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Abstract

An individualized treatment regime (ITR) is a decision rule that assigns treatments based
on patients’ characteristics. The value function of an ITR is the expected outcome in a
counterfactual world had this ITR been implemented. Recently, there has been increasing
interest in combining heterogeneous data sources, such as leveraging the complementary
features of randomized controlled trial (RCT) data and a large observational study (OS).
Usually, a covariate shift exists between the source and target population, rendering the
source-optimal ITR not optimal for the target population. We present an efficient and
robust transfer learning framework for estimating the optimal ITR with right-censored
survival data that generalizes well to the target population. The value function accommo-
dates a broad class of functionals of survival distributions, including survival probabilities
and restrictive mean survival times (RMSTs). We propose a doubly robust estimator of
the value function, and the optimal ITR is learned by maximizing the value function within
a pre-specified class of ITRs. We establish the cubic rate of convergence for the estimated
parameter indexing the optimal ITR, and show that the proposed optimal value estimator
is consistent and asymptotically normal even with flexible machine learning methods for
nuisance parameter estimation. We evaluate the empirical performance of the proposed
method by simulation studies and a real data application of sodium bicarbonate therapy
for patients with severe metabolic acidaemia in the intensive care unit (ICU), combining a
RCT and an observational study with heterogeneity.

Keywords: covariate shift, data integration, policy learning, semiparametric theory,
transportability

1. Introduction

Data-driven individualized decision making has recently received increasing interest in many
fields, such as precision medicine (Kosorok and Laber, 2019; Tsiatis et al., 2019), mobile
health (Trella et al., 2022), precision public health (Rasmussen et al., 2020) and econometrics
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(Belloni et al., 2017; Athey and Wager, 2021). The goal of optimal ITR estimation is to learn
a decision rule that assigns the best treatment among possible options to each patient based
on their individual characteristics in order to optimize some functional of the counterfactual
outcome distribution in the population of interest, also known as the value function. The
optimal ITR is the one with the maximal value function, and the value function of the
optimal ITR is the optimal value function.

For completely observed data without censoring, one prevailing line of work in the
statistical and biomedical literature uses model-based methods to solve the optimal ITR
problem, such as Q-learning (Robins, 2004; Qian and Murphy, 2011; Laber et al., 2014)
and A-learning (Murphy, 2003; Schulte et al., 2014; Shi et al., 2018). Alternatively, direct
model-free or policy search methods have been proposed recently, including the classification
perspective (Zhang et al., 2012a,b; Zhao et al., 2012; Rubin and van der Laan, 2012) and
interpretable tree or list-based ITRs (Laber and Zhao, 2015; Zhang et al., 2015, 2018a),
among others (Chernozhukov et al., 2019; Colangelo and Lee, 2023). In clinical studies,
right-censored survival data are frequently observed as primary outcomes. Recent extensions
of optimal ITR with survival data have been established in Goldberg and Kosorok (2012);
Cui et al. (2017); Jiang et al. (2017); Bai et al. (2017); Dı́az et al. (2018); Zhou et al.
(2023). It is worth noting that learning the optimal ITR is closely linked to the estimation
of conditional average treatment effects, an area that has seen significant growth recently
(Hatt et al., 2022; Guo et al., 2022; Kato et al., 2024; Demirel et al., 2024a).

Researchers have investigated using machine learning algorithms to estimate the optimal
ITR from large classes, which cannot be indexed by a finite-dimensional parameter (Luedtke
and van der Laan, 2016a,b). One typical instance is that the optimal ITR can be learned
from the blip function, which is defined as the additive effect of a blip in treatment on a
counterfactual outcome, conditional on baseline covariates (Robins, 2004); and most existing
regression or supervised learning methods can be directly applied (Künzel et al., 2019).
However, the ITRs learned by machine learning methods can be too complex to inform
policy-making and clinical practice; to facilitate the integration of data-driven ITRs into
practice, it is crucial that estimated ITRs be interpretable and parsimonious (Zhang et al.,
2015).

While policy learning and evaluation under distributional shift have been investigated
extensively in the machine learning literature, recently there has been increasing interest
in combining heterogeneous data sources, such as leveraging the complementary features
of RCT data and a large OS (Rudolph and van der Laan, 2017; Yang et al., 2023a). For
example, in biomedical studies and policy research, RCTs are deemed as the gold standard
for treatment effects evaluation. However, due to inclusion or exclusion criteria, data avail-
ability, and study design, the enrolled participants in RCT who form the source sample
may have systematically different characteristics from the target population. Therefore,
findings from RCTs cannot be directly extended to the target population of interest (Cole
and Stuart, 2010; Dahabreh and Hernán, 2019). On the other hand, OSs are often represen-
tative of real-world patient populations, but may be subject to confounding bias. See also
Colnet et al. (2024) and Degtiar and Rose (2023) for detailed reviews. Heterogeneity in the
populations is of great relevance, and a covariate shift usually exists where the covariate
distributions differ between the source and target populations; thus, the optimal ITR for the
source population is not necessarily optimal for the target population. Zhao et al. (2019)
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uses data from a single trial study and proposes a two-stage procedure to derive a robust
and parsimonious rule for the target population; Mo et al. (2021) proposes a distributionally
robust framework that maximizes the worst-case value function under a set of distributions
that are “close” to the training distribution; Kallus (2021) tackles the lack of overlap for
different actions in policy learning based on retargeting; Wu and Yang (2022) and Chu
et al. (2023) develop a calibration weighting framework that tailors a targeted optimal ITR
by leveraging the individual covariate data or summary statistics from a target population;
Sahoo et al. (2022) uses distributionally robust optimization and sensitivity analysis tools
to learn a decision rule that minimizes the worst-case risk incurred under a family of test
distributions. However, these methods focus on continuous or binary outcomes and only
consider a single sample for worst-case risk minimization; the extension to right-censored
survival outcomes within the data integration context has not been studied.

We have the following contributions. We propose a new transfer learning method of
finding an optimal ITR from a restricted ITR class under the super population framework
where the source sample is subject to selection bias and the target sample is representative
of the target population with a known sampling mechanism. Specifically, in our value
search method, the value function accommodates a broad class of functionals of survival
distributions, including survival probabilities and RMSTs.

We characterize the efficient influence function (EIF) (Newey, 1990, 1994) of the value
function and propose the augmented estimator, which involves models for the survival
outcome, propensity score, censoring and sampling processes. The proposed estimator is
doubly robust in the sense that it is consistent if either the survival outcome model or
the models of the propensity score, censoring, and sampling are correctly specified and is
locally efficient when all models are correct. We also consider flexible data-adaptive machine
learning algorithms to estimate the nuisance parameters and use the cross-fitting procedure
to draw valid inferences under mild regularity conditions and a certain rate of convergence
conditions (Semenova and Chernozhukov, 2020; Chernozhukov et al., 2022b).

As we consider a restricted class of ITRs indexed by a Euclidean parameter η, we also
establish the cubic convergence rate of η̂, even though its resultant limiting distribution
is not standard, and thus very challenging to characterize. Based on this rate of conver-
gence, we show that the proposed estimator for the target value function is consistent and
asymptotically normal, even with flexible machine learning methods for nuisance parame-
ter estimation. For causal ITR parameters identified by moment functions that depend on
a first step unknown function, the “auto-DML” approach is a promising future direction
(Farrell et al., 2021; Chernozhukov et al., 2022a).

Interestingly, when the covariate distributions of the source and target populations are
the same, i.e., no covariate shift, the semiparametric efficiency bounds of our method and
the standard doubly robust method (Bai et al., 2017) are equal. Moreover, if the true
optimal ITR belongs to the restricted class of ITRs, the standard doubly robust method
can still learn the optimal ITR despite the covariate shift, but only our method provides
valid statistical inference for the value function.
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2. Statistical Framework

2.1 Causal Survival Analysis

Let X denote the p-dimensional vector of covariates that belongs to a covariate space
X ⊂ Rp, A ∈ A = {0, 1} denote the binary treatment, and T ∈ R+ denote the survival
time to the event of interest. In the presence of right censoring, the outcome T may not
be observed. Let C ∈ R+ denote the censoring time and ∆ = I{T ≤ C} where I{·} is the
indicator function. Let U = min{T,C} be the observed outcome, N(t) = I{U ≤ t,∆ = 1}
the counting process, and Y (t) = I{U ≥ t} the at-risk process.

We use the potential outcomes framework (Splawa-Neyman et al., 1990; Rubin, 1974),
where for a ∈ A = {0, 1}, T (a) is the survival time had the subject received treatment a.
The common goal in causal survival analysis is to identify and estimate the counterfactual
quantity E[y(T (a))] for some deterministic transformation function y(·). Such transforma-
tions include y(T ) = min(T, L) for the RMST with some pre-specified maximal time horizon
L, and y(T ) = I{T ≥ t} for the survival probability at time t.

Under the standard assumptions (a) consistency: T = T (A), (b) positivity: Pr(A =
a |X) > 0 for every a ∈ A almost surely, (c) unconfoundedness: A ⊥ {T (1), T (0)} |X,
(d) conditionally independent censoring: C ⊥ {T (1), T (0)} | {X,A}, we can nonparametri-
cally identify E[y(T (a))] by the outcome regression (OR) formula or the inverse probability
weighting (IPW) formula (van der Laan and Robins, 2003).

2.2 ITR and Value Function

Without loss of generality, we assume that larger values of T are more desirable. Typically
we aim to identify and estimate an ITR d(x) : X → A, which is a mapping from the
covariate space X to the treatment space A = {0, 1}, that maximizes the expected outcome
in a counterfactual world had this ITR been implemented. Suppose D is the class of
candidate ITRs of interest, then define the potential outcome T (d) under any d ∈ D by
T (d) = d(X)T (1) + (1 − d(X))T (0), and the value function (Manski, 2004) of d is defined
by V (d) = E[y(T (d))]. Then by maximizing V (d) over D, the optimal ITR is defined by
dopt = arg maxd∈D V (d). See Qian and Murphy (2011) for more details.

To estimate the value function, we can use the OR or IPW formulas, and also a doubly
robust method (Bai et al., 2017):

VDR(d) =E
[

I{A = d(X)}∆ y(U)

Pr(A = d(X) |X)SC(U |A,X)

+

(
1− I{A = d(X)}

Pr(A = d(X) |X)

)
E[y(T ) |A = d(X), X]

+
I{A = d(X)}

Pr(A = d(X) |X)

∫ ∞
0

dMC(u |A,X)

SC(u |A,X)
E[y(T ) |T ≥ u,A,X]

]
,

(1)

where SC(t | a, x) = Pr(C > t |A = a,X = x) is the conditional survival function for the
censoring process, dMC(u |A = a,X) = dNC(u)−Y (u)dΛC(u |A = a,X) is the martingale
increment for the censoring process, NC(u) = I{U ≤ u,∆ = 0} and ΛC(u |A = a,X) =
− log(SC(u |A = a,X)). The first term in (1) is the IPW formula, and the augmentation
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terms capture additional information from the subjects who do not receive treatment d,
and who receive treatment d but are censored.

In (clinical) practice, it is usually desirable to consider a class of ITRs indexed by a
Euclidean parameter η = (η1, . . . , ηp+1)T ∈ Rp+1 for feasibility and interpretability, which
has become the major trend (Rudin, 2019; Wallace and Moodie, 2015; Chen et al., 2017).
Let V (η) = V (dη). Throughout, we focus on such a class of linear ITRs:

Dη = {dη : dη(X) = I{ηT X̃ ≥ 0}, |ηp+1| = 1},

where X̃ = (1, XT )T , and for identifiability we assume there exists a continuous covariate
whose coefficient has absolute value one (Zhou et al., 2023); without loss of generality, we
assume |ηp+1| = 1. Therefore, the population parameter η∗ indexing the optimal ITR is
η∗ = arg maxη∈{η∈Rp+1:|ηp+1|=1} V (η), and the optimal value function is V (η∗).

Remark 1 Despite that we focus on linear ITRs, we note that our main identification and
semiparametric efficiency results hold for general ITRs. When there is no restrictions on
the ITR class D, Zhang et al. (2012b) have shown that the optimal ITR, determined by
the sign of the conditional average treatment effects (CATEs), equivalently maximizes the
value function. That is, the optimal ITR only depends on the CATEs, or the conditional
distributions of the outcome given the covariates. But when the ITR class D is restricted,
the optimal ITR would also hinge on the covariate distribution, so we have to account for
the covariate shift. The desirable interpretability and parsimony of linear ITRs can only be
achieved at the expense of making suboptimal decisions for some individuals. Maronge et al.
(2023) propose a reluctant additive model for interpretable nonlinear ITRs, which addresses
the tension between interpretability and accuracy of treatment decisions. To prevent the
estimated optimal ITR from being suboptimal or even detrimental to certain disadvantaged
subpopulations, Fang et al. (2023) propose new fairness criteria that guarantee the tail
performance exceed a prespecified threshold. We leave it for future research to integrate
these methods into our transfer learning framework.

2.3 Transfer Learning

If we understand the conditional average treatment effects and, consequently, the optimal
individualized treatment rule (ITR) for all values of X, concerns related to covariate shift
become irrelevant. We advocate for the adoption of a transfer learning framework for two
primary reasons: 1) As highlighted in the preceding section, simplicity in ITRs is often
favored in practical scenarios. However, the efficacy of such an ITR might be compromised
by covariate shifts, where there is a discrepancy in population distributions (Sugiyama and
Kawanabe, 2012). 2) Our goal extends beyond merely identifying the optimal ITR; we
are also keen on estimating and conducting inference on the value function for the target
population. This step is crucial for assessing the effectiveness of the ITR before its practical
application.

Instead of minimizing the worst-case risk over a single data sample, here we combine
the source and target samples. This is a common practice in many clinical settings, for
instance generalizing an active-controlled trial’s intention-to-treat effect where only baseline
covariates are measured, from historical trial data where complete information is available
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(He et al., 2024). Suppose that a source sample of size n and a target sample of size m
are sampled independently from the target super population with different mechanisms.
Let IS and IT denote the indicator of source and target samples, respectively. Typically,
the source data may originate from a randomized controlled trial (RCT), and thus it may
be considered as sampled with a selection bias, meaning that its distribution differs from
that in the broader target population. Frequently, the target data is uniformly sampled
(or with known design weights) from this broader target population, ensuring that their
distributions align. However, our approach of integrating two data sources enables us to
introduce innovative weighting schemes or designs aimed at enhancing generalization.

More formally, a covariate shift means that Pr(IS = 1 |X) 6= Pr(IT = 1 |X). In the
source sample, independent and identically distributed (i.i.d.) dataOs = {Xi, Ai, Ui,∆i, IS,i =
1, IT,i = 0}ni=1 are observed from n subjects; in the target sample, it is common that only
the covariates information is available, so i.i.d. data Ot = {Xi, IS,i = 0, IT,i = 1}n+m

i=n+1 are
observed from m subjects.

In this framework, we assume that the source and target sampling mechanisms are
independent, which holds if two separate studies are conducted independently by different
research projects in different locations or in two separate time periods, and the target
population is sufficiently large. In the context of combining the RCT and observational
study, this framework corresponds to the non-nested study design (Dahabreh et al., 2021).

Remark 2 We consider the two independent samples from a (target) super population that
describes the distribution of all subjects of interest to whom we intend to assign the treat-
ment. We present the identification formulas in Section 3; however, we do not require N to
be fixed and known. Equivalently, it is also possible to assume a pooled population consisting
of a source population and a target population, and similar identification formulas can be
proposed based on the density ratio of the two populations. Given the sampling mechanism
of our data structure, we have that n and m scale at the same rate. So in our main asymp-
totic analysis, we can simply let n,m→∞. In the Appendix F, we analyze the asymptotic
properties of our proposed methods when m or n diverges faster.

3. Methodology

3.1 Identification and Semiparametric Efficiency

To identify the causal effects from the observed data, we make the following assumptions.

Assumption 1 (a) T = T (A) almost surely. (b) Pr(A = a |X, IS = 1) > 0 for every a
almost surely. (c) A ⊥ {T (1), T (0)} | {X, IS = 1}. (d) C ⊥ {T (1), T (0)} | {X,A, IS = 1}.
(e) The transformation y(·) admits a maximal horizon 0 < h < ∞, such that y(t) = y(h)
for all t ≥ h. Pr(C < h | X,A, IS = 1) < 1.

Assumption 1 includes the standard assumptions as we have introduced in Section 2.1.
Here we only assume them in the source population. Assumption 1 (a) implies that the
observed outcome is the potential outcome under the actual assigned treatment. Assump-
tion 1 (b) states that each subject has a positive probability of receiving both treatments.
Assumption 1 (c) requires that all confounding factors are measured so that treatment as-
signment is as good as random conditionally on X. Assumption 1 (d) essentially states
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that the censoring process is non-informative conditionally on X. Furthermore, we require
additional assumptions for the source and target populations. Assumption 1 (e) says that
the transformation is indifferent to survival beyond some maximal time horizon.

Assumption 2 (Survival mean exchangeability) E[y(T (a)) |X, IS = 1] = E[y(T (a)) |X]
for every a ∈ A.

Assumption 3 (Positivity of source inclusion) 0 < Pr(IS = 1 |X) < 1 almost surely.

Assumption 4 (Known target design) The target sample design weight e(x) = π−1
T (x) =

1/Pr(IT = 1 |X = x) is known by design.

Assumption 2 is similar to the mean exchangeability over trial participation (Dahabreh
et al., 2019), and is weaker than the ignorablility assumption (Stuart et al., 2011), i.e.,
IS ⊥ {T (1), T (0)} |X. Assumption 3 states that each subject has a positive probability to
be included in the source sample, and implies adequate overlap of covariate distributions
between the source and target populations. This can be a strong assumption in practice.
When Assumption 3 is violated, generalization can only be made to a restricted population
without extrapolation. So it would help to first identify the population where we can
generalize (e.g. trial eligibility criteria). One can fit a propensity score model and trim the
extreme values to ensure positivity is not violated (Yang and Ding, 2018). However, it shifts
the target population and complicates the estimation and inference procedure, so we leave it
for future work. Another line of research focuses on falsification tests (Hussain et al., 2022,
2023; Demirel et al., 2024b), which may serve as alternatives of Assumption 3. Assumption
4 is commonly assumed in the survey sampling literature; thus the design-weighted target
sample is representative of the target population. In an observational study with simple
random sampling, we have e(x) = 1/Pr(IT = 1).

Under this framework, we have the following key identity that for any g(X)

E
[

IS
πS(X)

g(X)

]
= E[IT e(X)g(X)] = E[g(X)], (2)

where πS(X) = Pr(IS = 1 |X) is the sampling score.

Proposition 3 (Identification formulas) Under Assumptions 1 - 4, the value function
V (d) can be identified by the outcome regression formula:

V (d) = E[IT e(X)E[y(T ) |A = d(X), X, IS = 1]], (3)

and the IPW formula:

V (d) = E
[

IS
πS(X)

I{A = d(X)}
πd(X)

∆ y(U)

SC(U |A,X)

]
, (4)

where πd(X) = d(X)πA(X) + (1 − d(X))(1 − πA(X)) with the propensity score πA(X) =
Pr(A = 1 |X, IS = 1), and SC(t | a, x) = Pr(C > t |A = a,X = x, IS = 1).
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Based on the identification formulas (3) and (4), we can construct plug-in estimators for
V (d), using the sampling score πS(X) or design weights e(X) to account for the sampling
bias. By the identity (2), the design weights IT e(X) in the OR formula (3) with the target
sample can also be replaced by the inverse of sampling score IS/πS(X) using the source
sample. However, these estimators are biased if the posited models are misspecified, and
extreme weights from πS , πA and SC usually lead to large variability.

The simple plug-in estimators based on the formulas (3) and (4) are only consistent
when the corresponding models are correctly specified, which is often unrealistic in practice.
Therefore, we consider a more efficient and robust approach, motivated by the efficient
influence function for V (d). We use semiparametric efficiency theory to understand the
lower bound and statistical difficulty of estimating the target parameter V (d). By the EIF,
we can construct the optimally efficient estimator, i.e. the one with smallest variance among
all regular and asymptotically linear estimators. Such estimators have also been shown to
have desirable robustness against model misspecification. We refer to Kennedy (2022) for
more details.

Proposition 4 Under Assumptions 1 - 4, the efficient influence function of V (d) is

φd =
IS

πS(X)

I{A = d(X)}
πd(X)

∆ y(U)

SC(U |A,X)
− V (d)

+

(
IT e(X)− IS

πS(X)

I{A = d(X)}
πd(X)

)
µ(d(X), X)

+
IS

πS(X)

I{A = d(X)}
πd(X)

∫ ∞
0

dMC(u |A,X)

SC(u |A,X)
Q(u,A,X).

(5)

where µ(a, x) = E[y(T ) |A = a,X = x, IS = 1] and Q(u, a, x) = E[y(T ) |T ≥ u,A = a,X =
x, IS = 1] 1.

The semiparametric EIF guides us in constructing efficient estimators combining the
source and target samples. Compared to (1), this EIF captures additional covariates infor-
mation from the target population via the outcome model and thus removes the sampling
bias. An efficient estimation procedure is proposed in the next section, and we show that
it enjoys the double robustness property, i.e., it is consistent if either the survival outcome
models µ(a, x), Q(u, a, x) or the models of propensity score πA(x), sampling score πS(x)
and censoring process SC(t | a, x) are correct. Moreover, this EIF is Neyman orthogonal
in the sense discussed in Chernozhukov et al. (2018). Therefore, a cross-fitting procedure
is also proposed, allowing flexible machine learning methods for the nuisance parameters
estimation, and

√
n rate of convergence can be achieved.

3.2 An Efficient and Robust Estimation Procedure

In this section, we focus on estimating the survival function Sd(t) = Pr(T (d) > t) as the
value function under ITR d. Following the asymptotic linear characterization of survival
estimands in Yang et al. (2023b), our results are readily extended to a broad class of

1. Note that E[y(T ) |T ≥ u,A,X] = −
∫∞
u
y(s) dS(s |A,X)/S(u |A,X). For instance, when y(T ) = I{T ≥

t}, we have E[y(T ) |T ≥ u,A,X] = S(t |A,X)/S(u |A,X) for u ≤ t.
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functionals of survival distributions. For instance, the value function of the RMST under
ITR d is simply

∫ L
0 Sd(t)dt.

Based on the EIF (5), we propose an estimator for the survival function

Ŝd(t) =
1

n+m

n+m∑
i=1

{
IS,i

π̂S(Xi)

I{Ai = d(Xi)}
π̂d(Xi)

∆i Yi(t)

ŜC(t |Ai, Xi)

+

(
IT,i e(Xi)−

IS,i
π̂S(Xi)

I{Ai = d(Xi)}
π̂d(Xi)

)
Ŝ(t |A = d(Xi), Xi)

+
IS,i

π̂S(Xi)

I{Ai = d(Xi)}
π̂d(Xi)

∫ ∞
0

Ŝ(t |Ai, Xi)dM̂C(u |Ai, Xi)

Ŝ(u |Ai, Xi)ŜC(u |Ai, Xi)

}
,

(6)

where S(t | a, x) = Pr(T > t |A = a,X = x, IS = 1) is the treatment-specific con-
ditional survival function. We posit (semi)parametric models for the nuisance param-
eters. Let πA(X; θ) be the posited propensity score model, for example, using logistic
regression logit{πA(X; θ)} = θTX̃, where logit(x) = log{x/(1 − x)}. We use the Cox
proportional hazard model Λ(t |A = a,X = x) = Λ0,a(t) exp(βTa x) to estimate the sur-
vival functions S(t | a, x) = exp{−Λ(t | a, x)} and the cumulative baseline hazard function
Λ0,a(t) =

∫ t
0 λ0,a(u)du can be estimated by the Breslow estimator (Breslow, 1972). Simi-

larly, we posit a Cox proportional hazard model for the censoring process ΛC(t |A = a,X =
x) = ΛC0,a(t) exp(αTa x), and the cumulative baseline hazard function ΛC0,a(t) is estimated
by the Breslow estimator. The sampling score estimation is discussed in the next section.

Let Ŝ(t; η) = Ŝdη(t) be the estimated value function for the ITR class Dη, then the

optimal ITR is given by dη̂(x), where η̂ = arg maxη Ŝ(t; η).

3.3 Calibration Weighting

To correct the bias due to the covariate shift between populations, most existing methods
directly model the sampling score (Cole and Stuart, 2010), i.e., inverse probability of sam-
pling weighting (IPSW). However, the IPSW method requires the sampling score model to
be correctly specified, and it could also be numerically unstable. Alternatively, we introduce
the calibration weighting (CW) approach motivated by the identity (2), which is similar to
the entropy balancing method (Hainmueller, 2012).

Let g(X) be a vector of functions of X to be calibrated, such as the moments, interac-
tions, and non-linear transformations of X. Each subject i in the source sample is assigned
a weight qi by solving the following optimization task:

min
q1,...,qn

n∑
i=1

qi log qi, (7)

subject to qi ≥ 0,

n∑
i=1

qi = 1,

n∑
i=1

qig(Xi) = g̃, (8)

where g̃ =
∑n+m

i=n+1 e(Xi)g(Xi)/
∑n+m

i=n+1 e(Xi) is a design-weighted estimate of E[g(X)].
The objective function (7) is the negative entropy of the calibration weights, which ensures
that the empirical distribution of the weights is not too far away from the uniform, such that
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it minimizes the variability due to heterogeneous weights. The final balancing constraint
in (8) calibrates the covariate distribution of the weighted source sample to the target
population in terms of g(X). By introducing the Lagrange multiplier λ, the minimizer of the
optimization task is qi = exp{λ̂Tg(Xi)}/

∑n
i=1 exp{λ̂Tg(Xi)}, where λ̂ solves the estimating

equation
∑n

i=1 exp{λTg(Xi)}{g(Xi) − g̃} = 0. Since we only require specifying g(X),
calibration weighting avoids explicitly modeling the sampling score and evades extreme
weights.

Moreover, suppose that the sampling score follows a loglinear model πS(X;λ) = exp{λT X̃},
Lee et al. (2021, 2022) show that there is a direct correspondence between the calibration
weights and the estimated sampling score. We also note that if the fraction Pr(IS = 1) is
small, the loglinear model is close to the widely used logistic regression model; our simula-
tion studies show the robustness of calibration weights.

Remark 5 Other objective functions can also be used for calibration weights estimation.
Chu et al. (2023) considers a generic convex distance function h(q) from the Cressie and
Read family of discrepancies (Cressie and Read, 1984). Thus the optimization task is
minq1,...,qn

∑n
i=1 h(qi) under the constraints (8), and the correspondence between the sam-

pling score model πS and the objective function h has also been established.

3.4 Cross-Fitting

Utilizing the Neyman orthogonality of EIF (5), we consider flexible machine learning meth-
ods for estimating the nuisance parameters, where we want to remain agnostic on modeling
assumptions for the complex treatment assignment, survival, and censoring processes. There
is extensive recent literature on nonparametric methods for heterogeneous treatment effect
estimation with survival outcomes. Cui et al. (2023) extends the generalized random forests
(Athey et al., 2019) to estimate heterogeneous treatment effects in a survival and observa-
tional setting. See Xu et al. (2023) for details and practical considerations. A description
of the proposed cross-fitting procedure is given below (Schick, 1986; Chernozhukov et al.,
2018). Throughout, we use the subscript CF to denote the cross-fitted version.

Algorithm 1 Pseudo algorithm for the cross-fitting procedure

Step 1 Randomly split the datasets Os and Ot respectively into K-folds with equal size
such that Os = ∪Kk=1Os,k,Ot = ∪Kk=1Ot,k. For each k ∈ {1, . . . ,K}, let Ocs,k =
Os\Os,k,Oct,k = Os\Ot,k

Step 2 For each k ∈ {1, . . . ,K}, estimate the nuisance parameters only using data Ocs,k
and Oct,k; then obtain an estimate of the value function V̂CF,k(η) using data Os,k

Step 3 Aggregate the estimates from K folds: V̂CF (η) = 1
K

∑K
k=1 V̂CF,k(η)

Step 4 The estimated optimal ITR is indexed by η̂ = arg maxη V̂CF (η)

10
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4. Asymptotic Properties

In this section, we present the asymptotic properties of the proposed methods. To establish
the asymptotic properties, we require the following assumptions.

Assumption 5 (i) The value function V (η) is twice continuously differentiable in a neigh-
borhood of η∗. (ii) There exists some constant δ0 > 0 such that Pr(0 < |X̃T η| < δ) = O(δ),
where the big-O term is uniform in 0 < δ < δ0.

Condition (i) is a standard regularity condition to establish uniform convergence. Similar
margin conditions as (ii), which state that Pr(0 < |γ(X)| < δ) = O(δα) 2, are often
assumed in the literature of classification (Tsybakov, 2004; Audibert and Tsybakov, 2007),
reinforcement learning (Farahmand, 2011; Hu et al., 2025) and optimal treatment regimes
(Luedtke and van der Laan, 2016a; Luedtke and Chambaz, 2020), to guarantee a fast
convergence rate. Note that α = 0 imposes no restriction, which allows γ(X) = 0 almost
surely, i.e., the challenging setting of exceptional laws where the optimal ITR is not uniquely
defined (Robins, 2004; Robins and Rotnitzky, 2014), while the case α = 1 is of particular
interest and would hold if γ(X) is absolutely continuous with bounded density.

Theorem 6 Under Assumptions 1 - 5 and standard regularity conditions provided in the
Supplementary Material, if either the survival outcome model, or the models of the propen-
sity score, the sampling score and the censoring process are correct, we have that as n,m→
∞, (i) Ŝ(t; η)→ S(t; η) for any η and 0 < t ≤ L; (ii)

√
n+m

{
Ŝ(t; η)− S(t; η)

}
converges

weakly to a mean zero Gaussian process for any η; (iii) (n + m)1/3 ‖η̂ − η∗‖2 = Op(1);

(iv)
√
n+m

{
Ŝ(t; η̂)− S(t; η∗)

}
→ N (0, σ2

t,1), where σt,1 is given in the Supplementary

Material.

Next, to characterize the asymptotic behavior of the estimator with the nonparametric
estimation of nuisance parameters, we assume the following consistency and convergence
rate conditions of the nonparametric plug-in nuisance estimators.

Assumption 6 Assume the following consistency conditions: ‖π̂A(x) − πA(x)‖2 = op(1),
‖π̂S(x)− πS(x)‖2 = op(1), and for a = 0, 1,

sup
u≤h

∥∥∥ŜC(u | a,X)− SC(u | a,X)
∥∥∥

2
= op(1), sup

u≤h

∥∥∥∥∥ λ̂C(u | a,X)

ŜC(u | a,X)
− λC(u | a,X)

SC(u | a,X)

∥∥∥∥∥
2

= op(1),

‖µ̂(a,X)− µ(a,X)‖2 = op(1), sup
u≤h

∥∥∥Q̂(u, a,X)−Q(u, a,X)
∥∥∥ = op(1),

and the following rate of convergence conditions: ‖π̂A(x)− πA(x)‖2 = op(n
−1/4), ‖π̂S(x)−

πS(x)‖2 = op(n
−1/4), and for a = 0, 1,

sup
u≤h

∥∥∥ŜC(u | a,X)− SC(u | a,X)
∥∥∥

2
= op(n

−1/4), sup
u≤h

∥∥∥∥∥ λ̂C(u | a,X)

ŜC(u | a,X)
− λC(u | a,X)

SC(u | a,X)

∥∥∥∥∥
2

= op(n
−1/4),

‖µ̂(a,X)− µ(a,X)‖2 = o(n−1/4), sup
u≤h

∥∥∥Q̂(u, a,X)−Q(u, a,X)
∥∥∥

2
= o(n−1/4).

2. Let γ(X) = E[T |A = 1, X] − E[T |A = 0, X] denote the conditional average treatment effect, then the
optimal ITR in an unrestricted class is given by d(X) = I{γ(X) > 0}.

11
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The rate conditions in Assumption 6 are generally assumed in the literature (Kennedy,
2022). This rate can be achieved by many existing methods under certain structural assump-
tions on the nuisance parameters. Note that the nuisance parameters do not necessarily
need to be estimated at the same rates n−1/4 for our theorems to hold; it would suffice that
the product of rates of any combination of two nuisance parameters is n−1/2.

Theorem 7 Under Assumptions 1 - 6, we have that as n,m → ∞, (i) ŜCF (t; η) →
S(t; η) for any η and 0 < t ≤ L; (ii)

√
n+m

{
ŜCF (t; η)− S(t; η)

}
converges weakly

to a mean zero Gaussian process for any η; (iii) (n + m)1/3‖η̂ − η∗‖2 = Op(1); (iv)
√
n+m

{
ŜCF (t; η̂)− S(t; η∗)

}
→ N (0, σ2

t,2), where σt,2 is given in the Supplementary Ma-

terial.

Besides the survival functions, another common measure of particular interest in survival
analysis is the RMST. Let VRMST(η) = E[min(T (dη), L)]. We present two corollaries.

Corollary 8 Under Assumptions 1 - 5 and standard regularity conditions provided in the
Supplementary material, if either the survival outcome model or the models of the propen-
sity score, the censoring and sampling processes are correct, we have that as n,m→∞, (i)

V̂RMST(η)→ VRMST(η) for any η; (ii) (n+m)1/3‖η̂−η∗‖2 = Op(1); (iii)
√
n+m

{
V̂RMST(η̂)− VRMST(η∗)

}
→

N (0, σ2
3), where σ3 is given in the Supplementary Material.

Corollary 9 Under Assumptions 1 - 6, we have that as n,m → ∞, (i) V̂RMST,CF (η) →
VRMST(η) for any η; (ii) (n+m)1/3‖η̂−η∗‖2 = Op(1); (iii)

√
n+m

{
V̂RMST,CF (η̂)− VRMST(η∗)

}
→

N (0, σ2
4), where σ4 is given in the Supplementary Material..

Finally, we show that when the covariate distributions of the source and target popula-
tions are the same, the semiparametric efficiency bounds of V̂DR(η) and V̂CF (η) are equal.

Theorem 10 Under Assumptions 1 - 6, when the covariate distributions of the source and
target populations are the same, both

√
n{V̂DR(η)−V (η)} and

√
n+m{V̂CF (η)−V (η)} are

asymptotically normal with mean zero and same variance.

Theorem 10 implies that when there is no covariate shift, our proposed estimator does
not lose efficiency in comparison to the original double robust estimator since the augmen-
tation term in EIF (5) from the target population, IT e(X)µ(d(X), X), is asymptotically
equal to this term evaluated on the source population in this case.

Moreover, when the covariate shift exists, we consider the optimal ITR dopt without
restriction on the ITR class.

Theorem 11 Under Assumptions 1 - 6, If dopt ∈ Dη, i.e., dopt = dη∗, both the maximizers
of V̂DR(η) and V̂CF (η) converge to η∗. However, V̂DR(η) is a biased estimator of V (η).

Theorem 11 implies if the true optimal ITR belongs to the restricted ITR class Dη,
standard methods, without accounting for the covariate shift, are still able to recover the
optimal ITR but fail to be consistent for the value function, due to the covariate shift. And
we can only rely on the proposed method to draw valid inferences.

12
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5. Simulation

In this section, we investigate the finite-sample properties of our method through extensive
numerical simulations. The R code to replicate all results is available at https://github.

com/panzhaooo/transfer-learning-survival-ITR. Consider a target population of sam-
ple size N = 2×105. The covariates (X1, X2, X3)T are generated from a multivariate normal
distribution with mean 0, unit variance with corr(X1, X3) = 0.2 and all other pairwise cor-
relations equal to 0, and further truncated below −4 and above 4 to satisfy regularity con-
ditions. The target sample is a random sample of size m = 8000 from the target population.
The sampling score follows πS(X) = expit(−4.5− 0.5X1 − 0.5X2 − 0.4X3); thus the source
sampling rate is around 1.6%, and the source sample size around n = 3000. The treatment
assignment mechanism in the source sample follows πA(X) = expit(0.5 + 0.8X1 − 0.5X2).

The counterfactual survival times T (a) are generated according to the hazard functions
λ(t |A = 0, X) = exp(t) · exp(−2.5 − 1.5X1 − X2 − 0.7X3) and λ(t |A = 1, X) = exp(t) ·
exp(−1−X1−0.9X2−X3−2X2

2 +X1X3). The censoring time C is generated according to
the hazard functions λC(t |A = 0, X) = 0.04 exp(t) ·exp(−1.6+0.8X1−1.1X2−0.7X3) and
λC(t |A = 1, X) = 0.04 exp(t) · exp(−1.8−0.8X1−1.7X2−1.4X3). The resultant censoring
rate is approximately 20%.

We consider the RMST with the maximal time horizon L = 4 as the value func-
tion. To evaluate the performance of different estimators for optimal ITRs, we compute
the corresponding true value functions and percentages of correct decisions (PCD) for
the target population. Specifically, we generate a large sample with size Ñ = 1 × 105

from the target population. The true value function of any ITR d(· ; η) is computed by

V (η) = Ñ−1
∑Ñ

i=1 min{d(Xi ; η)Ti(1) + (1 − d(Xi ; η))Ti(0), L} and its associated PCD is

computed by 1− Ñ−1
∑Ñ

i=1 |d(Xi ; η∗)− d(Xi ; η)|, where η∗ = arg maxη V (η).

We compare the following estimators for the RMST V̂ (η) =
∫ L

0 Ŝ(t; η)dt:

• Naive: ŜNaive(t; η) = 1
n

∑n
i=1

I{Ai=d(Xi)}
π̂d(Xi)

∆iYi(t)

ŜC(U |A,X)
; IPW formula (4) without using

the sampling score;

• IPSW: ŜIPSW(t; η) = 1
n

∑n
i=1

IS,i
π̂S(Xi)

I{Ai=d(Xi)}
π̂d(Xi)

∆iYi(t)

ŜC(U |A,X)
; IPW formula (4) where the

sampling score is estimated via logistic regression;

• CW-IPW: ŜCW-IPW(t; η) =
∑n

i=1 qi
I{Ai=d(Xi)}

π̂d(Xi)
∆iYi(t)

ŜC(U |A,X)
IPW formula (4) where the

sampling score is estimated by calibration weighting;

• CW-OR: ŜCW-OR(t; η) =
∑n

i=1 qi Ŝ(t |A = d(Xi), Xi); OR formula (3) in combination
with calibration weights by the identity (2);

• ORt: ŜORt(t; η) = 1
m

∑n+m
i=n+1 Ŝ(t |A = d(Xi), Xi); OR formula (3) evaluated on the

target sample;

• ACW: augmented estimator (6), where the sampling score is estimated by calibration
weighting.

Remark 12 Since the estimated value functions are non-convex and non-smooth, multiple
local optimal may exist in the optimization task, and many derivatives-based algorithms do

13

https://github.com/panzhaooo/transfer-learning-survival-ITR
https://github.com/panzhaooo/transfer-learning-survival-ITR


Zhao, Josse and Yang

not work for this challenging setting. Here we utilize the genetic algorithm implemented
in the R package rgenoud (Mebane Jr. and Sekhon, 2011), which performs well in our
numerical experiments. We refer to Mitchell (1998) for algorithmic details.

5.1 (Semi)parametric Models

We first consider the setting where the nuisance parameters are estimated by posited
(semi)parametric working models as introduced in Section 3.2. To assess the performance
of these estimators under model misspecification, we consider four scenarios: (1) all models
are correct, (2) only the survival outcome model is correct, (3) only the survival outcome
model is wrong, (4) all models are wrong. For the wrong sampling model, the weights are
estimated using calibration on eX1 . The wrong propensity score model is fitted on eX3 . The
wrong Cox models for survival and censoring times are fitted on (eX1 , eX2 , eX3)T .

Figure 1 and Table 1 report the simulation results from 350 Monte Carlo replications.
Variance is estimated by a bootstrap procedure with B = 200 bootstrap replicates. The
proposed ACW estimator is unbiased in scenarios (1) - (3), and the 95% coverage probabil-
ities approximately achieve the nominal level, which shows the double robustness property.
In comparison, the bias of the regression based methods is 10 times larger than our proposed
method when the outcome model is misspecified, and the bias of the weighting based meth-
ods is 100 times larger than our proposed method when the models for sampling, treatment
assignment and censoring are wrong.

Table 1: Numerical results under four different model specification scenarios. Bias is the
empirical bias of point estimates; SD is the empirical standard deviation of point
estimates; SE is the average of bootstrap standard error estimates; CP is the
empirical coverage probability of the 95% confidence intervals.

Bias SD SE CP(%) Bias SD SE CP(%)

O:T / S:T, A:T, C:T O:T / S:W, A:W, C:W
Naive −0.8801 0.4595 0.2189 7.43 −0.3528 0.5024 0.4598 37.43
IPSW 0.0185 0.3685 0.2562 87.14 0.3377 0.7144 0.6958 98.29
CW-IPW 0.0378 0.3701 0.2498 88.29 0.3406 0.7144 0.6957 97.71
CW-OR 0.0047 0.0273 0.0286 96.29 −0.1312 0.0269 0.0279 0.57
ORt 0.0041 0.0258 0.0262 95.14 0.0035 0.0258 0.0262 95.71
ACW 0.0070 0.0380 0.0369 94.29 0.0055 0.0316 0.0334 95.43

O:W / S:T, A:T, C:T O:W / S:W, A:W, C:W
Naive −0.8801 0.4595 0.2207 6.86 −0.3528 0.5024 0.5018 38.57
IPSW 0.0185 0.3685 0.2486 87.71 0.3377 0.7144 0.7586 99.14
CW-IPW 0.0378 0.3701 0.2418 88.86 0.3406 0.7144 0.7570 98.57
CW-OR 0.0103 0.0370 0.0362 92.29 −0.2551 0.0366 0.0391 0.00
ORt 0.0094 0.0365 0.0355 94.00 0.0115 0.0328 0.0355 95.71
ACW −0.0010 0.0426 0.0419 93.14 0.2644 0.0422 0.0475 0.57
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Figure 1: Boxplot of the estimated value, true value and PCD results of estimators under
four model specification scenarios. O: survival outcome, S: sampling score, A:
propensity score, C: censoring; T: True (correctly specified) model, W: Wrong
(misspecified) model.
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5.2 Flexible Machine Learning Methods

When utilizing flexible ML methods, we construct the cross-fitted ACW estimator as in-
troduced in Section 3.4. The data generation process is the same as above, except that
the censoring time C is generated according to the hazard functions λC(t |A = 0, X) =
0.2 exp(t) ·exp(−1.6+0.8X1−1.1X2−0.7X3) and λC(t |A = 1, X) = 0.2 exp(t) ·exp(−1.8−
0.8X1 − 1.7X2 − 1.4X3) which leads to an increased censoring rate of approximately 33%,
so there are enough observations to get an accurate estimate of the censoring process. The
propensity score is estimated by the generalized random forest. The conditional survival and
censoring functions are estimated by the random survival forest. The calibration weighting
uses calibration on the first- and second-order moments of X.

First, we study the impact of sample sizes on the performance of the ML methods, and
simulation results are given in the Supplementary Material. With a small sample size, the
ACW estimator is largely biased, and the bias diminishes as the sample size increases.

Next, we compare the performance of different estimators with target population size
N = 6× 105 and target sample size m = 24000. Figure 2 shows the simulation results from
200 Monte Carlo replications. The two IPW-based estimators are biased and perform poorly
due to the large variability of weights. The two OR-based estimators have comparable
performance as the ACW estimator in terms of PCD and true value function but still
suffer from the overfitting bias. Only the ACW estimator is consistent and provides valid
inferences.

6. Real Data Analysis

In this section, to illustrate the proposed method, we study the sodium bicarbonate therapy
for patients with severe metabolic acidaemia in the intensive care unit by leveraging the
RCT data BICAR-ICU (Jaber et al., 2018) and the observational study (OS) data from
Jung et al. (2011). Specifically, we consider the BICAR-ICU data as the source sample and
the observational study data as the target sample. The BICAR-ICU is a multi-center, open-
label, randomized controlled, phase 3 trial between May 5, 2015, and May 7, 2017, which
includes 387 adult patients admitted within 48 hours to the ICU with severe acidaemia.
The prospective, multiple-center observational study was conducted over thirteen months
in five ICUs, consisting of 193 consecutive patients who presented with severe acidemia
within the first 24 hours of their ICU admission. Some heterogeneity exists between the
two populations.

Both the RCT and OS datasets contain detailed measurements of ICU patients with
severe acidaemia. Motivated by the clinical practice and existing work in the medical liter-
ature, we consider ITRs that depend on the following five variables: SEPSIS, AKIN, SOFA,
SEX, and AGE. A detailed description of the data preprocessing and variable selection is
given in the Supplementary Material. Table 2 summarizes the baseline characteristics of the
two datasets. The baseline covariates distribution of the patients in the BICAR-ICU differs
from the distribution in the observational study; specifically, the BICAR-ICU patients have
higher SOFA scores and the more frequent presence of acute kidney injury and sepsis.

We apply our proposed ACW estimator to learn the optimal ITR for the target popu-
lation. The calibration weights are estimated based on the means of continuous covariates
and the proportions of the binary covariates. The propensity score is estimated using a
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Figure 2: Boxplots of the estimated value, true value, and PCD of different estimators using
flexible ML methods.
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Table 2: Summary of baseline characteristics of the BICAR-ICU trial sample and the OS
sample. Mean (standard deviation) for continuous and number (proportion) for
the binary covariate.

SEPSIS AKIN SOFA SEX AGE

BICAR-ICU (n = 387) 236 (60.98%) 181 (46.77%) 10.12 (3.72) 237 (61.24%) 63.95 (14.41)
OS (m = 193) 99(51.30%) 75 (38.86%) 9.10 (4.54) 122 (63.21%) 62.73 (17.49)

logistic regression model, and the Cox proportional hazard model is fitted for the survival
outcome with all covariates. The censoring only occurred on the 28th day when the follow-
up in ICU ends. We consider the class of linear ITRs that depend on all five variables D =
{I{η1 + η2SEPSIS + η3AKIN + η4SOFA + η5SEX + η6AGE > 0} : η1, . . . , η6 ∈ R, |η6| = 1},
with the aim to maximize the RMST within 28 days in ICU stay. The estimated parame-
ter indexing the optimal ITR is η̂ACW = (22.9,−36.1, 87.4,−9.8, 33.7, 1.0)T , which leads to
an estimated value function V̂ (η̂ACW) = 19.52 days, with confidence interval [17.74, 21.30]
given by 200 bootstraps. In contrast, we also use the standard double robust method to esti-
mate the optimal ITR for the RCT, indexed by η̂DR.RCT which maximize the value function
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V̂DR(η) in (1) with y(T ) = min(T, 28). The estimated value function is V̂ (η̂DR.RCT) = 15.37
days for the target population.

7. Discussion

In this paper, we present an efficient and robust transfer learning framework for estimating
optimal ITR with right-censored survival data that generalizes well to the target popula-
tion. The proposed method can be improved or extended in several directions for future
work. Construction and estimation of optimal ITRs for multiple decision points with cen-
sored survival data are challenging, taking into account the timing of censoring, events and
decision points (Jiang et al., 2017; Hager et al., 2018), e.g., using a reinforcement learning
method (Cho et al., 2023). Furthermore, besides the class of ITRs indexed by a Euclidean
parameter, it may be possible to consider other classes of ITRs, such as tree or list-based
ITRs. The current work focus on value functions in the form V (d) = E[y(T (d))] and can
also be modified in case of optimizing certain easy-to-interpret quantile criteria, which does
not require specifying an outcome regression model and is robust for heavy-tailed distribu-
tions (Zhou et al., 2023). And relaxing the restrictive assumptions such as positivity (Yang
and Ding, 2018; Jin et al., 2022) and unconfoundedness (Cui and Tchetgen Tchetgen, 2021;
Qi et al., 2023) for learning optimal ITRs is also a fruitful direction.
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Appendix A. Preliminaries

A.1 Counting Processes for Cox Model

We use the counting process theory of Andersen and Gill (1982) in our theoretical framework
to study the large sample properties of Cox model. We state the existing results that are
used in our proof.

Let X⊗l denote 1 for l = 0, X for l = 1, and XXT for l = 2. Define

U (l)
a (βa, t) =

1

na

n∑
i=1

I{Ai = a}X⊗li exp(βTaXi)Yi(t) and u(l)
a (βa, t) = E

[
X⊗l exp(βTaX)Y (t)

]
,

where na =
∑n

i=1 I{Ai = a}, and define

Ea(βa, t) =
U

(1)
a (βa, t)

U
(0)
a (βa, t)

and ea(βa, t) =
u

(1)
a (βa, t)

u
(0)
a (βa, t)

.

The maximum partial likelihood estimator β̂a for the Cox proportional hazards model
solves the estimating equation

Sa,n(βa) =
1

na

n∑
i=1

I{Ai = a}
∫ {

Xi −
U

(1)
1 (βa, u)

U
(0)
1 (βa, u)

}
dNi(u) = 0,

and the cumulative baseline hazard function Λ̂0,a is estimted by the Breslow estimator:

Λ̂0,a(t) =

∫ t

0

∑n
i=1 I{Ai = a}dNi(u)∑n

i=1 I{Ai = a} exp(β̂TaXi)Yi(u)
, a = 0, 1.

Under certain regularity conditions (Andersen and Gill, 1982, Conditions A – D), β̂a
and Λ̂0,a converge in probability to the limits β∗a and Λ∗0,a, respectively; and we have

√
na(β̂a − β∗a) = Γ−1

a

1
√
na

n∑
i=1

I{Ai = a}Ha,i + op(1),

where Γa = E[−∂Sa,n(β∗a)/∂β∗Ta ] is the Fisher information matrix of β∗a, Ha,i =
∫
I{Ai =

a}{Xi − ea(β∗a, u)}dMa,i(u) and dMa,i(u) = dNi(u)− exp(β∗Ta Xi)Yi(u)dΛ∗0,a(u). Moreover,

let S∗(t | a,X) = exp{−Λ∗0,a(t) exp(β∗Ta X)}; it is shown that
√
na{Ŝ(t | a,Xi)−S∗(t | a,Xi)}

converges uniformly to a mean-zero Gaussian process for all Xi.

Specifically, we consider the following expansion that we use in our proof of Theorem 6
and Corollary 8,

Ŝ(t | a,Xi)− S∗(t | a,Xi) =− S∗(t | a,Xi)Λ
∗
0,a(t) exp(β∗Ta Xi)X

T
i (β̂a − β∗a)

− S∗(t | a,Xi) exp(β∗Ta Xi)(Λ̂0,a(t)− Λ∗0,a(t)),
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and furthermore

Λ̂0,a(t)− Λ∗0,a(t) =

∫ t

0

{
n−1
a

∑n
i=1 I{Ai = a}dNi(u)

U
(0)
a (β̂a, u)

−
n−1
a

∑n
i=1 I{Ai = a}dNi(u)

U
(0)
a (β∗a, u)

}

+

∫ t

0

{
n−1
a

∑n
i=1 I{Ai = a}dNi(u)

U
(0)
a (β∗a, u)

− dΛ∗0,a(t)

}

= −

∫ t

0

U
(1)
a (β∗a, u){

U
(0)
a (β∗a, u)

}2

{
n−1
a

n∑
i=1

I{Ai = a}dNi(u)

}
T (

β̂a − β∗a
)

+

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

U
(0)
a (β∗a, u)

+ op(1)

= −
{∫ t

0
ea(β

∗
a, u)dΛ∗0,a(u)

}T (
β̂a − β∗a

)
+

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

U
(0)
a (β∗a, u)

+ op(1).

Combining the above two equations, we obtain

Ŝ(t | a,Xi)− S∗(t | a,Xi)

=

[
−S∗(t | a,Xi)Λ

∗
0,a(t) exp(β∗Ta Xi)X

T
i −

{∫ t

0
ea(β

∗
a, u)dΛ∗0,a(u)

}T](
β̂a − β∗a

)
+

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

U
(0)
a (β∗a, u)

+ op(1).

A.2 Cross-Fitting

To show the high-level idea of cross-fitting, we state the lemma from Kennedy et al. (2020),
which is useful in our proof of Theorem 7 and Corollary 9.

Lemma 13 Consider two independent samples O1 = (O1, . . . , On) and O2 = (On+1, . . . , Oñ),
let f̂(o) be a function estimated from O2 and Pn the empirical measure over O1, then we
have

(Pn − P)(f̂ − f) = OP

(
‖f̂ − f‖√

n

)

Proof First note that by conditioning on O2 we obtain

E
{
Pn(f̂ − f)

∣∣O2

}
= E(f̂ − f | O2) = P(f̂ − f)

and the conditional variance is

var{(Pn − P)(f̂ − f) | O2} = var{Pn(f̂ − f) | O2} =
1

n
var(f̂ − f | O2) ≤ ‖f̂ − f‖2/n
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therefore by Chebyshev’s inequality we have

P

{
|(Pn − P)(f̂ − f)|
‖f̂ − f‖2/n

≥ t

}
= E

[
P

{
|(Pn − P)(f̂ − f)|
‖f̂ − f‖2/n

≥ t
∣∣∣∣O2

}]
≤ 1

t2

thus for any ε > 0 we can pick t = 1/
√
ε so that the probability above is no more than ε,

which yields the result.

Appendix B. Proof of Proposition 3

Proof We first show the identification by the outcome regression formula.

V (d) = E[E[y(T (d)) |X]]

= E[d(X)E[y(T (1)) |X] + (1− d(X))E[y(T (0)) |X]]

= E[d(X)E[y(T (1)) |X, IS = 1] + (1− d(X))E[y(T (0)) |X, IS = 1]]

= E[d(X)E[y(T (1)) |A = 1, X, IS = 1]

+ (1− d(X))E[y(T (0)) |A = 0, X, IS = 1]]

= E[d(X)E[y(T ) |A = 1, X, IS = 1] + (1− d(X))E[y(T ) |A = 0, X, IS = 1]]

= E[E[y(T ) |A = d(X), X, IS = 1]]

= E[IT e(X)E[y(T ) |A = d(X), X, IS = 1]].

Similarly, we show the identification by the IPW formula.

V (d) = E[E[y(T ) |A = d(X), X, IS = 1]]

= E
[

IS
πS(X)

E[y(T ) |A = d(X), X, IS = 1]

]
= E

[
IS

πS(X)

I{A = d(X)}
πd(X)

∆ y(U)

SC(U |A,X)

]
,

where the last equation follows from the standard IPTW-IPCW formula (van der Laan and
Robins, 2003).

Appendix C. Proof of Proposition 4

Proof While Lee et al. (2022) derived the efficient influence function for the treat-
ment specific survival function, here we derive the EIF for the value function V (d) =
E[IT e(X)µ(d(X), X)].

First consider the full data Z = (X,A, T, IS , IT ), and we have the factorization as

p(Z) = {p(X)πS(X)p(A|X, IS = 1)p(T |A,X, IS = 1)}IS{p(X)}IT .

Since ISIT = 0, the score function is S(Z) = S(X,A, T, IS) + ITS(X). Let Vε(d) =
Eε[IT e(X)µε(d(X), X)] denote the parameter of interest evaluated under the law pε(Z),
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where ε indexes a regular parametric submodel such that p0(Z) is the true data generating
law. To establish that V (d) is pathwise differentiable with EIF φFd , we need to show that

∂

∂ε
Vε(d)

∣∣∣∣
ε=0

= E[φFd S(Z)].

First, we compute

∂

∂ε
Vε(d)

∣∣∣∣
ε=0

= E[IT e(X)µ(d(X), X)S(X)] + E
[
∂

∂ε
µε(d(X), X)

∣∣∣∣
ε=0

]
,

and further write the first term on the right hand side as

E[IT e(X)µ(d(X), X)S(X)] = E[(IT e(X)µ(d(X), X)− V (d))S(X)]

= E[(IT e(X)µ(d(X), X)− V (d))S(Z)],

and the second term as

E
[
∂

∂ε
µε(d(X), X)

∣∣∣∣
ε=0

]
= E [d(X)E[y(T )S(T |A,X, IS) |A = 1, X, IS = 1]

+(1− d(X))E[y(T )S(T |A,X, IS) |A = 0, X, IS = 1]]

= E [d(X)E[(y(T )− µ(1, X))S(T |A,X, IS) |A = 1, X, IS = 1]

+(1− d(X))E[(y(T )− µ(0, X))S(T |A,X, IS) |A = 0, X, IS = 1]]

= E
[
d(X)E

[
IS A

πS(X)πA(X)
(y(T )− µ(1, X))S(T |A,X, IS)

∣∣∣∣X]
+(1− d(X))E

[
IS (1−A)

πS(X)(1− πA(X))
(y(T )− µ(0, X))S(T |A,X, IS)

∣∣∣∣X]]
= E

[
IS

πS(X)

(
d(X)

A

πA(X)
(y(T )− µ(1, X))

+(1− d(X))
1−A

1− πA(X)
(y(T )− µ(0, X))

)
S(T |A,X, IS)

]
= E

[
IS

πS(X)

I{A = d(X)}
πd(X)

(y(T )− µ(A,X))S(Z)

]
.

Therefore, the efficient influence function for the full data is

φFd = IT e(X)µ(d(X), X) +
IS

πS(X)

I{A = d(X)}
πd(X)

(y(T )− µ(A,X))− V (d).

Next, we consider the observed data O = (X,A,U,∆, IS , IT ) due to right censoring.
According to Tsiatis (2006, Section 10.4), the EIF based on the observed data is given by

φd =
∆φFd

SC(U |A,X)
+

∫ ∞
0

L(u,A,X)

SC(u |A,X)
dMC(u |A,X),
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where

L(u,A,X) = E[φFd |T ≥ u,A,X]

= IT e(X)µ(d(X), X) +
IS

πS(X)

I{A = d(X)}
πd(X)

(Q(u,A,X)− µ(A,X))− V (d).

Since we have∫ ∞
0

dMC(u |A,X)

SC(u |A,X)
=

∫ ∞
0

dNC(u)

SC(u |A,X)
−
∫ U

0

dΛC(u |A,X)

exp{ΛC(u |A,X)}

= 1− ∆

SC(U |A,X)
,

(9)

we conclude that

φd =
IS

πS(X)

I{A = d(X)}
πd(X)

∆ y(U)

SC(U |A,X)
− V (d)

+

(
IT e(X)− IS

πS(X)

I{A = d(X)}
πd(X)

)
µ(d(X), X)

+
IS

πS(X)

I{A = d(X)}
πd(X)

∫ ∞
0

dMC(u |A,X)

SC(u |A,X)
Q(u,A,X).

Appendix D. Proof of Theorem 6 and Corollary 8

D.1 Double Robustness

Proof We start with the proof of the double robustness property. We show that EIF-
based estimator is consistent when either the survival outcome model or the models for
the sampling score, the propensity score and the censoring process are correctly specified.
Under some regularity conditions, the nuisance estimators µ̂(a, x), Q̂(u, a, x), π̂S(x), π̂A(x)
and ŜC(t | a, x) converge in probability to µ∗(a, x), Q∗(u, a, x), π∗S(x), π∗A(x) and S∗C(t | a, x),
respectively. It suffices to show that E[V ∗(d)] = V (d), where

V ∗(d) =IT e(X)µ∗(A = d(X), X)

+
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

{
∆ y(U)

S∗C(U |A,X)
− µ∗(A,X)

+

∫ ∞
0

dM∗C(u |A,X)

S∗C(u |A,X)
Q∗(u,A,X)

}
=(I) + (II) + (III).

First, consider the case when the survival outcome model is correct, thus we have

(I) = E[IT e(X)µ∗(A = d(X), X)] = V (d)
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By Equation (9), we obtain

(II) + (III)

=
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

{
y(T )− µ∗(A,X)−

∫ ∞
0

dM∗C(u |A,X)

S∗C(u |A,X)
(y(T )−Q∗(u,A,X))

}
.

In this case, we have

E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

(y(T )− µ∗(A,X))

]
= E

[
E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

(y(T )− µ∗(A,X))

∣∣∣∣X]]
= E

[
E
[
E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

(y(T )− µ∗(A,X))

∣∣∣∣A,X, IS = 1

] ∣∣∣∣X]]
= E

[
E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

E[(y(T )− µ∗(A,X)) |A,X, IS = 1]

∣∣∣∣X]]
= E

[
E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

(E[y(T ) |A,X, IS = 1]− µ∗(A,X))

∣∣∣∣X]] = 0.

Also define dM̃C(u |A,X) = dÑC(u) − I{C ≥ u}dΛC(u |A,X) where ÑC(u) = I{C ≤
u}, so we have

E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM∗C(u |A,X)

S∗C(u |A,X)
(y(T )−Q∗(u,A,X))

]
= E

[
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM̃C(u |A,X)

S∗C(u |A,X)
I{T ≥ u}(y(T )−Q∗(u,A,X))

]

= E

[
E

[
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM̃
(
Cu |A,X)

S∗C(u |A,X)
I{T ≥ u}(y(T )−Q∗(u,A,X))

∣∣∣∣X
]]

= E

[
E

[
E

[
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM̃C(u |A,X)

S∗C(u |A,X)
I{T ≥ u}

(y(T )−Q∗(u,A,X))

∣∣∣∣A,X,C, IS = 1

] ∣∣∣∣X]]
= E

[
E

[
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM̃C(u |A,X)

S∗C(u |A,X)
E [I{T ≥ u}

(y(T )−Q∗(u,A,X))

∣∣∣∣A,X,C, IS = 1

] ∣∣∣∣X]]
= E

[
E

[
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM̃C(u |A,X)

S∗C(u |A,X)
(E[I{T ≥ u}y(T ) |A,X, IS = 1]

−E[I{T ≥ u} |A,X, IS = 1]Q∗(u,A,X))

∣∣∣∣X]] = 0.
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Next, consider the case when the models for the sampling score, the propensity score
and the censoring process are correctly specified. Rearranging the terms of V ∗(d), we obtain

V ∗(d) =
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∆ y(U)

S∗C(U |A,X)

+

(
IT e(X)− IS

π∗S(X)

)
µ∗(A = d(X), X)

+
IS

π∗S(X)

I{A = d(X)}
π∗d(X)

∫ ∞
0

dM∗C(u |A,X)

S∗C(u |A,X)
Q∗(u,A,X)

=(I) + (II) + (III).

In this case, we have

(I) = E
[

IS
π∗S(X)

I{A = d(X)}
π∗d(X)

∆ y(U)

S∗C(U |A,X)

]
= V (d),

(II) = E
[(
IT e(X)− IS

π∗S(X)

)
µ∗(A = d(X), X)

]
= E

[
E
[
IT e(X)− IS

π∗S(X)

∣∣∣∣X]µ∗(A = d(X), X)

]
= 0,

and (III) is a stochastic integral with respect to the martingale M∗C(u |A,X), thus equals
0 as well, which completes the double robustness property.

D.2 Asymptotic Properties

To establish the asymptotic results, we need some regularity conditions such that the nui-
sance estimators µ(a, x; β̂a, Λ̂0,a), Q(u, a, x; β̂a, Λ̂0,a), πS(x; λ̂), πA(x; θ̂) and SC(u | a, x; α̂a, Λ̂C0,a)
converge in probability to µ(a, x;β∗a,Λ

∗
0,a), Q(u, a, x;β∗a,Λ

∗
0,a), πS(x;λ∗), πA(x; θ∗) and

SC(t | a, x;α∗a,Λ
∗
C0,a), respectively.

Condition 1 We assume the following conditions hold:
(C1) X is bounded almost surely.

(C2) The equation E
[{
A− exp(θTX)

1+exp(θTX)

}
X
]

= 0 has a unique solution θ∗.

(C3) For a = 0, 1, the equation

E
[∫ L

0

(
Xi −

E[Yi(u) exp(βTaX)X]

E[Yi(u) exp(βTaX)]

)
× dNi(u)

]
= 0,

has a unique solution β∗a, where L > u is a pre-specified time point such that Pr(Ui > L) > 0.
Moreover, let

Λ∗0,a(u) = E
[∫ u

0

dNi(u)

E[Yi(u) exp(β∗Ta Xi)]

]
,

and assume Λ∗0,a(L) <∞.
(C4) For a = 0, 1, the equation

E
[∫ L

0

(
Xi −

E[Yi(u) exp(αTaX)X]

E[Yi(u) exp(αTaX)]

)
× dNi(u)

]
= 0,
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has a unique solution α∗a. Moreover, let

Λ∗C0,a(u) = E
[∫ u

0

dNi(u)

E[Yi(u) exp(α∗Ta Xi)]

]
,

and assume Λ∗C0,a(L) <∞.
(C5) The estimating equation for the sampling score model πS(X;λ) has a unique solution
λ∗, and achieves root-n rate of convergence.

Under Condition 1, we have the following asymptotic representations:

√
n(θ̂ − θ∗) =

1√
n

n∑
i=1

φθi + op(1),
√
n(λ̂− λ∗) =

1√
n

n∑
i=1

φλi + op(1),

√
n(β̂a − β∗a) =

1√
n

n∑
i=1

φβai + op(1),
√
n(α̂a − α∗a) =

1√
n

n∑
i=1

φαai + op(1), for a = 0, 1.

For the ease of notation, we introduce a finite population of size N , from which the
source and target data are independently sampled. Note that we do not assume N is
known and fixed.

We focus on the estimation of survival functions by our proposed method:

Ŝ(t; η) =
1

N

N∑
i=1

[
IT,i e(Xi)Ŝ(t |A = dη(Xi), Xi)

+
IS,iI{Ai = dη(Xi)}
π̂S(Xi)π̂d(Xi)

{
∆i Yi(t)

ŜC(t |Ai, Xi)
− Ŝ(t |Ai, Xi)

+

∫ ∞
0

Ŝ(t |Ai, Xi)dM̂C(u |Ai, Xi)

Ŝ(u |Ai, Xi)ŜC(u |Ai, Xi)

}]
,

and for the ease of notation, define

Ĵ(t, a, x) =
∆i Yi(t)

ŜC(t | a, x)
− Ŝ(t | a, x) +

∫ ∞
0

Ŝ(t | a, x)dM̂C(u | a, x)

Ŝ(u | a, x)ŜC(u | a, x)
,

J∗(t, a, x) =
∆i Yi(t)

S∗C(t | a, x)
− S∗(t | a, x) +

∫ ∞
0

S∗(t | a, x)dM∗C(u | a, x)

S∗(u | a, x)S∗C(u | a, x)
.

Proof Our proof has three main parts as follows.

PART 1. By the double robustness property shown in Section D.1, we have, by the
strong law of large numbers and uniform consistency, that Ŝ(t; η) = S(t; η) + op(1), which
proves (i) of Theorem 6. Moreover, define

S∗N (t; η) =
1

N

N∑
i=1

[
IT,i e(Xi)S

∗(t |A = dη(Xi), Xi) +
IS,iI{Ai = dη(Xi)}
π∗S(Xi)π∗d(Xi)

J∗(t, Ai, Xi)

]
,
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and by applying the Taylor expansion and the counting processes result in Section A.1, we
obtain

Ŝ(t; η) =S∗n(t; η) +HT
λ (λ̂− λ∗) +HT

θ (θ̂ − θ∗) +HT
β0(β̂0 − β∗0) +HT

β1(β̂1 − β∗1)

+HT
α0

(α̂0 − α∗0) +HT
α1

(α̂1 − α∗1) +RS + op(N
−1/2),

where

Hλ = lim
N→∞

1

N

N∑
i=1

∂Ŝ(t; η)

∂λ∗
, Hθ = lim

N→∞

1

N

N∑
i=1

∂Ŝ(t; η)

∂θ∗
,

Hβa = lim
N→∞

1

N

N∑
i=1

{
IT,i e(Xi)(−1)a+1G(t, a,Xi) +

IS,iI{Ai = a}
π∗S(Xi)π∗d(Xi)

(∫ ∞
0

G(t, a,Xi)dM
∗
C(u | a,Xi)

S∗(u | a,Xi)S∗C(u | a,Xi)

−G(t, a,Xi)−
∫ ∞

0

G(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗2(u | a,Xi)S∗C(u | a,Xi)

)}
,

Hαa = lim
N→∞

1

N

N∑
i=1

IS,iI{Ai = a}
π∗S(Xi)π∗d(Xi)

{
−∆iYi(t)

S∗C(t | a,Xi)
GC(t, a,Xi)

−
∫ ∞

0

GC(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗2C (u | a,Xi)S∗(u | a,Xi)
+ G̃C(t, a,Xi)

}
,

RS =
1

N

N∑
i=1

∑
a=0,1

{
IT,i e(Xi)(−1)a+1H(t, a,Xi)

+
IS,iI{Ai = a}
π∗S(Xi)π∗d(Xi)

(∫ ∞
0

H(t, a,Xi)dM
∗
C(u | a,Xi)

S∗C(u | a,Xi)S∗(u | a,Xi)
−H(t, a,Xi)

−
∫ ∞

0

H(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗C(u | a,Xi)S∗2(u | a,Xi)
− ∆iYi(t)

S∗C(t|a,Xi)
HC(t, a,Xi)

−
∫ ∞

0

HC(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗2C (u | a,Xi)S∗(u | a,Xi)
− H̃C(t, a,Xi)

)}
=

1

N

N∑
i=1

φRs,i,

with

G(t, a, x) = −S∗(t | a, x)Λ∗0,a(t)x
T + S∗(t | a, x) exp(β∗Ta x)

{∫ t

0
ea(β

∗
a, u)dΛ∗0,a(u)

}T
,

H(t, a, x) = −S∗(t | a, x) exp(β∗Ta x)

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

U
(0)
a (β∗a, u)

,

GC(t, a, x) = −S∗(t | a, x)Λ∗0,a(t)x
T + S∗(t | a, x) exp(β∗Ta x)

{∫ t

0
ea(β

∗
a, u)dΛ∗0,a(u)

}T
,

HC(t, a, x) = −S∗(t | a, x) exp(β∗Ta x)

∫ t

0

n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

U
(0)
a (β∗a, u)

,
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G̃C(t, a, x) =

∫ Ui

0

S∗(t | a, x)dΛ∗C(u | a, x)

S∗C(u | a, x)S∗(u | a, x)
xT +

{∫ t

0

S∗(t | a, x)ea(β
∗
a, u)dΛ∗0,a(u)

S∗C(u | a, x)S∗(u | a, x)

}T
,

H̃C(t, a, x) =

∫ t

0

S∗(t | a, x)n−1
a

∑n
i=1 I{Ai = a}dMa,i(u)

S∗C(u | a, x)S∗(u | a, x)U
(0)
a (β∗a, u)

.

Thus, we have

√
N
{
Ŝ(t; η)− S(t; η)

}
=

1√
N

N∑
i=1

(ξ1,i(t; η) + ξ2,i(t; η)) + op(1), (10)

where

ξ1,i(t; η) = S∗n(t; η)− S(t; η),

ξ2,i(t; η) = HT
λ φλ∗,i +HT

θ φθ∗,i +
∑
a=0,1

HT
βaφβ∗0 ,i +

∑
a=0,1

HT
αaφα∗a,i +HT

α1
+ φRs,i,

and ξ1,i(t; η), ξ2,i(t; η) are independent mean-zero processes. Therefore, we obtain that
√
N
{
Ŝ(t; η)− S(t; η)

}
converges weakly to a mean-zero Gaussian process, which proves

(ii) of Theorem 6.

PART 2. We show that N1/3‖η̂ − η∗‖2 = Op(1). Recall that

η̂ = arg max
η

Ŝ(t; η) and η∗ = arg max
η

S(t; η).

By Assumption 5 (i), S(t; η) is twice continuously differentiable at a neighborhood of
η∗; in Step 1, we show that Ŝ(t; η) = S(t; η) + op(1),∀η; since η̂ maximizes Ŝ(t; η), we have

that Ŝ(t; η̂) ≥ supη Ŝ(t; η), thus by the Argmax theorem, we have η̂
p→ η∗ as N →∞.

In order to establish the N−1/3 rate of convergence of η̂, we apply Theorem 14.4 (Rate
of convergence) of Kosorok (2008), and need to find the suitable rate that satisfies three
conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ‖η− η∗‖2 < δ, by Assump-
tion 5 (i), we apply the second-order Taylor expansion,

S(t; η)− S(t; η∗) = S′(η∗)‖η − η∗‖2 +
1

2
S′′(η∗)‖η − η∗‖22 + o(‖η − η∗‖22)

=
1

2
S′′(η∗)‖η − η∗‖22 + o(‖η − η∗‖22),

and as S′′(η∗) < 0, there exists c0 = −1
2S
′′(η∗) > 0 such that S(t; η) − S(t; η∗) ≤ −c0‖η −

η∗‖22.

28



Transfer Learning Survival ITR

Condition 2 For all N large enough and sufficiently small δ, we consider the centered
process Ŝ − S, and have that

E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣Ŝ(t; η)− S(t; η)−
{
Ŝ(t; η∗)− S(t; η∗)

}∣∣∣]

= E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣Ŝ(t; η)− S∗n(t; η) + S∗n(t; η)− S(t; η)

−
{
Ŝ(t; η∗)− S∗n(t; η∗) + S∗n(t; η∗)− S(t; η∗)

}∣∣∣ ]

≤ E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣Ŝ(t; η)− S∗n(t; η)−
{
Ŝ(t; η∗)− S∗n(t; η∗)

}∣∣∣] (I)

+ E

[
√
N sup
‖η−η∗‖2<δ

|S∗n(t; η)− S(t; η)− {S∗n(t; η∗)− S(t; η∗)}|

]
, (II)

and we bound (I) and (II) respectively as follows.

Condition 2.1 To bound (II), we need the useful facts that

I{A = dη(X)} − I{A = dη∗(X)} = (2A− 1)(dη(X)− dη∗(X)),

S∗(t | dη(Xi), Xi)− S∗(t | dη∗(Xi), Xi) = (S∗(t | 1, Xi)− S∗(t | 0, Xi))(dη(Xi)− dη∗(Xi)),

and obtain

S∗n(t; η)− S∗n(t; η∗) =
1

N

N∑
i=1

(dη(Xi)− dη∗(Xi))

×
{
IT,i e(Xi)(S

∗(t | 1, Xi)− S∗(t | 0, Xi)) +
(2Ai − 1)IS,i
π∗S(Xi)π∗d(Xi)

J∗(t, Ai, Xi)

}
.

Define a class of functions

F1
η =

{
(dη(x)− dη∗(x))

(
IT e(x)(S∗(t | 1, x)− S∗(t | 0, x)) +

(2a− 1)IS
π∗a(x)π∗S(x)

J∗(t, a, x)

)
:

‖η − η∗‖2 < δ

}
,

and let M1 = sup
∣∣∣IT e(x)(S∗(t | 1, x)− S∗(t | 0, x)) + (2a−1)IS

π∗a(x)π∗S(x)J
∗(t, a, x)

∣∣∣. By Assump-

tion 1, 3 and Condition 1, we have that M1 <∞.

When ‖η − η∗‖2 < δ, by Condition 1 (C1), there exists a constant 0 < k0 < ∞ such
that |(1, xT )(η − η∗)| < k0δ; furthermore, we show that |dη(x) − dη∗(x)| = |I{(1, xT )η >
0} − I{(1, xT )η∗ > 0}| ≤ I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}, by considering the three cases:

• when −k0δ ≤ (1, xT )η∗ ≤ k0δ, we have |dη(x) − dη∗(x)| ≤ 1 = I{−k0δ ≤ (1, xT )η∗ ≤
k0δ};
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• when (1, xT )η∗ > k0δ > 0, we have (1, xT )η = (1, xT )(η − η∗) + (1, xT )η∗ > 0, so
|dη(x)− dη∗(x)| = 0 = I{−k0δ ≤ (1, xT )η∗ ≤ k0δ};

• when (1, xT )η∗ < −k0δ < 0, we have (1, xT )η = (1, xT )(η − η∗) + (1, xT )η∗ < 0, so
|dη(x)− dη∗(x)| = 0 = I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}.

Thus we can define the envelope of F1
η as F1 = M1I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}. By

Assumption 5 (ii), there exists a constant 0 < k1 <∞ such that

‖F1‖P,2 ≤M1

√
Pr(−k0δ ≤ (1, xT )η∗ ≤ k0δ) ≤M1

√
2k0k1δ

1/2.

By Lemma 9.6 and Lemma 9.9 of Kosorok (2008), we have that F1
η , a class of indicator

functions, is a Vapnik-Cervonenkis (VC) class with bounded bracketing entropy J∗[](1,F
1
η ) <

∞.
Since we have the fact that

GNF1
η = N−1/2

N∑
i=1

{
F1
η − E[F1

η ]
}

=
√
N (S∗n(t; η)− S∗n(t; η∗)− {S(t; η)− S(t; η∗)}) ,

By Theorem 11.2 of Kosorok (2008), we obtain that there exists a constant 0 < c1 <∞,

(II) = E

[
sup

‖η−η∗‖2<δ
|GNF1

η |

]
≤ c1J

∗
[](1,F

1
η )‖F1‖P,2 ≤ c1J

∗
[](1,F

1
η )M1

√
2k0k1δ

1/2 = c̃1δ
1/2,

so we conclude that (II) ≤ c̃1δ
1/2 where c̃1 > 0 is a finite constant.

Condition 2.2 To bound (I), first we have

Ŝ(t; η)− S∗n(t; η)− {Ŝ(t; η∗)− S∗n(t; η∗)} = Ŝ(t; η)− Ŝ(t; η∗)− {S∗n(t; η)− S∗n(t; η∗)}

=
1

N

N∑
i=1

(dη(Xi)− dη∗(Xi))
[
IT,i e(Xi){Ŝ(t|1, Xi)− Ŝ(t|0, Xi)− (S∗(t|1, Xi)− S∗(t|0, Xi))}

+
(2Ai − 1)IS,i
π̂Ai(Xi)π̂S(Xi)

Ĵ(t, Ai, Xi)−
(2Ai − 1)IS,i
π∗Ai(Xi)π∗S(Xi)

J∗(t, Ai, Xi)

]
,

and then apply the Taylor expansion and counting processes result in Section A.1,

Ŝ(t; η)− S∗n(t; η)− {Ŝ(t; η∗)− S∗n(t; η∗)}

=
1

N

N∑
i=1

(dη(Xi)− dη∗(Xi))×
{
Dλ(λ̂− λ∗) +Dθ(θ̂ − θ∗) +Dβ0(β̂0 − β∗0)

+Dβ1(β̂1 − β∗1) +Dα0(α̂0 − α∗0) +Dα1(α̂1 − α∗1) +RS,i

}
+ op(N

−1/2),

(11)

where

Dλ = −
(2Ai − 1)IS,i
π∗Ai(Xi)π∗2S (Xi)

J∗(t, Ai, Xi)

(
∂π∗S(Xi)

∂λ

)T
,
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Dθ = −
IS,i

π∗2Ai(Xi)π∗S(Xi)
J∗(t, Ai, Xi)

(
∂π∗A(Xi)

∂θ

)T
,

Dβa =IT,i e(Xi)(−1)a+1G(t, a,Xi) +
(2Ai − 1)I{Ai = a}IS,i

π∗Ai(Xi)π∗S(Xi)

(∫ ∞
0

G(t, a,Xi)dM
∗
C(u | a,Xi)

S∗C(u | a,Xi)S∗(u | a,Xi)

−G(t, a,Xi)−
∫ ∞

0

G(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗C(u | a,Xi)S∗2(u | a,Xi)

)
,

Dαa =
(2Ai − 1)I{Ai = a}IS,i

π∗Ai(Xi)π∗S(Xi)

{
− ∆i Yi(t)

S∗C(t | a,Xi)
GC(t, a,Xi)

−
∫ ∞

0

GC(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗2C (u | a,Xi)S∗(u | a,Xi)
+ G̃C(t, a,Xi)

}
,

RS,i =
∑
a=0,1

[
IT,i e(Xi)(−1)a+1H(t, a,Xi) +

(2Ai − 1)I{Ai = a}IS,i
π∗Ai(Xi)π∗S(Xi)

(∫ ∞
0

H(t, a,Xi)dM
∗
C(u | a,Xi)

S∗C(u | a,Xi)S∗(u | a,Xi)

−H(t, a,Xi)−
∫ ∞

0

H(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗C(u | a,Xi)S∗2(u | a,Xi)

− ∆i Yi(t)

S∗C(t | a,Xi)
HC(t, a,Xi)−

∫ ∞
0

HC(u, a,Xi)S
∗(t | a,Xi)dM

∗
C(u | a,Xi)

S∗2C (u | a,Xi)S∗(u | a,Xi)
− H̃C(t, a,Xi)

)]
.

Similarly, we define the following classes of functions:

F2
η =

{
(dη(x)− dη∗(x))

(2a− 1)IS,i
π∗a(x)π∗2S (x)

J∗(t, a, x)

(
∂π∗S(x)

∂λ

)T
: ‖η − η∗‖2 < δ

}
,

F3
η =

{
(dη(x)− dη∗(x))

−IS,i
π∗2a (x)π∗S(x)

J∗(t, a, x)

(
∂π∗A(x)

∂θ

)T
: ‖η − η∗‖2 < δ

}
,

F4
η =

{
(dη(x)− dη∗(x))

[
IT e(x)(−1)a+1G(t, a, x) +

(2a− 1)IS
π∗a(x)π∗S(x)

×
(∫ ∞

0

G(t, a, x)dM∗C(u | a, x)

S∗C(u | a, x)S∗(u | a, x)
−G(t, a, x)

−
∫ ∞

0

G(u, a, x)S∗(t | a, x)dM∗C(u | a, x)

S∗C(u | a, x)S∗2(u | a, x)

)]
: ‖η − η∗‖2 < δ

}
,

F5
η =

{
(dη(x)− dη∗(x))

[
IT e(x)(−1)a+1G(t, a, x) +

(2a− 1)IS
π∗a(x)π∗S(x)

×
(∫ ∞

0

G(t, a, x)dM∗C(u | a, x)

S∗C(u | a, x)S∗(u | a, x)
−G(t, a, x)

−
∫ ∞

0

G(u, a, x)S∗(t | a, x)dM∗C(u | a, x)

S∗C(u | a, x)S∗2(u | a, x)

)]
: ‖η − η∗‖2 < δ

}
,
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F6
η =

{
(dη(x)− dη∗(x))

[
(2a− 1)IS
π∗a(x)π∗S(x)

{
− ∆Y (t)

S∗C(t | a, x)
GC(t, a, x)

−
∫ ∞

0

GC(u, a, x)S∗(t | a, x)dM∗C(u | a, x)

S∗2C (u | a, x)S∗(u | a, x)
+ G̃C(t, a, x)

}]
: ‖η − η∗‖2 < δ

}
,

F7
η =

{
(dη(x)− dη∗(x))

[
(2a− 1)IS
π∗a(x)π∗S(x)

{
− ∆Y (t)

S∗C(t | a, x)
GC(t, a, x)

−
∫ ∞

0

GC(u, a, x)S∗(t | a, x)dM∗C(u | a, x)

S∗2C (u | a, x)S∗(u | a, x)
+ G̃C(t, a, x)

}]
: ‖η − η∗‖2 < δ

}
,

F8
η =

{
(dη(x)− dη∗(x))

[ ∑
a=0,1

[
IT e(x)a+1H(t, a, x) +

(2a− 1)IS
π∗a(x)π∗S(x)

×
(∫ ∞

0

H(t, a, x)dM∗C(u | a, x)

S∗C(u | a, x)S∗(u | a, x)
−H(t, a, x)

−
∫ ∞

0

H(u, a, x)S∗(t | a, x)dM∗C(u | a, x)

S∗C(u | a, x)S∗2(u | a, x)
− ∆Y (t)

S∗C(t | a, x)
HC(t, a, x)

−
∫ ∞

0

HC(u, a, x)S∗(t | a, x)dM∗C(u | a, x)

S∗2C (u | a, x)S∗(u | a, x)
− H̃C(t, a, x)

)]]
: ‖η − η∗‖2 < δ

}
.

Let

M2 = sup

∣∣∣∣∣(2a− 1)

π∗a(x)
J∗(t, a, x)

(
∂π∗S(x)

∂λ

)T ∣∣∣∣∣ ,
where M2 ∈ R+ and the supremum is taken over all the coordinates; and M3, . . . ,M8 are
defined accordingly for F3

η , . . . ,F8
η . By Assumption 1, 3 and Condition 1, we have that

M2, . . . ,M8 <∞.
Using the same technique as in Condition 2.1, we define the envelop of F jη as Fj =

MjI{−k0δ ≤ (1, xT )η∗ ≤ k0δ} for j = 2, . . . , 8, and obtain that

‖Fj‖P,2 ≤ M̃jδ
1/2 <∞, j = 2, . . . , 8,

where M̃2, . . . , M̃8 are some finite constants, and that F jη is a VC class with bounded
bracketing entropy J∗[](1,F

j
η) < ∞, for j = 2, . . . , 8. By Theorem 11.2 of Kosorok (2008),

we obtain

E

[
sup

‖η−η∗‖2<δ

∣∣GNF jη
∣∣] ≤ cjJ∗[](1,F jη)‖Fj‖P,2, j = 2, . . . , 8,

where c2, . . . , c8 are some finite constants. That is, we have

E

[
sup

‖η−η∗‖2<δ

∣∣GNF8
η

∣∣] ≤ c̃8δ
1/2,
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and furthermore by Theorem 2.14.5 of van der Vaart and Wellner (1996), we obtain

{
E

[
sup

‖η−η∗‖2<δ
‖GnF jη‖22

]}1/2

≤ lj

{
E

[
sup

‖η−η∗‖2<δ
|GnF jη |

]
+ ‖Fj‖P,2

}
≤ lj{cjJ∗[](1,F

j
η) + 1}‖Fj‖P,2

≤ c̃jδ1/2, j = 2, . . . , 7,

where l2, . . . , l7 and c̃2, . . . , c̃7 are some finite constants.

By Equation (11), we have that

(I) = E

[
N1/2 sup

‖η−η∗‖2<δ

∣∣∣Ŝ(t; η)− S∗N (t; η)− {Ŝ(t; η∗)− S∗N (t; η∗)}
∣∣∣]

≤ E

[
sup

‖η−η∗‖2<δ

{
|GnF2

η (λ̂− λ∗)|+ |GnF3
η (θ̂ − θ∗)|+ |GnF4

η (β̂0 − β∗0)|+ |GnF5
η (β̂1 − β∗1)|

+ |GnF6
η (α̂0 − α∗0)|+ |GnF7

η (α̂1 − α∗1)|+ |GnF8
η |
}

+ op(1)

]

≤ N−1/2

{
E

[
sup

‖η−η∗‖2<δ
|GnF2

η ·N1/2(λ̂− λ∗)|

]
+ E

[
sup

‖η−η∗‖2<δ
|GnF3

η ·N1/2(θ̂ − θ∗)|

]

+ E

[
sup

‖η−η∗‖2<δ
|GnF4

η ·N1/2(β̂0 − β∗0)|

]
+ E

[
sup

‖η−η∗‖2<δ
|GnF5

η ·N1/2(β̂1 − β∗1)|

]

+ E

[
sup

‖η−η∗‖2<δ
|GnF6

η ·N1/2(α̂0 − α∗0)|

]
+ E

[
sup

‖η−η∗‖2<δ
|GnF7

η ·N1/2(α̂1 − α∗1)|

]}

+ E

[
sup

‖η−η∗‖2<δ

∣∣GNF8
η

∣∣]+ op(1),
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and then by the Cauchy-Schwarz inequality, we obtain

(I) ≤N−1/2
{
E[N‖λ̂− λ∗‖22]

}1/2
{
E

[
sup

‖η−η∗‖2<δ
‖GNF2

η‖22

]}1/2

+N−1/2
{
E[N‖θ̂ − θ∗‖22]

}1/2
{
E

[
sup

‖η−η∗‖2<δ
‖GNF3

η‖22

]}1/2

+N−1/2
{
E[N‖β̂0 − β∗0‖22]

}1/2
{
E

[
sup

‖η−η∗‖2<δ
‖GNF4

η‖22

]}1/2

+N−1/2
{
E[N‖β̂1 − β∗1‖22]

}1/2
{
E

[
sup

‖η−η∗‖2<δ
‖GNF5

η‖22

]}1/2

+N−1/2
{
E[N‖α̂0 − α∗0‖22]

}1/2

{
E

[
sup

‖η−η∗‖2<δ
‖GNF6

η‖22

]}1/2

+N−1/2
{
E[N‖α̂1 − α∗1‖22]

}1/2

{
E

[
sup

‖η−η∗‖2<δ
‖GNF7

η‖22

]}1/2

+ E

[
sup

‖η−η∗‖2<δ

∣∣GNF8
η

∣∣] .
Let Mλ =

{
E[N‖λ̂− λ∗‖22]

}1/2
, and Mθ,Mβ0 ,Mβ1 ,Mα0 ,Mα1 are defined accordingly.

By Condition 1, we have that Mλ,Mθ,Mβ0 ,Mβ1 ,Mα0 ,Mα1 <∞, and therefore

(I) ≤ N−1/2(Mλc̃2 +Mθ c̃3 +Mβ0 c̃4 +Mβ1 c̃5 +Mα0 c̃6 +Mα1 c̃7)δ1/2 + c̃8δ
1/2.

In summary, we obtain that, let N →∞, the centered process satisfies

E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣Ŝ(t; η)− S(t; η)− {Ŝ(t; η∗)− S(t; η∗)}
∣∣∣]

≤ (I) + (II) ≤ (c̃1 + c̃8)δ1/2.

(12)

Let φN (δ) = δ1/2 and α = 3
2 < 2, thus we have φn(δ)

δα = δ−1 is decreasing, and α does
not depend on N . That is, the second condition holds.

Condition 3 By the facts that η̂
p→ η∗ as N → ∞, and that Ŝ(t; η̂) ≥ supη Ŝ(t; η), we

choose rN = N1/3 such that r2
NφN (r−1

N ) = N2/3φN (N−1/3) = N1/2. The third condition
holds.

In the end, the three conditions are satisfied with rN = N1/3; thus we conclude that
N1/3‖η̂ − η∗‖2 = Op(1), which completes the proof of (iii) of Theorem 6.

PART 3. We characterize the asymptotic distribution of Ŝ(t; η̂). Since we have
√
N{Ŝ(t; η̂)− S(t; η∗)} =

√
N{Ŝ(t; η̂)− Ŝ(t; η∗)}+

√
N{Ŝ(t; η∗)− S(t; η∗)},

we study the two terms in two steps.
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Step 3.1 To establish
√
N{Ŝ(t; η̂)−Ŝ(t; η∗)} = op(1), it suffices to show that

√
N{S(t; η̂)−

S(t; η∗)} = op(1) and
√
N(Ŝ(t; η̂)− Ŝ(t; η∗)− {S(t; η̂)− S(t; η∗)}) = op(1).

First, as N1/3‖η̂ − η∗‖2 = Op(1), we take the second-order Taylor expansion

√
N{S(t; η̂)− S(t; η∗)} =

√
N

{
S′(η∗)‖η̂ − η∗‖2 +

1

2
S′′(η∗)‖η̂ − η∗‖22 + op(‖η̂ − η∗‖22)

}
=
√
N

{
1

2
S′′(η∗)‖η̂ − η∗‖22 + op(‖η̂ − η∗‖22)

}
=
√
N

{
1

2
S′′(η∗)Op(N

−2/3) + op(N
−2/3)

}
= op(1).

Next, we follow the result (12) obtained in PART 2. As N1/3‖η̂ − η∗‖2 = Op(1), there
exists δ̃ = c9N

−1/3, where c9 < ∞ is a finite constant, such that ‖η̂ − η∗‖2 ≤ δ̃. Therefore
we have

√
N(Ŝ(t; η̂)− Ŝ(t; η∗)− {S(t; η̂)− S(t; η∗)})

≤ E

[
√
N sup
‖η̂−η∗‖2<δ̃

∣∣∣Ŝ(t; η̂)− S(t; η̂)− {Ŝ(t; η∗)− S(t; η∗)}
∣∣∣]

≤ (c̃1 + c̃8)δ̃1/2 = (c̃1 + c̃8)
√
c9N

−1/6 = op(1),

which yields the result.
Step 3.2 To derive the asymptotic distribution of

√
n{Ŝ(t; η∗)−S(t; η∗)}, we follow the

result (10) obtained in PART 1 and have that

√
N
{
Ŝ(t; η∗)− S(t; η∗)

}
D→ N (0, σ2

t,1),

where σ2
t,1 = E[(ξ1,i(t; η

∗) + ξ2,i(t; η
∗))2]. Therefore we obtain in the end

√
N{Ŝ(t; η̂)− S(t; η∗)} =

√
N{Ŝ(t; η̂)− Ŝ(t; η∗)}+

√
N{Ŝ(t; η∗)− S(t; η∗)}

= op(1) +
√
N{Ŝ(t; η∗)− S(t; η∗)}

D→ N (0, σ2
t,1),

which completes the proof.
For Corollary 8 where we consider RMST, the proof can follow the same steps as before,

and is thus omitted here.

Appendix E. Proof of Theorem 7 and Corollary 9

Proof Our proof has three main parts below.
PART 1. Recall that the cross-fitting technique, at a high level as exemplified in

Lemma 13, uses sample splitting to avoid bias due to over-fitting. For simplicity, consider
that the datasets Os and Ot are randomly split into 2 folds with equal size respectively such
that Os = Os,1∪Os,2,Ot = Ot,1∪Ot,2. The extension to K-folds as described in Algorithm
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1 is straightforward. Here the subscript CF is omitted to simplify the notation. Define
I1 = Os,1 ∪ Ot,1, I2 = Os,2 ∪ Ot,2, and N1 = |I1|, N2 = |I2|. The cross-fitted estimator for
the value function under the ITR dη is

V̂ (η) =
N1

N
V̂ I1(η) +

N2

N
V̂ I2(η),

where

V̂ I1(η) =
1

N1

∑
I1

{
IT,i e(Xi)µ̂(dη(Xi), Xi) +

IS,i
π̂S(Xi)

I{Ai = dη(Xi)}
π̂d(Xi)

×

(
∆i y(Ui)

ŜC(Ui |Ai, Xi)
− µ̂(Ai, Xi) +

∫ ∞
0

dM̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
Q̂(u,Ai, Xi)

)}
,

and the nuisance parameters are estimated from I2. V̂ I2(η) is defined accordingly.

In this step, we show that

V̂ (η)− VN (η) = op(N
−1/2),

and essentially it suffices to prove that

V̂ I1(η)− V I1N (η) = op(N
−1/2),

where

VN (η) =
1

N

N∑
i=1

{
IT,i e(Xi)µ(dη(Xi), Xi) +

IS,i
πS(Xi)

I{Ai = dη(Xi)}
πd(Xi)

×
(

∆i y(Ui)

SC(Ui |Ai, Xi)
− µ(Ai, Xi) +

∫ ∞
0

dMC(u |Ai, Xi)

SC(u |Ai, Xi)
Q(u,Ai, Xi)

)}
,

and V I1N (η) is defined accordingly.
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First, we have the following decomposition

V̂ I1(η)− V I1N (η)

=
1

N1

∑
I1

{
IT,i e(Xi)(µ̂(dη(Xi), Xi)− µ(dη(Xi), Xi))

+ IS,i

(
1

πS(Xi)
− 1

π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

+
IS,iI{Ai = dη(Xi)}

πS(Xi)

(
1

πd(Xi)
− 1

π̂d(Xi)

)
K(Ai, Xi)

+
IS,i

πS(Xi)

I{Ai = dη(Xi)}
πd(Xi)

(K̂(Ai, Xi)−K(Ai, Xi))

+ IS,iI{Ai = dη(Xi)}
(

1

πS(Xi)
− 1

π̂S(Xi)

)(
1

πd(Xi)
− 1

π̂d(Xi)

)
K(Ai, Xi)

+
IS,iI{Ai = dη(Xi)}

πd(Xi)

(
1

πS(Xi)
− 1

π̂S(Xi)

)
(K̂(Ai, Xi)−K(Ai, Xi))

+
IS,iI{Ai = dη(Xi)}

πS(Xi)

(
1

πd(Xi)
− 1

π̂d(Xi)

)
(K̂(Ai, Xi)−K(Ai, Xi))

+ IS,iI{Ai = dη(Xi)}
(

1

πS(Xi)
− 1

π̂S(Xi)

)(
1

πd(Xi)
− 1

π̂d(Xi)

)
(K̂(Ai, Xi)−K(Ai, Xi))

}
,

(13)

where

K̂(Ai, Xi) =
∆i y(Ui)

ŜC(Ui |Ai, Xi)
− µ̂(Ai, Xi) +

∫ ∞
0

dM̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
Q̂(u,Ai, Xi),

K(Ai, Xi) =
∆i y(Ui)

SC(Ui |Ai, Xi)
− µ(Ai, Xi) +

∫ ∞
0

dMC(u |Ai, Xi)

SC(u |Ai, Xi)
Q(u,Ai, Xi).

In summary, the decomposition (13) consists of two types of terms: four mean-zero
terms and four product terms. For the mean-zero terms, we utilize the method introduced
in Section A.2; since

E[IT,i e(Xi)(µ̂(dη(Xi), Xi)− µ(dη(Xi), Xi))] = 0,

by applying Lemma 13, we obtain

1

N1

∑
I1

IT,i e(Xi)(µ̂(dη(Xi), Xi)− µ(dη(Xi), Xi)) = op(N
−1/2).

Similarly we have

E
[
IS,i

(
1

πS(Xi)
− 1

π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

]
= 0,
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so we obtain

E

 1

N1

∑
I1

IS,i

(
1

πS(Xi)
− 1

π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

2
= E

E
 1

N1

∑
I1

IS,i

(
1

πS(Xi)
− 1

π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

2 ∣∣∣∣∣I2


= E

var
 1

N1

∑
I1

IS,i

(
1

πS(Xi)
− 1

π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

∣∣∣∣∣I2


=

1

N1
E
[
var

[
IS,i

(
1

πS(Xi)
− 1

π̂S(Xi)

)
I{Ai = dη(Xi)}

πd(Xi)
K(Ai, Xi)

∣∣∣∣I2

]]
≤ Op(1)

N1
= op(

1

N
).

We also have

E
[
IS,iI{Ai = dη(Xi)}

πS(Xi)

(
1

πd(Xi)
− 1

π̂d(Xi)

)
K(Ai, Xi)

]
= 0,

E
[

IS,i
πS(Xi)

I{Ai = dη(Xi)}
πd(Xi)

(K̂(Ai, Xi)−K(Ai, Xi))

]
= 0,

and using the same technique, we conclude that these two mean-zero terms are op(N
−1/2)

as well.

The product terms can be handled simply by the Cauchy-Schwarz inequality and the
rate of convergence conditions in Assumption 6. Additionally we have the decomposition
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as follows

1

N1

∑
I1

(K̂(Ai, Xi)−K(Ai, Xi))

=
1

N1

∑
I1

{
− (µ̂(Ai, Xi)− µ(Ai, Xi)) +

1−∆i

SC(Ui |Ai, Xi)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

λC(u |Ai, Xi)

SC(u |Ai, Xi)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))du

+ (1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)
Q(Ui |Ai, Xi)

+

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)
∆i y(Ui)

−
∫ Ui

0

(
λ̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
− λC(u |Ai, Xi)

SC(u |Ai, Xi)

)
Q(Ui |Ai, Xi)du

+ (1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

(
λ̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
− λC(u |Ai, Xi)

SC(u |Ai, Xi)

)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))du,

and similarly we have three mean-zero terms which are op(N
−1/2) by the same technique

in Section A.2 and the facts that

E[µ̂(Ai, Xi)− µ(Ai, Xi)] = 0,

E
[

1−∆i

SC(Ui |Ai, Xi)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

λC(u |Ai, Xi)

SC(u |Ai, Xi)
(Q̂(u |Ai, Xi)−Q(u |Ai, Xi))du

]
= 0,

E
[
(1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)
Q(Ui |Ai, Xi)

+

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)
∆i y(Ui)

−
∫ Ui

0

(
λ̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
− λC(u |Ai, Xi)

SC(u |Ai, Xi)

)
Q(Ui |Ai, Xi)du

]
= 0,
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and we can bound the two product terms as well

1

N1

∑
I1

[
(1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))

−
∫ Ui

0

(
λ̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
− λC(u |Ai, Xi)

SC(u |Ai, Xi)

)
(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))du

]

≤

 1

N1

∑
I1

(1−∆i)

(
1

ŜC(Ui |Ai, Xi)
− 1

SC(Ui |Ai, Xi)

)2
1/2

×

 1

N1

∑
I1

(1−∆i)(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))
2

1/2

−
∫ Ui

0

 1

N1

∑
I1

(
λ̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
− λC(u |Ai, Xi)

SC(u |Ai, Xi)

)2
1/2

×

 1

N1

∑
I1

(Q̂(Ui |Ai, Xi)−Q(Ui |Ai, Xi))
2

1/2

du

= op(N
−1/2),

which proves that 1
N1

∑
I1(K̂(Ai, Xi)−K(Ai, Xi)) = op(N

−1/2).

Therefore, we conclude that the four product terms in (13) are op(N
−1/2) as well, which

completes the proof of (i) in Theorem 7.

PART 2: We show that N1/3‖η̂ − η∗‖2 = Op(1).

By Assumption 5 (i), V (η) is twice continuously differentiable at a neighborhood of η∗;
in PART 1, we show that V̂ (η) = V (η) + op(1), ∀η; since η̂ maximizes V̂ (η), we have that

V̂ (η̂) ≥ supη V̂ (η), thus by the Argmax theorem, we have η̂
p→ η∗ as N →∞.

In order to establish the N−1/3 rate of convergence of η̂, we apply Theorem 14.4 (Rate
of convergence) of Kosorok (2008), and need to find the suitable rate that satisfies three
conditions below.

Condition 1 For every η in a neighborhood of η∗ such that ‖η− η∗‖2 < δ, by Assump-
tion 5 (i), we apply the second-order Taylor expansion,

V (η)− V (η∗) = V ′(η∗)‖η − η∗‖2 +
1

2
V ′′(η∗)‖η − η∗‖22 + o(‖η − η∗‖22)

=
1

2
V ′′(η∗)‖η − η∗‖22 + o(‖η − η∗‖22),

and as V ′′(η∗) < 0, there exists c10 = −1
2V
′′(η∗) > 0 such that V (η)−V (η∗) ≤ −c10‖η−η∗‖22.
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Condition 2 For all N large enough and sufficiently small δ, we consider the centered
process V̂ − V , and have that

E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣V̂ (η)− V (η)− {V̂ (η∗)− V (η∗)}
∣∣∣]

= E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣V̂ (η)− Vn(η) + Vn(η)− V (η)− {V̂ (η∗)− Vn(η∗) + Vn(η∗)− V (η∗)}
∣∣∣]

≤ E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣V̂ (η)− Vn(η)− {V̂ (η∗)− Vn(η∗)}
∣∣∣] (I)

+ E

[
√
N sup
‖η−η∗‖2<δ

|Vn(η)− V (η)− {Vn(η∗)− V (η∗)}|

]
(II)

It follows from the result in PART 1 that (I) = op(1). To bound (II), we have

Vn(η)− Vn(η∗)

=
1

N

N∑
i=1

(dη(Xi)− dη∗(Xi))×
(
IT,i e(Xi)(µ(1, Xi)− µ(0, Xi)) +

(2Ai − 1)IS,i
πAi(Xi)πS(Xi)

K(Ai, Xi)

)
.

Define a class of functions

F9
η =

{
(dη(x)−dη∗(x))×

(
IT e(x)(µ(1, x)−µ(0, x))+

(2a− 1)IS
πa(x)πS(x)

K(a, x)

)
: ‖η−η∗‖2 < δ

}
,

and let M9 = sup
∣∣∣IT e(x)(µ(1, x)− µ(0, x)) + (2a−1)IS

πa(x)πS(x)K(a, x)
∣∣∣. By Assumption 1, 3 and

Condition 1, we have that M9 <∞. Using the same technique as in Section D.2 Condition
2.1, we define the envelop of F9

η as F9 = M9I{−k0δ ≤ (1, xT )η∗ ≤ k0δ}, and obtain that

‖F9‖P,2 ≤ M̃9δ
1/2 < ∞, where M̃9 is a finite constant, and that F9

η is a VC class with
bounded entropy J∗[](1,F

9
η ) <∞. By Theorem 11.2 of Kosorok (2008), we obtain

E

[
sup

‖η−η∗‖2<δ

∣∣GNF9
η

∣∣] ≤ c̃9δ
1/2,

where c̃9 is a finite constant. Therefore, we obtain

(II) = E

[
√
N sup
‖η−η∗‖2<δ

|VN (η)− V (η)− {VN (η∗)− V (η∗)}|

]

= E

[
sup

‖η−η∗‖2<δ
|GnF9

η |

]
≤ c̃9δ

1/2.

In summary, we obtain that the centered process satisfies

E

[
√
N sup
‖η−η∗‖2<δ

∣∣∣Ŝ(t; η)− S(t; η)− {Ŝ(t; η∗)− S(t; η∗)}
∣∣∣]

≤ (I) + (II) ≤ c̃9δ
1/2.

(14)
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Let φN (δ) = δ1/2 and α = 3
2 < 2, thus we have φn(δ)

δα = δ−1 is decreasing, and α does
not depend on N . That is, the second condition holds.

Condition 3 By the facts that η̂
p→ η∗ as N → ∞, and that Ŝ(t; η̂) ≥ supη Ŝ(t; η), we

choose rN = N1/3 such that r2
NφN (r−1

N ) = N2/3φN (N−1/3) = N1/2. The third condition
holds.

In the end, the three conditions are satisfied with rN = N1/3; thus we conclude that
N1/3‖η̂ − η∗‖2 = Op(1), which completes the proof of (ii) in Theorem 7.

PART 3: We characterize the asymptotic distribution of V̂ (η̂). Since we have
√
N{V̂ (η̂)− V (η∗)} =

√
N{V̂ (η̂)− V̂ (η∗)}+

√
N{V̂ (η∗)− V (t; η∗)},

we study the two terms in two steps.
Step 3.1 To establish

√
N{V̂ (η̂)− V̂ (η∗)} = op(1), it suffices to show that

√
N{V (η̂)−

V (η∗)} = op(1) and
√
N(V̂ (η̂)− V̂ (η∗)− {V (η̂)− V (η∗)}) = op(1).

First, as N1/3‖η̂ − η∗‖2 = Op(1), we take the second-order Taylor expansion

√
N{V (η̂)− V (η∗)} =

√
N

{
V ′(η∗)‖η̂ − η∗‖2 +

1

2
V ′′(η∗)‖η̂ − η∗‖22 + op(‖η̂ − η∗‖22)

}
=
√
N

{
1

2
V ′′(η∗)‖η̂ − η∗‖22 + op(‖η̂ − η∗‖22)

}
=
√
N

{
1

2
V ′′(η∗)Op(N

−2/3) + op(N
−2/3)

}
= op(1).

Next, we follow the result (14) obtained in PART 2. As N1/3‖η̂ − η∗‖2 = Op(1), there
exists δ̃2 = c11N

−1/3, where c11 <∞ is a finite constant, such that ‖η̂−η∗‖2 ≤ δ̃2. Therefore
we have

√
N(V̂ (η̂)− V̂ (η∗)− {V (η̂)− V (η∗)})

≤ E

[
√
N sup
‖η̂−η∗‖2<δ̃2

∣∣∣V̂ (η̂)− V (η̂)− {V̂ (η∗)− V (η∗)}
∣∣∣]

≤ c̃9δ̃
1/2 = c̃9

√
c11N

−1/6 = op(1),

which yields the result.
Step 3.2 To derive the asymptotic distribution of

√
N{V̂ (η∗) − V (η∗)}, we follow the

result obtained in PART 1 that V̂ (η∗) = VN (η∗) + op(N
−1/2), and thus

√
N
{
V̂ (η∗)− V (η∗)

}
D→ N (0, σ2

2),

where σ2
2 = E[φ2

dη∗
] is the semiparametric efficiency bound.

Therefore we obtain in the end
√
N{V̂ (η̂)− v(η∗)} =

√
N{V̂ (η̂)− V̂ (η∗)}+

√
N{V̂ (η∗)− V (η∗)}

= op(1) +
√
N{V̂ (η∗)− V (η∗)}

D→ N (0, σ2
2),

which completes the proof of Theorem 7 and Corollary 9.
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Appendix F. Analysis of divergent sample sizes

In this section, we analyze the asymptotic properties of the ACW estimator

V̂ (d) =
1

m

n+m∑
i=n+1

µ̂(A = d(Xi), Xi)

+
1

n

n∑
i=1

I{Ai = d(Xi)}
π̂S(Xi)π̂d(Xi)

{
∆i y(Ui)

ŜC(Ui |Ai, Xi)
− µ̂(Ai, Xi) +

∫ ∞
0

dM̂C(u |Ai, Xi)

ŜC(u |Ai, Xi)
Q̂(u,Ai, Xi)

}
,

when the sample sizes n, m diverge.
Note that we solve the following estimation equations to obtain the calibration weights:

1

m

n+m∑
i=n+1

{g(Xi)− µg} = 0,

1

n

n∑
i=1

exp{λT g(Xi)}{g(Xi)− µg} = 0.

When m diverges faster than n, we characterize
√
n{V̂ (d)− V (d)}. First we have that

µg = E[g(X)], and λ̂ is the solution to the estimation equation n−1
∑n

i=1 exp{λT g(Xi)}{g(Xi)−
µg} = 0. Thus we obtain that

√
n{V̂ (d)− V (d)} =

1

m

n+m∑
i=n+1

√
n{µ̂(A = d(Xi), Xi)− V (d)}

+
1√
n

n∑
i=1

φ(Oi)qi,

where φ(Oi) is the influence function. Finally, we conclude that
√
n{V̂ (d) − V (d)} →

N (0, σ2
1), where σ2

1 = E[φ2(O)q].
When n diverges faster than m, we characterize

√
m{V̂ (d)− V (d)}. First we have that

λ̂ is the solution to the estimation equation

1

m

n+m∑
i=n+1

{g(Xi)MS,1(λ)−MS,2(λ)} = 0,

where MS,1(λ) = E[IS exp{λT g(X)}], and MS,2(λ) = E[IS exp{λT g(X)}g(X)].
Thus we obtain that

√
m{V̂ (d)− V (d)} =

1√
m

n+m∑
i=n+1

{µ̂(A = d(Xi), Xi)− V (d)}

+
1

n

n∑
i=1

√
mφ(Oi)qi,

Finally, we conclude that
√
m{V̂ (d)− V (d)} → N (0, σ2

2), where σ2
2 = E[(µ(d(X), X)−

V (d))2].
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Appendix G. Proof of Theorem 10 and Theorem 11

Proof When the source and target populations have the same distributions, both V̂DR(η)
and V̂CF (η) converge to V (η). The asymptotic variance of V̂DR(η) is

σ2
DR = E

[
IS

P(IS = 1)

(
µ(d(X), X) +

I{A = d(X)}
πd(X)

K(A,X)− V (η)

)2
]

= E
[

IS
P(IS = 1)

(
µ2(d(X), X) +

I{A = d(X)}
π2
d(X)

K2(A,X)− V 2(η)

+
2I{A = d(X)}

πd(X)
K(A,X)µ(d(X), X)− 2µ(d(X), X)V (η)

−2I{A = d(X)}
πd(X)

K(A,X)V (η)

)]
,

while the asymptotic variance of V̂CF (η) is

σ2
CF = E

[(
IT e(X)µ(d(X), X) +

IS I{A = d(X)}
πS(X)πd(X)

K(A,X)− V (η)

)2
]

= E
[(
IT e

2(X)µ2(d(X), X) +
IS I{A = d(X)}
π2
S(X)π2

d(X)
K2(A,X)− V 2(η)

−2IT e
2(X)µ(d(X), X)V (η)− 2IS I{A = d(X)}

πS(X)πd(X)
K(A,X)V (η)

)]
,

where

K(A,X) =
∆ y(U)

SC(U |A,X)
− µ(A,X) +

∫ ∞
0

dMC(u |A,X)

SC(u |A,X)
Q(u,A,X).

Since we have that

E
[

IS
P(IS = 1)

2I{A = d(X)}
πd(X)

K(A,X)µ(d(X), X)

]
= 0,

and for

B ∈
{
µ2(d(X), X),

I{A = d(X)}
π2
d(X)

K2(A,X), µ(d(X), X)V (η),
I{A = d(X)}

π2
d(X)

K(A,X)V (η)

}
,

we also have that

E
[

IS
P(IS = 1)

B

]
= E[IT e(X)B] = E

[
IS

πS(X)
B

]
,

we conclude that σ2
DR = σ2

CF .
By the law of iterated expectations, the value function Vd = E[y(T (d))] = EX [E[y(T (d)) |X]].

When there is no restriction on the class of ITRs, the true optimal ITR is

d∗∗(X) = arg max
d
Vd = arg max

d
EX [E[y(T (d)) |X]]

= I{E[y(T (1)) |X] > E[y(T (0)) |X]}.
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That is, the optimal ITR does not depend on the covariate distributions, but only the bilp
function which is the same in both the source and target populations by Assumption 2.
Thus both the maximizers of V̂DR(η) and V̂CF (η) converge to the true population param-
eter η∗∗. However, V̂DR(η) is biased since the expectation EX is taken with respect to the
source population.

Appendix H. Additional simulations

We first investigate the performance of the cross-fitted ACW estimator with different sam-
ple sizes (N,m) = (5 × 104, 2000), (1 × 105, 4000), (2 × 105, 8000), (4 × 105, 16000), (6 ×
105, 24000), (8× 105, 32000). Figure 3 and Table 3 report the results from 200 Monte Carlo
replications. The variance is computed using the EIF.

Figure 3: Boxplot of estimated value by ACW estimator with different sample sizes.
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Appendix I. Details of real data analysis

There are around 0.5% and 1.6% missing values in the RCT and OS data, respectively. We
use the mice function in the R package mice (van Buuren and Groothuis-Oudshoorn, 2011)
to impute the missing values.

Motivated by the clinical practice and existing work in the medical literature, we consider
ITRs that depend on the following five variables:
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Table 3: Numeric results of the ACW estimator. Bias is the empirical bias of point esti-
mates; SD is the empirical standard deviation of point estimates; SE is the average
of standard error estimates; CP is the empirical coverage probability of the 95%
Wald confidence intervals.

n;m(×103) ∼ 780; 2 ∼ 1560; 4 ∼ 3120; 8 ∼ 6240; 16 ∼ 9360; 24 ∼ 12480; 32

Bias 0.1041 0.0253 0.0134 0.0046 0.0031 0.0030
SD 0.1394 0.0985 0.0635 0.0419 0.0317 0.0267
SE 0.1611 0.0942 0.0627 0.0417 0.0330 0.0284
CP(%) 97.5 93.5 96.0 94.5 97.5 97.0

• AGE, SEX and Sequential Organ Failure Assessment (SOFA) score: these three base-
line variables are well related to mortality in ICUs, so we consider them as important
risk factors.

• Acute Kidney Injury Network (AKIN) score: Jaber et al. (2018) observed that the
infusion of sodium bicarbonate improved survival outcomes and mortality rate in
critically ill patients with severe metabolic acidemia and acute kidney injury. In the
observational data, the AKIN score was not recorded, so we computed the score using
serum creatinine measurement (Závada et al., 2010).

• SEPSIS: we consider the presence of sepsis as a risk factor because it is the main
condition associated with severe acidemia at the arrival in ICU. The effect of sodium
bicarbonate infusion on patients with acidema and acute kidney injury was also ob-
served in septic patients (Zhang et al., 2018b).

References

Per Kragh Andersen and Richard D. Gill. Cox’s Regression Model for Counting Processes:
A Large Sample Study. The Annals of Statistics, 10(4):1100–1120, 1982.

Susan Athey and Stefan Wager. Policy learning with observational data. Econometrica, 89
(1):133–161, 2021.

Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals
of Statistics, 47(2):1148–1178, 2019.

Jean-Yves Audibert and Alexandre B. Tsybakov. Fast learning rates for plug-in classifiers.
The Annals of statistics, 35(2):608–633, 2007.

Xiaofei Bai, Anastasios A. Tsiatis, Wenbin Lu, and Rui Song. Optimal treatment regimes for
survival endpoints using a locally-efficient doubly-robust estimator from a classification
perspective. Lifetime data analysis, 23(4):585–604, 2017.

Alexandre Belloni, Victor Chernozhukov, Ivan Fernández-Val, and Christian Hansen. Pro-
gram evaluation and causal inference with high-dimensional data. Econometrica, 85(1):
233–298, 2017.

46



Transfer Learning Survival ITR

Norman E. Breslow. Discussion on professor cox’s paper. Journal of the Royal Statistical
Society: Series B (Methodological), 34(2):216–217, 1972.

Shuai Chen, Lu Tian, Tianxi Cai, and Menggang Yu. A general statistical framework for
subgroup identification and comparative treatment scoring. Biometrics, 73(4):1199–1209,
2017.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment
and structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

Victor Chernozhukov, Mert Demirer, Greg Lewis, and Vasilis Syrgkanis. Semi-parametric
efficient policy learning with continuous actions. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Victor Chernozhukov, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey,
and James M. Robins. Locally robust semiparametric estimation. Econometrica, 90(4):
1501–1535, 2022a.

Victor Chernozhukov, Whitney K. Newey, and Rahul Singh. Automatic debiased machine
learning of causal and structural effects. Econometrica, 90(3):967–1027, 2022b.

Hunyong Cho, Shannon T. Holloway, David J. Couper, and Michael R. Kosorok. Multi-
stage optimal dynamic treatment regimes for survival outcomes with dependent censoring.
Biometrika, 110(2):395–410, 2023.

Jianing Chu, Wenbin Lu, and Shu Yang. Targeted optimal treatment regime learning using
summary statistics. Biometrika, 110(4):913–931, 2023.

Kyle Colangelo and Ying-Ying Lee. Double debiased machine learning nonparametric in-
ference with continuous treatments, 2023. URL https://arxiv.org/abs/2004.03036.

Stephen R. Cole and Elizabeth A. Stuart. Generalizing evidence from randomized clinical
trials to target populations: the actg 320 trial. American Journal of Epidemiology, 172
(1):107–115, 2010.

Bénédicte Colnet, Imke Mayer, Guanhua Chen, Awa Dieng, Ruohong Li, Gaël Varoquaux,
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