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Abstract

Modern deep learning systems require huge data sets to achieve impressive performance,
but there is little guidance on how much or what kind of data to collect. Over-collecting
data incurs unnecessary present costs, while under-collecting may incur future costs and
delay workflows. We propose a new paradigm to model the data collection workflow as
a formal optimal data collection problem that allows designers to specify performance
targets, collection costs, a time horizon, and penalties for failing to meet the targets. This
formulation generalizes to tasks with multiple data sources, such as labeled and unlabeled
data used in semi-supervised learning, and can be easily modified to customized analyses
such as how to introduce data from new classes to an existing model. To solve our problem,
we develop Learn-Optimize-Collect (LOC), which minimizes expected future collection costs.
Finally, we numerically compare our framework to the conventional baseline of estimating
data requirements by extrapolating from neural scaling laws. We significantly reduce the
risks of failing to meet desired performance targets on several classification, segmentation,
and detection tasks, while maintaining low total collection costs.

Keywords: data collection, neural scaling laws, active learning

1. Introduction

Before deploying a machine learning model in production, stakeholders may mandate that
the model meets a pre-determined baseline performance, such as a target score over a
validation data set. One of the most reliable ways to achieve a desired performance is by
augmenting current training sets with more data. Consequently, engineers must regularly
determine how much and what kind of data they need.

Managing data collection campaigns can impact costs and delays in model development.
Overestimating how much data the model needs to reach a target performance will incur
excess costs from collection, cleaning, and annotation. For example, annotating segmentation
masks on driving data requires 15 to 40 seconds and between $0.02 to $0.08 per object (Acuna
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et al., 2018; AWS, 2023). Processing 100,000 images with an average of 10 cars per image
can take between 170 to 460 days-equivalent of time and cost between $20,000 to $80,000.
Meanwhile, underestimating how much data is needed will incur delays from having to collect
more data later. For instance, a 2019 survey of machine learning practitioners revealed
51% of engineering teams faced delays due to failing to collect enough data (Dimensional
Research, 2019). This problem grows more challenging when given multiple vendors who
can provide different levels of quality at different prices. Consider the following examples:

• Medical Imaging: A medical imaging company is planning to deploy automatic
segmentation software on their devices within the next three years. They need to achieve an
80% Intersection-over-Union (IoU) to meet clinical standards. The company will partner with
hospitals and hire clinicians to collect and annotate patient data, which can be expensive. If
the company overestimates how much data to collect, they will spend more than necessary,
but if they underestimate, they may have to restart the collection process next year.

• Autonomous Vehicles: A startup working on autonomous vehicles needs to build an
object detector in the next five years. This model must achieve a minimum mean Average
Precision of 95% on their validation set, or else it will not be deployable and the company
will lose $1,000,000 in revenue. Collecting high-quality training data requires employing
drivers to record video and annotators to label the data, where the marginal cost of each
image is approximately $5. Alternatively, the startup could use lower quality synthetic data
at $1 per image. To manage their resources, the startup must plan how much real versus
synthetic data they need at the start of each year.

The extant literature on learning curves and neural scaling laws suggests that the
relationship between the performance of a deep learning model and training data set size
follows a power law (Frey and Fisher, 1999; Gu et al., 2001; Hestness et al., 2017; Rosenfeld
et al., 2020; Kaplan et al., 2020; Hoiem et al., 2021; Bahri et al., 2024; Bisla et al., 2021). This
motivates an intuitive approach of fitting a power law learning curve with the performance
statistics of the current data set, extrapolating this learning curve to estimate how the
model will perform with more data, and then forecasting how much data is needed to reach
the desired performance (Rosenfeld et al., 2020). However, the decay rate of power laws
implies that even small errors in estimating a learning curve can lead to massively over- or
underestimating how much data is actually needed (Mahmood et al., 2022b). Moreover,
estimating these learning curves becomes difficult with multiple data vendors, since different
types of data have different costs and scale differently with performance (Mikami et al.,
2022; Acuna et al., 2021; Prakash et al., 2021; Acuna et al., 2022; Prabhu et al., 2023). For
example, in a semi-supervised learning task, unlabeled data may be easier to collect than
labeled data, but we may require an order of magnitude more unlabeled data to match the
performance of a small labeled set (Viering and Loog, 2022). Thus, collecting more data
based only on scaling law estimates will fail to capture uncertainty and collection costs.

In this paper, we propose a new paradigm to model the data collection workflow as an
optimal data collection problem, where a firm must minimize the cost of collecting enough
data to obtain a model capable of achieving a desired performance score. They have multiple
collection rounds, and after each round, they re-evaluate their model and decide how much
more data to order. There are per-sample collection costs, and the firm pays a penalty if
they fail to meet the target score within a finite horizon. Using this framework, we develop
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an optimization approach to minimize expected future costs and show that this problem can
be optimized in each collection round via gradient descent.

Our optimization problem generalizes to decisions over multiple data sources (e.g.,
unlabeled, long-tail, cross-domain, synthetic) that have different costs and impacts on
performance. Most importantly, our framework presents natural tools for custom economic
analyses such as comparing different collection strategies or introducing new classes to
expand an existing model. Finally, we demonstrate the value of optimization over näıvely
estimating data set requirements for several machine learning tasks and data sets. Our
contributions are as follows:

1. We propose the optimal data collection problem in machine learning, which extends the
estimation of learning curves to a formal dynamic optimization problem to determine
how much and what kind of data to collect over the model development life cycle.

2. We introduce Learn-Optimize-Collect (LOC), a learning-and-optimizing framework
that minimizes expected collection costs and can be solved via gradient descent. This is
the first exploration of optimizing data collection with multiple arbitrary data sources
in machine learning, covering, for example, semi-supervised and long-tail learning.

3. We analyze the one-round problem of deciding how much data to collect. We show
that this problem is equivalent to estimating a (1− ε)-quantile of the distribution of
the minimum data needed to meet the target. Under Gaussian assumptions, LOC
guarantees lower regret than estimation-only baselines.

4. We evaluate LOC over classification, segmentation, and detection tasks to show, on
average, approximately a 2× reduction in the chances of failing to meet performance
targets, versus estimation baselines. We also show the flexibility of our framework to
solve customized managerial questions faced by engineering firms.

The overall goal of this work is to provide a high-level framework with which machine
learning model developers can obtain policy insights on how much data to collect. In practice,
these decisions are strategic in nature and are determined over long-term horizons (see our
motivating examples above). Moreover, the final policy decisions are often informed via a
combination of our data-driven approach and human expert judgment. Consequently, we
validate our methodology via a breadth of experiments on different data sets, tasks, and
different managerial scenarios.

A preliminary version of this article was published in Mahmood et al. (2022c). Our
complete paper introduces theoretical analysis of the optimal data collection problem. First,
we characterize the optimal solution space of the data collection problem (Theorem 1) and
show that LOC yields the optimal solution to the problem (Lemma 2). Further, we extend
the theoretical analysis of one-round data collection by deriving an analytic formula for
the optimal solution as well as a regret bound under Gaussian assumptions (Proposition
5, Corollary 6, Lemma 7, Proposition 8). Finally, we present several new experiments,
including comparisons with different learning curve estimators (Section C.2), analysis under
active learning strategies (Appendix C.3), and two new empirical case studies (Appendix
6.4) to show how our high-level modeling approach can answer customized data collection
challenges. In these experiments, we adapt LOC to estimate the potential costs and yield
decisions when choosing between different data collection strategies.
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2. Related work

This paper employs neural scaling laws to solve operational design problems. The problem
of data-efficient learning is closely tied to active learning and statistical sample complexity.
Below, we summarize the most relevant literature.

2.1 Learning Curves and Neural Scaling Laws.

According to the learning curve literature, the performance of a machine learning model on a
validation set scales with the size of the training data set with diminishing marginal value in
a way that can usually be modeled via concave functions (Cortes et al., 1993; Frey and Fisher,
1999; Provost et al., 1999; Meek et al., 2002; Tomanek and Hahn, 2008; Figueroa et al., 2012;
Kolachina et al., 2012). Consequently, performance at large data scales can be extrapolated
by estimating the learning curve at smaller scales, both from a point perspective and by
capturing uncertainty (Domhan et al., 2015). Although the literature primarily considers
a single-round estimate of data collection requirements, John and Langley (1996) propose
dynamic sampling over multiple data collection rounds, similar to our view. Furthermore
while the literature primarily explores estimating dataset sizes, Last (2007) propose an
optimization approach for data collection. Their framework minimizes the data collection
cost plus a penalty associated with the amount of generalization error of the downstream
model. In contrast to these two works, we propose a multi-round data collection optimization
problem that minimizes the collection cost plus a penalty associated with failure to achieve
a performance requirement. We refer to Viering and Loog (2022) for a detailed review on
learning curves.

The neural scaling law literature focuses on deep learning to empirically demonstrate a
power law relationship between model performance and data set size (Hoiem et al., 2021;
Bisla et al., 2021; Zhai et al., 2022; Caballero et al., 2023). For instance, Hestness et al. (2017)
observe this property over vision, language, and audio tasks, Bahri et al. (2024) develop
a theoretical relationship under assumptions on over-parametrization and the Lipschitz
continuity of the loss, model, and data, and Rosenfeld et al. (2020) estimate power laws
using smaller data sets and models to extrapolate future performance. Multi-variate scaling
laws have also been considered for some specific tasks, for example in transfer learning
from synthetic to real data sets (Mikami et al., 2022). Finally, Mahmood et al. (2022b)
explore data collection by estimating the minimum amount of data needed to meet a given
target performance over multiple rounds. Our paper extends these studies by introducing a
sequential optimization problem where the amount of data to collect is optimized, rather
than estimated, over multiple collection rounds and from multiple data sources that may
feature different costs.

2.2 Active Learning

In active learning, a model sequentially collects data by selecting new subsets of an unlabeled
data pool to label under a predetermined labeling budget that replenishes after each
round (Settles, 2009; Sener and Savarese, 2018; Yoo and Kweon, 2019; Sinha et al., 2019;
Mahmood et al., 2022a). In contrast, we focus on systematically determining an optimal
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collection budget. Thus, our work complements active learning which can be used to collect
data up to the budget determined by our optimization policy.

2.3 Statistical Learning Theory

The rich theoretical analysis on the sample complexity of machine learning explores worst-
case bounds relating data set size and model performance, but these bounds are typically
only tight asymptotically; we refer the reader to Section 7.1 of Viering and Loog (2022)
for details on this challenge. Recent work have empirically analyzed these relationships
(Jiang et al., 2020, 2021) For instance, Bisla et al. (2021) study generalization bounds for
deep neural networks, provide empirical validation, and suggest using them to estimate data
requirements. Ultimately, making data collection decisions based on worst-case bounds may
be pessimistic and have consequences on collection costs.

2.4 Optimal Experiment Design

The topic of how to collect data, select samples, and design statistical experiments is
well-studied in econometrics (Smith, 1918; Cohn, 1993; Emery and Nenarokomov, 1998).
For instance, pseudo-random strategies such as Latin Hypercube Sampling may be more
efficient than i.i.d. sampling in data collection for statistical tests (Viana, 2016). Similarly,
Bertsimas et al. (2015) optimize the assignment of samples into control and trial groups to
minimize inter-group variances. Most recently, Carneiro et al. (2020) optimize how many
samples and covariates to collect in a statistical experiment by minimizing a treatment effect
estimation error or maximizing t-test power. However, our focus on industrial machine
learning applications differs from experiment design by having target performance metrics
and continual rounds of collection and modeling.

2.5 Sequential Decision-Making

Our problem is a sequential decision-making problem with an unobservable state, i.e., we
determine how much to collect in each round without knowing how much we will need.
Although such problems can be formed as Partially Observable Markov Decision Processes
(POMDPs) (Smallwood and Sondik, 1973; Puterman, 2014), the dimension of the state
and action space combined with sampling limitations make such approaches untenable. We
provide a detailed reformulation and discussion in Appendix A.

3. Main Problem

We first introduce a formal model of data collection in machine learning as a dynamic
decision-making game played over multiple collection rounds. We then discuss challenges
with current intuitive, but näıve approaches for determining how much data to collect.

3.1 Optimal Data Collection

Consider K ∈ N different data sources, where for each k ∈ {1, . . . ,K}, let zk be a data
point and let Dk be a data set of points generated from a fixed algorithm, such as i.i.d.
sampling or an active learning strategy (Settles, 2009). We train a learning model with data
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sets D1, . . . ,DK and evaluate a score function V (D1, . . . ,DK). For example, if the learning
problem is binary image classification, let K = 1 where z1 := (x, y) corresponds to images
x ∈ X and labels y ∈ {0, 1}, and V (D1) is the validation set accuracy of a model trained on
D1. Alternatively in semi-supervised learning, let K = 2 where z1 := (x1, y1) and z2 := x2,
while V (D1,D2) is the validation accuracy of a model trained with both data sets. We omit
superscripts and subscripts unless necessary.

In general, we have training sets D1
q0,1 , . . . ,D

K
q0,K

of q0,1, . . . , q0,K points, respectively, a

target score V ∗ > V (D1
q0,1 , . . . ,D

K
q0,K

), and a horizon of T rounds. Let q0 := (q0,1, . . . , q0,K)T

be a vector of data set sizes and let Vq0 := V (D1
q0,1 , . . . ,D

K
q0,K

). For each t ∈ {1, . . . , T}, we

(i) Determine how much data to have at the end of the round qt := (qt,1, . . . , qt,K)T.

(ii) Generate data until each Dk has qt,k points.

(iii) Re-train our learning model. If Vqt ≥ V ∗ or if t = T , we terminate.

In each round, we pay a cost ck > 0 for each additional point generated for the k-th data set.
Further, if we do not reach V ∗ after T rounds, we pay a penalty P . Let c := (c1, . . . , cK)T

be the cost vector. Then, the optimal data collection problem is

min
q1≤···≤qT

cT (q1 − q0) + 1 {Vq1 < V ∗}

(
cT (q2 − q1)

+ 1 {Vq2 < V ∗}
(

cT (q3 − q2)

...

+ 1
{
VqT−1 < V ∗

}(
cT (qT − qT−1)

+ P1 {VqT < V ∗}
)
· · ·
))

(1)

= min
q1≤···≤qT

T∑
t=1

cT (qt − qt−1)
t−1∏
s=1

1 {Vqs < V ∗}+ P
T∏
t=1

1 {Vqt < V ∗} (2)

Problem (1) is defined recursively where the objective includes the cost of collecting additional
data in each round t and then conditioned on not collecting enough data in that round, the
problem continues to the next round. Problem (2) refactors the objective by extracting the
action in each round t to be depedendent on

∏t−1
s=1 1 {Vqs < V ∗}.

If we use randomized algorithms to train a learning model and to sample data, the score
function must be a random variable. Moreover, a general observation is that the score
function typically increases monotonically with data set size (Frey and Fisher, 1999; Sun
et al., 2017; Rosenfeld et al., 2020). We combine these two into the following assumption.

Assumption 1 The score function is a realization of a stochastic process Vq := V (D1, . . . ,DK)
as a function of the data set size. Furthermore, Vq increases monotonically with q.
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The score function may not always increase monotonically (Mohr et al., 2022), due to factors
such as model mis-specification (Viering and Loog, 2022), active learning (Tomanek and
Hahn, 2008), or mixing labeled and unlabeled data in semi-supervised learning (Cozman
et al., 2002)). However, monotonic non-decreasing trends such as power laws has been
consistently observed in large-scale deep learning systems (Hestness et al., 2017; Rosenfeld
et al., 2020; Hernandez et al., 2021; Hoffmann et al., 2022). Furthermore, this assumption
ensures Vq1 ≤ · · · ≤ VqT , meaning

∏t−1
s=1 1 {Vqs < V ∗} = 1

{
Vqt−1 < V ∗

}
, which allows us

to simplify problem (2) to

RHS (2) = min
q1≤···≤qT

T∑
t=1

cT (qt − qt−1)1
{
Vqt−1 < V ∗

}
+ P1 {VqT < V ∗} . (3)

As Vq is monotonically increasing, an intuitive strategy may be to collect the minimum
amount of data such that Vq = V ∗. We refer to this amount as the minimum data requirement

D∗ := arg min
q

{
cTq | Vq ≥ V ∗

}
. (4)

The minimum data requirement is also the stopping time of the stochastic process, i.e., a
random variable that gives the lowest-cost index that passes V ∗. We assume that problem (4)
always has a solution, i.e., we can achieve V ∗ performance with a finite amount of data.
Furthermore, we randomly pick a unique solution to break ties in (4). Below, we show that
unless our penalty for failing to reach the target is too small, the optimal solution is to
collect this minimum data requirement.

Theorem 1 Suppose Assumption 1 holds and that q0 < D∗. If P < cT(D∗ − q0), then an
optimal solution to problem (3) is q∗1 = · · · = q∗T = q0. Otherwise, an optimal solution is
q∗1 = · · · = q∗T = D∗.

Proof We prove for P < cT(D∗ − q0) by breaking into two cases. First, consider any
solution q1, . . . ,qT where qT > q0 but Vq̂T < V ∗. Inputting this solution to problem (3)
incurs an objective function value of cT(q̂T − q0) + P ≥ P , where the right-hand-side is the
objective function value incurred by q∗1 = · · · = q∗T = q0.

Next, consider the case where VqT ≥ V ∗. Let t̂ indicate the smallest qt for which
Vqt ≥ V ∗. The objective function value is at least cT(qt̂ − q0) ≥ cT(D∗ − q0) > P . Here,
the first inequality follows from the definition of D∗ in (4), and the second follows from our
assumption. Therefore, q∗T = q0, which implies our unique optimal solution.

We now prove for P ≥ cT(D∗ − q0). First, consider any solution q1, . . . ,qT for which
VqT < V ∗. This means that the objective function value is greater than P ≥ cT(D∗ − q0),
where the right-hand-side is the objective function value incurred by q∗1 = · · · = q∗T .

Second, consider any solution where VqT ≥ V ∗. Let t̂ indicate the smallest qt for which
Vqt ≥ V ∗. The objective function value is cT(qt̂ − q0) ≥ cT(D∗ − q0), where the inequality
follows from the optimality of D∗.

Theorem 1 shows that the penalty for failing to meet a target performance must be sufficiently
high for the optimal data collection problem to be non-trivial. In practice, c and T are
determined by the real costs and constraints of the machine learning project, but P simply
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Scaling Law Estimator v(q;θ)

Power Law θ1q
θ2 + θ3

Arctan
200

π
arctan

(
θ1
π

2
q + θ2

)
+ θ3

Logarithmic θ1 log(q + θ2) + θ3

Algebraic Root
100q

(1 + |θ1q|θ2)1/θ2
+ θ3

Table 1: Four common scaling law functions with learnable parameters θ = {θ1, θ2, θ3} when
K = 1. See Viering and Loog (2022) for an extensive list. For K > 1, we can add the scaling
law for each data source according to (5).

Algorithm 1 Näıve Estimation of the Data Requirement

1: Input: Initial data set D1, . . . ,DK of q points, Regression model v̂(q;θ), Regression set size R.
2: Collect Performance Statistics(q)
3: Initialize R = ∅, D̂1 = · · · = D̂K = ∅
4: for r ∈ {1, . . . , R} do
5: Sub-sample bqk/Rc additional points from each Dk without replacement to augment D̂k.

6: Evaluate V (D̂) and update R ← R∪
{(
bqr/Rc, V (D̂)

)}
.

7: end for
8: end
9: Estimate D∗

10: Fit regression model θ∗ = arg minθ

∑|R|
r=1 (Vqr

− v(qr;θ))
2
.

11: Estimate the data requirement by solving D̂ = arg minq

{
cTq

∣∣∣ v(q;θ∗) ≥ V ∗
}

.

12: end
13: Output: Estimated D̂.

reflects how much a firm stands to lose from not meeting performance targets. As such,
practitioners have freedom to tune this parameter when modeling data collection, where
setting a high P suggests that a strong need to meet the target within the time horizon. We
expand on this observation in our theoretical analysis in Section 5.

We assume in the rest of this paper that P > cT(D∗−q0), which implies that the optimal
amount of data to have is D∗. However, D∗ is unknown to us at the time of decision-making.

3.2 An Intuitive but Näıve Approach to Estimating the Data Requirement

The recent neural scaling law literature suggests that if we can model the score function Vq,
then we can estimate D∗ directly and use this to determine how much data to collect. For
instance, Rosenfeld et al. (2020); Hoiem et al. (2021); Caballero et al. (2023) fit parameters
θ to an estimator v(q;θ) ≈ Vq of the score. They subsample from the current data sets
D1
qt,1 , . . . ,D

K
qt,K

to simulate small data set sizes, retrain the model, and evaluate the score.
Repeating this process with R different training subsets yields a data set of training statistics
R := {qr, Vqr}Rr=1, which can be used to solve a Least Squares minimization problem. Once
fitted, v(q;θ∗) can replace Vq in problem (4) to estimate the stopping time. Algorithm 1
summarizes the general steps.
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Figure 1: Extrapolating scaling laws to estimate D∗ on ImageNet (Deng et al., 2009). The
solid blue line is the ground truth test accuracy as a function of data set size. Left: Fitting
four different scaling law functions from Table 1 when initializing with 10% (q0 = 125, 000,
dotted) and 50% (q0 = 600, 000, dashed) of the data set. All functions struggle to accurately
extrapolate accuracy when q0 is small, but are accurate when q0 is large. Right: To
hit a target V ∗ = 67% accuracy, we need 900, 000 images. If the scaling laws over- or
underestimate by only a small amount (≤ 6% error at q = 900, 000), they massively under-
(e.g., D̂ = 580, 000) or overestimate (e.g., D̂ = 3, 000, 000) how much data is needed.

The scaling law literature almost exclusively focuses on K = 1, wherein they propose
different parametric functions for v(q;θ)(Rosenfeld et al., 2020; Viering and Loog, 2022;
Hoiem et al., 2021; Caballero et al., 2023); we give examples in Table 1. The most common
choice is a power law v(q;θ) = θ1q

θ2 + θ3. We remark that some recent research has explored
K > 1; for instance, Mikami et al. (2022) explore a K = 2 power law for transfer learning
from synthetic to real data. To explore arbitrary K, we propose an easy-to-implement
estimator that adds the contributions of each data source

v(q;θ) := θ0 +
K∑
k=1

vk(qk;θk), (5)

where vk(qk;θk) can be any K = 1 estimator of the learning curve. Moreover, this additive
model can be easily fit with a Least Squares algorithm and offers interpetable explanations
of the contributions of different data types by assumping each data set has an independent
contribution (Ghorbani and Zou, 2019).

Remark 1 The above estimator extends the existing literature to arbitrary K ∈ N and can
also be compounded on future K = 1 estimation algorithms. Further, different estimation
functions v(q;θ) demonstrate specific biases towards either over- or underestimating per-
formance (Mahmood et al., 2022b). Designing a specific estimator is not the focus of this
paper, as we will next show that all estimators have the same weaknesses with respect to
data collection, i.e., disproportionate over- or undercollection due to the concavity of the
learning curve. For the remainder of the main paper, we focus on the specific case of v(q;θ)
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being a linear combination of power laws, since power laws are the most common choice for
learning curves. In Appendix C, we include ablations with different estimators (see Table 7).

Due to the fact that estimation will have some degree of inaccuracy, this intuitive strategy
näıvely suffers from two major consequences when used in data collection. These properties
were initially observed by Mahmood et al. (2022b), but we expand on their analysis below.
We highlight them using the ImageNet data set in Figure 1:

1. Extrapolation performance is tied to current amount of data: Figure 1 (Left)
plots four different scaling law functions that were fit using an initial q0 = 125, 000 and
q0 = 600, 000 images, i.e., 10% and 50% of the entire data set respectively. When q0 is
small, every function fails to accurately extrapolate future performance and ultimately
diverges from the ground truth learning curve. Alternatively when q0 is large, every
function reasonably accurately follows the learning curve. Thus, an initial estimate
of D∗ from a small q0 is likely to be inaccurate. This property was also observed by
Hestness et al. (2017), who referred to this as the the small-data regime.

2. Small estimation errors lead to large over- or undercollection: Figure 1
(Right) plots two different scaling law functions. To collect a target V ∗ = 67%, the
ground truth D∗ is 900,000 images. Both estimated v(q;θ) functions are reasonably
accurate and have less than 6% error at q = 900, 000. However, the function that
overestimates Vq (orange) suggests collecting 580, 000 images, which is about 60% of
the true amount, whereas the function underestimating Vq (green) suggests collecting
3 million images, which is over three times the true amount. Finally, note that the
magnitude of error is much larger in this example when we underestimate v(q;θ) (i.e.,
the green curve). As q increases, both v(q;θ) and the estimated curve flatten. If the
rate of change for both curves approach zero, the distance between the points at which
the two curves respectively reach V ∗ can increase arbitrarily.

We conclude that data collection policies that simply estimate how much data is needed
for a given task can lead to paying arbitrarily large collection costs, even if the estimated
learning curves are close to the true curves. Moreover, estimators diverge drastically from
the true learning curves when given a limited amount of data. As a result, robust data
collection policies must also capture the uncertainty of estimation.

4. Learn-Optimize-Collect (LOC)

Our solution approach, which we refer to as Learn-Optimize-Collect (LOC), minimizes
the total collection cost while incorporating the uncertainty of estimation. To facilitate
this problem, we assume that D∗ is a continuous random variable that has a well-behaved,
differentiable cumulative density function.

Assumption 2 The random variable D∗ is absolutely continuous and has a differentiable
cumulative density function (CDF) F (q) := Pr{D∗ ≤ q} and probability density function
(PDF) f(q) := dF (q)/dq.

Under this assumption, we will optimize over a continuous decision space for q and round
any non-integer values. Although in practice, D∗ is discrete, it is often realized on the order
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Optimize-CollectSample bootstrap performance 
with subsets of data to learn 
data requirement distribution

Use estimated distribution to 
optimize collection cost plus 

risk of failing to meet V*

Pay c(qt - qt-1) to collect 
additional data

Have we 
achieved 
score V*?

Have we hit 
time limit T?

TerminatePay P and 
terminate

Yes

No

Yes

Initialize with q0 data 
points & target V*

No

Learn Optimize Collect

Figure 2: In the optimal data collection problem, we iteratively determine the amount of
data that we should have, pay to collect the additional data, and then re-evaluate our model.
Learn-Optimize-Collect (LOC) optimizes for the minimum amount of data q∗t to collect.

of thousands or greater, which makes the assumption of continuity mild and rounding errors
generally minor.

In this section, we first propose a stochastic optimization alternative to the optimal data
collection problem (3). We then develop our framework, where we estimate the probability
distribution of D∗ and optimize over the estimated distribution.

4.1 A Stochastic Reformulation of Optimal Data Collection

Solving problem (3) directly is difficult because evaluating whether or not a given amount of
data q is sufficient to reach V ∗ requires collecting the data itself and training the learning
model. However, note that for any solution q to problem (3), if q ≥ D∗, then by definition
Vq ≥ V ∗. As a result, consider the following approximation of the original problem:

min
q1≤···≤qT

T∑
t=1

cT (qt − qt−1)1 {qt−1 � D∗}+ P1 {qT � D∗} . (6)

Problem (6) replaces the condition of achieving V ∗ from problem (3) with the condition of
collecting at least D∗ points over all of the data sources. We show below that when K = 1,
these two problems are exactly equivalent. For general K, the two problems share the same
optimal solution.

Lemma 2 The following statements are true:

1. If P < cT (D∗ − q0), then an optimal solution to Problem (6) is q∗1 = · · · = q∗T = q0.
Otherwise, an optimal solution is q∗1 = · · · = q∗T = D∗.

2. If K = 1, then problem (6) is equivalent to problem (3).

Proof The proof for the first statement is identical to the proof of Theorem 1. To
prove the second statement note that from Assumption 1 and the fact that q is a scalar,
D∗ = arg minq{q | Vq ≥ V ∗}. Thus, we have the following equivalence q ≥ D∗ ⇔ Vq ≥ V ∗.
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Substituting this into the indicators completes the proof.

Lemma 2 states that D∗ is an optimal solution to the approximation (6). Because this is
also an optimal solution to the original problem, solving either problem to optimality can
achieve the same decision. Furthermore, the total cost is the same for both problems when
collecting up to D∗ data points.

The approximation (6) relies on D∗, which is not observable a priori. However, since D∗

is a random variable, we can take the expectation over the objective in problem (6) to obtain

min
q1≤···≤qT

ED∗∼f(q)

[
T∑
t=1

cT (qt − qt−1)1 {qt−1 � D∗}+ P1 {qT � D∗}

]

= min
q1≤···≤qT

T∑
t=1

cT (qt − qt−1) (1− F (qt−1)) + P (1− F (qT )) , (7)

where F (q) is the CDF of D∗. Due to Assumption 2, the reformulated stochastic objective
is differentiable in q. We treat problem (7) to be continuous over q1, · · · ,qT and round any
non-integer values to determine the amount of data to collect. Therefore, this problem can
be solved via gradient descent-based algorithms.

Finally, we remark on the interpretation of problem (7). Recall that problem (6) is
equivalent to the original data collection problem (3) insofar as they both share an optimal
solution D∗. Furthermore, for any data collection decision qt, the CDF F (qt) gives the
probability that qt ≥ D∗. In the optimization problem (7), we determine how much data to
collect in each round qt by minimizing the probability of qt � D∗, i.e., 1−F (qt), multiplied
by the cost of collecting this additional data and the penalty of failing to achieve the model
within T rounds. This approach contrasts with the previous näıve estimator which directly
used a point estimate of D∗, by now incorporating the risk and potential cost of over- or
under-collecting data due to the stochasticity in this random variable.

4.2 Estimating-then-Optimizing How Much Data to Collect

Solving problem (7) requires access to the distribution F (q). However, just as we can
estimate D∗, we can now estimate the distribution and use this estimated distribution in
the optimization problem.

We propose a simple strategy of estimating this distribution by bootstrapping the point
estimates of D∗ obtained via Algorithm 1. We first use the same steps as before to create
a regression set of training statistics R. Then, let B > 1 be the number of bootstrap
estimates. For each b ∈ {1, . . . , B}, we create a bootstrap resampled set of R and solve a
corresponding Least Squares minimization problem to fit a scaling law estimator vb(q;θb)
with parameters θb. We use this estimator in place of Vq in problem (4) to estimate the
minimum data requirement. After repeating this process, we obtain a bootstrap set of
estimates {q̂b}Bb=1, which we then use to fit a Kernel Density Estimator (KDE) f̂(q) of the
PDF of the data requirement. Numerical integration of this KDE model yields the estimated
CDF F̂ (q) :=

∫ q
0 f̂(q)dq. Algorithm 2 summarizes the steps.

Although there may exist several strategies for estimating this distribution, our bootstrap-
ping procedure remains easy-to-perform and requires computation only to call Algorithm 1
for B rounds. In numerical experiments, we set B = 500 and find that this can generate
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Algorithm 2 Estimating the Data Requirement Distribution F (q)

1: Input: Initial data set Dq, Regression model v̂(q;θ), Regression set size R, Number of bootstrap

samples B, Kernel Density Estimation (KDE) model f̂(q).
2: Initialize R = ∅, D̂ = ∅
3: Update R using the Collect Performance Statistics(q) sub-routine of Algorithm 1
4: Initialize Q = ∅
5: Bootstrapped CDF(R)
6: for b ∈ {1, . . . , B} do
7: Create bootstrap Rb by sub-sampling R points with replacement from R
8: Fit regression model θ∗ = arg minθ

∑
(q,Vq)∈Rb

(Vq − v(q;θ))
2

9: Estimate the data requirement q̂b = arg minq

{
cTq | v(q;θ∗) ≥ V ∗

}
10: Update Q ← Q∪ {q̂b}
11: end for
12: Fit KDE model f̂(q) using the empirical distribution Q and let F̂ (q) :=

∫ q

0
f̂(q)dq

13: end
14: Output: Estimate of the requirement distribution F̂ (q)

high-quality distribution estimates (see Appendix C.1 for details). Most importantly, the
first derivative of this CDF F̂ (q) is immediately recoverable as the original KDE model
f̂(q). This derivative is necessary for gradient descent optimization of problem (7).

4.3 Putting It All Together

We now describe the complete framework for optimizing the amount of data to collect
in each round of the data collection problem. This framework uses a model-predictive-
control approach of re-estimating the data requirement distribution, solving the stochastic
optimization problem (8), and taking only the recommendation of how much data to collect
for the immediate round. Figure 2 summarizes the steps of our algorithm, Learn-Optimize-
Collect (LOC), which is also described in detail in Algorithm 3.

Given a target score V ∗ and an initial amount of data q0, we must collect data until we
have met the target or until T rounds have passed. In the t-th round, we initialize with qt−1

data points over the K data sources. We first collect performance statistics by measuring
the training dynamics of the current datasets D1, . . . ,DK . In each round t, rather than
re-collecting the full performance statistic R in each round, we alternatively update R with
the latest result (q, Vqt); this significantly reduces the computational burden of collecting
training statistics in each round. We then bootstrap these statistics to estimate the data
requirement distribution for the t-th round, which we refer to as F̂t(q).

Given an estimated distribution of D∗, we first define the variables dt ∈ RK where
dt := qt − qt−1 and solve a reformulated version of problem (7), below

min
d1,...,dT≥0

T∑
t=1

cTdt

(
1− F̂t

(
q0 +

t−1∑
s=1

ds

))
+ P

(
1− F̂t

(
q0 +

T∑
t=1

dt

))
. (8)

The above problem (8) is differentiable on its domain, and the variables are only constrained
to non-negativity. Thus, this problem can be treated as a continuous optimization problem
with only non-negativity constraints, and can be optimized via projected gradient descent
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Algorithm 3 Optimal Data Collection via LOC

1: Input: Initial data sets D1, . . . ,DK of q0 points, Regression model v̂(q;θ), Regression set size
R, Number of bootstrap samples B, Kernel Density Estimation (KDE) model f(q), Target V ∗,
Maximum number of rounds T , Cost c, Penalty P .

2: Initialize round t = 0, Total cost L = 0
3: Initialize statistics R = ∅, datasets D̂1 = · · · = D̂K = ∅
4: repeat
5: Update R using the Collect Performance Statistics(qt) sub-routine of Algorithm 1
6: Learn-Optimize-Collect
7: Initialize Q = ∅
8: Update KDE model F̂t(q) using the Bootstrapped CDF(R) sub-routine of Algorithm 2
9: Freeze variables ds for s < t and solve problem (8) using F̂t(q) to obtain d∗t , . . . ,d

∗
T .

10: end
11: Collect Data(dt)
12: for k ∈ {1, . . . ,K} do
13: Collect data zk until |Dk| = qt,k + dt,k
14: Update cost L← L+ ckdt,k
15: end for
16: Re-train model and update performance Vqt

17: end
18: t← t+ 1
19: until Vqt ≥ V ∗ or t = T
20: if VqT

< V ∗ then
21: Update loss L← L+ P
22: end if
23: Output: Final collected data sets D1, . . . ,DK , Total cost L, Final model performance Vqt

algorithms. Finally, in each round t, we fix the previous decision variables d1, . . . ,dt−1

constant to their previously optimized values since we have already collected this data. Let
d∗t , . . . ,d

∗
T be the solution obtained from using a gradient method to optimize problem (8).

We then collect data from each data source as determined by d∗t , i.e., the recommendation
of how much data to collect immediately in round t. Once this data is collected, we re-train
the machine learning model to evaluate the current performance Vqt and proceed to the
next round of the LOC pipeline.

5. Theoretical Insights in One-Round Data Collection

Although LOC can be used to generate long-term strategic data collection-term decisions
over multiple rounds, a common use-case is to obtain a one-round T = 1 estimate of how
much data is needed to meet the target V ∗. For example, consider a firm that is deciding
whether or not they should pursue a machine learning-based solution for a specific problem;
to make an informed decision, the firm may want a single estimate of whether the amount
of data needed to build the desired model is financially feasible. Such use-cases typically
feature a single data type K = 1, a limited or potentially zero initial data q0, and a noisy
estimator F̂ (q) of the data requirement distribution F (q) (for example, see Section 3.2). This
setting permits theoretical analysis wherein we can derive exact globally optimal solutions
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for how much data to collect as well as structural insights to the relationships between costs,
penalties, and the estimated data distribution.

In this section, we focus on the one-round, single-data source problem:

min
d1

cd1 + P
(

1− F̂ (q0 + d1)
)
. (9)

In Section 5.1, we first develop an analytic solution to problem (9). This solution is dependent
on the ratio c/P of the per-sample cost and how much we stand to pay in penalty for failing to
collect. Then in Section 5.2, under the assumption that F̂ (q) follows a Gaussian distribution,
we fully characterize the analytic solution to obtain the globally optimal amount of data to
collect. Finally in Section 5.3, we consider the case where F̂ (q) is a noisy estimate of the
true data requirement distribution F (q). Here, we develop a regret bound to show that our
optimization strategy outperforms the estimation-based approach (i.e., Algorithm 2) to data
collection summarized in Section 3.2.

5.1 An Analytic Solution to One-Round Data Collection

The cost c parameter reflects real data collection costs whereas the penalty P reflects how
much a firm stands to pay if they cannot obtain a model with performance V ∗. Since this
term may not have an exact real value, it may be difficult to determine the appropriate P
in practice. Instead, consider an alternate, more intuitive parameter ε ≥ 0 to be a measure
of the maximum tolerable probability of not meeting V ∗. Since the data requirement D∗ is
stochastic, ε represents how much a firm is willing to tolerate the chance of undercollecting.
That is, we should collect enough data d1 such that F̂ (q0 + d1) ≥ 1− ε. Our main theorem
below states an optimal solution d∗1 to problem (9) in terms of this acceptable risk ε.

Theorem 3 Assume F̂ (q) is strictly increasing and continuous. If there exists d1 ≥ 0 where

c

P
≤ F̂ (q0 + d1)− F̂ (q0)

d1
(10)

then there exists an ε ≤ 1− F̂ (q0) that satisfies P = c/f̂(F̂−1(1− ε)) and an optimal solution
to problem (9) is d∗1 := F̂−1(1− ε)− q0. Otherwise, d∗1 := 0.

Before proving this result, we first summarize the intuition and consequences. Theorem 3
states that for the one-round T = 1 problem, when there is only a single data type K = 1,
the optimal one-round estimate of the data requirement is determined by taking a 1 − ε
quantile of the distribution of D∗. Rather than solving the optimization problem (9), we can
instead just use the estimated data requirement distribution F̂ (q) and prescribe a maximum
acceptable risk of failing to collect enough data ε := Pr{q0 + d1 < D∗}. We then collect
exactly d∗1 = F̂−1(1− ε)− q0 additional points. The equivalence between simply prescribing
a maximum risk ε and solving problem (9) is determined via choice of the cost and penalty
parameters to satisfy c/P = f̂(F̂−1(1− ε)). Nonetheless, we remark that this equivalence
only holds if the cost-to-penalty ratio c/P is sufficiently small and also only for T = 1,K = 1.
Thus, problem (9) can also be seen as a generalization of Bayesian approaches to determine
how much data to collect with respect to estimating the distribution of the learning curves
and selecting a minimum pre-determined quantile (Domhan et al., 2015).
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To prove Theorem 3, we will equate the original problem (9) to the following alternative
constrained optimal data collection problem

min
d1

c d1 s. t. F̂ (q0 + d1) ≥ 1− ε , d1 ≥ 0. (11)

The above problem incorporates the maximum acceptable risk parameter ε as a constraint
to replace the previous penalty-based formulation. We first prove that this problem is is
convex and has an intuitive analytic solution.

Lemma 4 Assume that F̂ (q) is strictly increasing and continuous. Then,

1. Problem (11) is a convex optimization problem.

2. The unique optimal solution to problem (11) is d∗1 = max{F̂−1(1− ε)− q0, 0}.

Proof To prove the first statement, note that the objective and the second constraint are
convex. Thus, we only need to prove that the set {d1 | F̂ (q0 + d1) ≥ 1 − ε} is a convex
set. Since F̂ (q) is strictly increasing in q, for any θ ∈ [0, 1] and d̂ ≥ d ≥ 0, we have
F̂ (q0 + θd̂ + (1 − θ)d) ≥ F̂ (q0 + d) ≥ 1 − ε. Because the convex combination of any two
points is in the set, the set must be convex, which makes the optimization problem convex.

To prove the second statement, we consider two cases. First, if F̂−1(1− ε) ≥ q0, let d1

be the value that satisfies

q0 + d1 = F̂−1(1− ε) := inf
{
q | F̂ (q) ≥ 1− ε

}
,

which makes d1 the smallest value to satisfy F̂ (q0+d1) ≥ 1−ε. Therefore, d∗1 = F̂−1(1−ε)−q0

is a minimizer in this case. In the second case where F̂−1(1− ε) < q0, we have F̂ (q0) > 1− ε.
Since d1 ≥ 0 is a constraint, the minimizer is d∗1 = 0.

We prove Theorem 3 by showing that under (10), problems (9) and (11) are equivalent.

Proof of Theorem 3 First, note that when T = 1 and K = 1, problem (9) is a
minimization of a continuous function over a single variable with a single non-negative
constraint. Then, there must exist an optimal solution d∗1 that satisfies either d∗1 = 0 via the
boundary condition, or f̂(q0 + d∗1) = c/P as a zero-gradient solution. Moreover, for the zero
gradient solution to be optimal, there must exist some decision d1 > 0 that achieves a lower
objective than the zero solution. We rewrite this condition to

cd1 + P (1− F̂ (q0 + d1)) ≤ P (1− F̂ (q0)) =⇒ c

P
≤ F̂ (q0 + d1)− F̂ (q0)

d1
. (12)

To derive the structure of the optimal solution, we rewrite the original problem (9) to

min
ε

min
d1

cd1 + Pε s. t. ε ≥ 1− F̂ (q0 + d1), d1 ≥ 0, (13)

where ε is a slack variable. However, for any fixed value of ε, the inner problem (13) is
equivalent to the constrained alternative problem (11), meaning that it has an analytic
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solution as determined by Lemma 4. Specifically, for any ε ≥ 1 − F̂ (q0), the optimal
solution is d∗1 = 0, but for any ε ≤ 1− F̂ (q0), the optimal solution is d∗1 = F̂−1(1− ε)− q0.
Consequently, problem (13) can be further rewritten as

min
(

min
ε

{
c
(
F̂−1(1− ε)− q0

)
+ Pε | ε ≤ 1− F̂ (q0)

}
, P (1− F̂ (q0))

)
. (14)

Note that problem (14) has an equivalent optimality condition to (12). That is, for the left
term to be the minimum, there must exist some ε ≤ 1− F̂ (q0) that satisfies

c
(
F̂−1(1− ε)− q0

)
+ Pε ≤ P (1− F̂ (q0)) =⇒ c

P
≤ 1− F̂ (q0)− ε
F̂−1(1− ε)− q0

(15)

Setting d1 = F̂−1(1− ε)− q0 make conditions (12) and (15) equivalent. Most importantly,
this must also hold for the minimizer d∗1 = F̂−1(1− ε∗)−q0. We can substitute this condition
back into the zero-gradient solution of problem (9) to obtain

f
(
F̂−1(1− ε)

)
=

c

P
, ε ≤ 1− F̂ (q0).

If such an ε does not exist, then the optimal solution must be d∗1 = 0 and ε∗ = 1− F̂ (q0).

Finally, we remark on the assumption that F̂ (q) be strictly increasing and continuous.
Since in practice, F̂ (q) is the integral of a KDE f̂(q), our assumption is always satisfied
given an appropriate kernel (e.g., Gaussian). Furthermore as we show next, we can derive an
exact formula under the case where the estimated data requirement distribution is Gaussian.

5.2 An Analytic Solution for Gaussian Distributions

Theorem 3 demonstrates an equivalence between optimizing how much data to collect given
certain costs and penalties versus collecting data according to a minimum pre-specified
risk tolerance ε. However, to use Theorem 3, we must compute both F̂ (q) and F̂−1(1− ε).
With a structural form of this CDF, we may further simplify Theorem 3 to obtain an exact
analytic formula on how much data to collect.

We focus on the case where the estimated data requirement follows a Gaussian distribution
D∗ ∼ N (µ̂, σ̂) and where F (q) := 1/2 + erf((q− µ̂)/(

√
2σ̂))/2 is the corresponding Gaussian

CDF. The motivation for a Gaussian distribution stems from an observation that even when
we estimate F̂ (q) using KDE, the estimated distribution is often unimodular (see Appendix
C.1 for details on this observation). As such, an intuitive strategy may be to simply estimate
F̂ (q) using a single Gaussian distribution rather than with many Gaussian kernels.

We first consider the case where our estimated CDF is exactly equal to the true CDF
F̂ (q) = F (q). Here, problem (9) simplifies to

min
d1

cd1 +
P

2

(
1− erf

(
q0 + d1 − µ̂√

2σ̂

))
. (16)

We can obtain an exact solution for any cost and penalty values. We first show that if
the penalty P is too small, then the optimal solution to problem (16) is to collect no data,
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i.e., the penalty for failing to achieve V ∗ is insufficient to outweigh the cost of collecting
additional data. We then show that given a sufficiently large P , the optimal amount of data
to collect can only take one of two possible values.

Proposition 5 Suppose that F̂ (q) models a Gaussian distribution N (µ̂, σ̂). If P < cσ̂
√

2π,
then the optimal solution to problem (16) is d∗1 = 0.

Proof The gradient of the objective function of problem (16) is

c− P√
2πσ̂

exp

(
−(q0 + d1 − µ̂)2

2σ̂2

)
.

Setting this gradient to zero yields

d∗1 = µ̂±
√

2σ̂

√
log

P

cσ̂
√

2π
− q0.

However, this only exists if P > cσ̂
√

2π; otherwise if P < cσ̂
√

2π, then there is no zero-
gradient solution to problem (16). Furthermore, by inspection, the objective function is
monotone non-decreasing, meaning that the minimizer is the boundary point d∗1 = 0.

Proposition 5 states that if the penalty is less than cσ̂
√

2π, then it is strategically better
to not collect any data at all. Recall that P represents a potential loss from failing to develop
a machine learning model that achieves V ∗ performance. Thus, not collecting additional
data is equivalent to deciding not to build this model and simply accepting the penalty.
This represents real-world scenarios where the costs of developing a machine learning model
outweigh the benefits that this machine learning model can yield to the developer. If the
penalty is sufficiently large such that d∗1 > 0, then building the machine learning model can
be deemed useful.

The minimum value on the penalty parameter is dependent only on the cost and the
standard deviation σ̂ of the estimated data requirement distribution. When using LOC, if the
variance of the estimated distribution is too large, then there is an increasingly larger chance
that the minimum amount of data required D∗ is low. If the penalty for undercollecting
is low compared to this probability, then the optimal strategy would be to refrain from
collecting data and correspondingly incur the penalty, rather than overcollect data. Figure
3 (Left) visualizes this trend by sweeping different values for P and plotting the objective
function of problem (16). Here, if P < σ̂

√
2π (blue and orange curves), then the optimal

d∗1 = 0.

Corollary 6 Suppose that F̂ (q) models a Gaussian distribution N (µ̂, σ̂) and P > cσ̂
√

2π.

Let ζ :=
√

logP − log(cσ̂
√

2π). The optimal solution to problem (16) satisfies:

1. If q0 ≤ µ̂−
√

2σ̂ζ, then

d∗1 =

µ̂+
√

2σ̂ζ − q0 if
c

P
<

erf ζ − erf
(
q0−µ̂√

2σ̂

)
2
(
µ̂+
√

2σ̂ − q0

)
0 otherwise
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2. If µ̂−
√

2σ̂ζ < q0 ≤ µ̂+
√

2σ̂ζ, then d∗1 = µ̂+
√

2σ̂ζ − q0.

3. If q0 ≥ µ̂+
√

2σ̂ζ, then d∗1 = 0.

Proof Following the same steps from the proof to Proposition 5, we find that the optimal
solution must be a zero-gradient point or the boundary point

d∗1 ∈
{

0, µ̂±
√

2σ̂ζ − q0

}
,

conditioned on whether the zero-gradient solution is feasible. Furthermore, we can show
below that µ̂−

√
2σ̂ζ − q0 is a local maximizer whereas µ̂+

√
2σ̂ζ − q0 is a local minimizer

via the second-order condition. Specifically, note that the second derivative of the objective
function is

P (q0 + d1 − µ̂)√
2πσ̂

exp

(
−(q0 + d1 − µ̂)2

2σ̂2

)
.

Substituting d1 = µ̂−
√

2σ̂ζ−q0 into the above equation admits a negative second derivative,
whereas d1 = µ̂ +

√
2σ̂ζ − q0 admits a positive second derivative. Therefore, the optimal

amount of data to collect can only be in

d∗1 ∈
{

0, µ̂+
√

2σ̂ζ − q0

}
.

We now break the problem down into the three cases.

First, if q0 ≤ µ̂ −
√

2σ̂ζ, then both the local minimizer and the boundary point are
feasible. For d∗1 = µ̂+

√
2σ̂ζ to be the global minimizer, the condition on the c/P ratio from

Theorem 3 must hold. That is,

c

P
≤

1
2

(
1 + erf q0+

√
2σ̂−µ̂√
2σ̂

)
− 1

2

(
1 + erf

(
q0−µ̂√

2σ̂

))
µ̂+
√

2σ̂ζ − q0

=
erf ζ − erf

(
q0−µ̂√

2σ̂

)
2
(
µ̂+
√

2σ̂ζ − q0

) .
Otherwise, the optimal solution in this regime is d∗1 = 0.

Second, if µ̂ −
√

2σ̂ζ < q0 ≤ µ̂ +
√

2σ̂ζ, then note that the objective function within
the feasible region for d1 consists of a curve with a single local minimum and no other
zero-gradient points. Therefore, this local minimum d∗1 = µ̂ +

√
2σ̂ζ must be the global

minimizer.

Finally, if q0 ≥ µ̂+
√

2σ̂ζ, then none of the zero-gradient points are feasible solutions.
Therefore, the optimal solution must lie on the boundary point d∗1 = 0.

Corollary 6 gives an exact characterization of the optimal data collection problem when
F̂ (q) is modeled via a single Gaussian distribution. We first confirm that the penalty is
sufficiently high for the problem to be meaningful; if the penalty for under-collection is too
small, then it would incur lower costs to simply not collect any data. Managerially, this
implies that the machine learning product is a poor investment as the costs of data collection
are higher than simply not building the machine learning model.
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Figure 3: Evaluating problem (16). Left: We set c = 1, q0 = 104 and sweep different values
for P . If P is sufficiently small (i.e., P < cσ̂

√
2π), then the total expected cost is minimized

by setting d1 = 0 (i.e., orange, blue curves). Right: We set c = 1, P = 105 and sweep
different values for q0. The dashed lines point to the local maxima and minima at µ̂±

√
2σ̂ζ.

When q0 ≥ µ̂ +
√

2σ̂ζ, the optimal d∗1 = 0 (i.e., red, purple). When q0 ∈ [µ̂ ±
√

2σ̂ζ], the
optimal d∗1 is at the zero-gradient minima (i.e., green, red). When q0 < µ̂ −

√
2σ̂ζ, the

optimal d∗1 depends on the relationship between q0, c, P . That is, d∗1 = 0 for the blue curve,
but d∗1 is equal to the zero-gradient minima for the orange curve.

Assuming the penalty is sufficiently high, we can compare the value of the initial amount
of data q0 to the critical points µ̂ ±

√
2σ̂ζ. Specifically, if q0 is greater than µ̂ +

√
2σ̂ζ,

then the optimal solution to the data collection problem is to not collect any data. This
scenario is equivalent to setting a small value of P (c.f. Proposition 5), since ζ is a function
of P , c, and σ̂. On the other hand, if q0 is between µ̂ −

√
2σ̂ζ and µ̂ +

√
2σ̂ζ, then the

optimal solution is always to collect data up to having µ̂+
√

2σ̂ζ points. Finally, if q0 is very
small, i.e., less than µ̂−

√
2σ̂ζ, then we must again check if the ratio of cost over penalty is

sufficiently small before collecting data. If this ratio is too high, then the penalty is again
too low, and the optimal strategy would be to not collect any data and incur the penalty.

Figure 3 (Right) visualizes the implications of Corollary 6 by evaluating the objective
function of problem (16) for different values of q0; we plot with respect to q = q0 + d1, since
the zero-gradient points for this formulation are always µ̂±

√
2σ̂ζ for any q0. Here, we observe

that if q0 ≥ µ̂−
√

2σ̂ζ, the optimal total amount of data is q∗ = max
(
µ̂+
√

2σ̂ζ, q0

)
(i.e.,

the green, red, and purple curves). On the other hand if q0 < µ̂−
√

2σ̂ζ, then the optimal
amount of data to collect is equal to the zero-gradient minimizer only if q0 is sufficiently
large with respect to ζ, and therefore c and P (i.e., the orange curve). Otherwise d∗1 = 0
and q∗ = q0 (i.e., the blue curve). This condition for ‘how large q0 must be’ can be most
easily determined by checking whether the cost-to-penalty ratio c/P satisfies the conditions
from Theorem 3.

5.3 Regret Bounds under Noisy Estimates of the Gaussian CDF

We have shown so far that in the single-round setting, the optimal decision d∗1 has an analytic
solution, especially when the estimated F̂ (q) of D∗ follows a Gaussian distribution N (µ̂, σ̂).
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In practice however, the estimated F̂ (q) 6= F (q) will differ from the true CDF of D∗. In
this sub-section, we assume that D∗ ∼ N (µ, σ) follows a Gaussian distribution and F̂ (q) is
a noisy estimate where µ̂ 6= µ and σ̂ 6= σ. Our goal is to study the expected regret R(d1)
from a data collection decision d1 made via the noisy estimate F̂ (q) versus the true optimal
solution D∗ to problem (9):

R(d1) :=ED∗∼N (σ,µ)

[
cd1 + P1 {q0 + d1 < D∗} − c (D∗ − q0)

]
=c (d1 − µ+ q0) + P (1− F (q0 + d1)) .

This regret is measured in expectation over the true distribution of D∗.

We compare two data collection strategies on the amount of regret incurred. First,
we consider LOC, which determines the amount of data to collect d∗1 from Corollary 6.
Specifically, we focus on the case where d∗1 = µ̂ +

√
2σ̂ζ − q0, rather than equal to 0. To

compare against LOC, we consider the näıve estimation-only baseline from Section 3.2.
This baseline sets d1 = µ̂− q0, which means it collects enough data to reach the estimated
expected value of the minimum data requirement. We show that when the data collection
decision is made using the LOC strategy, the expected regret is lower than if the d1 is
determined using the estimation-only approach.

We consider two scenarios, where the estimated distribution is noise-free (i.e., µ̂ =
µ, σ̂ = σ̂) and one where the estimated mean and variance differ from their true values (i.e.,
µ̂ 6= µ, σ̂ 6= σ). Below, we first consider the noise-free setting to demonstrate that LOC
incurs a lower expected regret over the distribution of D∗ versus the näıve estimation-only
approach.

Lemma 7 Suppose we perfectly estimate F (q), i.e., µ̂ = µ, σ̂ = σ. Then, R(d∗1) ≤ R(µ̂−
q0) = P

2 .

Proof The inequality follows from the fact that d∗1 minimizes the objective cd1 + P (1−
F (q0 + d1)). The equality follows from substituting µ̂− q0 into the regret equation.

Lemma 7 states that even when we know the exact distribution D∗, it is disadvantageous to
make data collection decisions from using only the estimate. Due to the inherent variability
in the distribution, the expected regret is P/2 when using an estimation-only strategy.
Specifically, using the expected value means that with 50% probability, the näıve strategy
will under-estimate how much data to collect, and consequently incur the penalty. Instead,
setting d∗1 according to Corollary 6 will incur a lower expected regret. Note that Lemma 7
holds for any symmetric probability distribution on D∗ and not just the Gaussian setting.

We now present our main theoretical result, which explores the case where our estimated
distribution N (µ̂, σ̂) of the minimum data requirement D∗ differs from the true distribution
N (µ, σ). If the estimated distribution is sufficiently close to the true distribution, then the
data collection decision generated by LOC will still incur a lower expected regret than a
data collection decision generated by estimation alone. This sufficiency is characterized as
an upper bound on the Total Variation distance between the two distributions, with respect
to the cost, penalty, initial data, and estimated mean.
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Proposition 8 Let dTV := supA |PrD∗∼N (µ,σ){A}−PrD∗∼N (µ̂,σ̂){A}| be the Total Variation
distance between N (µ, σ) and N (µ̂, σ̂). If

dTV ≤
c

2P
(µ̂− q0)− 1

2
(17)

then, R(d∗1) ≤ R(µ̂− q0).

Proof We want to show

0 ≥ R(d∗1)−R(µ̂− q0) (18)

= c
(
µ̂− µ+

√
2σ̂ζ

)
+ P

(
1− F (µ̂+

√
2σ̂ζ)

)
− c (µ̂− µ)− P (1− F (µ̂)) (19)

= c
√

2σ̂ζ + P

(
Pr

D∗∼N (µ,σ)
{µ̂+

√
2σ̂ζ < D∗} − Pr

D∗∼N (µ,σ)
{µ̂ < D∗}

)
(20)

= c
√

2σ̂ζ − P
(

Pr
D∗∼N (µ,σ)

{µ̂ ≤ D∗ < µ̂+
√

2σ̂ζ}
)
. (21)

Above, (19) applies the definition of R(d∗1) and R(µ̂− q0), (20) rewrites the CDFs and (21)
collects the corresponding probabilities.

Note from Corollary 6 that d∗1 = µ̂+
√

2σ̂ζ implies it incurs a lower objective function
value that d∗1 = 0 with respect to problem (9). That is,

c
(
µ̂+
√

2σ̂ζ − q0

)
+ P

(
Pr

D∗∼N (µ̂,σ̂)
{µ̂+

√
2σ̂ζ < D∗}

)
≤ P

(
Pr

D∗∼N (µ̂,σ̂)
{q0 < D∗}

)
. (22)

By adding and subtracting P PrD∗∼N (µ,σ){µ̂+
√

2σ̂ζ ≤ D∗} and P PrD∗∼N (µ,σ){q0 ≤ D∗},
respectively, on both sides of the above equation and re-arranging the terms, we obtain

c
(
µ̂+
√

2σ̂ζ − q0

)
− P

(
Pr

D∗∼N (µ,σ)
{q0 < D∗} − Pr

D∗∼N (µ,σ)
{µ̂+

√
2σ̂ζ < D∗}

)
≤ P

(
Pr

D∗∼N (µ̂,σ̂)
{q0 < D∗} − Pr

D∗∼N (µ,σ)
{q0 < D∗}

)
+ P

(
Pr

D∗∼N (µ,σ)
{µ̂+

√
2σ̂ζ < D∗} − Pr

D∗∼N (µ̂,σ̂)
{µ̂+

√
2σ̂ζ < D∗}

)
(23)

Collecting the probability terms in the left-hand-side of (23) and bounding the right-hand-side
by the total variation distance yields

(23)⇒ c
√

2σ̂ζ + c (µ̂− q0)− P
(

Pr
D∗∼N (µ,σ)

{q0 < D∗ < µ̂+
√

2σ̂ζ}
)
≤ 2PdTV (24)

⇒ c
√

2σ̂ζ + c (µ̂− q0)− P
(

Pr
D∗∼N (µ,σ)

{q0 < D∗ < µ̂}
)

− P
(

Pr
D∗∼N (µ,σ)

{µ̂ ≤ D∗ < µ̂+
√

2σ̂ζ}
)
≤ 2PdTV (25)

Above (25) breaks the probability into two independent components between [q0, µ̂) and
[µ̂, µ̂+

√
2σ̂ζ).
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From (25), it remains only to prove that 2PdTV + P
(
PrD∗∼N (µ,σ){q0 ≤ D∗ < µ̂}

)
−

c(µ̂− q0) ≤ 0. Here, we rearrange the Total Variation distance bound (17) to

c(µ̂− q0) ≥ P (2dTV + 1) ≥ P
(

2dTV + Pr
D∗∼N (µ,σ)

{q0 ≤ D∗ < µ̂}
)
,

showing that the inequality is satisfied and proving inequality (21).

Proposition 8 guarantees that even when LOC uses a noisy estimate of F̂ (q) of the true
CDF F (q) of the minimum data requirement, the optimization problem solved by LOC will
yield, on average, lower cost and regret when compared to a strategy that only estimates
D∗ from the noisy F̂ (q). This guarantee holds under condition (17), which states that the
estimated distribution is sufficiently close to the true distribution. We first note that this
upper bound can be computed from known values and furthermore, can be controlled by
appropriate selection of the penalty parameter. Specifically, if we suspect the estimated F̂ (q)
is far from F (q), then dTV is large, and we can select a smaller P to ensure that LOC will
generate a high-quality data collection decision. If we suspect that F̂ (q) is close to F (q) or if
we observe that µ̂− q0 is large, then we are safe to select a large P and still ensure that LOC
will generate a high-quality decision. Finally, we note that the bound in Proposition 8 is a
sufficiency condition only and not necessary for guaranteeing the quality of LOC-generated
data collection decisions.

6. Empirical Results

In this section, we numerically evaluate LOC on data collection for six computer vision data
sets spread over three tasks: image classification, object detection, and segmentation. We
evaluate on K = 1 and K = 2, which are the two most common use-cases for obtaining
high-level collection guidelines on data collection. In the first setting, a firm can only
determine the data set size without focusing on the type of data. The second setting reflects
a common problem class where data can be categorized into expensive and inexpensive
types, e.g., long-tail versus common data or acquiring real versus auto-labeled data via
semi-supervised learning. Our experiments reveal:

• Section 6.2: For every data set and task, LOC significantly reduces the number
of instances where we fail to meet the data requirement V ∗, while incurring only
marginally more expensive costs compared to an oracle policy that determines exactly
the minimum amount of data. In contrast, data collection decisions via estimation
alone almost always leads to undercollecting and failing to meet V ∗.

• Section 6.3: LOC is robust to both the cost and penalty parameters. For nearly all
settings, modifying either parameter by orders of magnitude does not significantly
affect the quality of decisions. Therefore in practical use, it is sufficient to roughly
estimate the costs and penalties rather than obtain precise values.

• Section 6.4: LOC can be easily adapted to solve custom economic analyses and
machine learning scenarios. We demonstrate two unique examples where a firm would
like to (i) modify an existing machine learning model to now accommodate a new class;
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and (ii) contrast two entirely different data collection policies. For both cases, LOC
yields appropriate data collection decisions.

We expand on our experiment setup in Appendix B. We expand on the main results in
Appendix C and include further ablations and comparisons against different baselines.

6.1 Experiment Setup

We explore three tasks for K = 1. First, we consider classification on CIFAR-10 (Krizhevsky,
2009), CIFAR-100 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009), where we train
ResNets (He et al., 2016) to meet a target validation accuracy. We explore semantic segmenta-
tion using Deeplabv3 (Chen et al., 2018) on BDD100K (Yu et al., 2020), which is a large-scale
driving data set, as well as Bird’s-Eye-View (BEV) segmentation on nuScenes (Caesar et al.,
2020) using the ‘Lift Splat’ architecture (Philion and Fidler, 2020); both tasks require
a target mean intersection-over-union (IoU). Finally, we explore 2-D object detection on
PASCAL VOC (Everingham et al., 2007, 2012) using SSD300 (Liu et al., 2016), where we
evaluate mean average precision (mAP).

We evaluate two tasks for K = 2. First, we mimic the scenario of long-tail or imbalanced
learning where data for some classes (e.g., long-tail) is much more expensive to collect than
others. Here, we divide CIFAR-100 into two subsets containing data from the first and last
50 classes, respectively, and assign a higher cost to the first 50 classes versus a lower cost to
the last 50. Our second experiment models the scenario where one can acquire real labeled
data versus use a prior model to cheaply autolabel data. Labeled data incurs a higher cost
from collection plus annotation whereas autolabeled data incurs only collection costs, since
autolabeled annotations are effectively free. We design this experiment using the labeled
and unlabeled data splits of BDD100K.

We simulate the deep learning workflow following the procedure of Mahmood et al.
(2022b), to approximate the true problem while simplifying the experiments (see Appendix B
for details). To avoid repeatedly sampling data, re-training a model, and evaluating the
score, this simulation uses a piecewise-linear approximation of a ‘ground truth’ learning
curve that returns model performance as a function of data set size. We initialize with
q0 = 10% of the full data set (we use 20% for VOC). In each round, we solve for the amount
of data to collect and call the piecewise-linear learning curve to obtain the current score.

For each data set and task, we consider T = 1, 3, 5 rounds. For each T , we sweep
V ∗ ∈ [V (Dq0) + 1, V (D)] where D is the entire labeled data set; we then aggregate the LOC
performance over the full range of potential target settings. For example, in our experiments
of optimizing the number of training examples of CIFAR-100 to collect, we find that the
initial dataset Dq0 achieves 42% accuracy and D achieves 75% accuracy; consequently, we
sweep over all values of V ∗ ∈ [42, 75] and evaluate the average performance of the data
collection policies. We first evaluate policies on the failure rate, which is the fraction of V ∗

settings in which our data collection policy fails to achieve the target performance within T
rounds. Second, we evaluate the cost ratio

cT (q∗T − q0)

cT (D∗ − q0)
− 1,
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which is the relative sub-optimality of the policy compared to an oracle policy that knows
exactly D∗ a priori. To ensure that this metric is non-negative and is scaled reasonably, we
average the cost ratio over all settings of V ∗ in which the policy yields a model that exceeds
V ∗; i.e., this metric ignores instances that fail to collect enough data. For K = 1, we also
measure the ratio of points collected q∗T /D

∗ following Mahmood et al. (2022b). Although
there is a trade-off between low cost ratio (undercollecting) and failure rate (overcollecting),
we emphasize that our goal is to have low cost but with zero chance of failure.

Our primary baseline is the conventional estimation detailed in Section 3.2, which fits a
regression model to the learning curve statistics, extrapolates the learning curve for more
data, and then solves for the minimum data requirement under this extrapolation. We refer
to this as the Power Law Regression approach. In addition, we also ablate the effect of
optimizing the minimum data requirement by comparing against an intermediate estimation
baseline which estimates the distribution of the minimum data requirement and selects the
average estimated value. This baseline, referred to as Ensemble Regression, leverages the
bootstrapping and density estimation procedure to learn the distribution.

There are many different regression models that can be used to fit learning curves (Jones
et al., 2003; Figueroa et al., 2012; Hestness et al., 2017; Hoiem et al., 2021; Viering and Loog,
2022). Since power laws are the most commonly studied approach in the neural scaling
law literature, we focus on power laws here, but compare against the other functions from
Table 1 in Appendix C.2.

6.2 Main Results: The Value of Optimization over Estimation

Below, we discuss results for K = 1 and K = 2.

6.2.1 Case with K = 1

We first discuss experiments on K = 1. Figure 4 compares LOC versus the corresponding
power law regression baseline when c = 1. We fix P = 107 as the default penalty for CIFAR-
10, CIFAR-100, BDD100K, and nuScenes, but set P = 108 for ImageNet and P = 106 for
VOC1. If a curve is below the black line, then it failed to collect enough data to meet the
target. LOC consistently remains above this black line for most settings, whereas even with
T = 5 rounds, collecting data based only on regression estimates leads to failure.

Table 2 aggregates failure rates and cost ratios for each setting. Here, LOC fails at less
than 10% of instances for 12/18 settings, whereas regression fails over 30% for 15/18 settings.
In particular, regression nearly always under-collects data when given a single T = 1 round.
Here, LOC reduces the risk of under-collecting by 40% to 90% over the baseline. Moreover,
our cost ratios are consistently less than 0.5 for 12/18 settings, meaning that we spend at
most 50% more than the true minimum cost.

Table 2 also ablates the effect of optimization versus only estimating the distribution.
The ensemble uses the same KDE distribution as in LOC but simply outputs the mean of the
distribution. First, LOC always outperforms the Ensemble Regression baseline, showing that

1. This tuning is due to the fact that ImageNet naturally has an order of magnitude more data within it,
meaning that the scale of data required to reach target performances is naturally higher; nonetheless in
Section 6.3, we demonstrate that our LOC results are generally robust to order-of-magnitude shifts in the
penalty parameter for most settings.
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Figure 4: Mean ± standard deviation of 5 seeds of the ratio of data collected q∗T /D
∗ for

different V ∗. The rows correspond to T = 1, 3, 5 and the columns to different data sets. The
black line corresponds to collecting exactly the minimum data requirement. LOC almost
always remains slightly above the black line, meaning we rarely fail to meet the target.
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Data set T Power Law Regression Ensemble Regression LOC (Ours)

Failure rate Cost ratio Failure rate Cost ratio Failure rate Cost ratio

C
la

ss
.

CIFAR-10
1 100% − 100% − 60% 0.19± 0.00
3 95% 0.00± 0.00 100% − 32% 0.05± 0.00
5 86% 0.00± 0.00 92% 0.00± 0.00 29% 0.03± 0.00

CIFAR-100
1 56% 0.12± 0.00 57% 0.11± 0.00 4% 0.99± 0.01
3 48% 0.10± 0.00 51% 0.10± 0.00 3% 0.31± 0.00
5 48% 0.10± 0.00 46% 0.09± 0.00 2% 0.19± 0.00

Imagenet
1 99% 0.00± 0.00 100% − 37% 0.49± 0.00
3 75% 0.01± 0.00 96% 0.00± 0.00 5% 0.16± 0.00
5 56% 0.01± 0.00 82% 0.00± 0.00 2% 0.10± 0.00

S
eg

.

BDD100K
1 77% 0.03± 0.01 69% 0.07± 0.01 12% 2.03± 0.10
3 31% 0.00± 0.00 23% 0.03± 0.00 0% 0.72± 0.03
5 23% 0.01± 0.00 15% 0.03± 0.00 0% 0.35± 0.02

nuScenes
1 95% 0.00± 0.00 95% 0.00± 0.00 52% 0.16± 0.00
3 71% 0.01± 0.00 90% 0.00± 0.00 0% 0.09± 0.00
5 62% 0.00± 0.00 76% 0.00± 0.00 0% 0.04± 0.00

D
et

.

VOC
1 36% 1.24± 0.06 33% 1.12± 0.06 25% 0.56± 0.02
3 8% 0.88± 0.04 6% 0.80± 0.04 0% 1.10± 0.07
5 6% 0.86± 0.04 6% 0.81± 0.04 0% 0.84± 0.04

Table 2: Average cost ratio ± standard error and failure rate measured over a range of V ∗

for each T and data set. We fix c = 1 and P = 107 (P = 106 for VOC and P = 108 for
ImageNet). The best performing failure rate for each setting is bolded. LOC consistently
reduces the average failure rate, often down to 0%, while keeping the average cost ratio
almost always below 1 (i.e., spending at most 2× the optimal amount).

optimization is indeed necessary when determining how much data to collect. Furthermore,
the Ensemble Regression only outperforms the näıve Power Law Regression baseline for
BDD100K and VOC. For the other four data sets, the two baselines are either equivalent or
Power Law Regression outperforms Ensemble Regression. This shows that estimating the
distribution of the minimum data requirement is insufficient for determining how much data
to collect. Specifically, estimating this distribution can capture the uncertainty in the näıve
Pow Law Regression estimator, but knowing this stochasticity does not yield accurate data
collection decisions. This result validates the two-step approach of LOC.

Finally, we remark that our results here for T = 1 validate our theoretical analysis
in Section 5, which showed that when our estimator of the data requirement distribution
produces underestimates, it incurs significantly larger regret than LOC. This can be observed
particularly in the failure rates, as every failure will incur a penalty of P . Note that the cost
ratios listed in Table 2 do not include P , since the penalty is always significantly greater
than the collection cost and including it would obfuscate cost comparisons for instances
where V ∗ was reached. In other words, for CIFAR-10, ImageNet, or nuScenes, the baseline
incurs a true unfiltered cost ratio (i.e., factoring in the penalty) at approximately P divided
by the oracle cost. Due to the high failure rate of the baseline, this unfiltered cost ratio
would be several orders of magnitude higher than the values reported in Table 2. Since,
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Figure 5: Mean ± standard deviation over 5 seeds of the cost ratio and failure rate for
different V ∗, after removing 99-th percentile outliers. The columns correspond to scenarios
where the first set c1 costs increasingly more than the second c2. See Appendix C for the
results with T = 1, 3.

LOC incurs less than 50% failure rate for all three of these instances, our reported cost
ratios more accurately reflect the true values.

6.2.2 Case with K = 2

We now discuss experiments on K = 2. Figure 5 compares LOC versus regression at T = 5
with different costs. LOC decreases the failure rates while keeping a similar cost ratio to the
baseline. We include similar plots for T = 1, 3 in Appendix C.4. Table 3 aggregates failure
rates and cost ratios for all settings, showing LOC consistently achieves lower failure rates for
nearly all settings of T . When T = 5, LOC also achieves lower cost ratios versus regression
on CIFAR-100, meaning that with multiple rounds of collection, we can ensure meeting
performance requirements while paying nearly the optimal amount of data. However, the
optimization problem is generally more difficult as K increases and we sometimes over-collect
data by several orders of magnitude margins. Because these outliers drastically skew the
summary average statistics that we measure, we remove the 99-th percentile with respect
to total cost for both LOC and the baseline regression estimator. In practice, outlier
data collection decisions would naturally be pruned by decision-makers via common-sense
reasoning. For instance, if an algorithm suggests to collect 10 million unlabeled images when
a human expert would guess at 10 thousand images, the practical decision would not be to
blindly use the algorithmic solution.

Although the results in this section compare specifically against power law-based regres-
sion, Mahmood et al. (2022b) show that we can use other regression functions (e.g., see
Table 1) as well as modifications to reduce the undercollection of these estimation-based
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Data set T Cost Power Law Regression LOC

Failure rate Cost ratio Failure rate Cost ratio

C
IF

A
R

-1
0
0

(2
T

y
p

es
) 1

(0.01, 0.0005) 62% 0.84 ± 0.02 40% 41.80 ± 1.80
(0.01, 0.001) 58% 1.19 ± 0.01 46% 9.85 ± 0.27
(0.01, 0.002) 56% 1.55 ± 0.01 54% 6.98 ± 0.18
(0.01, 0.005) 54% 1.65 ± 0.01 33% 4.43 ± 0.07

3

(0.01, 0.0005) 43% 3.47 ± 0.16 30% 4.88 ± 0.26
(0.01, 0.001) 45% 1.22 ± 0.02 43% 1.31 ± 0.03
(0.01, 0.002) 45% 1.47 ± 0.02 44% 1.21 ± 0.02
(0.01, 0.005) 38% 1.31 ± 0.01 36% 1.17 ± 0.01

5

(0.01, 0.0005) 38% 3.31 ± 0.16 24% 5.19 ± 0.22
(0.01, 0.001) 35% 1.22 ± 0.02 24% 0.79 ± 0.01
(0.01, 0.002) 37% 1.33 ± 0.01 38% 0.90 ± 0.01
(0.01, 0.005) 36% 1.30 ± 0.01 24% 0.82 ± 0.00

B
D

D
1
0
0
K

(S
em

i-
su

p
er

v
is

ed
)

1

(1, 0.005) 86% 0.11 ± 0.01 44% 7.02 ± 1.11
(1, 0.01) 79% 0.15 ± 0.01 30% 13.47 ± 1.50
(1, 0.05) 72% 0.19 ± 0.01 49% 1.02 ± 0.19
(1, 0.1) 70% 0.19 ± 0.01 65% 0.40 ± 0.05

3

(1, 0.005) 23% 0.18 ± 0.01 7% 1.20 ± 0.12
(1, 0.01) 21% 0.15 ± 0.00 7% 2.57 ± 0.58
(1, 0.05) 26% 0.18 ± 0.01 23% 0.50 ± 0.06
(1, 0.1) 26% 0.21 ± 0.01 30% 0.15 ± 0.01

5

(1, 0.005) 16% 0.22 ± 0.01 2% 1.91 ± 0.30
(1, 0.01) 21% 0.15 ± 0.00 2% 0.86 ± 0.13
(1, 0.05) 16% 0.17 ± 0.01 9% 0.27 ± 0.03
(1, 0.1) 16% 0.20 ± 0.01 7% 0.32 ± 0.03

Table 3: Average cost ratio ± standard error and failure rate over different V ∗ for each T
and c, after removing 99-th percentile outliers. We fix P = 1013 for CIFAR-100 and P = 108

for BDD100K. The best performing failure rate for each setting is bolded. LOC reduces the
average failure rate, is more robust to uneven costs than regression, and for T > 1, preserves
the cost ratio.

baselines. In Appendix C.2, we include further results comparing against these alternate
functions. In every setting, we show that while baseline estimators consistently either under-
or overestimate how much data to collect, LOC consistently reduces either the cost or the
failure rates significantly.

6.3 Robustness to Cost and Penalty Parameters

Figure 6 evaluates the ratio of points collected for T = 5 when the cost and the penalty of
the optimization problem are varied. We include similar results for T = 1, 3 in Appendix C.5.
LOC is robust to variations in these parameters, as LOC retains the same shape and scale
for almost every parameter setting and data set. Further, LOC consistently remains above
the horizontal 1 line, showing that even after varying c and P , we do not fail as frequently
as the baseline. Finally, validating Theorem 3, the penalty parameter P provides natural
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Figure 6: Mean ± standard deviation of 5 seeds of the ratio of data collected q∗T /D
∗ for

different V ∗ and fixed T = 5. Rows 1 & 3: We sweep the cost parameter from 0.001 to 1 and
fix P = 107. Rows 2 & 4: We sweep the penalty parameter from 106 to 109 and fix c = 1.
The dashed black line corresponds to collecting exactly the minimum data requirement. See
Appendix C for all T .

control over the amount of data collected. As we increase P , the ratio of data collected
increases consistently.

6.4 Adapting LOC to Custom Modeling Problems

Our optimal data collection framework and LOC can also be adapted to solve custom
questions faced by machine learning developers. Here, we present two case studies where we
demonstrate how LOC yields high-quality data collection decisions.
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T Power Law Regression LOC

Failure rate Cost ratio Failure rate Cost ratio

1 89% 0.19 8% 1.35
3 38% 0.78 1% 0.63
5 24% 0.64 0% 0.26

Table 4: On CIFAR-100, average cost ratio and
failure rate for ‘beaver’ (new class) measured over a
range of V ∗ for each T , when the model is initialized
with only 99 classes and zero training examples for
the new class. We fix c = 1 and P = 105. The best
performing failure rate for each setting is bolded.
LOC consistently achieves less than 10% failure rate,
while keeping the average cost ratio even lower than
the estimation baseline when T ≥ 3.
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Figure 7: Mean ± standard devia-
tion of 5 seeds when comparing the
total collection cost to reach different
V ∗ on BDD100K depending on active
learning versus autolabeling. We fix
cL = 0.995 and cU = 0.005. Autolabel-
ing is more cost-effective until V ∗ ≥ 70
mIoU, at which point the diminishing
power law of the unlabeled data make
active learning more effective.

6.4.1 Adding New Classes to an Existing Model

Suppose that we have an existing M -class classifier achieving a desired accuracy V ∗ for
each of the current classes individually. We now want to update this model with a new
(M + 1)-th class. We require the classifier to also achieve V ∗ validation set accuracy for this
class as well or else we will pay P . If we can collect training examples for this specific class
at a per-sample cost c, how many should we obtain within the time horizon T?

To address this problem, we use LOC where qt represents the number of training examples
of the (M + 1)-th class. However, q0 = 0 since this is a new class; this means that we cannot
fit training statistics to estimate F (q) at time t = 1. Instead in the first data collection
round, we select one of the existing M classes, model the data requirement distribution for
this prior class, and use this as a proxy for F (q). If T > 1, then after the first round, we
will have an initial amount of data for the (M + 1)-th class, which we can use to learn F (q)
using the standard technique.

We simulate this problem using CIFAR-100, where we set M = 99 and first train the
model using the training set data of all classes except for ‘beaver’ (the 100-th class). For the
first round estimate, we design F (q) using the statistics of ‘dolphin’, which is a similar class
in the same hierarchy. Table 4 provides the failure rate and cost ratio for both LOC and
the power law regression baseline. Here, LOC consistently achieves less than 10% failure
rate and moreover, outperforms the baseline on both the failure rate and cost ratio for both
T = 3, 5. Note that since we start with q0 = 0 initial data, our first estimation of F (q) will
be poor for both our method and the baseline; this leads the baseline to high failure rates
for T = 1 and surprisingly high costs for T = 3, 5. Instead, LOC, by virtue of optimization,
yields low failure rates for T = 1 and strong performance at larger T .
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6.4.2 Deciding Between Two Data Annotation Campaigns

Suppose that we have collected a large pool of unlabeled data. To annotate each data point,
there is a small cost cC for collecting and pre-processing an unlabeled image and a labeling
cost cL > cC for manually labeling the image. Using an initial labeled set of q0 points, we
must decide between two potential annotation strategies via T = 1 round forecasts:

1. Autolabeling: Rather than manually labeling every data point, we can use our current
model to synthetically generate labels for the unlabeled data. These autolabeled points
may not as effective as the manually labeled points, but autolabeling incurs zero
additional labeling costs. Consider a strategy where we manually label a fraction of
the data that we have collected (i.e., incurring the cost of collecting and labeling the
data cC + cL) and autolabel the rest of the data (i.e., incurring only the collection cost
cC per data point).

Let q = (qL, qC) where qL is the amount of manually labeled data and qU is the amount
of unlabeled data that we autolabel. Then, our total cost under this strategy is

(cL + cC) (qL − q0) + cCqC + P1 {Vq ≥ V ∗} .

2. Active learning: Since the quality of autolabeled data may not be as high as that of
manually labeled data, we may instead opt to only manually label data. Moreover,
we can re-direct the engineering effort of building an autolabeler towards designing
an active learning framework, which mines the collected (unlabeled) data to find the
most useful training examples.

With active learning, q = qL is the amount of data that is manually labeled. Fur-
thermore, the cost of labeling each data point is equal to the cost of collection plus
labeling cL + cC . The optimization objective under this strategy is

(cL + cC) (qL − q0) + P1 {VqL ≥ V
∗}

Given a target performance V ∗, we can solve both optimization problems to determine which
of the two policies is more cost-efficient.

We evaluate this experiment using the labeled and unlabeled splits of BDD100K. The
autolabeling setting is equivalent to the experiments performed in Section 6 for K = 2. The
active learning setting is a special case of the K = 1 experiment where the data collected
in each round and subsampled for fitting scaling laws, are collected according to an active
learning sampler rather than random sampling. We follow the approach in Mahmood
et al. (2022b) where the steps of Algorithm 3 that involve estimating the minimum data
requirement distribution are unchanged other than the fact that the data is collected via
active learning (see Appendix C.3 for details and additional active learning experiments).
For data collection, we use a simple strategy of computing the average Confidence scores
of estimates per scene and selecting the Least Confident scenes; we leave further details in
Appendix B.2 (Settles, 2009). Figure 7 plots the total cost as determined from an initial
q0 = 7, 000 labeled points and costs cL = 0.995 and cC = 0.005; these costs replicate the
settings explored in Table 3. We extrapolate the performance and costs up to V ∗ = 80.
Since in this scenario, autolabeling data is 20× cheaper than manually labeling it, our
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analysis suggests that for moderate target scores (e.g., V ∗ = 58 mIoU), we can save up to
100, 000 in total costs. However, in general, active learning produces more high-quality data
than autolabeling, so we expect the 2-dimensional power law for autolabeling to flatten
sooner than the active learning estimator. For V ∗ ≥ 70, the minimum data requirement
and consequently, the total cost of autolabeling grows exponentially and exceeds the total
cost of active learning. This leads us to an intuitive conclusion: in applications requiring
high performance models, at some point it becomes more important to use high-quality data
rather than simply lots of data.

7. Discussion

Decisions on how much data to collect to improve a given machine learning model are
fundamental in all machine learning applications, but such methods are typically handled by
estimating a scaling law of training data set size to model performance and then extrapolating
future behavior. This näıve extrapolation tends to lead to costly decisions from overcollecting
data or delays and future costs from undercollecting data. In our paper, we develop a
rigorous framework for optimizing data collection workflows by introducing an optimal data
collection problem that captures the uncertainty in estimating data requirements. Our
general framework can model a variety of settings such as where multiple data sources incur
different collection costs, where an existing model must be upgraded with data for a new
class, or where we must assess the benefits of different sampling and labeling practices.
We numerically validate our solution algorithm, Learn-Optimize-Collect, on six computer
vision data sets covering classification, segmentation, and detection tasks to show that we
consistently meet pre-determined performance metrics regardless of costs and time horizons.

Our optimization model minimizes the expected total future collection cost, which is
modeled by two parameters: (i) a per-sample cost c that models the cost of collecting,
cleaning, and annotating data; and (ii) a penalty P that models the opportunity cost of the
model failing to meet our desired performance metric. The second parameter may not be
readily available in practice. However, we show empirically that LOC is typically robust
to parameter variations on one to three orders of magnitude. That is, as long as we can
roughly estimate these parameters for our setting, we will still be able to make good data
collection decisions. Moreover, we theoretically analyze the one-round T = 1 setting to
draw two high-level insights. First, our problem is equivalent to specifying a minimum
tolerance ε ≤ Pr{Vq < V ∗} on the probability that we do not collect enough data and simply
collecting the quantile F̂−1(1− ε) of the distribution of the minimum amount of data needed;
consequently, practitioners can instantly obtain one-round estimates for how much data to
collect. This analysis can be further specialized when the distribution has a given structure
(e.g., Gaussian). Second, we prove that as long as the estimated distribution F̂ is sufficiently
close to the true distribution of the minimum data requirement, our optimization model
provably improves upon estimation-only strategies in terms of minimizing the total cost.

LOC combines neural scaling law estimators with a stochastic optimization problem
that can be solved via gradient descent. Our fundamental step is to treat the minimum
amount of data we would need as a random variable and bootstrap a neural scaling law
estimator to estimate its probability distribution. As future advances in neural scaling laws
arrive, our bootstrapping can be deployed on top of new scaling law estimation algorithms to
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optimize data collection decisions better than any estimation-only techniques. In particular,
estimating neural scaling laws for arbitrary multi-dimensional settings (e.g., when combining
different data sources) remains a difficult problem, but a side-product of this paper presents
a simple multi-dimensional additive power law estimator that works reasonably well in our
experiments.

Our framework is designed specifically for settings where the machine learning model
and training algorithm are fixed, that the data is generally of high-quality, and that there
is no misspecification between model and data. In practice, these assumptions may not
always be satisfied. For example, designers may modify the model or the data source in
between collection rounds, change the evaluation metric, or seek to address alternative
targets. Mathematically, our framework assumes that the desired performance target is
achievable with a finite amount of data and that the true neural scaling law of a given
problem instance is monotonically non-decreasing with the dataset size (Viering and Loog,
2022). The first assumption is necessary for this problem to be solvable. Although the
second assumption is not always satisfied in machine learning tasks, it has been empirically
observed to hold in most practical deep learning applications and is a standard assumption
when scaling deep learning models (Hestness et al., 2017; Hoffmann et al., 2022). Finally,
our numerical experiments rely on simulations with pre-constructed ground truth learning
curves v(n). An alternative experimental setup may be to explicitly sample points based
on the decisions generated by LOC, train the neural network model, and evaluate its score.
However, such repeated retraining is computationally too expensive to perform for the
range of experiments explored in this paper. Furthermore, the quality of our simulation is
proportional to the number of data points that we sample, meaning that we can maintain
accurate experimental analysis.

Improving data collection practices yields potentially positive and negative societal
impacts. By reducing the collection of extraneous data, we implicitly reduce the environ-
mental costs of training models. On the other hand, equitable data collection should also
be considered in real-world data collection practices that involve humans. We envision a
potential future work to incorporate privacy and fairness constraints to prevent over- or
under-sampling of protected groups. Finally, our method is guided by a score function
on a held-out validation set. Biases in this set may be exacerbated when optimizing data
collection to meet target performance.

Finally, we emphasize that this work addresses a longstanding problem in machine
learning practice. There is a folklore observation that over 80% of industry machine
learning projects fail to reach production, often due to insufficient, noisy, or inappropriate
data (VentureBeat, 2019). As mentioned previously, industry surveys have reported that
51% of practitioners face delays from under-collection (Dimensional Research, 2019). Our
numerical experiments verify this observation by showing that näıvely estimating power laws
typically leads to undercollection. We believe that robust data collection policies obtained
via LOC can reduce failures while further guiding practitioners on how to manage both costs
and time.
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Appendices

Appendix A. An Alternative Partially Observable Markov Decision
Process Formulation of the Optimal Data Collection Problem

Our problem defined in Section 3 can be written as a Partially Observable Markov Decision
Process (POMDP) (Puterman, 2014; Bertsekas, 2012), modeled by the tuple (Θ,A,S, p, rt).
Here, the state space characterizes the data requirement D∗ ∈ Θ := RK+ , the action
space characterizes the additional data collected dt := (qt − qt−1) ∈ A := RK+ , and the
observation set S := {0, 1} characterizes a binary variable 1{V (Dqt) ≥ V ∗}. Furthermore,
p(·|D∗,dt) is the observation transition probability and rt(·) is the reward function where
rt(qt,qt−1,D

∗) := −c(qt − qt−1) for t ≤ T and rT+1(qt,qt−1,D
∗) := −P1{qT < D∗}.

Finally, note that the state variable is constant throughout the MDP, meaning this problem
can be written as an EK ‘Learning-and-Doing’ model (Easley and Kiefer, 1988).

POMDPs are typically solved by using a belief distribution of the state variable to
average the reward in the value function. In general, these methods are susceptible to a
curse of dimensionality and can sometimes be only tackled via approximations (Zhao et al.,
2021). Alternatively, we may consider applying reinforcement learning. However, note
that real-world data collection tasks do not contain the requisite sizes of learning data or
generalizable simulation mechanisms that are staples in reinforcement learning techniques.
All of these challenges motivate our approach, which has the benefit of being an easy-to-solve
optimization problem on top of existing neural scaling law methods.

Appendix B. Simulation Experiment Setup

The most intuitive approach of validating our data collection problem is by repeatedly
sampling from a data set, training a model, and solving the optimization problem. However,
since performing a large set of such experiments over many data sets becomes computationally
intractable, we follow the approach of Mahmood et al. (2022b), who propose a simulation
model of the data collection problem. Below, we summarize the simulation setup.

The simulation replicates the steps in Algorithm 3 except with one key difference. In
the simulation, we replace the score function V (D) with a ground truth function vgt(q) that
serves as an oracle which reports the expected score of the model trained with q data points.
Thus, rather than having to collect data and train a model in each round, we evaluate vgt(qt)
and treat this as the current model score. The optimization and regression models do not
have access to vgt(q).

B.1 A Piecewise-Linear Ground Truth Approximation

In order to build a ground truth function, we first use the sub-sampling procedure in
Algorithm 3 to collect performance statistics over subsets of the entire training data set.
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Data set Task Score Full data set size

CIFAR-10 (Krizhevsky, 2009) Classification Accuracy 50, 000
CIFAR-100 (Krizhevsky, 2009) Classification Accuracy 50, 000
ImageNet (Deng et al., 2009) Classification Accuracy 1, 281, 167
BDD100K (Yu et al., 2020) Semantic Segmentation Mean IoU 7, 000
nuScenes (Caesar et al., 2020) BEV Segmentation Mean IoU 28, 130
VOC (Everingham et al., 2007, 2012) 2-D Object Detection Mean AP 16, 551

CIFAR-100 (Krizhevsky, 2009) Classification Accuracy 25, 000 (Classes 0-49) 25, 000 (Classes 50-99)
BDD100K (Yu et al., 2020) Semantic Segmentation Mean IoU 7, 000 (Labeled) 70, 000 (Unlabeled)

Table 5: Data sets, tasks, and score functions considered.

Using these observed statistics, we then build a piecewise-linear model of the ground truth.
Below, we first highlight how to construct a piecewise-linear model when given a set of data
set sizes and their corresponding scores. In the next subsection, we will detail the exact data
collection process.
The Single-variate (K = 1) Case. Mahmood et al. (2022b) develop a ground truth
function by collecting training statistics over subsets of the entire data set and performing
a linear interpolation. Let q0 ≤ q1 ≤ q2 ≤ · · · be a series of data set sizes and let
Dq0 ⊂ Dq1 ⊂ Dq2 ⊂ · · · be their corresponding sets. Then, the piecewise-linear function:

vgt(q) :=


V (Dq0)

q0
n, q ≤ q0

V (Dqt)− V (Dqt−1)

qt − qt−1
(q − qt) + V (Dqt−1), qt−1 ≤ q ≤ qt

is concave and monotonically increasing, which follows the general trend of real learning
curves Hestness et al. (2017). Furthermore Mahmood et al. (2022b) show that given
sufficient resolution, i.e., enough data subsets, this piecewise linear function is an accurate
approximation of the true learning curve V (D).
The Multi-variate (K = 2) Case. In the previous K = 1 case, the ground truth was
formed by taking linear interpolations between different subset sizes. When K > 1, we have
multiple subsets that are used to evaluate the score V (D1, . . . ,DK).

In our numerical experiments, we focus on K = 2. Here, we can generalize the linear
interpolation process to a bilinear interpolation (Wang and Yang, 2008). Let q1

0 ≤ q1
1 ≤ q1

2 ≤
· · · and q2

0 ≤ q2
1 ≤ q2

2 ≤ · · · be two series of data set sizes, and consider the grid

(q1
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2
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2
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2
0) · · ·

(q1
0, q

2
1) (q1
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2
1) (q1

2, q
2
1) · · ·

(q1
0, q

2
2) (q1

1, q
2
2) (q1

2, q
2
2) · · ·

...
...

...
. . .

We estimate v(q1, q2) for any q1, q2 ∈ [q1
s−1, q

1
s ]× [q2

t−1, q
2
t ] via bilinear interpolation over the

square defined by these borders (Wang and Yang, 2008).
For K > 2. The piecewise linear approximations grow increasingly complex as the dimension
K increases. Furthermore, the number of subsets of data set sizes required to create
a piecewise linear approximation increases exponentially with K. Specifically for k ∈
{1, . . . ,K}, let Mk denote the number of subsets (i.e., |{qk0 , qk1 , . . . , qkMk

}|) of a data set that
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we consider when creating subsets. For each combination of K subsets, we must then train
a model and evaluate it’s performance to record V (D1, . . . ,DK). Thus, we must subsample
and train our model for O(

∏
kMk) combinations, which quickly becomes computationally

prohibitive.

B.2 Data Collection

We now summarize the data collection and training process used to create the above
piecewise-linear functions for each data set and task. All models were implemented using
PyTorch and trained on machines with up to eight NVIDIA V100 GPU cards. Table 5
details each task and data set size.

Image Classification Tasks. For all experiments with CIFAR-10 and CIFAR-100, we use
a ResNet18 He et al. (2016) following the same procedure as in Coleman et al. (2020). For
ImageNet, we use a ResNet34 He et al. (2016) using the procedure in Coleman et al. (2020).
All models are trained with cross entropy loss using SGD with momentum. We evaluate all
models on Top-1 Accuracy.

For all experiments, we set the initial data set at q0 = 10% of the data. In data collection,
we create five subsets containing 2%, 4%, · · · , 10% of the training data, five subsets containing
12%, 14%, · · · , 20% of the training data, and eight subsets containing 30%, 40%, · · · , 100%
of the data. Each subset is contained in the following subsets. Note that we use higher
granularity in the early stage as this is where the dynamics of the learning curve vary the
most. With more data, the learning curve eventually has a nearly zero slope. For each
subset, we train our respective model and evaluate performance.

VOC. We use the Single-Shot Detector 300 (SSD300) Liu et al. (2016) based on a VGG16
backbone Simonyan and Zisserman (2015), following the same procedure as in Elezi et al.
(2022). We evaluate all models on mean AP.

For all experiments, we set the initial data set at q0 = 10% of the data. In data collection,
we sample twenty subsets at 5% intervals, i.e., 5%, 10%, 15%, · · · , 100% of the training data.

BDD100K. We use Deeplabv3 Chen et al. (2018) with ResNet50 backbone. We use random
initialization for the backbone. We use the original data set split from Yu et al. (2020) with
7, 000 and 1, 000 data points in the train and validation sets respectively. The evaluation
metrics is mean Intersection over Union (IoU). We follow the same protocol used in the
Image classification tasks to create our subsets of data.

Active Learning. We perform experiments involving active learning on CIFAR-100 and
BDD100K. For these experiments, rather than collecting data by i.i.d. sampling of subsets
at the above respective intervals, we use an active learning algorithm to select the subsets at
each interval; for example, with CIFAR-100, we start with a random i.i.d. sample of 2% of
the data and for each subsequent 4%, 6%, 8%, · · · , 20%, 30%, 40%, · · · , 100%, we select this
data with an active learning algorithm. Each subset is contained in the following subsets.
For CIFAR-100, we explore active learning via Maximum Entropy (Settles, 2009), Least
Confidence (Settles, 2009), and Greedy k-Centers (Sener and Savarese, 2018). For BDD100K,
we use only Least Confidence (Settles, 2009). We use the same models and training practice
as described previously.

nuScenes. We use the “Lift Splat” architecture Philion and Fidler (2020), which is used
for BEV segmentation from driving scenes, following the steps from the original paper to
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Parameter Setting

Optimizer GD with Momentum (β = 0.9), Adam (β0, β1 = 0.9, 0.999)
Learning rate 0.005, . . . , 500
Number of bootstrap samples B 500
Number of regression subsets R See Appendix B.2
Density Estimation Model KDE for K = 1, GMM for K = 2

KDE Bandwidth
20000, . . . , 20000000 for ImageNet
200, . . . , 4000 for all others

GMM number of clusters 4, . . . , 10

Table 6: Summary of hyperparameters used in our experiments.

train this model. We evaluate on mean IoU. Our data collection procedure follows the same
steps as used for BDD100K and the Image classification tasks.

CIFAR-100 (2 Types). We partition this data set into two subsets D1 and D2 of 25, 000
images each containing the first 50 and last 50 classes, respectively. We then train a
ResNet18 (He et al., 2016) using different fractions of the two subsets. We follow the same
training procedure as in the single-variate case except with one difference. Since some of
the data sets will naturally be imbalanced (e.g., if we train with half of the first subset and
all of the second subset), we employ a class-balanced cross entropy loss using the inverse
frequency of samples per class.

For each Dk subsets, respectively, we follow the same subsampling procedure used in
the single-variate case. That is, we let q1

0 = 10% of the first data subset and q2
0 = 10%

of the second data subset. For each subset, we create 10 subsampled sets at intervals of
2%, 4%, 6%, · · · , 20% of the respective data subset. We then create eight further subsampled
sets at 30%, 40%, · · · , 100% of the respective data subset. Finally, we train our model and
evaluate the score on every combination of the subsampled subsets of D1 ×D2.

BDD100K (Semi-supervised). For this task, we consider semi-supervised segmentation
via pseudo-labeling the unlabeled data set in BDD100K. The data is partitioned into
two subsets D1 and D2 containing 7, 000 labeled and 70, 000 unlabeled scenes. We use
Deeplabv3 (Chen et al., 2018) with a ResNet50 backbone. Here however, we:

1. First train with a labeled subset of D1 via supervised learning.

2. Pseudo-label an unlabeled subset of D2 using the trained model.

3. Re-train the segmentation model with the labeled subset and the pseudo-labeled
subset.

We follow the same procedure as in the single-variate case for both training steps, except we
weigh the unlabeled data by 0.2 to reduce its contribution to the loss.

Training via semi-supervised learning on BDD100K requires long compute times, so we
reduce the number of subsets used in this experiment. For the labeled set D1, we create
subsets with 5%, 10%, 15%, 20%, 40%, 60%, 80%, 100% of the data. For the unlabeled set D2,
we create subsets with 0%, 10%, 25%, 50%, 100% of the data. Note that we have five settings
of unlabeled data since we include the case of training with no unlabeled data as well.
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B.3 LOC Implementation

For all experiments, we initialize with 10% of the training data set. We consider T = 1, 3, 5
rounds and sweep a range of V ∗. We provide a summary of parameters in Table 6.

For the experiments with K = 1, we model the data requirement PDF f(q) in each
round of the problem as follows. We first draw B = 500 bootstrap resamples of the current
training statistics R, where R = {(rq0/R, V (Drq0/R))}Rr=1 ∪ {(qs, V (Dqs))}ts=1 contains all
of the measured statistics up to the initial data set (e.g., for CIFAR-10, this includes
performance with 2%, 4%, · · · , 10% of the data), and the previous collected data. The
latter is obtained by calling our piecewise-linear ground truth approximation. For each
bootstrap resample, we fit a power regression model v̂(q;θ) = θ0q

θ1 + θ2 and solve for
the estimated minimum data requirement by minimizing a least squares problem using
the Trust Region Reflective algorithm, with initial values set to 1, 0, 0 and bounds set to
[0, 100], [0, 0.999], [−10, 10] for θ0, θ1, θ2, respectively. After fitting v̂(q;θ) for each resample,
we then compute the corresponding estimate of D∗. We then use our set of estimates to
fit a Kernel Density Estimation (KDE) model after gridsearching for the best bandwidth
parameter. For the ImageNet data set, we grid search for the best bandwidth parameter be-
tween [20000, 40000, 100000, 200000, 400000, 1000000, 2000000, 4000000, 10000000, 20000000],
whereas for all other data sets, we grid search for the best bandwidth parameter between
[200, 400, 1000, 2000, 4000]. We use these different settings because the scale of data on
ImageNet is between two to three orders of magnitude greater than the scale of data for
the other data sets that we consider. Thus, to ensure that the estimated distribution can
reasonably capture the variation on larger scales, we find that larger bandwidths are neces-
sary. We note that in practice, a reasonable choice of bandwidth ranges for gridsearching
can be visually determined by plotting the histogram of the estimated data requirement
distribution (e.g., see Figure 9 in Appendix C.1) for different choices of bandwidth and
inspecting the fitted distributions.

For the experiments with K = 2, we use the same above procedure but fit Gaussian
Mixture Models (GMM) due to their having an easily computable CDF via the Gaussian
erf(·), rather than numerically integrating the PDF. We grid-search over the number of
mixture components for the GMM model.

We optimize over problems (8) using gradient descent. Depending on the current state
and data set, different hyperparameters perform better. As a result, we perform extensive
hyperparameter tuning every time we need to solve the optimization problem. Here, we
sweep all combinations of gradient descent with momentum (β = 0.9), and Adam (β0 =
0.9, β1 = 0.999), and learning rates between [0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500].

We initialize each problem with qt equal to the baseline regression solution and qt+s =
qt/(s + 1) for all 1 ≤ s ≤ T − t. That is, we set the initial value for future collection
amounts to be fractions of the initial value of the immediate amount of data to collect. We
identified this initialization by manually inspecting the solutions found by LOC; it improves
the conditioning of the loss landscape relative to other random initialization schemes.

Appendix C. Additional Numerical Results

This section contains expanded results of our numerical experiments and further ablations.
Our key results include:
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Figure 8: For a fixed seed, ground truth learning curves (black) and the estimated power
law learning curves (blue) obtained via bootstrapping and ensembling. The shaded region
represents the 95 percentile of the ensemble and the dashed blue line represents the mean of
the regression functions. The mean is consistently higher than the unknown ground truth,
whereas the shaded region can at times cover it.

8000 9000 1000011000120001300014000
q

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Re
la

tiv
e 

fre
qu

en
cy

CIFAR-100 (V * = 50)

10000 12500 15000 17500 20000 22500
q

0.0000

0.0002

0.0004

0.0006

0.0008

Re
la

tiv
e 

fre
qu

en
cy

CIFAR-100 (V * = 60)

15000 20000 25000 30000 35000 40000
q

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Re
la

tiv
e 

fre
qu

en
cy

CIFAR-100 (V * = 70)

Figure 9: For a fixed seed, the histogram of estimates of D∗ from different bootstrapped
models (blue bars), the estimated F (q) (orange curve), and the ground truth D∗ (black
dashed line). Each plot corresponds to a different V ∗ for CIFAR-100 (see Figure 8 for the
learning curve). With higher targets, regression (i.e., collecting the mean of the distribution)
will lead to larger under-estimations.

• In Appendix C.1, we evaluate the effectiveness of estimating F (q) by plotting the
estimated learning curves as well as the empirical histograms used to model the data
requirement distribution.

• In Appendix C.2, we consider variants of LOC where we use different regression
functions to estimate the data requirement distribution. Our optimization framework
can be deployed on top of any regression function to reduce the failure rate.

• In Appendix C.3, we consider LOC for scenarios where data is not collected via random
sampling, but instead by active learning. Our optimization framework consistently
outperforms baselines even under such non-i.i.d. settings.

• In Appendix C.4, we explore the multi-variate LOC (i.e., K = 2) for problems where
we have a small number of T = 1, 3 rounds. The baseline fails for almost all instances
of T = 1, whereas LOC maintains a low failure rate.

• In Appendix C.5, we explore the sensitivity of our optimization algorithm to variations
in the cost and penalty parameters. In all except one instance, LOC consistently
maintains a low total cost and failure rate.
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Figure 10: For experiments on CIFAR-100 with two data types, mean ± standard deviation
over 5 seeds of the cost ratio cT(q∗T − q0)/cT(D∗ − q0) − 1 and failure rate for different
V after removing 99-th percentile outliers. We fix c0 = 1 and P = 1013. The rows
correspond to T = 1, 3 (see the main paper for T = 5) and the columns correspond to
c1 = c0/2, c0/5, c0/10, c0/20.

C.1 Estimating the Data Requirement Distribution F (q)

To estimate F (q), we first create an ensemble of estimated learning curves, which we then
invert to obtain an empirical distribution of estimated values for D∗. Figure 8 plots our
bootstrap resampled estimated learning curves versus the ground truth performance for the
first round of data collection when we have access to an initial Dq0 containing 10% of the full
data set. As noted in Mahmood et al. (2022b), the mean estimated learning curve diverges
from the ground truth. However, by bootstrap resampling an ensemble of learning curves,
we can cover the ground truth with some probability.

Figure 9 plots the empirical histograms of estimated D∗ as well as the estimated F (q)
obtained via KDE on CIFAR-10 with three different values for V ∗. Although the mode
of the estimated distribution is far from the ground truth D∗, the estimated distribution
assigns some probability to the ground truth region. LOC optimizes over this estimated
F (q), which allows us to conservatively collect data and reduce the chances of failure.

C.2 LOC with Alternative Regression Functions

Mahmood et al. (2022b) show that we can use other regression functions instead of the
power law to estimate the data requirement. Moreover, some functions tend to consistently
over- or under-estimate the requirement. LOC can be deployed on top of any such regression
function, since the regression function is only used to generate bootstrap samples. In this
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Data set T Regression With Correction (Mahmood et al., 2022b) LOC

Failure rate Cost ratio Failure rate Cost ratio

C
la

ss
.

CIFAR-100
1 14% 0.94 4% 0.99
3 1% 0.23 3% 0.31
5 0% 0.17 2% 0.19

Imagenet
1 7% 1.03 37% 0.49
3 0% 0.21 5% 0.16
5 0% 0.14 2% 0.10

S
eg

.

BDD100K
1 4% 4.03 12% 2.03
3 0% 1.02 0% 0.72
5 0% 0.62 0% 0.35

nuScenes
1 0% 27.2 52% 0.16
3 0% 0.75 0% 0.09
5 0% 0.30 0% 0.04

D
et

.

VOC
1 0% 44.6 25% 0.56
3 0% 7.02 0% 1.10
5 0% 3.98 0% 0.84

Table 8: Comparing against the correction factor-based Power Law Regression of Mahmood
et al. (2022b) with the same setup as in Table 2. The best performing cost ratio is underlined
and the best performing failure rate for each setting is bolded. Although the baseline achieves
low failure rates, LOC often can achieve competitive failure rates while reducing the cost
ratios by an order of magnitude.

Strategy T Regression LOC

Failure rate Cost ratio Failure rate Cost ratio

Entropy
1 23% 0.53 1% 1.79
3 18% 0.50 3% 1.02
5 18% 0.50 2% 0.83

k-Centers
1 51% 0.16 26% 0.38
3 44% 0.14 13% 0.17
5 44% 0.14 8% 0.13

Least Confidence
1 24% 0.70 14% 3.36
3 23% 0.68 5% 1.71
5 21% 0.67 6% 1.44

Table 9: Different active learning policies for experiments on CIFAR-100, measuring the
average cost ratio and failure rate measured over a range of V ∗ and T . We fix c = 1 and
P = 107. The best performing failure rate for each setting is bolded. The cost ratio is
measured only for instances that achieve V ∗.

section, we show that these baseline estimators consistently either under- or overestimate
how much data to collect, in contrast to LOC.

Table 7 highlights experiments on all six data sets with three alternative regression
functions that were used by Mahmood et al. (2022b). For each function and almost on each
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Figure 11: For experiments on BDD100K with two data types, mean ± standard deviation
over 5 seeds of the cost ratio cT(q∗T − q0)/cT(D∗ − q0) − 1 and failure rate for different
V after removing 99-th percentile outliers. We fix c0 = 1 and P = 1013. The rows
correspond to T = 1, 3 (see the main paper for T = 5) and the columns correspond to
c1 = c0/2, c0/5, c0/10, c0/20.

dataset, we observe the same trends seen in the original Table 2. That is, LOC reduces the
failure rate down to approximately zero, at a marginal relative increase in cost.

Noting that Power Law Regression often leads to failure, Mahmood et al. (2022b) also
propose a correction factor heuristic wherein they learn a parameter τ such that if the data
collection problem requires a target performance V ∗, we should instead aim to collect enough
data to meet V ∗ + τ . In order to learn this correction factor, we require a pre-existing data
set upon which we can simulate a data collection policy. Mahmood et al. (2022b) set τ such
that we can achieve the data requirement V ∗ for any V ∗ on the pre-existing data set, and
then fixing this parameter for new data sets.

Table 8 compares LOC (i.e., repeating Table 2) with the Correction factor-based Power
Law regression baseline of Mahmood et al. (2022b). Following the original paper, we tune τ
using CIFAR-10 and apply it on all other data sets. The correction factor is designed to
minimize the failure rate and thus, achieves nearly 0% failure rate for all settings, but often
at high cost ratios. On the other hand, LOC achieves generally low failure rates and low
cost ratios. Specifically, for T = 3, 5, we are competitive with the baseline on failure rates
for most tasks while obtaining up to an order of magnitude decrease in costs. For T = 1, we
typically admit higher failure rates; however for the segmentation and detection tasks, we
obtain up multiple orders of magnitude lower costs. Finally, note that this baseline requires
a similar prior task to be effective. For example, the baseline outperforms us on cost and
failure rate both only on CIFAR-100, since it is tuned on CIFAR-10. On the other hand,
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Figure 12: Mean ± standard deviation of the ratio of data collected q∗T /D
∗ for different V ∗

when we sweep the cost parameter from 0.001 to 1 and fix P = 107. We show T = 1, 3 and
refer to the main paper for T = 5. The dashed black line corresponds to collecting exactly
the minimum data requirement.

LOC does not require this prior data set to be effective as evidence by its performance on
non-classification tasks.

C.3 LOC with Active Learning

Although most of our experiments assume that data is collected via i.i.d. random sampling,
we may also consider alternative approaches to data collection such as active learning. Here,
the optimal data collection problem amounts to determining the optimal budget to set
when running an active learning query algorithm. Given the budget, we then sample data
according to the active learning strategy. This relies on the assumption that the learning
curve under active learning is monotone non-decreasing; this may not always be the case
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Figure 13: Mean ± std of the ratio of data collected q∗T /D
∗ for different V ∗ when we sweep

the penalty parameter from 106 to 109 and fix c = 1. We show T = 1, 3 and refer to the
main paper for T = 5. The dashed black line corresponds to collecting exactly the minimum
data requirement.

(e.g., see Viering and Loog (2022)), but has been empirically demonstrated for many common
batch-mode active learning strategies for computer vision (e.g., see Sener and Savarese (2018);
Mahmood et al. (2022b)). Overall, the LOC framework does not change from Algorithm 3,
except in how the training set statistics are collected in Algorithm 1.

Given a small amount of data, we can estimate the neural scaling law from the active
learning algorithm and apply estimation-only approaches and LOC. Table 9 highlights the
effect of using LOC when the data collection policy uses active learning instead of random
sampling. We focus on CIFAR-100 and test three different active learning strategies: Maxi-
mum Entropy (Settles, 2009), k-Centers (Sener and Savarese, 2018), and Least Confidence
(Settles, 2009). This table demonstrates the same trends as before, namely that our policy
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can better make decisions on the data collection budget compared to an estimation-only
policy regardless of the specific collection algorithm.

C.4 The Value of Optimization over Estimation when K = 2

Figure 10 and Figure 11 expand Figure 5 to T = 1, 3 rounds. The results validate the
summary observations from Table 3 in that the baseline has considerably higher failure rates
versus LOC. In particular for BDD100K at T = 1, the baseline fails consistently for four
out of five random seeds. On the other hand, recall that LOC admits a higher cost ratio
compared to the baseline when T = 1. We can observe now that this high cost ratio is due
to the method incurring high cost for a few target V ∗ values. This behavior is similar to the
observation above on VOC with high penalties at T = 3.

C.5 Robustness to the Cost and Penalty Parameters

Figure 12 expands the cost parameter sweep from Figure 6 (Top row) to the settings of
T = 1, 3. For nearly all settings, LOC remains stable to variations in the cost parameter.
Nonetheless, careful parameter selection becomes important as T decreases. This is due to
the fact that for low costs, the total amount of data collected increases as T decreases (e.g.,
c = 0.001 for BDD100K). Furthermore, Figure 13 expands the penalty parameter sweep
from Figure 6 (Bottom row). Here, we observe similar properties to the cost parameter
sweep.

Although LOC is relatively stable on all other data sets, our results demonstrate some
extreme results for VOC, potentially due to noise in the simulation. For example in Figure 13,
setting P = 109, V ∗ = 71, and T = 3 led to collecting 10, 000 times the minimum data
requirement. Such a situation is unrealistic in a production-level implementation, since in a
real implementation, we could impose further constraints onto problem (8), such as upper
bounds on the total amount of data permissible.
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