Ti ∈ {0, 1}, which is the most common case in the literature, where
Ti = 1 indicates that the treatment is applied to individual i (treatment group), whereas
Ti = 0 signifies that the individual is not treated (control group). The potential outcomes
for each individual can be represented as YT and YC , where YT is the outcome if treated
(Ti = 1), and YC is the outcome if not treated (Ti = 0). The outcome is binary, and thus
both YT and YC take values in {0, 1}.

The uplift for an individual i can then be formalized as follows:

τi = Pr(YT = 1 | Xi)− Pr(YC = 1 | Xi). (1)

However, for any given individual, only one of these potential outcomes is observ-
able—either YT or YC—which is commonly referred to as the fundamental problem of causal
inference (Holland, 1986). The observed outcome for individual i is defined as

Yi = TiYT + (1− Ti)YC . (2)

In line with the uplift modelling literature, we assume that the treatment is randomly
assigned (as in a randomized controlled trial). This implies that strong ignorability (Rosen-
baum and Rubin, 1983) is satisfied—a combination of the following: (i) ignorability, meaning
that the potential outcomes are conditionally independent of treatment assignment given
covariates,

(YT , YC) ⊥ Ti | Xi, (3)

and (ii) positivity, ensuring that all individuals have a nonzero probability of receiving either
treatment or control,

0 < Pr(Ti = 1 | Xi) < 1 ∀Xi. (4)

Furthermore, it is assumed that the observed outcome corresponds to the potential outcome
under the received treatment and that there is no interference between individuals. Together,
these assumptions ensure that causal effects are identifiable.

2.2 Evaluation of uplift models

Owing to the fundamental problem of causal inference, uplift models require specific eval-
uation metrics. The most common metric is the Qini score, which is obtained from the
Qini curve (Radcliffe, 2007). However, various definitions and implementations of both the
Qini curve and the closely related uplift curve exist in the literature. These variations in-
clude different normalization techniques and methodologies for ranking subjects, with some
approaches ranking all subjects together and others ranking control and treatment groups
separately (Devriendt et al., 2020). Furthermore, generalizations such as the Adjusted Qini
Curve and the Cumulative Gains Qini curve have been proposed (Gutierrez and Gérardy,
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2017). For the purposes of this paper, we define the Qini curve using a joint ranking approach
that combines both control and treatment groups. Specifically, we consider the following:

The Qini curve is the curve of the function Q(ϕ) defined as

Q(ϕ) =
n1T (ϕ)

nT
−
n1C(ϕ)

nC
. (5)

Where nT and nC are the numbers of people in the treatment and control groups, respec-
tively, and where n1C(ϕ) and n1T (ϕ) correspond to the numbers of people with favourable
outcomes in the first ϕ proportion (ranked from highest to lowest estimated uplift) of sub-
jects in the control and treatment groups, respectively.

The random chance Qini curve is represented by a straight line through (0,0) and(
1,

n1T
nT
−
n1C
nC

)
.

Figure 1: Example of a Qini curve

The Qini score (QS) is then defined as the area between the Qini curve of the model and
the random chance Qini curve. A QS can be calculated for the whole population, or a certain
percentile, and compresses the uplift ranking performance into a single value. These curves,
often referred to as "uplift curves" in a general context, have been extended with various
alternative weighting schemes to address group imbalances as proposed in (Gutierrez and
Gérardy, 2017). However, in this paper, we focus on the Qini curve and score, as defined
in Eq. (5) as they remain the most widely used metrics in uplift modelling. The Qini score
can be seen as the baseline metric upon which various extensions are built. Importantly,
the alternative weighting schemes developed for the Qini curve can be applied to the new
metrics we introduced in Section 3.
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In practice, the Qini score and its extensions are used to tune the hyperparameters of
uplift models, model selection, decide whether to push models to production, and ultimately
to design treatment assignment policies. It is thus of primordial importance that the Qini
score is a reliable, well-defined metric. As such, it is worthwhile to study the properties of the
Qini score and its distribution. Recently, an alternative approach to scoring uplift models
has been developed: the Rank-Weighted Average Treatment Effects (RATE) (Yadlowsky
et al., 2024). This method offers broader applicability as it can be used with continuous
outcomes in addition to binary outcomes. The Targeting Operator Characteristic (TOC)
(Zhao et al., 2013) is an example of a RATE curve, and the area under the TOC (AUTOC)
has been proposed as a metric to evaluate uplift models. In the context of uplift modelling,
the TOC can be defined as follows:

TOC(ϕ) =
n1T (ϕ)

nT (ϕ)
−
n1C(ϕ)

nC(ϕ)
−
n1T
nT

+
n1C
nC

. (6)

2.3 A first look at the Qini

We first analyse the stochastic behaviour of the Qini score, which reflects its ability to
discriminate between treatment responses. We use Algorithm 1 to gain insights into the
distribution of the Qini scores. The idea is to fix an underlying data-generating model to
examine the distribution of the Qini scores in a toy setup with high aleatoric uncertainty.

In Algorithm 1 the ground truth uplift ranking represents the perfect model. We then
add Gaussian noise to represent the model error. For each individual we sample three
probabilities: the probability of a positive outcome conditional on being in the control group,
the individual uplift and the Gaussian error. The sum of those three quantities corresponds
to the probability of a positive outcome conditional on being in the treatment group. The
control group probability (PC) was drawn from a beta distribution. The individual uplift
(IU) was drawn from a normal distribution and clamped to ensure that 0 ≤ PC + IU ≤ 1.
The final uplift with noise (IUn) was also drawn from a normal distribution and clamped to
satisfy 0 ≤ PC + IU + IUn ≤ 1 .

The outcomes are sampled with two Bernoulli experiments per individual. A first trial
determines the group assignment (control group C or treatment group T), and a second trial
determines the binary value of the observed outcome. Finally, the Qini score is calculated.
This procedure is repeated r = 10000 times. The results are shown in Figure 6.

5



Verbeken, Guerry, Verbeke, Verboven

Algorithm 1 Simulation of uplift model scores
1: Symbols:
2: N : normal distribution
3: B: beta distribution
4: B: Bernoulli distribution
5: Input:
6: r: the number of runs
7: N : the total number of individuals in the sample
8: α, β: parameters of the beta distribution
9: v: the variance of the individual uplifts

10: E: a list of variances of the Gaussian error
11: S: a list of uplift model metrics
12: Initialize:
13: Draw probabilities of positive outcome in control group PC ∼ B(α, β)
14: Draw individual uplifts IU ∼ N (0, v)
15: Cap IU: IU = max(−PC,min(IU, 1− PC))
16: Draw individual uplifts with Gaussian error IUn ∼ N (0, ε)
17: Cap IUn: IUn = max(−PC− IU,min(IUn, 1− PC− IU))
18: for ε ∈ E do . fix model error
19: for j = 1 . . . r do
20: for k = 1 . . . N do
21: draw Obs ∼ B(0.5) . Bernoulli experiment
22: if Obs = 0 then
23: draw Out ∼ B(PC)
24: else
25: draw Out ∼ B(PC + IU)
26: end if
27: end for
28: for score in S do
29: score(Obs,Out, IU + IUn) . score data with error
30: end for
31: end for
32: end for

The distribution of the Qini scores as depicted in Figure 2 is asymptotically normal. This
is validated using a Shapiro–Wilk test (Shapiro and Wilk, 1965), which yields W = 0.9998
and p = 0.55. This result implies that the normality hypothesis cannot be rejected for
α = 0.05. Furthermore, it is noteworthy that part of the QS distribution lies beneath zero,
corresponding to a worse than random performance. Such negative Qini scores may arise in
scenarios where treatment effects are difficult to predict or are only weakly identifiable from
covariates, leading to misrankings that perform worse than random.
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(a) Density plot of the simulated distribution (b) Q-Q plot of simulated vs. normal distribution

Figure 2: Results of Algorithm 1 with r = 10 000, N = 1000, (α, β) = (12, 12), v = 0.1, E = {0.1},
S = {QS}.

In a second experiment we vary the main parameters [N, (α, β), v, E] of Algorithm 1 in
order to determine their effect on the distribution of the Qini score. The results in Table
1 highlight that the population size significantly affects the variance of the distribution of
the Qini score. As expected, a larger population size leads to a more narrower distribution,
whereas the mean remains unchanged. In Figure 3 we observe that a stronger signal, in the
sense of a larger v, subsequently leads to a distribution shift to the right, which corresponds
to a higher Qini score, whereas adding a larger model error leads to a lower Qini score in
each case.

In conclusion, using the Qini score to evaluate uplift models in settings with small pop-
ulation sizes and small effect sizes may lead to misguided results that are not generalizable.
This could offer an explanation for the instability of uplift models as evaluated using the
Qini score, as reported in the literature (Devriendt et al., 2018).

2.4 Connection of the Qini curve with the ROC

The ROC curve is a graph that illustrates the diagnostic ability of a binary classifier. The
ROC curve is created by plotting the true positive rate (TPR) against the false positive rate
(FPR) at different threshold levels t ∈ [0, 1]. Given for each individual i the probability pi
of a positive outcome, we can classify for the threshold level t all individuals i with pi > t
as positive and calculate the rates TPR(t) and FPR(t) corresponding to this classification.
These rates can be considered the coordinates of the point (FPR(t),TPR(t)).

If we let t vary between 0 and 1 we obtain a graph of a parametric function (with
parameter t) in the space [0, 1]× [0, 1], which is called the ROC curve. In general, this graph
is stepwise. However, in cases where there are ties in scores among individuals with different
true outcomes, the graph will contain slanted segments.

Conversely, the Qini curve, as defined in Eq. (5), is the graph of a function of one
variable (ϕ). In fact, this function aggregates the information of the two rates n1

T (ϕ)
nT

and
n1
C(ϕ)
nC

.
It is important to emphasize the difference in how the ROC curve and the Qini curve

are constructed: one way to draw a parallel between the ROC curve and the Qini curve is
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Figure 3: The results of Algorithm 1 with r = 1000, N = 1000, (α, β) = (12, 12) and from left to
right with v = 0.20, v = 0.35, v = 0.5, v = 0.65 and v = 0.80 with E = {0.05, 0.1, 0.15, 0.2} in each
subfigure.
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N mean variance
1000 0.711 78× 10−6

2000 0.724 38× 10−6

4000 0.730 20× 10−6

8000 0.715 9× 10−6

16000 0.724 5× 10−6

Table 1: Distribution of the Qini score for various population sizes with r = 1000, (α, β) =
(2.5, 2.5), v = 0.35 and E = {0.05}.

to identify n1
T (ϕ)
nT

with the true positive rate and n1
C(ϕ)
nC

with the false positive rate. This was
explored in (Kuusisto et al., 2014) where the similarities between uplift curves and ROC
curves were exploited to write the Qini curve as the difference between two curves. This
approach could be utilized to derive confidence bounds for the Qini curve and the associated
Qini Score.

However, in the ROC setting, the proportion ϕ of the population that corresponds to
a certain point on the curve is only implicit since both the TPR(t)-axis and the FPR(t)-
axis are functions of this proportion. While this proportion is not as such visible on the
ROC curve, the Qini curve is graphed in a coordinate system where ϕ is presented on the
horizontal axis. Due to this lack of a direct connection, the theoretical work conducted on
ROC can not be straightforwardly applied to the Qini curve.

The Qini curve, which was originally developed independently, was later incorporated
into a broader analytical framework by (Yadlowsky et al., 2024), who demonstrated that
the Qini score could be situated within the family of rank-weighted average treatment effect
(RATE) metrics. This general family of measures is designed for evaluating and compar-
ing the effectiveness of treatment prioritization strategies. Notably, this framework also
encompasses the (AU)TOC measure (see Eq. (??)).

RATE metrics provide a way to summarize the quality of a treatment prioritization
rule in ranking units according to their potential outcomes without committing to a specific
treatment policy. This formulation enables precise tailoring: by selecting appropriate weight
functions, researchers can emphasize different segments of the ranking—such as the top
decile—to align with application-specific costs and error tolerances. Moreover, because the
RATE framework is rooted in the Neyman–Rubin potential outcomes model, it delivers
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direct interpretability in terms of causal treatment effects and supports rigorous statistical
inference.

3. The ROCini and pROCini metrics

3.1 ROC-like

In this section, we propose an alternative for the Qini curve that (i) explicitly includes more
information, (ii) is more closely tied to the classical ROC curve, allowing improved theoreti-
cal grounding, and (iii) behaves mathematically better, as it is bound to the unit square and
consistently has (0, 0) as the starting point and (1, 1) as the ending point. To understand
our approach, first consider the classical ROC curve. A ROC curve can be viewed as a plot
of "good" cases versus "bad" cases. Specifically, the y-axis represents the True Positive Rate
(proportion of actual positives correctly identified), which we can think of as "good" cases.
The x-axis represents the False Positive Rate (proportion of actual negatives incorrectly
identified as positive), which we can consider as "bad" cases.

In uplift modelling with binary treatments, individuals are typically categorized into
four key segments to optimize targeted interventions: Lost Causes, Do Not Disturbs, Per-
suadables, and Sure Things. Lost Causes are individuals who will not respond positively
regardless of the treatment, making any effort wasted. Do Not Disturbs are those who
might react negatively to the treatment, potentially causing harm or dissatisfaction if tar-
geted. Persuadables are the primary focus, as they are likely to respond positively to the
treatment and thus represent the most efficient use of resources. Finally, Sure Things are
individuals who will respond positively without any intervention, making targeting them
redundant.

When adapting the ROC-concept to uplift modelling, careful consideration is given to
defining "good" and "bad" cases within the context. For binary outcomes, the objective is
to distinguish between individuals who should be targeted ("Good Targets") and those who
should not ("Bad Targets"). "Good Targets" are identified where the outcome is positive
with treatment (YT = 1) and negative without treatment (YC = 0), which are also known as
Persuadables. "Bad Targets" encompass all other cases, including Lost Causes, Sure Things,
and Do Not Disturbs. Specifically, some "Bad Targets" can be directly identified from the
data: cases with (Y = 0, T = 1) must be either Do Not Disturbs or Lost Causes, whereas
cases with (Y = 1, T = 0) must be either Do Not Disturbs or Sure Things. To apply ROC
methodologies, we define positive instances as (Y = 1, T = 1) and (Y = 0, T = 0), which are
potentially "Good Targets", and negative instances as (Y = 1, T = 0) and (Y = 0, T = 1),
which are definitely "Bad Targets".

Considering the treatment group (T) and the control group (C) as two distinct entities,
we can now perform an ROC-like analysis as follows:

T : We identify the fraction n1
T (ϕ)

n1
T

with the TPR and the fraction n0
T (ϕ)

n0
T

with the FPR.

C : We identify the fraction n0
C(ϕ)

n0
C

with the TPR and the fraction n1
C(ϕ)

n1
C

with the FPR.
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Suppose that Pr(T = 1) = Pr(T |Xi) and that the individuals are ranked by their uplift.
For the treatment group, a good ranking corresponds to individuals with a high estimated
uplift being relatively more likely to respond positively, i.e., more likely to be in n1T (ϕ).
Conversely, for the control group, a high estimated uplift corresponds to a relatively lower
chance of belonging to n1C(ϕ). We can then use the uplift as a ranking criterion to combine
those two groups. Keeping the structure of the Qini curve, i.e., plotting an informative
variable along the y-axis as a function of the proportion ϕ on the x-axis, the ROCini curve
is obtained:

ROCini(ϕ) = (
n1
T (ϕ)

n1
T
− n0

T (ϕ)

n0
T

) + (
n0
C(ϕ)

n0
C
− n1

C(ϕ)

n1
C

). (7)

Remark 1 In the special case where the class proportions are equal, i.e., n0T = n1T = n0C =
n1C , we can use the identities n0T (φ) = nT (φ)−n1T (φ) and n0C(φ) = nC(φ)−n1C(φ) to rewrite
ROCini as:

ROCini(φ) = 2(n1T (φ)− n1C(φ)) + (nC(φ)− nT (φ)),

For a randomized experiment, the second term is expected to be small, leading to:

ROCini(φ) ≈ 2Qini(φ).

This implies that under these conditions, ROCini is essentially a scaled version of Qini.
However, this holds only in this balanced scenario. In general, when class proportions differ,
the additional terms in ROCini capture the structural imbalances between the treatment and
control groups.

Analogous to the Qini curve, the ROCini curve can be used to obtain a ROCini score by
calculating the area underneath the ROCini curve. The ROCini curve inherently includes
more (explicit) information through additionally incorporating n0T (ϕ) and n

0
C(ϕ). Although

a classical ROC function ranges between 0 and 1, the ROCini function ranges from 0 to 1
and then back to 0. Note that the area underneath the ROCini curve lies between −1 and
1. The ROCini score (ROCiniS) is then defined as the area under this curve.

3.2 Connecting the ROCini to the ROC using Ordinal Dominance Graphs: the
pROCini

Like those of Qini, the axes of ROCini differ significantly from those of the traditional
ROC. Ordinal Dominance Graphs (ODG) (Darlington, 1973) can be used to compare the
probability density functions of two random variables, X and Y . Using Ordinal Dominance
Graphs, we can cast the ROCini, similar to the ROC, in the form of two parametric functions
of the proportion of the population, along the axes. In this way we cannot only visualise all
the information we want to use in the unit square, but more importantly we can build on
the extensive literature that was developed for the ROC curve and use it in the setting of
uplift modelling.
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Figure 4: Example of a ROCini curve

Definition 2 (Bamber, 1975) For an arbitrary t ∈ [0, 1], we define G(t) as follows:

G(t) = (X(t), Y (t)) = (Pr(X ≤ t),Pr(Y ≤ t)). (8)

The Ordinal Dominance Graph ODG(X,Y ) is then defined as the curve consisting of all
points G(t).

Figure 5: Example of an ODG where the AUC corresponds to the blue region

Note that the ROC curve can be viewed in this setting:

12
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Theorem 3 (Bamber, 1975) The ROC curve is a rotated ODG with Pr(X ≥ t) = FPR(t)
and Pr(Y ≥ t) = TPR(t)

The Qini score (Radcliffe and Surry, 2011) was inspired by the AUROC, the Area Under the
ROC curve, which corresponds to the area above an ODG. Similarly, a score can be derived
by taking the area above any ODG. Specifically, the area above the ODG(X,Y ), denoted
A(X,Y ), measures the extent to which the distribution of X lies underneath the distribution
of Y . In the case of the ROC, this interpretation coincides with the interpretation of the
AUROC as the probability that a random positive instance ranks above a random negative
instance.

Lemma 4 (Bamber, 1975) For every ODG(X,Y) we have the following:

A(X,Y ) = Pr(X ≤ Y )

Proof

A(X,Y ) =

∫ 1

0
X(t)Y ′(t) dt

=

∫ 1

0
Pr(X ≤ t) dPr(Y ≤ t)

=

∫ 1

0
Pr(X ≤ t) PDFY (t) dt

= Pr(X ≤ Y ).

where PDFY (t) represents the probability density function of Y .

To obtain an even better performance metric, we propose applying the ordinal dominance
graph framework to the previously constructed ROCini. This step allows us to create a
more general and flexible metric. We start by redefining the True Positive Rate (TPR) and
False Positive Rate (FPR) as weighted averages of the TPR and FPR in the treatment and
control groups, respectively:

TPR(ϕ) = wp
n1T (ϕ)

n1T
+ (1− wp)

n0C(ϕ)

n0C
, (9)

FPR(ϕ) = wn
n0T (ϕ)

n0T
+ (1− wn)

n1C(ϕ)

n1C
. (10)

where wp ∈ [0, 1] is the weight of the treatment group for the TPR and where wn ∈ [0, 1]
is the weight of the treatment group for the FPR. From this general formulation, we can
derive two specific instances:

The pROCini (probabilistic ROCini), which we propose, sets wp = wn = 1
2 , resulting

in:

pROCini(ϕ) =
( n0

T (ϕ)

n0
T

+
n1
C(ϕ)

n1
C

2 ,

n1
T (ϕ)

n1
T

+
n0
C(ϕ)

n0
C

2

)
. (11)

where ϕ ∈ [0, 1] corresponds to the ϕ percentage of the highest ranked individuals. We
divide both X(ϕ) and Y (ϕ) by two to transform the graph into the unit square in a uniform
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fashion, as in Definition 2. The pROCini score (pROCiniS) is then defined as the area under
this curve.

The CROC, as defined by Verbeke et al. (2020), sets wp and wn to correspond to the
fractions of treated individuals among positive and negative examples, respectively. Specif-
ically, wp =

n1
T

n1
T+n

0
C

and wn =
n0
T

n0
T+n

1
C
, which coincides with our pROCini curve in the case

where n1T = n0C and n0T = n1C , resulting in:

CROC(ϕ) =
(n0T (ϕ) + n1C(ϕ)

n0T + n1C
,
n1T (ϕ) + n0C(ϕ)

n1T + n0C

)
. (12)

3.3 Inherited properties from the ODG framework

3.3.1 Interpretations and general properties

Embedding metrics within the Ordinal Dominance Graph (ODG) framework offers several
advantages. Notably, by applying Lemma 4, we gain an intuitive interpretation of the
pROCiniS (or its generalizations). It can be understood as the probability that a randomly
selected "Good Target" is ranked higher by the model than a randomly chosen "Bad Target".
Importantly, however, these "targets" are idealized concepts, as they are defined as weighted
averages (see Equations (9,10)). This interpretation provides a clear and meaningful way to
assess the performance of uplift models in discriminating between potentially persuadable
individuals and those who are likely not to be influenced by the treatment.

The ODG framework also provides a natural criterion for distinguishing between "Good
Targets" and "Bad Targets", which leads to a candidate cut-off point. This approach is
analogous to the use of Youden’s J statistic in traditional ROC analysis (Peirce, 1884). In
the context of uplift modelling, we can define a similar statistic as:

J(ϕ) = TPR(ϕ) − FPR(ϕ). (13)

where TPR(ϕ) and FPR(ϕ) are as defined in Equations (9, 10). The optimal cut-off
point corresponds to the maximum value of J(ϕ) over all possible thresholds ϕ. This has
an intuitive geometric interpretation: it represents the maximum vertical distance between
the ODG curve and the diagonal (or chance) line (Schisterman et al., 2005).

From a practical standpoint, evaluation typically focuses on specific portions of the
curve, such as the Qini score at 10% of the population. This practice acknowledges that in
many real-world applications, interventions are often limited to a subset of the population
owing to resource constraints. The ODG framework naturally accommodates this approach,
as demonstrated by (Dodd and Pepe, 2003). In the same spirit, it is worth noting that
different uplift models may excel at predicting uplift for different segments of the population
distribution. This phenomenon is analogous to how different ROC curves may outperform
others in specific regions of the plot.

In summary, embedding metrics within the ODG framework offers clear methodological
advantages: metrics such as pROCini provide greater computational efficiency and robust-
ness owing to reliance on empirical proportions rather than nuisance parameter estimation,
thereby reducing sensitivity to model misspecification. Additionally, the ODG framework
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inherently supports cost-sensitive weighting schemes ((Shao et al., 2023)), facilitates nat-
ural covariate stratification for exploring treatment heterogeneity ((Dodd and Pepe, 2003;
Sukhatme and Beam, 1994)), and ensures rigorous statistical inference through established
confidence interval methods. Furthermore, the framework naturally facilitates stratification
by covariates—enabling evaluation within subpopulations to reveal treatment heterogene-
ity (Dodd and Pepe, 2003; Sukhatme and Beam, 1994). By explicitly incorporating both
positive and negative cases, the ODG-based approach provides a balanced assessment of dis-
criminatory power with established statistical methods for constructing confidence intervals
that support rigorous model comparisons.

3.3.2 Confidence bounds for model evaluation scores

In practice, it is necessary to be able to discriminate between AUROC values when comparing
the performance of different models. For this reason, much effort has been expended in
previous work to develop confidence bounds for AUROC values (Hilgers, 1991; Cortes and
Mohri, 2004). These techniques are suitable for the more general setting of ODG as well
and most of the ideas behind them were already presented in (Bamber, 1975).
In some uplift modelling applications, such as marketing (Baier and Stöcker, 2022), the
population size is often large. In such cases, due to the central limit theorem, it is often
reasonable to assume that the X and Y variables follow a normal distribution. If X and Y
are independent as well, we obtain

X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ).

In previous work (Somoza and Mossman, 1991), it was established that this leads to:

A(X,Y ) = φ
( µY − µX√

σ2Y + σ2X

)
.

Moreover, the quantity µY −µX√
σ2
Y +σ2

X

is closely related to da, the index of discrimination

between normal distributions, which was introduced in (Simpson and Fitter, 1973):

da =
µY − µX√

σ2
X+σ2

Y
2

.

Furthermore, as noted in (Hanley et al., 1983), for continuous X and Y we have that

A(X,Y ) =
U

NX ×NY
. (14)

where U is the Mann-Whitney statistic and where NX and NY are the numbers of observa-
tions in the X and Y groups respectively. Note that it might be possible that observations
in X (or Y ) have to be weighted differently (as is the case for the pROCini).This can be
resolved by setting NX = 2×min{NX1 , NX2} and NY = 2×min{NY1 , NY2}, where NXi and
NYi correspond to the number of people of type i in X and Y respectively . The existing es-
timates (Mason and Graham, 2002; Hanley et al., 1983; Cortes and Mohri, 2004; Macskassy
and Provost, 2004) for the variance of A(X,Y ) can be used in this setting.
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Most notably:

Van Dantzig (Van Dantzig, 1951):

s2max =
A(1−A)

NL
with NL = min{NX , NY }, (15)

Hanley & McNeil (Hanley et al., 1983):

s2A =
A(1−A) + (NX − 1)(Q1 −A2) + (NY − 1)(Q2 −A2)

NXNY
(16)

with Q1 =
A

2−A
and Q2 =

2A2

1 +A
.

Where Eq. (15) leads to less tight estimates than Eq. (16). Finally, confidence intervals
can be constructed with those variances. Under normality assumptions one can, following
(Sen, 1967), deduce the following confidence interval:[

A− sA × zα
2
, A+ sA × zα

2

]
, (17)

where zα
2
corresponds to the appropriate z-score for a 100(1−α)% confidence interval. This

can be used to determine whether the difference between pROCini scores is statistically
significant by checking whether one falls within the confidence interval of the other.

3.4 A comparison of the discriminative power of uplift scores

Before delving into an extensive simulation study, we first replicate the initial experiment
conducted with the Qini score for our new pROCini metric. We perform a Shapiro–Wilk
test (Shapiro and Wilk, 1965), obtaining W = 0.9999 and p = 0.76. This result implies that
the normality hypothesis cannot be rejected for α = 0.05.
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(a) Density plot of the simulated distribution

(b) Q–Q plot of simulated vs. normal distribution

Figure 6: Results of Algorithm 1 with r = 10 000, N = 1000, (α, β) = (12, 12), v = 0.1, E = {0.1},
S = {QS}.

Notably, although some pROCini scores fall below 0.5 (which corresponds to a random
model), the proportion is substantially lower than the number of Qini scores falling below 0.
Specifically, in our experiment, 591 (5.91%) of the Qini scores were below 0, whereas only
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131 (1.31%) of the pROCini scores were below 0.5. This marked reduction in below-random
performance is promising and may indicate superior performance of the pROCini metric.

To further study the ability of our new metrics to discern between different uplift mod-
els and to compare them to ROCini and pROCini, a more extensive simulation study is
conducted. The performance in discerning the ground truth ranking (best model) with
a noisy ranking (poor model) is compared for QS10 (the Qini score at 10%), TOCS,
ROCiniS, pROCiniS and CROCS. We adapt Algorithm 1 to compare different metrics
S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS}. Furthermore, we set
E = {0, 0.025, 0.05, 0.075, 0.1} to check the extent to which the metrics can discriminate
between the model with and without error. This is applied for models Sv with differ-
ent signal strength i.e., v ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. In this simulation study we
vary the underlying distribution of positive outcomes in the control group, i.e., (α, β) ∈
{(0.5, 0.5), (5, 15), (5, 25) , (15, 15), (25, 25), (25, 5), (15, 5)} to obtain data about all shapes
of beta distributions as presented in Figure 7. Furthermore the individual treatment effects
as well as the errors are always considered to be normally distributed. This choice of (α, β)
parameters yields varying proportions of binary treatment effect values equal to 0 or 1 across
settings. An overview of the resulting distributions is provided in Table 4.

Figure 7: Various beta distributions used in the simulation

This procedure is repeated r = 1000000 times. For each metric, the scores of the perfect
model are compared with the scores of the models with errors. We report the percentage
of the runs in which the highest score is assigned to the perfect model. Finally, the results
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are compared using the proportion Z-Test (Zou et al., 2003). Our null hypothesis is that
the QS is a better metric, i.e. that it has a higher proportion. We indicated the highest
proportion for each row in bold. The results presented in Figures 8 to 14 and Tables 5 to
11 in the Appendix demonstrate that our three proposed metrics ROCiniS, pROCiniS, and
CROCS frequently yield statistically significant improvements on QS and TOCS. Overall,
pROCiniS exhibits the best performance. However, an exception is observed in Figure
10, where (α, β) = (5, 25), representing a scenario in which the baseline probability (the
probability of a positive outcome in the control group) is skewed to the right and generally
low. We hypothesize that this may be attributed to the fact that such conditions render
positive outcomes in both the treatment and control groups more rare and, consequently,
more significant. This phenomenon is not as well captured by ROCiniS, pROCiniS, and
CROCS, but plays a more prominent role in TOCS and QS, particularly when the signal
strength v is greater.
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1a.png
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1b.png

Figure 8: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (0.5, 0.5).
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2a.png
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2b.png

Figure 9: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (5, 15).
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3a.png
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3b.png

Figure 10: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (5, 25).

25



Verbeken, Guerry, Verbeke, Verboven

4a.png

26



Uplift Model Evaluation with Ordinal Dominance Graphs

4b.png

Figure 11: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (15, 15).
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5b.png

Figure 12: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (25, 25).
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6b.png

Figure 13: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (25, 5).
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7b.png

Figure 14: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (15, 5).
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4. Does uplift metric choice matter for real data?

4.1 Empirical Evaluation: Real Data

In this subsection, we present the results on three commonly used uplift modelling bench-
mark data sets: the Hillstrom (Hillstrom, 2008), Criteo (Diemert, Eustache et al., 2018),
and Information (Writer and Others, 2021) data sets. For each data set, we evaluate eight
commonly used uplift models and strategy combinations using the sklift package. We
consider four strategies: (i) the S-Learner (Künzel et al., 2019), (ii) the class transforma-
tion approach (Jaskowski and Jaroszewicz, 2012), (iii) the CATE-generating transformation
of the outcome (Athey and Imbens, 2015) and (iv) the two-model approach (Betlei et al.,
2018). Each of these strategies is run with both Logistic Regression and XGBoost. Finally,
we report the ranks of the test set metric result for QS10, TOCS, ROCiniS, pROCiniS and
CROCS.

Figure 15: Heatmaps of the eight modelling strategies ranked by test set performance for the
six metrics. Prefix solo refers to the S-learner strategy, transformreg to the class transformation
approach, transform_Z to the CATE-generating transformation approach, and two to the two-
model approach. The suffixes xgb and logistic indicate whether XGBoost or Logistic Regression was
used, respectively.

Assuming the practitioner selects the final uplift model solely based on its generalization
performance, Figure 8 demonstrates that the chosen uplift metric significantly impacts the
final model selection. For the Hillstrom and Criteo data sets, four different strategies
achieve the top rank across six metrics. In contrast, for the Information data set, the
model selection is considerably more consistent across metrics, with only QS10 producing
a different (solo_logistic) optimal model compared to the others (solo_xgb). Although no
normative conclusions can be drawn from this experiment due to lack of access to the ground
truth, it is clear that in realistic scenarios the choice of metric significantly impacts the model
selection, and thus the effectiveness of the machine learning system.

4.2 Semi-Synthetic Evaluation

Having established that metric choice significantly affects model selection, and that our
proposed metrics outperform existing ones in our simulated experiments, we now evaluate
whether these advantages carry over in a semisynthetic setting based on real-world covariates
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and treatment assignments. Specifically, we augment the original Hillstrom data set by
generating synthetic outcomes via a logistic function, given by

pi =
1

1 + exp
[
−
(
β0 +X>i β + βtTi + εi

)] ,
where Xi represents the original (standardized) features for observation i, Ti represents the
treatment indicator, βt represents the average treatment effect parameter, and εi ∼ N (0, σ2)
introduces random variation. From this specification, the true individual treatment effect for
each instance i is explicitly defined as the difference between probabilities under treatment
and control scenarios, namely:

ITEi = pi(Ti = 1)− pi(Ti = 0).

In line with the literature, the original covariates and treatment assignments are pre-
served to reflect a realistic multivariate structure, while simulating outcomes via a logistic
function with parameters β0 = 0.0, β = 1, βt = 0.5, and σ = 0.1 (Marchese et al., 2025;
Hill, 2011; Alaa and Van Der Schaar, 2017). This setup yields nonlinear treatment re-
sponse behaviour and allows full control over the treatment effect strength and noise. The
known ground truth ITEs enable direct and interpretable evaluations of model and metric
performances under realistic but controlled conditions.

We trained four uplift models based on standard S-learner and T-learner strategies
Künzel et al. (2019); Curth and Van der Schaar (2021), each implemented with two widely
used base learners: Logistic Regression and XGBoost. The S-learners model the outcome us-
ing a single model with treatment included as an additional feature, whereas the T-learners
fit separate models to treated and control groups, estimating the uplift as the difference in
the predicted probabilities. For each learner, uplift predictions were obtained by computing
the difference in the predicted probabilities under the treatment and control scenarios.

We applied these models to a population of 1,000 observations drawn from the Hillstrom
data set. Using the known ground truth ITEs from our simulation setup, we evaluated
each model’s ability to recover the true treatment effects. This was done using several
comparison metrics: mean squared error (MSE), Spearman’s rank correlation, Kendall’s
τ , a custom weighted Kendall distance, Earth Mover’s Distance (EMD), and mean rank
distance (MRD) between estimated and true ITEs. These metrics provide complementary
views of performance in both absolute error and ranking alignment.

The weighted Kendall distance penalizes pairwise ranking disagreements more heavily
when the underlying true ITEs differ substantially. Formally, we define it as

WeightedKendall(x, y) = 1−

∑
i<j

wij I[sign(xi − xj) 6= sign(yi − yj)]∑
i<j

wij
, wij = |yi − yj |.
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Model MSE Spearman’s ρ Kendall’s τ WeightedKendall EMD MRD
S_LR 0.0030 0.9902 0.9214 0.9960 0.0377 8.7200
T_LR 0.0098 0.6102 0.4586 0.8067 0.0541 56.3800
S_XGB 0.0253 0.4630 0.3583 0.7292 0.0766 63.7600
T_XGB 0.0608 0.2252 0.1574 0.6075 0.1251 85.1900

Table 2: Evaluation of the four uplift models based on their proximity to the ground truth ITEs
across multiple metrics.

Table 2 provides a quantitative assessment of how closely each of the four trained models
approximates the ground truth ITEs in the semisynthetic setting. Across all metrics—both
value-based (MSE, EMD) and rank-based (Spearman, Kendall, Mean Rank Distance)—the
S-Learner with Logistic Regression (S_LR) clearly outperforms the others. T_LR ranks
second, followed by S_XGB, with T_XGB performing worst. These results allow us to
construct an empirical ranking of model performance on this data set, which will serve as a
reference for evaluating the behaviour of different uplift metrics.
Given the known ground truth ITEs and the performance of the trained models (Ta-
ble 2), one would expect that a good uplift metric ranks the models in the following
order: true_ITE > S_LR > T_LR > S_XGB > T_XGB. To evaluate this, we use
a slight adaptation of Algorithm 1 to simulate 1000000 runs and check if the metrics
S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} provide the same ordering of the
models.

For each simulation run, we record whether the expected rank order holds across all
adjacent pairs. For example, whether the metric ranks true_ITE above S_LR, S_LR above
T_LR, etc. After 1,000,000 runs of the algorithm, the proportion of times each inequality
is satisfied is shown below.

Metric true_ITE > S_LR S_LR > T_LR T_LR > S_XGB S_XGB > T_XGB
QS10 50.1830 50.4570 52.2646 50.8006
QS 50.9785 58.8713 54.2210 55.4796
TOCS 50.7734 57.5253 54.6594 56.7970
ROCiniS 51.3898 62.3618 55.4541 57.6529
pROCiniS 51.4539 62.5246 55.4111 57.6352
CROCS 51.4615 62.6598 55.2145 57.7181

Table 3: Proportion of simulation runs (out of 1,000,000) where each metric correctly ranks adjacent
model pairs according to ground truth quality.

Using a two-proportion Z-test at a 99% confidence level (i.e., α = 0.01), we find that
pROCiniS significantly outperforms QS10, QS, and TOCS in correctly ranking the mod-
els.These findings are consistent with our synthetic experiments, in which similar conclusions
were reached. Moreover, the relatively low discriminatory power observed is to be expected
given the small differences between the ITE estimates and the significant overlap in their
score distributions when sampling. This subtle separation among the models underscores
that even modest improvements in metric performance can lead to markedly different model
selections in practice.
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5. Conclusions

In this article, an in-depth analysis of uplift modelling evaluation was presented. First, the
distributional properties of the classic Qini score were examined in a simulation experiment.
The simulation results show how the treatment effect size and population size are key fac-
tors in the stability of uplift modelling evaluation. Second, we introduced ROCiniS and
pROCiniS, two new metrics with more attractive mathematical properties. Additionally,
simulations show that ROCiniS and pROCiniS significantly outperform current metrics in
discerning between good and bad uplift models. This conclusion is further supported by a
semisynthetic experiment based on real-world covariates and treatment assignments, where
pROCiniS and ROCiniS again demonstrated superior ability to recover the correct model
ranking. These results confirm that the advantages of the proposed metrics extend beyond
controlled simulations and hold in more realistic, data-driven settings. Finally, the close re-
lationship between the pROCini curve and the ROC curve is demonstrated, and confidence
bounds for the pROCiniS are derived using theory regarding ODGs.

We see multiple avenues for future work. From a practical perspective, further investiga-
tion of the relationship between data set characteristics and the stability of uplift evaluation
will help practitioners make more informed decisions about uplift For practitioners, we sug-
gest prioritizing the use of ROCiniS and pROCiniS, as they generally demonstrate superior
performance compared with other metrics, with the notable exception being when the prob-
ability of a positive outcome in the control group is low, as was illustrated in Table 4. To
further refine metric selection, practitioners can conduct semisynthetic simulations to de-
termine the most suitable metric for their specific problem. If this approach is not feasible,
the use of multiple metrics to assess sensitivity, as shown in Figure 8, is advisable. From an
academic perspective, the ROCini and pROCini not only integrate seamlessly with existing
extensions of the Qini curve (e.g., group weighting as in (Gutierrez and Gérardy, 2017))
but also provide markedly improved model discrimination, offering a more sensitive tool
for evaluating subtle treatment effect differences. Research directions investigating such ex-
tensions are thus also compatible with these new metrics. Building on the ODG theory,
a compelling direction for future research is exploring the application of concepts akin to
the ROC convex hull (ROCCH) (Provost and Fawcett, 2001; Fawcett and Niculescu-Mizil,
2007) in uplift modelling. This approach could facilitate the creation of composite models
that harness the strengths of various uplift models across different population segments,
potentially enhancing overall performance.

Finally, we believe that this strand of research, and more specifically the study of con-
fidence bounds, will lead to additional insight into the suitability and robustness of uplift
models and their evaluation, warding practitioners from misguided confidence based on
small data sets with small treatment effects. Moreover, the derived confidence bounds of
the pROCiniS are a natural starting point for theoretically analysing the sometimes contra-
dicting results concerning the metrics as well.

Finally, we assert that the ongoing investigation into uplift model evaluation—and specif-
ically, the exploration of confidence bounds—will further elucidate the reliability and efficacy
of these models, protecting practitioners from erroneous conclusions in settings with limited
data and minimal treatment effects. The cumulative benefits of the ODG-based metrics
such as, superior performance, interpretability, a general framework that can be readily
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adapted to cost-sensitive settings with applicable weighting strategies, and the inherent
ability to facilitate evaluation within subpopulations—position them as leading contenders
for evaluating uplift models. These advantages underpin a more nuanced and accurate model
selection process, particularly under conditions of subtle treatment effects and significant
outcome distribution overlap, thereby reducing the risk of misinterpretation inherent in tra-
ditional metrics. Additionally, the confidence bounds established for pROCiniS provide a
robust foundation for theoretical analyses of the occasionally discordant outcomes observed
with alternative metrics.

6. Appendix

Value = 0 Value = 1
(α, β) PC+IU PC+IU+IUn PC+IU PC+IU+IUn
(0.5, 0.5) 8-19 5-19 8-19 5-19
(5, 15) 2-28 2-28 0-4 0-4
(5, 25) 7-35 5-35 0-3 0-3
(15, 15) 0-12 0-12 0-12 0-12
(25, 25) 0-11 0-11 0-12 0-11
(25, 5) 0-3 0-2 7-35 5-35
(15, 5) 0-4 0-4 2-28 2-28

Table 4: Minima–maxima ranges in percentages for PC+IU and PC+IU+IUn by (α, β).

The reported values are percentage ranges for PC+IU with or without error being equal to
0 or 1, across increasing signal strengths v ∈ 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4. As v increases,
the upper bounds of these percentages rise approximately linearly, reflecting increasing signal
clarity. No consistent relationship was observed between the proportion of 0s and 1s and
the comparative performance of the metrics under evaluation.
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RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 53.647 59.7349 62.4481 63.5632 63.5652 63.5636
-87 (≈ 1) 39 (< 10-300) 56 (< 10-600) 56 (< 10-600) 56 (< 10-600)

0.05 58.7382 67.7027 72.6621 74.2425 74.2453 74.2212
-131 (≈ 1) 77 (< 10-1200) 102 (< 10-2200) 102 (< 10-2200) 102 (< 10-2200)

0.075 63.7874 73.5278 79.6864 81.2553 81.2516 81.2229
-148 (≈ 1) 103 (< 10-2300) 131 (< 10-3700) 131 (< 10-3700) 130 (< 10-3600)

0.1 68.2355 77.4588 84.2856 85.7392 85.7415 85.6254
-147 (≈ 1) 123 (< 10-3200) 151 (< 10-4900) 151 (< 10-4900) 149 (< 10-4800)

M0.15

0.025 53.2369 59.8295 62.6771 63.7439 63.7375 63.7411
-94 (≈ 1) 41 (< 10-300) 57 (< 10-700) 57 (< 10-700) 57 (< 10-700)

0.05 58.1256 68.4894 73.7544 75.2632 75.2625 75.2382
-152 (≈ 1) 82 (< 10-1400) 107 (< 10-2400) 107 (< 10-2400) 106 (< 10-2400)

0.075 63.3601 75.1842 81.9048 83.36 83.362 83.3246
-181 (≈ 1) 116 (< 10-2900) 143 (< 10-4400) 143 (< 10-4400) 142 (< 10-4300)

0.1 68.5267 80.3508 87.4481 88.7365 88.7333 88.6571
-192 (≈ 1) 137 (< 10-4000) 164 (< 10-5800) 164 (< 10-5800) 162 (< 10-5700)

M0.2

0.025 52.9882 59.8008 62.7826 63.7454 63.7486 63.7276
-97 (≈ 1) 43 (< 10-400) 57 (< 10-700) 57 (< 10-700) 57 (< 10-700)

0.05 57.4912 68.7379 74.2505 75.4966 75.5023 75.4904
-165 (≈ 1) 86 (< 10-1600) 107 (< 10-2400) 107 (< 10-2400) 106 (< 10-2400)

0.075 62.6068 76.0804 83.0418 84.2544 84.2618 84.2013
-207 (≈ 1) 122 (< 10-3200) 145 (< 10-4500) 145 (< 10-4500) 144 (< 10-4500)

0.1 67.771 81.6718 88.9778 90.0404 90.0338 89.9684
-226 (≈ 1) 146 (< 10-4600) 170 (< 10-6200) 170 (< 10-6200) 168 (< 10-6100)

M0.25

0.025 52.7339 59.7888 62.9522 63.8049 63.8122 63.8003
-101 (≈ 1) 46 (< 10-400) 58 (< 10-700) 59 (< 10-700) 58 (< 10-700)

0.05 56.9696 68.9146 74.7297 75.8157 75.8136 75.8102
-175 (≈ 1) 91 (< 10-1800) 109 (< 10-2500) 109 (< 10-2500) 109 (< 10-2500)

0.075 61.7889 76.3541 83.6949 84.7058 84.6959 84.6831
-223 (≈ 1) 130 (< 10-3600) 149 (< 10-4800) 149 (< 10-4800) 149 (< 10-4800)

0.1 66.9088 82.4464 89.9539 90.7454 90.7478 90.6878
-253 (≈ 1) 154 (< 10-5100) 172 (< 10-6400) 172 (< 10-6400) 171 (< 10-6300)
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RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 52.4578 59.7808 62.9474 63.882 63.8796 63.8601
-104 (≈ 1) 46 (< 10-400) 60 (< 10-700) 60 (< 10-700) 59 (< 10-700)

0.05 56.433 68.9922 74.9369 75.9053 75.9001 75.8718
-184 (≈ 1) 94 (< 10-1900) 109 (< 10-2600) 109 (< 10-2500) 109 (< 10-2500)

0.075 61.0471 76.641 84.1398 84.9662 84.9669 84.9395
-238 (≈ 1) 134 (< 10-3800) 149 (< 10-4800) 149 (< 10-4800) 149 (< 10-4800)

0.1 66.1136 82.8527 90.5552 91.1575 91.1605 91.1097
-272 (≈ 1) 160 (< 10-5500) 175 (< 10-6600) 175 (< 10-6600) 174 (< 10-6500)

M0.35

0.025 52.3138 59.8153 62.9519 63.7653 63.7544 63.7489
-107 (≈ 1) 46 (< 10-400) 57 (< 10-700) 57 (< 10-700) 57 (< 10-700)

0.05 56.1442 68.9729 75.2133 76.0185 76.0117 75.9776
-187 (≈ 1) 98 (< 10-2100) 112 (< 10-2700) 111 (< 10-2700) 111 (< 10-2600)

0.075 60.6303 76.885 84.5985 85.2346 85.2329 85.1986
-248 (≈ 1) 138 (< 10-4100) 151 (< 10-4900) 151 (< 10-4900) 150 (< 10-4800)

0.1 65.5189 83.1919 91.0932 91.4854 91.4859 91.4294
-286 (≈ 1) 167 (< 10-6000) 176 (< 10-6700) 176 (< 10-6700) 175 (< 10-6600)

M0.4

0.025 52.1985 59.8509 63.0049 63.8321 63.8327 63.8155
-109 (≈ 1) 46 (< 10-400) 58 (< 10-700) 58 (< 10-700) 58 (< 10-700)

0.05 55.9193 69.0759 75.3562 76.1277 76.1312 76.1257
-192 (≈ 1) 99 (< 10-2100) 112 (< 10-2700) 112 (< 10-2700) 112 (< 10-2700)

0.075 60.4625 76.9621 84.8808 85.3634 85.3649 85.3589
-252 (≈ 1) 143 (< 10-4400) 152 (< 10-5000) 152 (< 10-5000) 152 (< 10-5000)

0.1 65.1462 83.3762 91.3428 91.6794 91.678 91.6396
-295 (≈ 1) 170 (< 10-6200) 178 (< 10-6800) 178 (< 10-6800) 177 (< 10-6700)

Table 5: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (0.5, 0.5).
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Uplift Model Evaluation with Ordinal Dominance Graphs

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 53.8211 64.0946 63.3763 65.978 66.07 64.0183
-148 (≈ 1) -11 (≈ 1) 28 (< 10-172) 29 (< 10-189) -1 (0.87)

0.05 59.09 75.1947 74.633 78.2571 78.4598 75.2533
-242 (≈ 1) -9 (≈ 1) 51 (< 10-573) 55 (< 10-653) 1 (0.169)

0.075 64.0875 82.8445 82.5058 86.1065 86.338 82.8352
-300 (≈ 1) -6 (≈ 1) 64 (< 10-884) 68 (< 10-1019) 0 (0.569)

0.1 68.4052 87.6221 87.5104 90.7495 90.965 87.654
-328 (≈ 1) -2 (0.992) 71 (< 10-1104) 76 (< 10-1272) 1 (0.247)

M0.15

0.025 53.1371 64.167 63.4768 65.7732 65.9405 64.1592
-158 (≈ 1) -10 (≈ 1) 24 (< 10-125) 26 (< 10-153) 0 (0.546)

0.05 58.0214 75.9331 75.3728 78.4999 78.8467 76.0185
-269 (≈ 1) -9 (≈ 1) 43 (< 10-409) 49 (< 10-529) 1 (0.0788)

0.075 63.0364 84.5113 84.1623 87.2332 87.5807 84.5844
-345 (≈ 1) -7 (≈ 1) 55 (< 10-666) 63 (< 10-855) 1 (0.0763)

0.1 67.9334 90.0471 89.9581 92.5017 92.7778 90.1667
-384 (≈ 1) -2 (0.982) 62 (< 10-824) 69 (< 10-1034) 3 (0.00231)

M0.2

0.025 52.6934 64.0987 63.5498 65.3009 65.6097 64.2038
-164 (≈ 1) -8 (≈ 1) 18 (< 10-71) 22 (< 10-111) 2 (0.0606)

0.05 56.8931 76.0443 75.699 77.9732 78.4748 76.2991
-287 (≈ 1) -6 (≈ 1) 32 (< 10-231) 41 (< 10-368) 4 (< 10-5)

0.075 61.8672 84.9745 85.0302 87.0533 87.5548 85.3273
-370 (≈ 1) 1 (0.135) 42 (< 10-393) 53 (< 10-613) 7 (< 10-12)

0.1 66.7861 90.7789 91.1332 92.7268 93.0924 91.2954
-415 (≈ 1) 9 (< 10-18) 50 (< 10-547) 60 (< 10-786) 13 (< 10-38)

M0.25

0.025 52.4278 63.9736 63.6484 64.8785 65.2428 64.3327
-166 (≈ 1) -5 (≈ 1) 13 (< 10-41) 19 (< 10-79) 5 (< 10-8)

0.05 56.2106 75.9096 75.9982 77.35 77.9664 76.6207
-294 (≈ 1) 1 (0.0713) 24 (< 10-128) 35 (< 10-261) 12 (< 10-32)

0.075 60.8725 84.9628 85.4816 86.5377 87.1228 85.6866
-383 (≈ 1) 10 (< 10-25) 32 (< 10-223) 44 (< 10-424) 14 (< 10-47)

0.1 65.8882 91.0741 91.8048 92.4699 92.9266 91.8537
-433 (≈ 1) 18 (< 10-76) 36 (< 10-283) 48 (< 10-509) 20 (< 10-87)
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Verbeken, Guerry, Verbeke, Verboven

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 52.1724 63.5554 63.3864 64.334 64.703 64.3908
-163 (≈ 1) -2 (0.993) 11 (< 10-31) 17 (< 10-64) 12 (< 10-35)

0.05 55.9349 75.6705 76.0407 76.7898 77.4185 76.7592
-294 (≈ 1) 6 (< 10-10) 19 (< 10-77) 29 (< 10-187) 18 (< 10-73)

0.075 60.4248 84.8501 85.6196 86.029 86.6544 86.0673
-387 (≈ 1) 15 (< 10-53) 24 (< 10-124) 37 (< 10-292) 24 (< 10-132)

0.1 65.314 91.0453 92.0911 92.2174 92.7176 92.2753
-441 (≈ 1) 27 (< 10-156) 30 (< 10-197) 43 (< 10-410) 31 (< 10-217)

M0.35

0.025 52.0425 63.5655 63.3146 64.0807 64.4421 64.4276
-165 (≈ 1) -4 (≈ 1) 8 (< 10-14) 13 (< 10-38) 13 (< 10-37)

0.05 55.8783 75.5282 75.9912 76.3649 76.9725 76.9045
-293 (≈ 1) 8 (< 10-14) 14 (< 10-44) 24 (< 10-127) 23 (< 10-116)

0.075 60.3367 84.721 85.6847 85.7007 86.3426 86.419
-386 (≈ 1) 19 (< 10-82) 20 (< 10-85) 33 (< 10-233) 34 (< 10-256)

0.1 65.1425 90.9883 92.1735 91.9258 92.5377 92.3998
-442 (≈ 1) 30 (< 10-200) 24 (< 10-124) 36 (< 10-286) 40 (< 10-347)

M0.4

0.025 52.2513 63.4259 63.2017 63.9212 64.2594 64.5427
-160 (≈ 1) -3 (≈ 1) 7 (< 10-13) 12 (< 10-35) 16 (< 10-61)

0.05 55.9044 75.2794 75.8179 76.18 76.7506 77.206
-288 (≈ 1) 9 (< 10-19) 15 (< 10-50) 24 (< 10-131) 32 (< 10-225)

0.075 60.3659 84.5171 85.6542 85.4506 86.0144 86.6178
-382 (≈ 1) 23 (< 10-113) 18 (< 10-76) 30 (< 10-196) 42 (< 10-390)

0.1 65.2528 90.8962 92.2667 91.8219 92.2737 92.8155
-438 (≈ 1) 35 (< 10-267) 23 (< 10-120) 35 (< 10-270) 50 (< 10-537)

Table 6: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (5, 15).
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Uplift Model Evaluation with Ordinal Dominance Graphs

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 54.6324 66.8434 65.0704 67.6892 67.9541 63.9289
-177 (≈ 1) -26 (≈ 1) 13 (< 10-37) 17 (< 10-63) -43 (≈ 1)

0.05 60.631 79.6073 77.515 80.8308 81.2462 75.0604
-293 (≈ 1) -36 (≈ 1) 22 (< 10-105) 29 (< 10-188) -77 (≈ 1)

0.075 66.2421 87.3117 85.51 88.5196 88.8993 82.6218
-353 (≈ 1) -37 (≈ 1) 26 (< 10-151) 35 (< 10-264) -93 (≈ 1)

0.1 71.1357 91.4965 90.2486 92.6587 92.9416 87.2917
-369 (≈ 1) -31 (≈ 1) 30 (< 10-203) 38 (< 10-318) -97 (≈ 1)

M0.15

0.025 53.8151 66.751 65.0398 66.6866 67.1261 64.0735
-187 (≈ 1) -26 (≈ 1) -1 (0.833) 6 (< 10-9) -40 (≈ 1)

0.05 59.1924 80.0336 77.9334 79.9378 80.5922 75.8877
-320 (≈ 1) -36 (≈ 1) -2 (0.955) 10 (< 10-23) -71 (≈ 1)

0.075 64.7978 88.4979 86.8231 88.4484 89.0565 84.3398
-396 (≈ 1) -36 (≈ 1) -1 (0.863) 13 (< 10-36) -86 (≈ 1)

0.1 70.1593 93.3566 92.2868 93.3859 93.7761 89.8222
-425 (≈ 1) -29 (≈ 1) 1 (0.202) 12 (< 10-34) -90 (≈ 1)

M0.2

0.025 53.1601 66.6077 64.9542 65.6685 66.2252 64.1396
-194 (≈ 1) -25 (≈ 1) -14(≈ 1) -6 (≈ 1) -37 (≈ 1)

0.05 57.9304 79.6874 78.0325 78.372 79.2708 76.2831
-332 (≈ 1) -29 (≈ 1) -23 (≈ 1) -7 (≈ 1) -58 (≈ 1)

0.075 63.3024 88.6911 87.3592 87.3416 88.1658 85.0747
-420 (≈ 1) -29 (≈ 1) -29 (≈ 1) -12 (≈ 1) -76 (≈ 1)

0.1 68.5969 93.8452 93.0379 92.8091 93.4091 90.8846
-457 (≈ 1) -23 (≈ 1) -29 (≈ 1) -13 (≈ 1) -79 (≈ 1)

M0.25

0.025 52.6167 66.0668 64.7367 64.5509 65.2254 64.1651
-194 (≈ 1) -20 (≈ 1) -23 (≈ 1) -13 (≈ 1) -28 (≈ 1)

0.05 56.9333 79.4307 78.1272 77.0549 78.1201 76.4954
-342 (≈ 1) -23 (≈ 1) -41 (≈ 1) -23 (≈ 1) -50 (≈ 1)

0.075 61.9752 88.4256 87.6503 86.0857 87.1106 85.5309
-433 (≈ 1) -17 (≈ 1) -50 (≈ 1) -28 (≈ 1) -61 (≈ 1)

0.1 67.2462 93.8548 93.4804 91.9583 92.7422 91.5724
-475 (≈ 1) -11 (≈ 1) -52 (≈ 1) -31 (≈ 1) -62 (≈ 1)
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Verbeken, Guerry, Verbeke, Verboven

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 52.385 65.8212 64.6872 63.8978 64.61 64.297
-193 (≈ 1) -17 (≈ 1) -28 (≈ 1) -18 (≈ 1) -23 (≈ 1)

0.05 56.4635 78.9432 78.073 75.9177 77.081 76.6645
-340 (≈ 1) -15 (≈ 1) -51 (≈ 1) -32 (≈ 1) -39 (≈ 1)

0.075 61.1824 88.1345 87.7255 85.0109 86.1485 85.9144
-438 (≈ 1) -9 (≈ 1) -65 (≈ 1) -42 (≈ 1) -47 (≈ 1)

0.1 66.3447 93.7883 93.7784 91.1884 92.0939 91.9995
-486 (≈ 1) 0 (0.614) -70 (≈ 1) -47 (≈ 1) -49 (≈ 1)

M0.35

0.025 52.2349 65.5657 64.5091 63.362 64.0945 64.3913
-192 (≈ 1) -16 (≈ 1) -33 (≈ 1) -22 (≈ 1) -17 (≈ 1)

0.05 56.1588 78.569 77.906 75.0373 76.25 76.8751
-338 (≈ 1) -11 (≈ 1) -59 (≈ 1) -39 (≈ 1) -29 (≈ 1)

0.075 60.8209 87.8082 87.673 84.1555 85.3681 86.2183
-437 (≈ 1) -3 (0.998) -74 (≈ 1) -51 (≈ 1) -33 (≈ 1)

0.1 66.0295 93.6097 93.8405 90.6152 92.3571 91.5666
-486 (≈ 1) 7 (< 10-12) -79 (≈ 1) -55 (≈ 1) -35 (≈ 1)

M0.4

0.025 52.3129 65.2131 64.0843 62.9659 63.5902 64.4291
-185 (≈ 1) -17 (≈ 1) -33 (≈ 1) -24 (≈ 1) -12 (≈ 1)

0.05 56.2501 78.263 77.6079 74.5366 75.6444 77.0975
-332 (≈ 1) -11 (≈ 1) -62 (≈ 1) -44 (≈ 1) -20 (≈ 1)

0.075 60.98 87.5823 87.5663 83.7024 84.8323 86.5298
-430 (≈ 1) 0 (0.634) -78 (≈ 1) -56 (≈ 1) -22 (≈ 1)

0.1 66.1484 93.4763 93.7997 90.2224 91.1473 92.753
-481 (≈ 1) 9 (< 10-21) -84 (≈ 1) -62 (≈ 1) -20 (≈ 1)

Table 7: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (5, 25).
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Uplift Model Evaluation with Ordinal Dominance Graphs

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 52.7597 59.9867 62.2493 64.0278 64.0271 64.0288
-103 (≈ 1) 33 (< 10-236) 59 (< 10-755) 59 (< 10-755) 59 (< 10-756)

0.05 57.0208 68.4202 72.6142 75.203 75.2004 75.2125
-167 (≈ 1) 65 (< 10-921) 107 (< 10-2471) 107 (< 10-2469) 107 (< 10-2478)

0.075 61.2192 74.7703 80.0344 82.8188 82.8203 82.815
-205 (≈ 1) 89 (< 10-1723) 139 (< 10-4212) 139 (< 10-4214) 139 (< 10-4208)

0.1 64.9877 79.2668 84.9207 87.5898 87.5907 87.5921
-225 (≈ 1) 104 (< 10-2364) 158 (< 10-5443) 158 (< 10-5444) 158 (< 10-5446)

M0.15

0.025 52.2991 60.0253 62.3006 64.0962 64.0963 64.0876
-110 (≈ 1) 33 (< 10-239) 59 (< 10-767) 59 (< 10-767) 59 (< 10-764)

0.05 56.1201 69.1739 73.5174 76.1635 76.1626 76.1788
-191 (≈ 1) 68 (< 10-1005) 111 (< 10-2674) 111 (< 10-2673) 111 (< 10-2686)

0.075 60.47 76.487 81.9182 84.7614 84.7605 84.7751
-244 (≈ 1) 95 (< 10-1947) 148 (< 10-4762) 148 (< 10-4760) 148 (< 10-4779)

0.1 64.9164 82.1097 87.9204 90.3814 90.3796 90.3805
-276 (≈ 1) 115 (< 10-2881) 170 (< 10-6265) 170 (< 10-6262) 170 (< 10-6264)

M0.2

0.025 51.9603 60.1291 62.1588 64.2771 64.275 64.2781
-116 (≈ 1) 29 (< 10-191) 60 (< 10-797) 60 (< 10-796) 61 (< 10-798)

0.05 55.5704 69.5013 73.5715 76.5493 76.5514 76.5618
-204 (≈ 1) 64 (< 10-886) 112 (< 10-2741) 112 (< 10-2743) 112 (< 10-2751)

0.075 59.787 77.3812 82.683 85.6851 85.6858 85.7064
-268 (≈ 1) 94 (< 10-1913) 151 (< 10-4975) 151 (< 10-4976) 152 (< 10-5003)

0.1 64.3048 83.5219 88.9761 91.7685 91.7729 91.7557
-309 (≈ 1) 112 (< 10-2726) 177 (< 10-6822) 177 (< 10-6830) 177 (< 10-6798)

M0.25

0.025 52.0727 60.2909 62.0081 64.355 64.3629 64.3547
-117 (≈ 1) 25 (< 10-137) 59 (< 10-766) 59 (< 10-769) 59 (< 10-766)

0.05 55.3901 69.7734 73.5322 76.9357 76.9393 76.9533
-210 (≈ 1) 59 (< 10-758) 115 (< 10-2853) 115 (< 10-2856) 115 (< 10-2867)

0.075 59.498 77.9661 82.6597 86.2772 86.2747 86.2649
-282 (≈ 1) 83 (< 10-1516) 153 (< 10-5111) 153 (< 10-5108) 153 (< 10-5095)

0.1 64.0417 84.3343 89.3345 92.4145 92.4087 92.4083
-328 (≈ 1) 105 (< 10-2377) 178 (< 10-6903) 178 (< 10-6891) 178 (< 10-6891)
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Verbeken, Guerry, Verbeke, Verboven

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 51.9196 60.2795 61.8119 64.5453 64.5519 64.5414
-119 (≈ 1) 22 (< 10-109) 62 (< 10-845) 62 (< 10-848) 62 (< 10-843)

0.05 55.2825 70.0868 73.4078 77.2987 77.2966 77.3108
-216 (≈ 1) 52 (< 10-593) 116 (< 10-2916) 116 (< 10-2914) 116 (< 10-2926)

0.075 59.363 78.2777 82.6384 86.6667 86.668 86.6718
-289 (≈ 1) 78 (< 10-1316) 156 (< 10-5289) 156 (< 10-5291) 156 (< 10-5296)

0.1 63.682 84.8769 89.4167 92.8908 92.8911 92.8892
-343 (≈ 1) 96 (< 10-2001) 180 (< 10-7060) 180 (< 10-7061) 180 (< 10-7057)

M0.35

0.025 51.9202 60.4391 61.7136 64.6388 64.6455 64.6298
-121 (≈ 1) 18 (< 10-76) 61 (< 10-820) 61 (< 10-823) 61 (< 10-817)

0.05 55.1776 70.2187 73.1388 77.4825 77.478 77.4731
-220 (≈ 1) 46 (< 10-459) 117 (< 10-2969) 117 (< 10-2966) 117 (< 10-2961)

0.075 59.2723 78.4174 82.4804 86.9557 86.9581 86.9449
-292 (≈ 1) 72 (< 10-1142) 160 (< 10-5532) 160 (< 10-5536) 159 (< 10-5517)

0.1 63.4811 85.1164 89.3843 93.0803 93.0785 93.0835
-350 (≈ 1) 90 (< 10-1781) 181 (< 10-7093) 181 (< 10-7089) 181 (< 10-7099)

M0.4

0.025 52.0469 60.4855 61.5774 64.7917 64.7895 64.7641
-120 (≈ 1) 16 (< 10-57) 63 (< 10-863) 63 (< 10-862) 63 (< 10-852)

0.05 55.2612 70.169 72.9707 77.5238 77.5273 77.5338
-218 (≈ 1) 44 (< 10-421) 118 (< 10-3044) 118 (< 10-3047) 119 (< 10-3053)

0.075 59.2241 78.6469 82.4156 87.1406 87.1452 87.1312
-297 (≈ 1) 67 (< 10-986) 159 (< 10-5527) 160 (< 10-5534) 159 (< 10-5514)

0.1 63.3733 85.2506 89.299 93.2793 93.2821 93.2637
-354 (≈ 1) 86 (< 10-1605) 183 (< 10-7307) 183 (< 10-7313) 183 (< 10-7274)

Table 8: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (15, 15).
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Uplift Model Evaluation with Ordinal Dominance Graphs

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 52.8053 59.9933 62.278 64.0769 64.0764 64.0627
-102 (≈ 1) 33 (< 10-241) 60 (< 10-771) 59 (< 10-771) 59 (< 10-766)

0.05 57.0069 68.4419 72.5538 75.1499 75.1492 75.1663
-167 (≈ 1) 64 (< 10-885) 105 (< 10-2416) 105 (< 10-2415) 106 (< 10-2428)

0.075 61.2186 74.6492 79.9627 82.6394 82.6415 82.6599
-203 (≈ 1) 90 (< 10-1750) 138 (< 10-4130) 138 (< 10-4133) 138 (< 10-4153)

0.1 65.0076 79.1688 84.8239 87.5221 87.523 87.5197
-223 (≈ 1) 104 (< 10-2355) 159 (< 10-5461) 159 (< 10-5462) 158 (< 10-5458)

M0.15

0.025 52.2129 60.1674 62.3332 64.1026 64.0952 64.0985
-113 (≈ 1) 31 (< 10-217) 57 (< 10-717) 57 (< 10-715) 57 (< 10-716)

0.05 56.0746 69.1463 73.4905 76.0732 76.0736 76.0712
-191 (≈ 1) 68 (< 10-1004) 110 (< 10-2622) 110 (< 10-2623) 110 (< 10-2621)

0.075 60.4664 76.5426 81.9918 84.766 84.7657 84.7558
-245 (≈ 1) 95 (< 10-1965) 147 (< 10-4709) 147 (< 10-4708) 147 (< 10-4696)

0.1 64.8071 82.1881 87.9383 90.4687 90.4723 90.4738
-278 (≈ 1) 114 (< 10-2828) 170 (< 10-6311) 171 (< 10-6317) 171 (< 10-6320)

M0.2

0.025 52.0649 60.2348 62.1698 64.3377 64.3387 64.3326
-116 (≈ 1) 28 (< 10-174) 60 (< 10-781) 60 (< 10-781) 60 (< 10-779)

0.05 55.5927 69.5836 73.5876 76.6288 76.6276 76.6341
-204 (≈ 1) 63 (< 10-858) 112 (< 10-2744) 112 (< 10-2743) 112 (< 10-2748)

0.075 59.7767 77.4328 82.631 85.7583 85.7594 85.7677
-269 (≈ 1) 92 (< 10-1839) 152 (< 10-5014) 152 (< 10-5016) 152 (< 10-5027)

0.1 64.4642 83.6085 89.0608 91.7622 91.7637 91.7608
-309 (≈ 1) 112 (< 10-2739) 175 (< 10-6688) 175 (< 10-6691) 175 (< 10-6685)

M0.25

0.025 51.9684 60.3052 61.7969 64.4926 64.4925 64.4786
-119 (≈ 1) 22 (< 10-104) 61 (< 10-814) 61 (< 10-814) 61 (< 10-809)

0.05 55.4662 69.8989 73.3223 77.0364 77.0408 77.0435
-211 (≈ 1) 54 (< 10-629) 114 (< 10-2841) 114 (< 10-2844) 114 (< 10-2846)

0.075 59.5807 78.037 82.5769 86.3658 86.372 86.3709
-282 (≈ 1) 81 (< 10-1418) 154 (< 10-5151) 154 (< 10-5159) 154 (< 10-5158)

0.1 64.0489 84.4528 89.2709 92.4907 92.4934 92.4802
-330 (≈ 1) 101 (< 10-2211) 178 (< 10-6881) 178 (< 10-6886) 178 (< 10-6860)
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Verbeken, Guerry, Verbeke, Verboven

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 52.0966 60.4116 61.527 64.5955 64.5934 64.5878
-119 (≈ 1) 16 (< 10-59) 61 (< 10-814) 61 (< 10-813) 61 (< 10-811)

0.05 55.4257 70.0568 73.031 77.351 77.3476 77.3328
-214 (≈ 1) 47 (< 10-474) 117 (< 10-2984) 117 (< 10-2981) 117 (< 10-2968)

0.075 59.4718 78.329 82.384 86.81 86.8083 86.8028
-288 (≈ 1) 72 (< 10-1134) 158 (< 10-5429) 158 (< 10-5427) 158 (< 10-5419)

0.1 63.8719 84.9447 89.1916 92.9359 92.9364 92.9319
-341 (≈ 1) 89 (< 10-1742) 180 (< 10-7052) 180 (< 10-7053) 180 (< 10-7044)

M0.35

0.025 52.0055 60.4265 61.4676 64.7257 64.7163 64.7186
-120 (≈ 1) 15 (< 10-52) 63 (< 10-860) 63 (< 10-856) 63 (< 10-857)

0.05 55.4179 70.2287 72.7862 77.5797 77.5813 77.5856
-217 (≈ 1) 40 (< 10-351) 118 (< 10-3045) 118 (< 10-3046) 118 (< 10-3050)

0.075 59.4158 78.6093 82.2603 87.129 87.1336 87.1282
-293 (≈ 1) 65 (< 10-922) 160 (< 10-5554) 160 (< 10-5561) 160 (< 10-5553)

0.1 63.6248 85.2072 89.1124 93.208 93.2086 93.2043
-350 (≈ 1) 83 (< 10-1482) 182 (< 10-7222) 182 (< 10-7223) 182 (< 10-7214)

M0.4

0.025 51.9371 60.5425 61.2204 64.8059 64.8085 64.7869
-123 (≈ 1) 10 (< 10-23) 62 (< 10-846) 62 (< 10-847) 62 (< 10-839)

0.05 55.3621 70.3693 72.5732 77.7221 77.7233 77.7291
-220 (≈ 1) 35 (< 10-261) 119 (< 10-3057) 119 (< 10-3058) 119 (< 10-3063)

0.075 59.2526 78.7275 82.0071 87.2744 87.2699 87.2744
-298 (≈ 1) 58 (< 10-743) 161 (< 10-5624) 161 (< 10-5618) 161 (< 10-5624)

0.1 63.4981 85.4048 89.0213 93.4732 93.4679 93.4617
-355 (≈ 1) 77 (< 10-1276) 186 (< 10-7486) 185 (< 10-7475) 185 (< 10-7461)

Table 9: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (25, 25).
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RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 52.352 57.8046 66.0224 67.8647 68.1268 64.0882
-78 (≈ 1) 120 (< 10-3112) 147 (< 10-4708) 151 (< 10-4964) 91 (< 10-1804)

0.05 56.4419 64.4646 78.3938 80.8141 81.2257 75.1184
-116 (≈ 1) 218 (< 10-10326) 259 (< 10-14606) 266 (< 10-15423) 164 (< 10-5848)

0.075 60.5394 69.7164 86.0813 88.4986 88.8664 82.5899
-136 (≈ 1) 279 (< 10-16892) 327 (< 10-23178) 334 (< 10-24252) 214 (< 10-9912)

0.1 64.0456 73.5169 90.5439 92.7001 92.9862 87.2991
-145 (≈ 1) 314 (< 10-21358) 362 (< 10-28465) 369 (< 10-29520) 246 (< 10-13095)

M0.15

0.025 52.2609 57.8158 65.5071 66.7175 67.1768 64.0363
-79 (≈ 1) 112 (< 10-2720) 130 (< 10-3665) 137 (< 10-4062) 90 (< 10-1768)

0.05 55.8742 65.0747 78.3222 79.9201 80.6001 75.9374
-133 (≈ 1) 208 (< 10-9393) 235 (< 10-12004) 247 (< 10-13231) 168 (< 10-6164)

0.075 59.7179 71.0597 86.8283 88.4174 89.0078 84.3402
-169 (≈ 1) 273 (< 10-16244) 305 (< 10-20251) 317 (< 10-21891) 226 (< 10-11055)

0.1 63.4478 75.8302 91.9917 93.3567 93.7656 89.7839
-190 (≈ 1) 311 (< 10-21009) 343 (< 10-25594) 353 (< 10-27096) 261 (< 10-14852)

M0.2

0.025 52.0021 57.9104 64.9282 65.6087 66.1909 64.1701
-84 (≈ 1) 102 (< 10-2259) 112 (< 10-2727) 121 (< 10-3164) 91 (< 10-1792)

0.05 55.4382 65.2638 77.7476 78.4399 79.3747 76.28
-142 (≈ 1) 196 (< 10-8308) 207 (< 10-9323) 223 (< 10-10803) 171 (< 10-6373)

0.075 59.2291 71.7116 86.7369 87.3001 88.1175 85.071
-186 (≈ 1) 262 (< 10-14895) 273 (< 10-16195) 290 (< 10-18209) 230 (< 10-11443)

0.1 62.8975 76.9786 92.3073 92.8408 93.4111 90.9289
-217 (≈ 1) 301 (< 10-19630) 313 (< 10-21324) 327 (< 10-23247) 269 (< 10-15688)

M0.25

0.025 51.9829 58.0464 64.3531 64.5397 65.2783 64.2548
-86 (≈ 1) 92 (< 10-1821) 94 (< 10-1932) 105 (< 10-2405) 90 (< 10-1764)

0.05 55.2406 65.3903 77.0576 76.9195 78.0167 76.2994
-147 (≈ 1) 182 (< 10-7214) 180 (< 10-7035) 198 (< 10-8534) 170 (< 10-6259)

0.075 58.9249 72.1052 86.3204 86.0681 87.091 85.4726
-196 (≈ 1) 248 (< 10-13327) 243 (< 10-12801) 263 (< 10-15018) 231 (< 10-11612)

0.1 62.5599 77.6762 92.1582 91.9572 92.7273 91.4951
-234 (≈ 1) 286 (< 10-17782) 281 (< 10-17198) 300 (< 10-19511) 271 (< 10-15905)
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RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 51.8604 58.0852 63.987 63.8377 64.5611 64.3052
-88 (≈ 1) 86 (< 10-1593) 83 (< 10-1513) 94 (< 10-1923) 90 (< 10-1772)

0.05 55.1093 65.6515 76.6339 75.8976 77.0747 76.6226
-152 (≈ 1) 171 (< 10-6382) 159 (< 10-5514) 179 (< 10-6936) 171 (< 10-6368)

0.075 58.8637 72.5209 85.9562 85.0105 86.1332 85.9048
-203 (≈ 1) 234 (< 10-11916) 216 (< 10-10129) 238 (< 10-12271) 233 (< 10-11815)

0.1 62.4228 78.2885 92.0175 91.194 92.0913 91.9942
-246 (≈ 1) 273 (< 10-16190) 254 (< 10-13988) 275 (< 10-16398) 272 (< 10-16125)

M0.35

0.025 51.8998 58.1542 63.5615 63.2984 64.0218 64.3258
-89 (≈ 1) 78 (< 10-1335) 74 (< 10-1207) 85 (< 10-1575) 90 (< 10-1745)

0.05 55.0249 65.8863 76.075 75.0916 76.2376 76.8666
-157 (≈ 1) 159 (< 10-5475) 143 (< 10-4426) 161 (< 10-5660) 172 (< 10-6410)

0.075 58.6227 72.7957 85.4717 84.2119 85.3912 86.1387
-211 (≈ 1) 221 (< 10-10569) 197 (< 10-8388) 219 (< 10-10420) 234 (< 10-11850)

0.1 62.265 78.872 91.7462 90.5802 91.5316 92.3829
-258 (≈ 1) 257 (< 10-14362) 230 (< 10-11504) 252 (< 10-13804) 272 (< 10-16108)

M0.4

RN QS10 QS TOCS ROCiniS pROCiniS CROCS
0.025 51.8875 58.1743 63.1818 62.8936 63.5561 64.433

-89 (≈ 1) 72 (< 10-1144) 68 (< 10-1015) 78 (< 10-1323) 91 (< 10-1796)
0.05 54.9124 66.1669 75.7744 74.5806 75.6632 77.1095

-163 (≈ 1) 150 (< 10-4867) 130 (< 10-3689) 148 (< 10-4750) 172 (< 10-6402)
0.075 58.4559 73.2721 85.1367 83.7395 84.8881 86.5661

-221 (≈ 1) 207 (< 10-9282) 180 (< 10-7053) 202 (< 10-8859) 235 (< 10-11960)
0.1 62.0305 79.3659 91.607 90.2587 91.2052 92.763

-269 (≈ 1) 246 (< 10-13116) 215 (< 10-10004) 236 (< 10-12130) 274 (< 10-16251)

Table 10: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (25, 5).
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RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.1

0.025 52.4609 58.1806 64.2311 65.8896 65.982 63.9716
-81 (≈ 1) 88 (< 10-1677) 112 (< 10-2743) 114 (< 10-2810) 84 (< 10-1534)

0.05 56.5179 65.1682 75.8462 78.2073 78.398 75.1307
-125 (≈ 1) 166 (< 10-5956) 205 (< 10-9098) 208 (< 10-9385) 154 (< 10-5149)

0.075 60.7686 70.7859 83.6439 86.1489 86.3664 82.8754
-149 (≈ 1) 217 (< 10-10206) 264 (< 10-15170) 269 (< 10-15660) 203 (< 10-8918)

0.1 64.6259 74.8757 88.4036 90.7852 90.9941 87.7132
-158 (≈ 1) 247 (< 10-13259) 298 (< 10-19327) 303 (< 10-19934) 233 (< 10-11770)

M0.15

0.025 52.0916 58.2761 63.9599 65.736 65.9083 64.1711
-88 (≈ 1) 82 (< 10-1479) 109 (< 10-2568) 111 (< 10-2690) 86 (< 10-1592)

0.05 55.7957 65.8354 76.156 78.5761 78.9358 76.115
-145 (≈ 1) 161 (< 10-5619) 201 (< 10-8785) 207 (< 10-9325) 160 (< 10-5572)

0.075 59.9207 72.2282 84.7596 87.2721 87.6311 84.6811
-184 (≈ 1) 216 (< 10-10103) 265 (< 10-15219) 272 (< 10-16060) 214 (< 10-9964)

0.1 64.0409 77.2636 90.3118 92.5497 92.8556 90.2325
-205 (≈ 1) 250 (< 10-13611) 302 (< 10-19800) 309 (< 10-20774) 249 (< 10-13420)

M0.2

0.025 51.9848 58.3114 63.628 65.277 65.5899 64.2095
-90 (≈ 1) 77 (< 10-1292) 101 (< 10-2234) 106 (< 10-2443) 86 (< 10-1594)

0.05 55.368 66.0766 75.7971 78.0599 78.5679 76.3442
-155 (≈ 1) 151 (< 10-4979) 189 (< 10-7748) 197 (< 10-8466) 160 (< 10-5586)

0.075 59.2498 72.7553 84.7956 87.105 87.5609 85.3245
-202 (≈ 1) 208 (< 10-9417) 253 (< 10-13940) 263 (< 10-14967) 218 (< 10-10357)

0.1 63.2109 78.4515 90.7138 92.6395 93.0176 91.2377
-237 (≈ 1) 240 (< 10-12522) 285 (< 10-17679) 295 (< 10-18839) 252 (< 10-13808)

M0.25

0.025 51.8221 58.3664 63.2386 64.7258 65.1075 64.2398
-93 (≈ 1) 71 (< 10-1084) 92 (< 10-1858) 98 (< 10-2092) 85 (< 10-1582)

0.05 55.1238 66.2358 75.3774 77.3627 77.9616 76.5404
-161 (≈ 1) 142 (< 10-4393) 175 (< 10-6642) 185 (< 10-7424) 161 (< 10-5647)

0.075 58.8481 73.2135 84.4727 86.4672 87.0406 85.6721
-214 (≈ 1) 195 (< 10-8255) 234 (< 10-11853) 245 (< 10-13039) 218 (< 10-10322)

0.1 62.7808 79.1133 90.7379 92.4942 92.9473 91.8471
-254 (≈ 1) 230 (< 10-11464) 271 (< 10-15963) 282 (< 10-17293) 256 (< 10-14188)
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RN QS10 QS TOCS ROCiniS pROCiniS CROCS
M0.3

0.025 51.9051 58.4368 62.9972 64.384 64.833 64.3651
-93 (≈ 1) 66 (< 10-949) 86 (< 10-1623) 93 (< 10-1881) 86 (< 10-1613)

0.05 55.0463 66.5254 74.9611 76.7688 77.4243 76.7603
-166 (≈ 1) 131 (< 10-3736) 161 (< 10-5611) 172 (< 10-6397) 161 (< 10-5601)

0.075 58.7609 73.5828 84.275 86.101 86.7432 86.1015
-222 (≈ 1) 185 (< 10-7467) 221 (< 10-10575) 233 (< 10-11829) 221 (< 10-10575)

0.1 62.4759 79.7387 90.5917 92.1843 92.6747 92.2397
-269 (≈ 1) 216 (< 10-10126) 253 (< 10-13939) 265 (< 10-15283) 255 (< 10-14087)

M0.35

0.025 51.8132 58.4793 62.7513 64.0942 64.5006 64.4329
-95 (≈ 1) 62 (< 10-833) 82 (< 10-1446) 87 (< 10-1665) 86 (< 10-1627)

0.05 54.7688 66.6555 74.6245 76.3421 76.985 76.9518
-172 (≈ 1) 124 (< 10-3327) 152 (< 10-5002) 162 (< 10-5727) 162 (< 10-5688)

0.075 58.4279 73.9825 83.9505 85.697 86.3373 86.3559
-233 (≈ 1) 173 (< 10-6498) 206 (< 10-9260) 219 (< 10-10424) 219 (< 10-10459)

0.1 62.0888 80.1681 90.4645 91.9405 92.4244 92.5442
-282 (≈ 1) 206 (< 10-9191) 240 (< 10-12542) 252 (< 10-13795) 255 (< 10-14118)

M0.4

0.025 51.7845 58.5859 62.4781 63.8332 64.2046 64.4203
-97 (≈ 1) 56 (< 10-691) 76 (< 10-1262) 82 (< 10-1449) 85 (< 10-1564)

0.05 54.9121 66.8873 74.3998 76.0579 76.6236 77.0851
-174 (≈ 1) 117 (< 10-2958) 144 (< 10-4481) 153 (< 10-5081) 161 (< 10-5602)

0.075 58.333 74.3194 83.6796 85.4053 85.9965 86.5946
-239 (≈ 1) 162 (< 10-5737) 195 (< 10-8300) 207 (< 10-9311) 219 (< 10-10408)

0.1 61.9926 80.6044 90.2713 91.7942 92.2422 92.8356
-291 (≈ 1) 194 (< 10-8158) 229 (< 10-11431) 240 (< 10-12536) 255 (< 10-14107)

Table 11: Performance table of S = {QS10, TOCS, ROCiniS, pROCiniS, CROCS} for r =
1000000, N = 1000, (α, β) = (15, 5).
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