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Abstract

There exist several testing procedures based on the maximum mean discrepancy (MMD)
to address the challenge of model specification. However, these testing procedures ignore
the presence of estimated parameters in the case of composite null hypotheses. In this
paper, we first illustrate the effect of parameter estimation in model specification tests
based on the MMD. Second, we propose simple model specification and model selection
tests in the case of models with estimated parameters. All our tests are asymptotically
standard normal under the null, even when the true underlying distribution belongs to the
competing parametric families. A simulation study and a real data analysis illustrate the
performance of our tests in terms of power and level.

Keywords: distribution free test statistics, maximum mean discrepancy, model specifi-
cation, model comparison.

1. Introduction

Model selection is an “umbrella term” that refers to different important statistical problems.
One common occurrence of model selection is in the context of parametric or semiparametric
model estimation. In such cases, the estimated model must be statistically validated, leading
to the field of “specification testing”. In this work, we will consider models that specify the
law of a Data Generating Process (DGP), i.e., we consider models of probability measures.
Thus, a model, say M, is associated with a family of probability measures M ∶= {Pα, α ∈
Θ1}, where Θ1 denotes some set of parameters. The true underlying law of the DGP is
denoted by P . The empirical law of a sample of n i.i.d. observations from P is denoted
Pn. To obtain consistent specification tests, it is necessary to measure the distance between
a suggested model and the true underlying DGP. This is commonly done in terms of a
semi-metric π between probability measures. The distance between the model M and the
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law P of the DGP is then defined as

π(M, P ) ∶= inf
α∈Θ1

π(Pα, P ).

This definition allows to conduct a hypothesis test of

H(π)
0,M ∶ π(M, P ) = 0,

which is a natural way of testing the hypothesis that the model for the DGP is correctly
specified. Typically, the best-fitting probability measure(s) in the family M are defined by
so-called pseudo-true parameter(s) (also called pseudo-true value(s)) α⋆ that minimize the
distance between the model M and the DGP, i.e., α⋆ ∈ arg minα∈Θ1 π(Pα, P ). In general,
pseudo-true values are unknown and not unique. Assume that one of them, still denoted
α⋆, can be consistently estimated by a random sequence (αn)n≥1. Thus, Pαn should be close
to an optimal model inM. Further, P is often also unknown and needs to be estimated via

Pn. In practical applications, a consistent test of H(π)
0,M therefore needs to be based on the

asymptotic distribution of (an estimator of) π(Pαn ,Pn) under the null hypothesis H(π)
0,M.

Another common occurrence of the term model selection is when there exist several
competing models which must be compared statistically. Here, model selection rather means
validating one of the competing model as “the better one”. The aim is then to identify the
model that is the closest to the DGP, a task that is also called “model comparison”. The
seminal paper by Vuong (1989) was the first to propose a general framework for this task.
The author proposed to use the Kullback-Leibler (KL) divergence for model comparison:
a model M1 is preferred over a model M2 when its distance to the true model is smaller,
i.e., when π(M1, P ) < π(M2, P ) and π is chosen as the KL divergence. In general, model
selection between competing models is based on tests of the null hypothesis

H(π)
0,M1,M2

∶ π(M1, P ) = π(M2, P ).

In most circumstances, the competing models are parametric and may be misspecified, i.e.,
none of the models will satisfy π(Mi, P ) = 0, i ∈ {1,2}. For instance, when M1 = {Pα, α ∈
Θ1} and M2 = {Qβ, β ∈ Θ2}, their pseudo-true values are defined as above by

α⋆ ∈ argminα∈Θ1
π(Pα, P ), and β⋆ ∈ argminβ∈Θ2

π(Qβ, P ).

Then, for a given tuple (α⋆, β⋆) of pseudo-true values, H(π)
0,M1,M2

may be rewritten as

H(π)
0,M1,M2

∶ π(Pα⋆ , P ) = π(Qβ⋆ , P ).

Once some estimated pseudo-true values αn and βn and a sample from P are available, a
model selection test is typically based on the random quantity

Tn ∶= π̂(Pαn ,Pn) − π̂(Qβn ,Pn),

where π̂(P1, P2) denotes an estimator of π(P1, P2) for any tuple of probability measures
(P1, P2). Unfortunately, the asymptotic distribution of Tn is generally complex. Indeed,
the randomness of the estimated parameters of both models matters to state the limiting
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law of Tn under H(π)
0,M1,M2

. This is particularly the case for overlapping models. These
are models M1 and M2 for which Pα⋆ = Qβ⋆ , a situation that often cannot be excluded.
For example, this is the case for the KL divergence, where Tn is no longer distribution
free (Vuong, 1989, Theorem 3.3).

Since the seminal works of Durbin (1973a,b), numerous consistent specification tests
have been proposed in the statistical literature, depending on the chosen distance π. How-
ever, only a few of them manage composite assumptions. This is the case with the Cramer-
von Mises and Kolmogorov distances (Pollard, 1980), the uniform distance between multi-
variate cdfs’ (Beran and Millar, 1989), the total variation distance or, equivalently, the L1

distance between the underlying densities (Cao and Lugosi, 2005) and a L2-type distance be-
tween characteristic functions (Fan, 1997). Recently, the topic has regained attention, since
testing composite assumptions based on distances that are popular in generative machine
learning/statistics has become an important problem in applied machine learning/statistics.
This is notably the case for Wasserstein’s distance (Hallin et al., 2021), Kernel Stein Dis-
crepancies (Liu et al., 2016; Chwialkowski et al., 2016) and the Maximum-Mean Discrepancy
(Key et al., 2025).

The aim of this paper is to provide a solution for “specification testing” and “model
comparison” when π is the Maximum Mean Discrepancy (MMD). The MMD has become
a very popular distance in machine learning and statistics since its introduction in Smola
et al. (2007). The MMD can be easily estimated even in high-dimensions and it has a
nice interpretation in terms of embeddings of probability measures in Reproducing Ker-
nel Hilbert Spaces (RKHS). See Muandet et al. (2017) for a more recent review of the
topic. Using the MMD as a discrepancy measure has been proven useful in many statistical
applications including robust inference (Chérief-Abdellatif and Alquier, 2022; Alquier and
Gerber, 2024), change-point detection (Arlot et al., 2019), goodness-of-fit tests (Gretton
et al., 2012; Bounliphone et al., 2015) or copula estimation (Alquier et al., 2023). Fur-
ther, is has been applied in generative machine learning (Dziugaite et al., 2015; Li et al.,
2015, 2017; Sutherland et al., 2017; Zhou et al., 2020) and in a variety of other domains
including transfer learning (Long et al., 2017), the computation of functions of random
variables (Schölkopf et al., 2015), Bayesian statistics (Fukumizu et al., 2013; Park et al.,
2016; Cherief-Abdellatif and Alquier, 2020), clustering (Jegelka et al., 2009), conditional in-
dependence testing (Zhang et al., 2011), adaptive MCMC methods (Sejdinovic et al., 2014),
causal inference (Lopez-Paz et al., 2015), dynamical systems (Song et al., 2009) and in the
construction of sampling algorithms (Hofert et al., 2021; Brück, 2025), among many others.
In general, the computational complexity of the MMD is quadratic in the number of data
points, which can be restrictive with large data sets. Nonetheless, several recent research
papers have provided computationally efficient procedures: see, e.g., the linear statistic in
Gretton et al. (2012) or Chatalic et al. (2022).

Let us recall the basics about the MMD, following the approach of Smola et al. (2007).
Consider some probability measures defined on a topological space S equipped with its cor-
responding Borel sigma-algebra A. Instead of comparing these probability measures directly
in the space of probability measures, they may be mapped into an RKHS of real-valued
functions H defined on S. The latter space is associated with a symmetric and positive
definite function k ∶ S × S → R, called kernel, which may be chosen by practitioners. For
many kernels k (called “characteristic”), these mappings are injective and the MMD dis-
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tance between probability measures is then defined as the distance between their respective
embeddings in the space of functions H. More specifically, consider some random element
X in a topological space (S,A), whose law is P . The embedding of the probability measure
P into H is given by the map P ↦ EP [k(⋅,X)] =∶ µP . The latter map implicitly depends
on the kernel k, but this dependence is suppressed to lighten notations. When k is charac-
teristic, P ↦ µP is injective and we have P1 /= P2 iff µP1 /= µP2 . Thus, the MMD defines a
distance on the space of probability measures on S via MMD(P1, P2) ∶= ∥µP1 − µP2∥H. One
can deduce that

MMD2(P1, P2) = EX,X′∼P1[EY,Y ′∼P2[k(X,X ′) − 2k(X,Y ) + k(Y,Y ′)]].

Therefore, the computation of MMD(P1, P2) does not involve any operations in the Hilbert
space H but is solely dependent on expectations of known functionals w.r.t. P1 and P2.
Moreover, given an i.i.d. sample (X1,X2, . . . ,Xn) from P1 and (Y1, Y2, . . . , Yn) from P2,
MMD2(P1, P2) can be empirically estimated by

M̂MD2(P1, P2) ∶=
1

n(n − 1)
n

∑
i,j=1
i/=j

{k(Xi,Xj) − 2k(Xi, Yj) + k(Yi, Yj)}. (1)

The latter unbiased estimator of MMD2(P1, P2) is a U -statistic of degree two associated
with the symmetric map

h((x1, y1), (x2, y2)) ∶= k(x1, x2) − k(x1, y2) − k(x2, y1) + k(y1, y2), (2)

where (xj , yj) ∈ S2, j ∈ {1,2}. Hereafter, such maps will be called “U -statistic kernel” (or

“U -kernel”) to distinguish them from the kernel k. Clearly, M̂MD2(P1, P2) may be used
to test whether or not (X1,X2, . . . ,Xn) and (Y1, Y2, . . . , Yn) follow the same underlying
probability measure, i.e., to test the null hypothesis H0 ∶ P1 = P2. A consistent test may
be deduced from standard U -statistics theory (Serfling, 1980, Section 5) by observing that,
under H0,

nM̂MD2(P1, P2)
lawÐ→

∞

∑
i=1

λi (X 2
i − 2) ,

where Xi ∼ N(0,2) and the λi denote the (possibly infinitely many) eigenvalues associated

with the functional equation E[{k(X,y) − µP1(X) − µP1(y) + EY [µP1(Y )]}ψ(X)] = λψ(y)
for every y ∈ S (Gretton et al., 2012). However, the computation of the eigenvalues λi is

challenging, which is a limitation of a test for H0 based on nM̂MD2(P1, P2). On the other
hand, even if closed-form expressions for these eigenvalues are rarely available, estimating
them is feasible through the computation of the eigenvalues of a particular Gram matrix:
see Gretton et al. (2009).

Our corresponding null hypothesis for model specification will be defined hereafter as

H0,M ∶ MMD(Pα⋆ , P ) = 0,

whereas the null hypothesis for model selection will be defined as

H0,M1,M2 ∶ MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ).

4



Distribution Free MMD Tests For Model Selection

When some of our results are valid only under H0,M or H0,M1,M2 , this will be explicitly
specified. For notational convenience, the dependence of H0,M and H0,M1,M2 on (α⋆, β⋆)
will remain implicit. Moreover, from now on, and unless explicitly stated otherwise, we allow
that α⋆ and β⋆ are some general unknown “optimal” parameters, not necessarily pseudo-
true values, to keep the mathematical framework as general as possible. For example, Pα⋆
or Qβ⋆ may be an “optimal model” because of some particular properties such as sparsity,
ease of calibration, fairness, etc. In such circumstances, the unknown α⋆ (resp. β⋆) are
minimizing some loss function that may not be the MMD distance betweenM1 (resp.M2)
and P .

The null hypothesis H0,M may be seen as a standard zero assumption for two sample
testing. The main difficulty comes from the fact that α⋆ is unknown and has to be estimated.
In principle, when a sequence (αn)n≥1 weakly tends to α⋆, resorting to the asymptotic dis-

tribution of M̂MD2(Pαn , P ) allows to conduct specification testing, i.e., testing the null

hypothesis H0,M ∶ MMD(Pα⋆ , P ) = 0. Unfortunately, the limiting law of M̂MD2(Pαn , P )
might be more complex than that of M̂MD2(Pα⋆ , P ). Moreover, it is usually impossible to
generate independent samples from Pαn without resorting to the sample from P , since αn
is usually estimated on the sample from P , adding another layer of complexity. Nonethe-
less, Key et al. (2025) recently showed that some consistent test of H0,M can be obtained
by bootstrapping MMD2(Pαn ,Pn).

For model comparison, a similar phenomenon as for the test of Vuong (1989) oc-
curs, even if α⋆ and β⋆ were known. When Pα⋆ = P = Qβ⋆ , the rate of convergence of

M̂MD2(Pα⋆ , P ) − M̂MD2(Qβ⋆ , P ) is n−1; but, otherwise, the rate of convergence is n−1/2,
as noticed in Bounliphone et al. (2015). Thus, to built a consistent test of H0,M1,M2 , one
needs to deal with different rates of convergences. These rates depend on whether or not
Pα⋆ = P = Qβ⋆ , a situation that is clearly unknown a priori. A two-step procedure with
a pre-test of Pα⋆ = P = Qβ⋆ seems natural, but it is undesirable due to the difficulty of

determining the critical values of n{M̂MD2(Pαn , P )−M̂MD2(Qβn , P )} and multiple testing
issues.

In this paper, we provide a solution to the latter problem of model specification and
model selection tests based on the MMD. The contributions of our paper can be summarized
as follows. First, we investigate the influence of parameter estimation on the asymptotic

distribution of the estimator M̂MD2(Pαn , P ). We show that it is necessary to account for
the influence of parameter estimation to test H0,M : see Section 2.1 for an illustrative ex-

ample. Second, as we find that the asymptotic distribution of nM̂MD2(Pαn , P ) under the
null is rather complex to handle in practical applications, we provide new asymptotically
distribution free approaches for specification testing and model comparison. In particular,
we show that our novel test statistics converge to a standard normal distribution under the
null, allowing straightforward calculations of critical values. Our ideas stem from a gen-
eralization of the sample splitting approach introduced in Schennach and Wilhelm (2017),
which was used to obtain a standard normal distributed test statistic for Vuong’s likeli-
hood ratio test with estimated parameters (Vuong, 1989). Adapting their core ideas, this
allows to propose test statistics that are relatively simple to compute and whose asymptotic
standard normal law is not influenced by parameter estimation.
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The paper is organized as follows. Our test statistics for model selection are introduced
in Section 2. In Section 3, we formalize the mathematical framework and state the asymp-
totic distribution of our test statistic for model specification. A similar structure is followed
in Section 4 to manage model comparison tests. Section 5 contains a short simulation study
to illustrate the empirical performance of the proposed tests. We apply our methodology
to stock returns data in Section 6. Section 7 summarizes the results and sketches further
extensions of the framework. Most technical details, particularly the proofs of the main
theorems, have been postponed to appendices.

2. Non-Degenerate MMD-based Tests for Model Selection

At this stage, a reader may wonder why our model specification test will not be based

solely on the test statistic M̂MD2(Pαn , P ), which is an estimate of M̂MD2(Pα⋆ , P ) whose
asymptotic law has been investigated in Gretton et al. (2006). To illustrate the technical

difficulties in working with M̂MD2(Pαn , P ), assume that the estimator αn of a value α⋆ is
obtained from the sample drawn under P , which is the natural setup when Pαn is a model
for P . Then, any sample from Pαn is inherently dependent due to the common αn and it is
not independent of the initial sample from P . Note that Gretton et al. (2006) requires i.i.d.

samples from Pαn to compute M̂MD2(Pαn , P ), which is problematic. This issue has first
been noticed, but not further investigated, by Lloyd and Ghahramani (2015). However,
since the dependence between the samples from Pαn and P deteriorates with increasing n,

one might hope that nM̂MD2(Pαn , P ) has the same asymptotic law as nM̂MD2(Pα⋆ , P ).
Unfortunately, the following example illustrates that this is not the case. Furthermore, it

shows that the asymptotic distribution of nM̂MD2(Pαn , P ) is significantly more complicated

than the asymptotic distribution of nM̂MD2(Pα⋆ , P ). Therefore, we later introduce novel
distribution free test statistics when conducting model specification or comparison tests
based on the MMD.

2.1 An Illustrative Example

On a probability space (Ω,B,P), consider the random variable X ∼ P = N (0,1). Let
(Xi)i=1,...,n be an i.i.d. sample drawn from P , the law of the DGP. Define a parametric
model for the law of X by M ∶= {N(α,1), α ∈ R}. For a given parameter α, set

Yi(α) ∶= Yi + α ∼ Pα, where Yi
i.i.d.∼ N (0,1) , i ∈ {1, . . . , n}.

Select α⋆ = 0 and the “optimal model” N(α⋆,1) is identical to the law of the DGP. In
practice, α⋆ is unknown and will be estimated by αn ∶= n−1∑ni=1Xi, for example. As-
sume we want to test whether Pα⋆ = P , or equivalently MMD(Pα⋆ , P ) = 0, using the test

statistic nM̂MD2(Pαn , P ). To this purpose, we choose the Gaussian kernel k(x1, x2) =
exp ( − (x1 − x2)2), which is characteristic. This is a convenient choice since any map

α ↦ h((Xi, Yi(α)), (Xj , Yj(α))), as defined in (2), is differentiable. Therefore, a second
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order Taylor expansions around α⋆ = 0 yields

nM̂MD2(Pαn , P ) = nM̂MD2(Pα⋆ , P )

+
√
n (αn − 0)

√
n

n(n − 1)
n

∑
i,j=1
i/=j

∂

∂α
h((Xi, Yi + α), (Xj , Yj + α))∣α=0

+ n(αn − 0)2

2

1

n(n − 1)
n

∑
i,j=1
i/=j

∂2

∂α2
h((Xi, Yi + α), (Xj , Yj + α))∣α=0 + oP(nα2

n)

= nM̂MD2(Pα⋆ , P ) +
√
nαn

√
nŨ1,n +

nα2
n

2
Ũ2,n + oP(1),

where Ũ1,n and Ũ2,n denote the U -statistics of degree two corresponding to the first and

second order derivatives of α ↦ h((Xi, Yi + α), (Xj , Yj + α)) at α⋆. Thus, nM̂MD2(Pαn , P )
can be decomposed into the sum of the “usual” test statistic for a known and fixed α⋆
plus the random term En ∶=

√
nαn

√
nŨ1,n + nα2

nŨ2,n/2 that can be attributed to the noise

created by the estimation of α⋆. Obviously, nM̂MD2(Pαn , P ) has the same limiting law

as nM̂MD2(Pα⋆ , P ) if and only if En = oP(1). Since
√
nαn

lawÐ→ N(0,1), En = oP(1) if and
only if

√
nŨ1,n+

√
nαnŨ2,n/2 = oP(1). By standard results of U -statistics theory and simple

calculations,
√
nŨ1,n weakly tends to a N(0, σ2

1) random variable with σ2
1 = 8

√
3/(63

√
7)

and Ũ2,n → 16/(5
√

5) a.s. This implies
√
nŨ1,n +

√
nαnŨ2,n/2 /= oP(1). Therefore, the

limiting law of nM̂MD2(Pαn , P ) is not equal to the limiting law of nM̂MD2(Pα⋆, P ), due
to the influence of parameter estimation.

2.2 New Asymptotically Distribution Free Test Statistics

Let us first introduce some notation. For sequences of random elements (X1, . . . ,Xn)
and (Y1, . . . , Yn), we denote [X]i∶j ∶= (Xi,Xi+1, . . . ,Xj), [Y ]i∶j ∶= (Yi, Yi+1, . . . , Yj) and

[X,Y ]i∶j ∶= ((Xi, Yi), (Xi+1, Yi+1), . . . , (Xj , Yj)) for 1 ≤ i < j ≤ n. For x1, . . . , xn and

y1, . . . , yn, we similarly denote [x]i∶j ∶= (xi, xi+1, . . . , xj), [y]i∶j ∶= (yi, yi+1, . . . , yj) and [x,y]i∶j
∶= ((xi, yi), (xi+1, yi+1), . . . , (xj , yj)) for 1 ≤ i < j ≤ n. In the same manner, Xi1,i2,...,ik ,
Yi1,i2,...,ik and [X,Y ]i1,i2,...,ik are defined, where the index set indicates the components of
concatenated variables.

Our new test statistics for model specification and model comparison will be based on a
weighted combination of two test statistics, both being a potential candidate for this task.
For the sake of simplicity, let us start by comparing two fixed probability measures P1 and

P2. The first ingredient of our new test statistics is M̂MD2(P1, P2) as introduced in (1).

Besides M̂MD2(P1, P2), a test of H0 ∶ P1 = P2 may also be based on the U -statistic

M̂MD2
q(P1, P2) ∶=

1

n/2(n/2 − 1)

n/2

∑
i,j=1
i/=j

{k(X2i−1,X2j−1) − k(Y2j ,X2i)

−k(Y2i,X2j) + k(Y2i−1, Y2j−1)} =
1

n/2(n/2 − 1)

n/2

∑
i,j=1
i/=j

q([X,Y ]2i−1,2i , [X,Y ]2j−1,2j),
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introducing the U -statistic kernel

q([x,y]1∶2 , [x,y]3∶4) ∶= k(x1, x3) − k(x4, y2) − k(x2, y4) + k(y1, y3).

Hereafter, we will assume that n is even for simplicity. Note that M̂MD2
q is a U -statistic

based on the sample ([X,Y ]1∶2, [X,Y ]3∶4, . . . , [X,Y ](n−1)∶n) from P1⊗P2⊗P1⊗P2 of size

n/2. It is easy to check that M̂MD2
q(P1, P2) is an unbiased estimator of MMD2(P1, P2). By

standard U -statistic arguments, we have

√
n{M̂MD2

q(P1, P2) −MMD2(P1, P2)}
lawÐ→N(0, σ2

q),

with σ2
q > 0, essentially if and only if P1 or P2 is not a Dirac (see (12) below). Therefore,

a test of H0 ∶ P1 = P2 may always be based on M̂MD2
q(P1, P2). Unfortunately, it may

result in a power loss compared to a test based on M̂MD2(P1, P2) since M̂MD2
q(P1, P2) does

not use all pairs of observations which are available from a sample of size n drawn from

P1 ⊗ P2. It should be noted that a test of H0 based on M̂MD2
q(P1, P2) is similar to the

idea of Shekhar et al. (2022), who have recently proposed a MMD-based test statistic of
H0 that is essentially a non-degenerate two-sample U -statistic. Similarly to the expected

behavior for M̂MD2
q(P1, P2), Shekhar et al. (2022) observe a power loss of their test statistic

in comparison to a test based on M̂MD2(P1, P2). Therefore, it is desirable to approximately

keep the power of a test based on M̂MD2(P1, P2), while resorting to the critical values of a
normal distribution under the null hypothesis.

To this purpose, we will consider a weighted sum of M̂MD2(P1, P2) and M̂MD2
q(P1, P2)

in the spirit of Schennach and Wilhelm (2017): introduce some (possibly random and data
dependent) weights εn > 0 and define the test statistic

M̂MD2
εn(P1, P2) ∶= M̂MD2(P1, P2) + εnM̂MD2

q(P1, P2). (3)

If εn ∶= ε > 0 is a constant, it is obvious that
√
n M̂MD2

εn(P1, P2)
lawÐ→ εN(0, σ2

q) under

H0, since
√
n M̂MD2(P1, P2) tends to zero in probability when P1 = P2. However, the choice

εn = ε > 0 may lead to a power loss, similar to a test based on
√
n M̂MD2

q(P1, P2). Therefore,
we impose that εn tends to zero in probability hereafter and we will prove that a test of H0

can be conducted via the test statistic

Tn(P1, P2) ∶=
√
n M̂MD2

εn(P1, P2)
σ̂n

, (4)

where σ̂2
n ∶= σ̂2

n(εn, P1, P2) denotes an estimator of the asymptotic variance of the numerator
of Tn(P1, P2). With our choice of σ̂n, which is described in Section 3.2 and 3.3, and under
H0, the test statistic Tn(P1, P2) converges weakly to N(0,1). Imposing εn → 0 allows to

approximately keep the power of nM̂MD2(P1, P2) under the alternative and also to avoid

the problem of computing the critical values of the asymptotic law of nM̂MD2(P1, P2).
Instead of considering a tuple of fixed probability measures (P1, P2) we now consider an

underlying parametric model M ∶= {Pα, α ∈ Θ1} for the DGP, as in Section 1. With the
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same notations as above, a “specification test” of H0,M ∶ MMD(Pα⋆ , P ) = 0 can be based
on the statistic

Tn(M, P ) ∶=
√
n

M̂MD2
εn(Pαn , P )
σ̂n

, (5)

for some sequence of parameters (αn)n≥1 that weakly converges to α⋆ at rate n−1/2. Typi-
cally, the estimated parameters αn are obtained from an i.i.d. sample (X1,X2, . . . ,Xn) from
P . To mimic the previous situation and to calculate Tn(M, P ), we have to draw a sample
(Y1(αn), Y2(αn), . . . , Yn(αn)) from Pαn . However, such a sample cannot be i.i.d. due to the
common dependence on αn. Moreover, it cannot be independent of (X1,X2, . . . ,Xn) when
αn is deduced from the latter sample. Additionally, the denominator σ̂n in (5) depends on
εn and needs to be calculated from the sample (Xi, Yi(αn))i=1,...,n

. Nevertheless, it is shown

in Section 3 that Tn(M, P ) still converges to a standard normal distribution under H0,M,
regardless of the technical problems induced by parameter estimation.

In the case of two competing models M1 and M2 for P , one may conduct a model
comparison based on the difference MMD2(Pα⋆ , P )−MMD2(Qβ⋆ , P ) to judge which family
of probability measures is closest to the true underlying model P . The idea of testing the null

hypothesis MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ) based on
√
n{M̂MD2(Pα⋆ , P )−M̂MD2(Qβ⋆ , P )}

was first proposed by Bounliphone et al. (2015). However, the latter authors only considered
fixed competing probability measures and excluded the “degenerate” situation Pα⋆ = P =
Qβ⋆ . In the case of parametric models for P , the estimates αn and βn of α⋆ and β⋆ are usually
obtained from (X1,X2, . . . ,Xn). The framework of Bounliphone et al. (2015) requires access
to independent i.i.d. samples from Pαn and Qβn , which also need to be independent of the
sample from P . Obviously, this is impossible when αn and βn are evaluated on the sample
(Xi)i=1,...,n. Note that estimation of αn and βn on separate hold-out sets from another
P -sample does not resolve the issue, since the samples from Pαn and Qβn are inherently
dependent due to the common dependence w.r.t. the estimated parameters. Therefore,
a direct application of the test statistic proposed in Bounliphone et al. (2015) to model
comparison problems is not mathematically justified. Moreover, since it has to be excluded
that P = Pα⋆ = Qβ⋆ , their test is not applicable to every modeling problem as the assumption
P = Pα⋆ = Qβ⋆ may be reasonable for some competing generative models, e.g. such as GANs.

In our paper, we rectify these shortcomings by introducing a test for the null hypothesis
H0,M1,M2 ∶ MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ), based on

Tn(M1,M2, P ) ∶=
√
n

M̂MD2
εn(Pαn , P ) − M̂MD2

εn(Qβn , P )
τ̂n

, (6)

where τ̂2
n = τ̂2

n(εn, Pαn ,Qβn , P ) denotes a natural estimator of the asymptotic variance

of
√
n{M̂MD2

εn(Pαn , P ) − M̂MD2
εn(Qβn , P )}, which is specified in Section 4.1. Moreover,

(αn)n≥1 (resp. (βn)n≥1) denotes a sequences of parameters which weakly converges to α⋆

(resp. β⋆) at rate n−1/2. We prove that Tn(M1,M2, P ) lawÐ→ N(0,1) under H0,M1,M2 , even
if P = Pα⋆ = Qβ⋆ and regardless of the dependence induced by αn and βn.

9



Brück, Fermanian and Min

3. Asymptotic Behavior of MMD-based Specification Tests

This section establishes the asymptotic normality of our test statistic for model specification
Tn(M, P ).

3.1 Fundamental Regularity Conditions on M, k and αn

Let us formalize our mathematical framework. Hereafter, we will assume that the sam-
ple space S is some topological space equipped with its Borel sigma-algebra. Due to the
Moore-Aronszajn Theorem (Aronszajn, 1950), there exists a unique RKHS H of real-valued
functions on S that is associated with our kernel k ∶ S × S → R. It can be proven that H =
span{k(x, ⋅) ∣x ∈ S} where the closure is taken w.r.t. the RKHS norm. For instance, when
S = R, the RKHS associated with the popular Gaussian kernel k(x, y) = exp(−(x−y)2/σ2) is
the space of functions f ∶ x ↦ exp(−x2/σ2)∑+∞j=0 vjx

j , for some coefficients (vj)j≥0 that sat-

isfy ∑j≥0 j!σ
2jv2

j /2j < ∞. The scalar product of two elements f(x) = exp(−x2/σ2)∑+∞j=0 vjx
j

and g(x) = exp(−x2/σ2)∑+∞j=0 wjx
j in H is then < f, g >= ∑j≥0 j!σ

2jvjwj/2j (Minh, 2010,
Theorem 1). See other examples of RKHS H in Berlinet and Thomas-Agnan (2011, Chap-
ter 7). Let (X1,X2, . . .) denote an i.i.d. sequence drawn from the law P of the DGP. To
state our results, we will need several conditions of regularity.

Assumption 1 The kernel k is a measurable and bounded map from S × S to R. More-
over, it is characteristic: the map P ↦ ∫S k(⋅, x)P (dx) from the space of Borel probability
measures on S to H is injective.

Note that the integral ∫S k(⋅, x)P (dx) has to be interpreted as a Bochner integral; see,
e.g., Dinculeanu (2000, Chapter 1). Moreover, the boundedness of k implies that the mean
embedding is well-defined for any probability measure: see Section 3.1 in Muandet et al.
(2020), for instance. Thus, Assumption 1 is sufficient to ensure that MMD(P1, P2) is a valid
distance between two probability measures. For example, the Gaussian and Laplace kernels
on Rd satisfy Assumption 1: see Fukumizu et al. (2007) and Sriperumbudur et al. (2010)
for a thorough account on kernels satisfying Assumption 1. The characteristic property
is key in many applications of the MMD and has been studied in depth in the literature.
It is closely related to, but different from, the concept of “universality” (Sriperumbudur
et al., 2011; Simon-Gabriel and Schölkopf, 2018). It is required for some kernel measures of
conditional dependence (Fukumizu et al., 2007, 2009). Notably, Nishiyama and Fukumizu
(2016) stated the characteristicity of kernels defined by pdfs’ of symmetric infinitely divisible
distributions. Recently, Szabó and Sriperumbudur (2018) studied the characteristic and
universal properties of product kernels. See Muandet et al. (2017, Section 3.3.1) and the
references therein too.

Next, let us considerM ∶= {Pα;α ∈ Θ1}, a parametric family of probability measures on
S.

Assumption 2 The space Θ1 is a compact subset of Rpα and its interior is non-empty.
There exists a topological space U equipped with its Borel sigma-algebra, a random element
U ∼ PU in U and a measurable map F ∶ U × Θ1 → S such that the law of F (U ;α) is
Pα for any α ∈ Θ1. For a given parameter α⋆ that belongs to the interior of Θ1, the map

10
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α ↦MMD2(Pα, P ) is twice-continuously differentiable in a neighborhood of α⋆. Further, the
random variable ∫U k(X,F (u;α⋆))dPU(u) is not constant a.e. and supp(P )∩supp(Pα⋆) /= ∅.

Essentially, this assumption ensures that the parametrization ofM is sufficiently regular.
First, Pα smoothly varies in α w.r.t. the MMD. Second, there exists a convenient way of
simulating from the model Pα for every α ∈ Θ1. In particular, Assumption 2 ensures that
a single i.i.d. sequence of random elements (U1, U2, . . .), Ui ∼ PU , is sufficient to obtain an
i.i.d. sequence (F (U1;α), F (U2;α), . . . ) from Pα, for every α ∈ Θ1. Thus, from now on,
we will assume that we have an i.i.d. sequence (U1, U2, . . .) from PU at hand, which is also
assumed to be independent of (X1,X2, . . .). Furthermore, as is standard in mathematical
statistics, we assume that the two independent i.i.d. sequences are induced by a common
abstract probability space (Ω,B,P). If not indicated otherwise, expectations E [⋅] are always
taken w.r.t. P. Moreover, Wn = oP(1) (resp. Wn = OP(1)) means that a sequence of random
elements (Wn)n≥1 tends to zero in probability (resp. is bounded in probability) in the
probability space (Ω,B,P). The last condition of Assumption 2 is very mild and of purely
technical nature. It ensures that we are not working with constant random variables later.

Every model M can be defined in terms of the tuple (F,U) by setting M ∶= {Pα ∶=
Law(F (U ;α)), α ∈ Θ1}. Defining a model by a class of probability measures in this way
is common when working with generative (also called simulation-based) models, which
are very popular in machine learning and which often also implicitly appear in classical
statistics: see, e.g., Bond-Taylor et al. (2021) for a review of the topic and Dziugaite et al.
(2015); Li et al. (2015, 2017); Sutherland et al. (2017); Zhou et al. (2020) for generative
models based on the MMD. The map F will therefore be called a generating function of
the model M. To illustrate the role of U and F , assume that Pα is a parametric family of
probability measures on the real line. Then U could be chosen as a uniformly distributed
random variable on (0,1) and F (⋅;α) could denote the inverse-quantile function of Pα.
Nevertheless, there might exist several tuples (F,U) to describe the same model M and
not every representation of M might satisfy Assumption 2.

At this stage, we have not specified what we mean by “optimal” concerning α⋆. Formally,
α⋆ could be arbitrarily chosen, even if, in practice, this value is most often the minimizer
of some distance between the family (Pα)α∈Θ1 and the true probability measure P . In the
latter case, we called α⋆ a pseudo-true value (see Section 1). For the moment, we keep the
discussion as general as possible: we do not impose that α⋆ is a pseudo-true value, even if
this is implicitly implied by H0,M. Note that we neither require to specify the statistical
method of inference for α⋆ by αn nor which data is used to calculate αn (full sample, sample
splitting or overlapping).

To simplify the notations in the following, define the functions

h([x,u]1∶2;α) ∶= h((x1, F (u1;α)), (x2, F (u2;α)))
= k(x1, x2) − k(x1, F (u2;α)) − k(x2, F (u1;α))

+k(F (u1;α), F (u2;α)), and (7)

q([x,u]1∶4;α) ∶= k(x1, x3) − k(x4, F (u2;α)) − k(x2, F (u4;α))
+k(F (u1;α), F (u3;α)), (8)
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where the arguments xj and uk belong to S and U respectively. Furthermore, define the
family of maps

h̃(x, y;α) ∶ α ↦ E[h((x, y), (X,F (U ;α)))], (9)

which is indexed by (x, y) ∈ S × S. The gradient of any map α ↦ H(α) at some ᾱ ∈ Θ1

will be denoted by ∇αH(ᾱ), and ∇α⊺H(ᾱ) denotes its transpose (row) vector. Concerning
second order derivatives, ∇α,α⊺H(ᾱ) denotes the Hessian matrix of H evaluated at α = ᾱ.

3.2 Asymptotic Variance Estimation

A key ingredient to obtain the asymptotic normality of Tn(M, P ) will be the choice of

a suitable estimator of the asymptotic variance of
√
nM̂MD2

εn(Pαn , P ). In this section,

we propose some intuitive estimators of the asymptotic variances of
√
nM̂MD2(Pαn , P ) and

√
nM̂MD2

q(Pαn , P ), which we later combine to obtain a suitable estimator of the asymptotic

variance of
√
nM̂MD2

εn(Pαn , P ). To this purpose, recall that, for any fixed parameter α, it

is well-known (Serfling, 1980, p. 192) that the asymptotic variance of
√
n{M̂MD2(Pα, P ) −

MMD2(Pα, P )} is

σ2
α ∶= Var (2h̃(X,F (U ;α);α)).

The corresponding empirical counterpart of σ2
α is

σ̃2
α ∶=

4

n

n

∑
i=1

{ 1

n − 1

n

∑
j=1
i/=j

h((Xi, F (Ui;α)), (Xj , F (Uj ;α))) − M̂MD2(Pα, P )}
2

.

Since our goal is to estimate σ2
α⋆ for unknown α⋆, we replace α⋆ with αn and define an

estimator of σ2
α⋆ by

σ̃2
αn ∶=

4

n

n

∑
i=1

{ 1

n − 1

n

∑
j=1
i/=j

h((Xi, F (Ui;αn)), (Xj , F (Uj ;αn))) − M̂MD2(Pαn , P )}
2

. (10)

Similarly, the asymptotic variance of
√
n{M̂MD2

q(Pα, P ) −MMD(Pα, P )} for any α ∈ Θ1 is

σ2
q,α ∶= Var (2

√
2E[X,U]3∶4[q([X,U]1∶4;α)]).

Analogously, this allows to define an estimator of σ2
q,α⋆ via

σ̃2
q,αn ∶=

16

n

n/2

∑
i=1

{ 1

n/2 − 1

n/2

∑
j=1
i/=j

q([X,U]2i−1,2i,2j−1,2j ;αn) − M̂MD2(Pαn , P )}
2

. (11)

One should observe that both estimators are always non-negative and of computational
complexity O(n2). Further, σ2

α⋆ = 0 when Pα⋆ = P , but σ2
q,α⋆ is always strictly positive
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under Assumption 2, which will later be important in our theoretical derivations. To see
this, note that, if σq,α⋆ = 0 then the random element

E[X,U]3∶4[q([X,U]1∶4;α⋆)] = E[k(X1,X3)∣X1] − E[k(X4, F (U2;α⋆))∣U2]

−E[k(X2, F (U4;α⋆))∣X2] +E[k(F (U1;α⋆), F (U3;α⋆))∣U1] (12)

is constant almost surely. Therefore, the four random variables on the r.h.s. of (12) are con-
stant almost surely. In particular, this would imply that E[k(X,F (U ;α⋆))∣X] is constant,
a situation that has been excluded by Assumption 2.

3.3 Differentiable Generating Functions (Model Specification)

In this section, we treat the case of α ↦ F (u;α) being twice differentiable for every u ∈
supp(U). Even if this assumption may appear relatively demanding (see the discussion
in the beginning of Section 3.4 below), the proofs of our results are significantly simpler
and intuitive in this case. This is why we choose to first provide our results under the
assumption of a smooth generating function, once it is composed with the kernel. Later,
we generalize our results to the case of possibly non-differentiable maps.

Assumption 3 The maps α ↦ k(x,F (u;α)) and α ↦ k(F (u;α), F (ũ;α)) are twice dif-
ferentiable for every x ∈ S and u, ũ ∈ U .

As a consequence, the maps h and q, as defined by (7) and (8) respectively, are twice
differentiable w.r.t. α. Note that Assumption 3 is mainly an assumption on the smoothness
of F (u;α), since most of the commonly used kernels k are smooth functions. Further, we
require some usual conditions of regularity, expressed in terms of moments. These conditions
are not only imposed on h and q but also on the auxiliary function

g([x,u]1∶3;α) ∶= 4

3
{h([x,u]1,2;α)h([x,u]1,3;α) + h([x,u]2,1;α)h([x,u]2,3;α)

+h([x,u]3,2;α)h([x,u]3,1;α)}, (13)

which frequently appears in the proofs. For any δ > 0, let Bδ(α⋆) be an open ball in Θ1 that
is centered at α⋆ and whose radius is δ. We require the following conditions of regularity.

Assumption 4 There exists a δ > 0 s.t. E[ supα1∈Bδ(α⋆) ∥∇
2
α,α⊺h([X,U]1∶2;α1)∥] < ∞, and

E[ sup
α1∈Bδ(α⋆)

∥∇2
α,α⊺q([X,U]1∶4;α1)∥] +E[ sup

α1∈Bδ(α⋆)
∥∇2

α,α⊺g([X,U]1∶3;α1)∥] < ∞.

Moreover, E[∇αh([X,U]1∶2;α⋆)] = ∇αE[h([X,U]1∶2;α⋆)], E[∇αg([X,U]1∶3;α⋆)] =
∇αE[g([X,U]1∶3;α⋆)] and E[∇αq([X,U]1∶4;α⋆)] = ∇αE[q([X,U]1∶4;α⋆)].

Under the latter assumptions, Lemma 2 in the appendix shows that σ̃2
αn = OP(n−1) when

Pα⋆ = P , whereas σ̃2
q,αn → σ̃2

q,α⋆ > 0 remains positive. This justifies a model specification

test based on a weighted combination of
√
nM̂MD2(Pαn , P ) and

√
nM̂MD2

q(Pαn , P ), which
automatically “switches” between the two statistics, depending on whether or not Pα⋆ = P .
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Theorem 1 Assume εn → 0, εn
√
n → ∞ in probability,

√
n(αn − α⋆) = OP(1) and that

Assumptions 1-4 are satisfied.

1. If P = Pα⋆, i.e., under H0,M, we have

Tn(M, P ) =
√
n

M̂MD2
εn(Pαn , P )
σ̂n

lawÐ→N(0,1),

where σ̂n = σ̃αn + εnσ̃q,αn .

2. If P /= Pα⋆, i.e., if H0,M is not true, then Tn(M, P ) tends to infinity in probability.

The proof is postponed to Section A.2. As a consequence of Theorem 1, a consistent distri-
bution free test of H0,M can be conducted with the test statistic Tn(M, P ) (see Algorithm 1
below).

Remark 1 Note that Theorem 1 obviously covers the case of simple zero assumptions, i.e.,
testing H0 ∶ P1 = P for some given probability P1 and with the test statistic (4). Our theory
directly applies by defining Θ1 as the singleton {α⋆}, and setting Pα⋆ = P1. The technical
assumptions 2-4 are no longer required in this case, since the sequence (αn) becomes constant
and it is no longer necessary to differentiate the kernels h and q.

Remark 2 In Theorem 1, it is possible to replace the denominator σ̂n = σ̃αn + εnσ̃q,αn by

(σ̃2
αn+ε2nσ̃2

q,αn)
1/2

since both quantities are asymptotically equivalent under our assumptions.
Moreover, to lighten our theoretical developments, we have neglected the covariance between

M̂MD2(Pαn , P ) and M̂MD2
q(Pαn , P ) as this covariance multiplied by εn is always asymp-

totically negligible compared to σ̃2
αn + ε2nσ̃2

q,αn (invoke the Cauchy-Schwarz inequality in the
degenerate case, as σ̃αn = oP(εn)).

3.4 Non-Differentiable Generating Function (Model Specification)

The assumption of differentiability of α ↦ F (U ;α) may be considered as relatively strong
in many practical applications in statistics and machine learning. For example, let F (⋅;α)
denote a deep neural network with the ReLu activation function and a parameter vector α
and let U be uniformly distributed on [0,1]. Then, defining Pα ∶= law(F (U ;α)) yields a
universal approximator of any probability distribution P in terms of the MMD: see Yang
et al. (2022, Theorem 2.8). Obviously, α ↦ F (u;α) is not differentiable for any u, and the
results from Section 3.3 cannot be applied. In this section, we show that our test may still
be applied even if the generating function is not differentiable, imposing some regularity
conditions on E[k(F (U ;α), ⋅)] which are detailed in Appendix A.3.

Since we cannot apply a Taylor expansion w.r.t. α to Tn(M, P ) when α ↦ F (U ;α) is not
differentiable, we need more sophisticated tools than in Section 3.3 to derive the asymptotic
normality of Tn(M, P ). Here, we rely on the framework of empirical U -processes introduced
by Arcones and Giné (1993, 1994). See Appendix A.3 for technical details. Under our
proposed assumptions, we obtain the limiting law of the test statistic defined in (5) when
dealing with non-differentiable generating functions, which can be used to test the null
hypothesis H0,M. To be short, we recover the results of Theorem 1.
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Theorem 2 Let Assumptions 1-2 and 6-8 in Appendix A.3 hold. If εn → 0, εn
√
n →∞ in

probability and
√
n(αn − α⋆) = OP(1), then the conclusions of Theorem 1 apply.

The proof can be found in Section A.3 in the appendix. Since Assumptions 6-8 are
quite abstract, we further illustrate the practical relevance of the proposed framework by
verifying that a ReLu-type generative neural network satisfies Assumptions 1-2 and 6-8 in
Appendix C. We summarize our proposed model specification test in Algorithm 1.

Algorithm 1: MMD-based test of H0,M ∶ MMD(Pα⋆ , P ) = 0

Requirements: I.i.d. sample (Xi)1≤i≤n from P , generative model F (U ;α) ∼ Pα,
estimator αn of α⋆, tuning parameter εn and confidence level γ.

1 Sample (F (Ui, αn))1≤i≤n
, where (Ui)1≤i≤n

i.i.d.∼ PU ;

2 Compute Tn(M, P ) = √
nM̂MD2

εn(Pαn , P )/(σ̃αn + εnσ̃q,αn) according to (3), (10)
and (11) ;

3 Reject MMD(Pα⋆ , P ) = 0 when ∣Tn(M, P )∣ > Φ−1(1 − γ/2); otherwise, accept.

4. Asymptotic Behavior of MMD-based Tests for Model Comparison

Let us specify the mathematical framework that is required to prove the asymptotic nor-
mality of the test statistic for model comparison introduced in (6). First we introduce
additional notation. For some sequences of random elements (X1,X2, . . .), (U1, U2, . . .)
and (V1, V2, . . .), we denote [X,U ,V ]i∶j ∶= ((Xi, Ui, Vi), (Xi+1, Ui+1, Vi+1), . . . , (Xj , Uj , Vj))
for 1 ≤ i < j ≤ n. Similarly, we denote [x,u,v]i∶j ∶= ((xi, ui, vi), (xi+1, ui+1, vi+1), . . . ,
(xj , uj , vj)). In the same manner, [X,U ,V ]i1,i2,...,ik and [x,u,v]i1,i2,...,ik are defined, where
the index set indicates the components of the concatenated variables.

4.1 Regularity Assumptions and Asymptotic Variance Estimation

Consider two competing parametric models M1 = {Pα;α ∈ Θ1} and M2 = {Qβ;β ∈ Θ2} for
the DGP. The goal is to evaluate whether or not one of the models is closer to the true law
P of the data than the other in terms of the MMD. Our null hypothesis is then written
H0,M1,M2 ∶ MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ).

For convenience, the asymptotic behavior of our test statistic Tn(M1,M2, P ) will be
stated under the assumption that the optimal parameters are pseudo-true values for the
MMD, i.e., α⋆ ∶= argminα∈Θ1

MMD(Pα, P ) and β⋆ ∶= argminβ∈Θ2
MMD(Qβ, P ). This con-

straint is due to the fact H0,M1,M2 can be satisfied even though Pα⋆ /= P /= Qβ⋆ , which
would then introduce additional randomness in our test statistic. In this case, some terms
of the form ∇αMMD(Pα, P )∣α=α⋆ /= 0 /= ∇β MMD(Qβ, P )∣β=β⋆ would appear in the asymp-
totic variance, adding significant complications in the estimation procedure, which is why
we have refrained from investigating this case. To estimate α⋆ (resp. β⋆), we could set

αn ∈ argminα∈Θ1
M̂MD2(Pα, P ) (resp. βn ∈ argminβ∈Θ2

M̂MD2(Qβ, P )), which would yield
consistent and asymptotically normal estimators under some regularity conditions (Briol
et al., 2019). Nonetheless, this is not mandatory. Thus, the choice of αn and βn will remain
unspecified hereafter.
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Similarly to the existence of a random variable U and a generating function F (⋅; ⋅) for
the model M1, we assume the existence of a random variable V in some topological space
V and a generating function G(⋅; ⋅) ∶ V × Θ2 → S of M2 such that G(V ;β) ∼ Qβ for every
β ∈ Θ2. As in the previous section, we assume that we have access to an i.i.d. sequence
(V1, V2, . . .) from PV , which is also independent of (X1,X2, . . .). We also assume the random
vectors (Xi, Ui, Vi), i ∈ {1, . . . , n}, are independently drawn and that they are defined on
the same abstract probability space (Ω,B,P).

In terms of notations and to distinguish quantities that are related to either modelM1

or M2, we will use the same notation as in Section 3 but an upper index ⋅(1) (resp. ⋅(2)) to
refer to a quantity related toM1 (resp. M2). For instance, the map h introduced in (7) will
be denoted as h(1)([x,u]1∶2;α) ∶= h((x1, F (u1;α)), (x2, F (u2;α))) when referring to M1,

whereas we will denote h(2)([x,v]1∶2;β) ∶= h((x1,G(v1;β)), (x2,G(v2;β))) when referring
to M2. To distinguish between the two parametric models, the letter u (resp. v) will be
reserved for the first model (resp. second model).

In the following, we will mimic the ideas of Section 3. Recall that, in the definition of
Tn(M1,M2, P ) in (6), we have not yet specified the estimator τ̂2

n of the asymptotic variance

of
√
n{M̂MD2

εn(Pαn , P ) − M̂MD2
εn(Qβn , P )}. Again, we will use an estimator of the form

τ̂n = τ̂1 + εnτ̂2, where τ̂2
1 (resp. τ̂2

2 ) denotes an estimator of the asymptotic variance of
√
n{M̂MD2(Pαn , P ) − M̂MD2(Qβn , P )} (resp. of

√
n{M̂MD2

q(Pαn , P ) − M̂MD2
q(Qβn , P )}).

To this aim and in accordance with the definitions of σ2
α and σ2

q,α in Section 3.1 define

σ2
α,β ∶= Var (2EX2,U2,V2[h(1)([X,U]1∶2;α) − h(2)([X,V ]1∶2;β)]), and (14)

σ2
q,α,β ∶= Var(2

√
2E[X,U ,V ]3∶4[q

(1)([X,U]1∶4;α) − q(2)([X,V ]1∶4;β)]).

Defining

h([x,u,v]1∶2;α,β) ∶= h(1)([x,u]1∶2;α) − h(2)([x,v]1∶2;β), and

q([x,u,v]1∶4;α,β) ∶= q(1)([x,u]1∶4;α) − q(2)([x,v]1∶4;β) (15)

we can introduce their corresponding estimators, for a given tuple (α,β), via

σ̃2
α,β ∶=

4

n

n

∑
i=1

{ 1

n − 1

n

∑
j=1
i/=j

h([X,U ,V ]i∶j ;α,β) − (M̂MD2(Pα, P ) − M̂MD2(Qβ, P ))}
2

, and

(16)

σ̃2
q,α,β ∶=

16

n

n/2

∑
i=1

{ 1

n/2 − 1

n/2

∑
j=1
i/=j

q([X,U ,V ]2i−1,2i,2j−1,2j ;α,β)

− (M̂MD2(Pα, P ) − M̂MD2(Qβ, P ))}
2

. (17)

Again, σ̃2
αn,βn

and σ̃2
q,αn,βn

are used as estimators of σ2
α⋆,β⋆

and σ2
q,α⋆,β⋆

respectively.
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4.2 Differentiable Generating Functions (Model Comparison)

We are able to derive a test for model comparison that is never degenerate when (Ui)i≥1 and
(Vi)i≥1 are independent. We need a slight extension of Assumption 4 to prove the results.

Assumption 5 We have supp(Pα⋆) ∩ supp(P ) ∩ supp(Qβ⋆) /= ∅ and there exists δ > 0 s.t.

E[ sup
(α1,β1)∈Bδ((α⋆,β⋆))

∥∇2
(α,β),(α,β)⊺g([X,U ,V ]1∶3; (α1, β1))∥] < ∞

and ∇(α,β)E[g([X,U ,V ]1∶3; (α⋆, β⋆))] = E[∇(α,β)g([X,U ,V ]1∶3; (α⋆, β⋆))].

Theorem 3 Assume that εn → 0, εn
√
n→∞ in probability, α⋆ ∈ argminα∈Θ1

MMD2(Pα, P )
and β⋆ ∈ argminβ∈Θ2

MMD2(Qβ, P ),
√
n(αn − α⋆) = OP(1) and

√
n(βn − β⋆) = OP(1), the

samples (Ui)i≥1 and (Vi)i≥1 are independent and that Assumptions 1-5 are satisfied by the
competing models M1 and M2.

1. Under H0,M1,M2 ∶ MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ), we have

Tn(M1,M2, P ) =
√
n

M̂MD2
εn(Pαn , P ) − M̂MD2

εn(Qβn , P )
τ̂n

lawÐ→N(0,1),

where τ̂n = σ̃αn,βn + εnσ̃q,αn,βn.

2. If MMD(Pα⋆ , P ) > MMD(Qβ⋆ , P ), then

√
n

M̂MD2
εn(Pαn , P ) − M̂MD2

εn(Qβn , P )
τ̂n

→ +∞ in probability.

3. If MMD(Pα⋆ , P ) < MMD(Qβ⋆ , P ), then

√
n

M̂MD2
εn(Pαn , P ) − M̂MD2

εn(Qβn , P )
τ̂n

→ −∞ in probability.

The proof can be found in Appendix A.4. As in Remark 1, the latter theorem also covers
the case of known parameters α⋆ and β⋆, i.e., the case when Θ1 and Θ2 are singletons,
solely requiring Assumption 1.

4.3 Non-Differentiable Generating Functions (Model Comparison)

When α ↦ F (u;α) or β ↦ G(v;β) is not twice differentiable, we rely on similar techniques
as in Section 3.4 to deduce the asymptotic normality of Tn(M1,M2, P ). Some technical
conditions related to empirical U -processes are required: see Section A.5 in the appendix.

Theorem 4 Assume εn → 0, εn
√
n→∞ in probability, (Ui)i≥1 and (Vi)i≥1 are independent,

α⋆ ∈ argminα∈Θ1
MMD(Pα, P ) and β⋆ ∈ argminβ∈Θ2

MMD(Qβ, P ),
√
n(αn−α⋆) = OP(1) and√

n(βn − β⋆) = OP(1), and that Assumptions 1-2 and 10-11 in Appendix A.5 are satisfied
for the two competing models M1 and M2. Then the conclusions of Theorem 3 apply.

We summarize our proposed model selection test in Algorithm 2.
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Algorithm 2: MMD based test of H0,M1,M2 ∶ MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P )
Requirements: I.i.d. sample (Xi)1≤i≤n from P , generative models F (U ;α) ∼ Pα

and G(V,β) ∼ Qβ, estimator αn of argminα∈Θ1
MMD(Pα, P ),

estimator βn of argminβ∈Θ2
MMD(Qβ, P ), tuning parameter εn

and confidence level γ.

1 Sample (F (Ui, αn))1≤i≤n
and (G(Vi, βn))1≤i≤n

, where (Ui)1≤i≤n
i.i.d.∼ PU and

(Vi)1≤i≤n
i.i.d.∼ PV are independent;

2 Compute Tn(M1,M2, P ) =
√
n{M̂MD2

εn(Pαn , P ) − M̂MD2
εn(Qβn , P )}/(σ̃αn,βn + εnσ̃q,αn,βn)according

to (3), (16) and (17);

3 Reject MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ) when ∣Tn(M1,M2, P )∣ > Φ−1(1 − γ/2);
otherwise, accept.

5. Simulation Study

The simulation study investigates the finite sample performance of our tests for model
specification and model selection.

5.1 Monte Carlo Study for Model Specification

To investigate the performance of the model specification test based on the test statistic
Tn(M, P ), let us generalize the example from Section 2.1 to an arbitrary dimension p,
inspired by the toy example from Gretton et al. (2012). Consider a p−dimensional ran-
dom vector X ∼ P = N (0, Ip) , where P still denotes the law of the DGP and Ip is the
p−dimensional identity matrix.

As a first example, the model M for the law of X is defined by

Y (α) = Y + α ∼ Pα, with Y ∼ N(0, σ2Ip)

for some known variance σ2, and α ∶= (α1, . . . , αp) is a p-dimensional vector to be estimated.
For every σ2, the “optimal” parameter is α⋆ = 0. Moreover, P = Pα⋆ if σ2 = 1. We will vary
the standard deviation σ of the competing models by setting σ ∈ {1.0, 1.1, 1.2, 1.3, 1.4}.

Furthermore, consider a p−dimensional Gaussian kernel k(X1,X2) = e−∣∣X1−X2∣∣
2
2/p. In the

literature (e.g., Gretton et al., 2012), the exponent of the Gaussian kernel is often normalized
by an expression containing the empirical median. Since an influence of this estimation step
on the asymptotic distribution should also be investigated in the future, we do not consider
this type of normalization.

As in Section 2.1, we estimate α by the empirical mean of (X1, . . . ,Xn), an i.i.d. sample
from P , i.e., αn = n−1∑ni=1Xi. We generate by simulation an i.i.d. sample (Y1, . . . , Yn) from
N(0, σ2Ip) to build the sample (Y1(αn), . . . , Yn(αn)) from Pαn . Note that, given αn, the
quantities Yk(αn) are mutually independent, but not unconditionally. In this simulation
study, we set the number of Monte Carlo replications to 1000, i.e., we generate 1000 inde-
pendent replications of the test statistics Tn(M, P ) and report the empirical level/power
of a test of H0,M. As a comparison, we also provide the empirical level/power of a test of

H0,M which is solely based on
√
nM̂MD2

q(Pαn , P ).

18



Distribution Free MMD Tests For Model Selection

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=2

Stand. dev.

E
m

p.
 L

ev
el

/P
ow

er

MMDq

εn = n−1 2.5

εn = n−1 4.5

εn = n−1 6.5

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=16

Stand. dev.

E
m

p.
 L

ev
el

/P
ow

er

MMDq

εn = n−1 2.5

εn = n−1 4.5

εn = n−1 6.5

Figure 1: Empirical level and power of the tests based on Tn(M, P ) and
√

n̂MMD2
q(Pαn , P ) for dimensions

p = 2 (left) and p = 16 (right), a sample size n = 500, as well as for different choices of εn (see
the legend) and varying standard deviation. The rejection probabilities are estimated using
1000 replications of the tests based on samples of size n. The black dashed line indicates the
significance level 0.05.

For the two tests based on the statistics Tn(M, P ) and
√
nM̂MD2

q(Pαn , P ) with a level
5%, Figure 1 shows the empirical proportion of rejections of the null hypothesis H0,M

for dimensions p ∈ {2,16}, sample size n = 500 as well as for different choices of εn ∈
{n−1/2.5, n−1/4.5, n−1/6.5}. In Figure 1, we restrict ourselves to this moderate sample size in
order to empirically illustrate an influence of a choice of the weights εn on the performance of
the proposed tests. Note that the empirical proportions of rejections of H0,M when σ = 1.0
are the empirical levels of these tests. When σ > 1.0, they are their empirical powers.

First of all, we observe in Figure 1 that all tests keep their empirical level sufficiently
well for all considered εn. Furthermore, if the convergence rate of εn to zero is decreasing,
then the empirical power of the test based on Tn(M, P ) is also decreasing, confirming our
intuition that εn has to tend to zero with n. However, the power is always higher than

the empirical power of the test solely based on
√
nM̂MD2

q(Pαn , P ). For any considered
tuning parameter εn, the test based on Tn(M, P ) always outperforms the test based on
√
nM̂MD2

q(Pαn , P ) for the considered sample size n = 500 and all dimensions, confirming
the relevance of Tn(M, P ). In all our experiments, we have observed that the empirical
power of all tests is increasing with increasing sample sizes and also for increasing dimension.
In the sequel, we fix εn = n−1/2.5 since this choice empirically yields the highest powers of
the proposed MMD specification test.

As a second example, define the family of competing models for the law of X as

Y (σ) = α01 + diag(σ1, . . . , σp)Y ∼ Pσ, ; Y ∼ N (0, Ip)

for some pre-specified marginal mean α0 ∈ R, where the marginal standard deviations are
σ1, . . . , σp. We set σ ∶= (σ1, . . . , σp) and 1 = (1, . . . ,1). If we fix α0 = 0, then the “optimal”
parameters are σ∗1 = . . . = σ∗p = 1 and P = Pσ∗ , where σ∗ = (σ∗1 , . . . , σ∗p). Now, we vary the
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Figure 2: Empirical level and power of the tests based on Tn(M, P ) and
√

n̂MMD2
q(Pσn , P ) for dimensions

p = 2 (left) and p = 16 (right) as well as for sample sizes n = 100,250,500,1000 (see the legend),
εn = n

−1/2.5 and varying mean. The rejection probabilities are estimated using 1000 samples of
size n. The black dashed line indicates the significance level 0.05.

mean α0 of the competing model Y (σ) by setting α0 ∈ {0, 0.1, 0.2, . . . , 0.6}. As in the previ-

ous example, we consider the p−dimensional Gaussian kernel k(X1,X2) = e−∣∣X1−X2∣∣
2
2/p and

set the significance level at 0.05. Furthermore, we estimate σj by the empirical standard de-
viation of the j−th marginal i.i.d. sample from P , namely σ2

j,n = n−1∑ni=1(Xij−Xij)2, and set

σn ∶= (σ1,n, . . . , σp,n). Thus, we use the two samples (X1, . . . ,Xn) and (Y1(σn), . . . , Yn(σn))
from P and Pσn to test the null hypothesis Tn(M, P ). In the simulation study, the number
of Monte Carlo replications is again 1000 and we report the empirical level/power of a test
of H0,M.

For the two tests based on Tn(M, P ) and
√
nM̂MD2

q(Pσn , P ), Figure 2 shows the empir-
ical proportion of rejections of the null hypothesis H0,M for dimensions p ∈ {2,16}, sample
sizes n ∈ {100,250,500,1000} and εn = n−1/2.5. Note that the empirical proportions of rejec-
tions of H0,M for the case α0 = 0 are the empirical levels of the tests. When α0 > 0, they are
their empirical powers. All considered tests keep their empirical level reasonably well and
their power increases with an increasing sample size. Again, the tests based on Tn(M, P )
are always more powerful than the test based on

√
nM̂MD2

q(Pσn , P ). In this framework,
note the poor power of our MMD specification tests for a small sample size (n = 100) and
a small dimension (d = 2).

5.2 Monte Carlo Study for Model Comparison

In the third example, we focus on model comparison by considering two competing para-
metric models M1 and M2 for the law of X. Assume that the dimension p is even. The
first model M1 is defined by

Y (α) = Y + α ∼ Pα, ; Y ∼ N (0, diag(1, . . . ,1, σ2, . . . , σ2)) ,
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Figure 3: Degenerate case for comparison of two models: Empirical level and power of the tests based

on Tn(M1,M2, P ) and
√

n(̂MMD2
q(Pαn , P ) −

̂MMD2
q(Qβn , P )) for dimensions p = 2 (left) and

p = 16 (right) as well as for sample sizes n = 100,250,500,1000 (see the legend), εn = n
−1/2.5 and

varying standard deviation σ in Model M1. Model M2 coincides with the true model (β = 0).
The rejection probabilities are estimated using 1000 replications of the tests based on samples
of size n. The black dashed line indicates the significance level 0.05.

for some pre-specified variance σ2, where α = (α1, . . . , αp). Thus, the first p/2 margins of
Y (α) have variance 1 and the remaining p/2 margins have variance σ2. If σ2 = 1, the model
M1 coincides with the true model when α equals the “optimal” parameter α⋆ = 0. The
second model M2 is defined by

Z(β) = Z + β ∼ Qβ ; Z ∼ N (0, Ip) ,

where β = (β1, . . . , βp). If β = 0, the model M2 also coincides with the law of the DGP.
Therefore, we may be in the degenerate situation, when the two competing models with
optimal parameters coincide with the law of the DGP. As in the first example, we vary the
standard deviation σ by setting σ ∈ {1.0, 1.1, 1.2, 1.3, 1.4}. Further, we estimate α and β
by the empirical mean of the i.i.d. sample from P , αn = βn = n−1∑ni=1Xi. Then, we inde-
pendently generate the two samples (Y1(αn), . . . , Yn(αn)) and (Z1(βn), . . . , Zn(βn)) to test
the null hypothesis H0,M1,M2 ∶ MMD(Pα⋆ , P ) = MMD(Qβ⋆ , P ). In the simulation study,
we set the number of Monte Carlo replications to 1000, i.e., we generate 1000 independent
replications of the test statistic Tn(M1,M2, P ) and report the empirical level/power of a
test of H0,M1,M2 . As a comparison, we also provide the level/power of a test of H0,M1,M2

which is solely based on
√
n(M̂MD2

q(Pαn , P ) − M̂MD2
q(Qβn , P )). For the two considered

tests, Figure 3 shows the empirical proportion of rejections of the null hypothesis H0,M1,M2

for dimensions p ∈ {2,16}, sample sizes n ∈ {100,250,500,1000} and εn = n−1/2.5. The em-
pirical proportions of rejection of H0,M1,M2 for the case σ = 1.0 are the empirical levels of
our tests. The cases σ > 1.0 correspond to their empirical powers.

First of all, we observe in Figure 3 that all tests keep their empirical level fairly well. As
previously, their power is relatively small for small a dimension (d = 2) and a small sample
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Figure 4: Non-degenerate case for comparison of two models: Empirical level and power of the tests based

on Tn(M1,M2, P ) and
√

n(̂MMD2
q(Pαn , P )−

̂MMD2
q(Qβn , P )) for dimensions p = 2 (left), p = 16

(right) as well as for sample sizes n = 100,250,500,1000 (see the legend), εn = n
−1/2.5 and varying

standard deviation in Model M1. Both models do not coincide with the true model. The
rejection probabilities are estimated using 1000 replications of the tests based on samples of size
n. The black dashed line indicates the significance level 0.05.

size (n = 100,250). Note that the empirical power of our MMD test is always higher than

that provided by the test solely based on
√
n(M̂MD2

q(Pαn , P ) − M̂MD2
q(Qβn , P )). For the

considered tuning parameter εn = n−1/2.5, the test based on Tn(M1,M2, P ) always outper-

forms the test based on the competitor test statistic
√
n(M̂MD2

q(Pαn , P )−M̂MD2
q(Qβn , P ))

for the two considered dimensions and n ∈ {500,1000}. As expected, the empirical power of
all tests is increasing with increasing sample sizes. As we have already observed, it is also
increasing for increasing dimensions.

For the fourth example, we modify the third example to avoid the degenerate case. Now,
the models M1 and M2 are given by

Y (α) = Y + α ∼ Pα, ; Y ∼ N (0, diag(1.22, . . . ,1.22, σ2, . . . , σ2)) , and

Z(β) = Z + β ∼ Qβ ; Z ∼ N (0,1.22Ip) ,

respectively. Thus, both models cannot coincide with the DGP, reflecting the non-degenerate
case. However, for σ = 1.2, they coincide and are therefore equally far away from the DGP.
We vary the standard deviation σ by setting σ ∈ {1.2, 1.3, 1.4, 1.5, 1.6}.

For the two tests based on the statistics Tn(M1,M2, P ) and
√
n(M̂MD2

q(Pαn , P ) −
M̂MD2

q(Qβn , P )), Figure 4 shows the empirical proportion of rejections of the null hypothesis

H0,M1,M2 for dimensions p ∈ {2,16}, sample sizes n ∈ {100,250,500,1000} and εn = n−1/2.5.
The empirical proportions of rejections of H0,M1,M2 for the case σ = 1.2 (resp. σ > 1.2) are
the empirical levels (resp. powers) of the tests. In Figure 4, we clearly observe that the test
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Country Specification test Specification test Model comparison
for the normal mixture for the scaled t-distribution test

Austria 0.3872 0.8288 0.6019
Germany 0.7143 0.4689 0.6981

Ireland 0.8301 0.6783 0.9001
Italy 0.9638 0.5020 0.5140

Netherlands 0.6206 0.5335 0.9051
Singapore 0.6548 0.7121 0.9582

Sweden 0.7638 0.8206 0.9426

Table 1: P-values for the model specification and model comparison tests with εn = n
−1/2.5 for the standard-

ized residuals of Austria, Germany, Ireland, Italy, Netherlands, Singapore and Sweden (univariate
models).

based on Tn(M1,M2, P ) is again more powerful than a test based on
√
n(M̂MD2

q(Pαn , P )−
M̂MD2

q(Qβn , P )). Further, similar conclusions as in the third example can be drawn.

The R code for the implemented tests that are used in the simulation study is accessi-
ble at https://github.com/Flo771994/MMD_tests_for_model_selection. Fabian Baier
recently translated the R code into Python, and the corresponding implementation is now
available at https://github.com/fabianbaiertum/BFM-test.

6. Empirical Analysis

We illustrate the proposed MMD specification and model selection tests on historical stock
returns, using the same data set as Brück et al. (2023). This data set consists of the daily log-
returns of the MSCI indices for Austria, Germany, Ireland, Italy, the Netherlands, Singapore
and Sweden from December 31, 1998 till March 12, 2018. The 5007 daily log-returns of
seven countries constitute a multivariate time series, for which the considered MMD tests
are not applicable. Therefore, we follow a standard econometrical approach by filtering
every univariate time series of log-returns through ARMA(p,q)-GARCH(1,1) techniques
(see McNeil et al., 2005, Chapter 4). Using BIC, we find that the model ARMA(0,0)-
GARCH(1,1) is the most suitable one for the considered returns. Thus, we get so-called
“standardized” residuals, that can reasonably be considered as i.i.d., with expectation zero
and variance 1. We then focus on the law of such residuals.

Using the MMD specification and model selection tests, we first answer the question of
whether a scaled t-distribution or a mixture of two normal distributions are appropriate for
fitting the univariate standardized residuals, two standard choices in financial econometrics.
Obviously, all distributions in the two considered models are restricted to have expectation
0 and variance 1. Furthermore, as proposed in the previous section, we use the nuisance
parameter εn = n−1/2.5 for n = 5007. Table 1 reports the p-values for the proposed MMD-
based tests. Our conclusions are consistent with those obtained by Brück et al. (2023)
with the corrected Clarke test and the one-step Vuong test. Namely, none of the two
considered univariate distributions for standardized residuals can be preferred with respect
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Type of the test / Copula Normal Student t Clayton Gumbel

Model specification 0.8444 0.7177 1.9 ⋅ 10−29 9.79 ⋅ 10−25

Model comparison 0.8555 0.0006

Table 2: P-values for the model specification and model comparison tests with εn = n
−1/2.5 for seven-

dimensional standardized residuals (multivariate models).

to another. This is not surprising because both parametric families are commonly used in
applied financial econometrics.

In the next step, we would like to find an appropriate multivariate model for the seven
dimensional vector of standardized residuals. Since this problem is not an easy task, we
split it into two sub-tasks: first, the choice of marginal models, and, second, the choice of a
copula model, as in McNeil et al. (2005, Chapter 5) and many others. According to Table
1, the scaled t-distribution is appropriate for modeling the marginal standardized residu-
als. Thus, we select it as the univariate marginal model for each of the seven standardized
residuals. In order to estimate our parametric copula models under consideration, we trans-
form all univariate standardized residuals by their marginal empirical distributions to get
pseudo-observations. The copula parameters are then estimated by semiparametric pseudo-
maximum likelihood (Genest et al., 1995). This standard technique yields asymptotically
normal estimators.

Now, we can compare the normal copula and the t-copula (McNeil et al., 2005, Chapter
5), and perform also specification tests for them. The full multivariate distribution of
the seven dimensional standardized residuals is finally specified by the marginal scaled t-
distributions coupled with either the normal copula or the Student t copula. The first
three p-values in the left part of Table 2 indicate that the specification test as well as the
model selection test cannot reject the corresponding null hypotheses at the 5% significance
level. It appears that the degree of freedom of the Student-t copula cannot fully capture
all bivariate tail dependencies and, therefore, cannot be favored in this context, despite its
common preference in applied financial econometrics.

Alternatively, we also consider the Clayton copula and the Gumbel copula. They are
governed only by a single parameter, which is probably not enough to reasonably model
a random vector of dimension seven. When they are combined with marginal scaled t-
distributions, the p-values of the specifications tests for the Clayton copula and the Gum-
bel copula in the right part of Table 2 are not surprisingly very small. Therefore, the
null hypotheses of model specification can be rejected for both models, at any standard
nominal levels. Moreover, the null hypothesis that these two models are equivalently well
suited is rejected at the 5% level. The test statistics is equal to 3.4271, indicating that the
multivariate model with the Gumbel copula is preferred to the one with the Clayton copula.

7. Conclusion and Outlook

We have provided novel MMD-based model specification and model selection tests when
the model parameters are estimated in a first-stage. In comparison with an approach solely

based on M̂MD2(Pαn , P ), these tests circumvent the major difficulty of computing the

24



Distribution Free MMD Tests For Model Selection

critical values of a complicated asymptotic distribution, but instead simply require to resort
to the critical values of the standard normal distribution. Moreover, since our distribution
free testing procedures are also valid when no parameter estimation is conducted, they yield
valuable alternatives to the two sample test proposed by Gretton et al. (2006). The testing
procedures are summarized in Algorithm 1 and Algorithm 2, respectively.

Both proposed test statistics depend on a tuning parameter, whose “optimal” choice is
still an open problem that may be investigated in the future, for example by a local power
analysis in the same spirit as Schennach and Wilhelm (2017). Moreover, it remains future
work to derive certain properties of our testing procedures, such as the local power and
uniformity of convergence over sets of DGPs. Moreover, Chérief-Abdellatif and Alquier
(2022) recently investigated parameter estimation based on the MMD for dependent input
data. Since our test statistics are basically composed of U -statistics, future research might
be concerned with relaxing the assumption of i.i.d. observations in the application of our
MMD-based model specification and model selection tests by resorting to the vast literature
on U -statistics of dependent data.
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Appendix A. Proofs

Hereafter, for any symmetric map ψ and any i.i.d. sample (Z1, . . . , Zn), the associated

U -statistic of degree r is denoted as Unψ ∶= (r!(nr))
−1∑(i1,i2,...,ir)∈Ir,n ψ(Zi1 , . . . , Zir), where

Ir,n ∶= {(i1, . . . , ir) ∶ ij ∈ N,1 ≤ ij ≤ n; ij ≠ ik if j ≠ k}.

In our case, Zi will be (Xi, Ui) or the concatenation of several similar random vectors. More
specifically, consider a class L of symmetric real-valued functions on ⊗mi=1(S ⊗ U). With a

slight abuse of notation, denote as (U(m)
n `)`∈L the empirical U -process which acts on the

sample

([X,U]1∶m, [X,U](m+1)∶2m . . . , [X,U](n−m+1)∶n),

and whose degree is determined by `. The latter sample is drawn from ⊗mi=1(P ⊗PU) and is

of size n/m (which is implicitly assumed to be an integer). Note that U(1)
n ` is just Un` and

we drop the upper index in this case.

Let us illustrate our notation with the two classes of symmetric functions

F ∶= {[x,u]1∶2 ↦ h([x,u]1∶2;α)∣ α ∈ Bδ(α⋆)}, and (18)
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Fq ∶= {[x,u]1∶4 ↦ q([x,u]1∶4;α)∣ α ∈ Bδ(α⋆)}, (19)

for some δ > 0, where h and q are defined in (7) and (8), respectively. The empirical U -
process of degree one indexed by the set of functions F is defined as the stochastic process

Un ∶ F ↦ R; f ↦ Unf ∶=
1

n(n − 1)
n

∑
i,j=1
i/=j

f([X,U]i,j).

Moreover, the empirical U -process of degree 2 indexed by Fq is the stochastic process

U(2)
n ∶ Fq ↦ R; f ↦ U(2)

n f ∶= 1

n/2(n/2 − 1)

n/2

∑
i,j=1
i/=j

f([X,U]2i−1,2i,2j−1,2j).

This notation allows to rewrite the estimators of MMD2(Pα⋆ , P ) in terms of empirical U -
processes as

M̂MD2(Pαn , P ) = Unh (⋅;αn) and M̂MD2
q(Pαn , P ) = U(2)

n q (⋅;αn) .

Moreover, let the operator P` denote E [`(Z)], where the random vector Z is in accordance

with the arguments of `. Thus, ((U(m)
n −P)`)

`∈L
denotes the centered empirical U -processes

whose asymptotic behavior was investigated in Arcones and Giné (1993, 1994), among
others.

A.1 Theoretically Convenient Variance Estimation

Let us begin this section by proposing alternative estimators of σ2
α⋆ , σ2

q,α⋆ ,σ2
α⋆,β⋆

and

σ2
q,α⋆,β⋆

, the asymptotic variances of M̂MD2(Pα⋆ , P ), M̂MD2
q(Pα⋆ , P ), M̂MD2(Pα⋆ , P ) −

M̂MD2(Qβ⋆ , P ) and M̂MD2
q(Pα⋆ , P )− M̂MD2

q(Qβ⋆ , P ) respectively. In Sections 3.2 and 4.1,

we have defined empirical estimators σ̃2
αn and σ̃2

q,αn of σ2
α⋆ and σ2

q,α⋆ . Unfortunately, these
estimators are not U -statistics. Thus, an analysis of their asymptotic properties is not very
convenient. In the following, we will introduce alternative U -statistics estimators and show
that they are asymptotically equivalent - up to a term which tends to 0 sufficiently fast
- to the estimators defined in Sections 3.2 and 4.1. This will allow us to develop asymp-
totic theory for the simpler to analyze U -statistic estimators and to derive the corresponding
asymptotic properties of the estimators introduced in Sections 3.2 and 4.1 straightforwardly.

First, for any fixed α, we symmetrize σ̃2
α and discard the terms for which the indices

j and k are equal, since their contribution is negligible. Doing so, we obtain a proper U -
statistic, which is much more convenient to work with. This leads to the following estimator
of σ2

α:

σ̂2
α ∶=

4

3n(n − 1)(n − 2)
n

∑
i,j,k=1

i/=k,i/=j,k/=j

{h([X,U]i,j ;α)h([X,U]i,k;α)

+ h([X,U]j,i;α)h([X,U]j,k;α) + h([X,U]k,j ;α)h([X,U]k,i;α)}

− 4{M̂MD2(Pα, P )}2 = Ung(⋅;α) − 4{M̂MD2(Pα, P )}2
.
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Thus, σ̂2
α can be decomposed into the weighted sum of the squared M̂MD2(Pα, P ) and a U -

statistic of degree three with the symmetric U -kernel g(⋅;α), as defined in (13). Obviously,
an estimator of σ2

α⋆ can now be defined as

σ̂2
αn ∶= Ung(⋅;αn) − 4{M̂MD2(Pαn , P )}2

. (20)

Similarly, we can define a U -statistic estimator of σ2
q,α given by

σ̂2
q,α ∶= 2

n(n/2 − 1)(n/2 − 2)

n/2

∑
i,j,k=1

i/=k,i/=j,k/=j

ξ([X,U]2i−1,2i,2j−1,2j,2k−1,2k;α)

−8{M̂MD2(Pα, P )}2 = U(2)
n ξ(⋅;α) − 8{M̂MD2(Pα, P )}2

.

where we define a symmetric (in [x,u]1∶2, [x,u]3∶4 and [x,u]5∶6) U -kernel as

ξ(⋅;α) ∶ [x,u]1∶6 ↦
8

3
{q([x,u]1,2,3,4;α)q([x,u]1,2,5,6;α)

+ q([x,u]3,4,1,2;α)q([x,u]3,4,5,6;α) + q([x,u]5,6,3,4;α)q([x,u]5,6,1,2;α)}. (21)

Note that the operator U(2)
n ξ(⋅, α) is a usual U -statistic of degree three on the sample

[X,U](2i−1)∶(2i) for i = 1, . . . , n/2. Now, an estimator of σ2
q,α⋆ can be defined as σ̂2

q,αn .

In the model selection framework we can analogously define U -statistic estimators for
the asymptotic variances σ2

α,β and σ2
q,α,β. For a given tuple (α,β), we define

σ̂2
α,β ∶=

1

n(n − 1)(n − 2)
n

∑
i,j,k=1
i/=j/=k

g([X,U ,V ]i,j,k;α,β) − 4{M̂MD2(Pα, P ) − M̂MD2(Qβ, P )}2

= Ung(⋅;α,β) − 4{M̂MD2(Pα, P ) − M̂MD2(Qβ, P )}2
, (22)

as an estimator of σ2
α,β where we define the symmetric (w.r.t. triplets (x,u,v) or concate-

nated pairs of triplets) U -statistic kernel

g([x,u,v]1∶3;α,β) ∶= 4

3
{h([x,u,v]1,2;α,β)h([x,u,v]1,3;α,β) (23)

+h([x,u,v]2,1;α,β)h([x,u,v]2,3;α,β) + h([x,u,v]3,2;α,β)h([x,u,v]3,1;α,β)}.

Moreover, we can define an estimator of σ2
q,α,β based on ξ([x,u,v]1∶6;α,β) by

σ̂2
q,α,β ∶= 2

n(n/2 − 1)(n/2 − 2)

n/2

∑
i,j,k=1
i/=j/=k

ξ([X,U ,V ]2i−1,2i,2j−1,2j,2k−1,2k;α,β)

−8{M̂MD2(Pα, P ) − M̂MD2(Qβ, P )}2

= U(2)
n ξ(⋅;α,β) − 8{M̂MD2(Pα, P ) − M̂MD2(Qβ, P )}2

,
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where we define

ξ([x,u,v]1∶6;α,β) ∶= 8

3
{q([x,u,v]1,2,3,4;α,β)q([x,u,v]1,2,5,6;α,β)+ (24)

q([x,u,v]3,4,1,2;α,β)q([x,u,v]3,4,5,6;α,β) + q([x,u,v]5,6,3,4;α,β)q([x,u,v]5,6,1,2;α,β)}.

Therefore, U -statistic estimators for σ2
α⋆,β⋆

and σ2
q,α⋆,β⋆

are given by

σ̂2
αn,βn ∶= Ung(⋅;αn, βn) − 4{M̂MD2(Pαn , P ) − M̂MD2(Qβn , P )}2

, and

σ̂2
q,αn,βn ∶= U

(2)
n ξ(⋅;αn, βn) − 8{M̂MD2(Pαn , P ) − M̂MD2(Qβn , P )}2

,

which are sums of parameter dependent U -statistics. The following Lemma shows that σ̃2
αn ,

σ̃2
q,αn , σ̃2

αn,βn
and σ̃2

q,αn,βn
are asymptotically equivalent to σ̂2

αn , σ̂2
q,αn , σ̂2

αn,βn
and σ̂2

q,αn,βn
.

Lemma 1 Under Assumptions 1-2, σ̃2
αn = σ̂2

αn +OP(n−1), σ̃2
q,αn = σ̂2

q,αn +OP(n−1), σ̃2
αn,βn

=
σ̂2
αn,βn

+OP(n−1) and σ̃2
q,αn,βn

= σ̂2
q,αn,βn

+OP(n−1). Additionally, σα⋆ > 0 whenever Pα⋆ ≠ P
and, under Assumption 5, σα⋆,β⋆ > 0 whenever Pα⋆ ≠ P or Qβ⋆ /= P .

Proof First, a simple calculation shows that

σ̃2
αn = σ̂

2
αn + (n − 2

n − 1
− 1)Ung(⋅;αn) +

4

n − 1
Unh(⋅;αn)2,

where Unh(⋅;α)2 is a U -statistic of degree two with U -kernel h(⋅;α)2 acting on the sample
(Xi, Ui)i=1,...,n. The boundedness of k implies that there exists a constant C > 0 such that
∣g(⋅, α)∣ ≤ C and ∣h2(⋅, α)∣ ≤ C, which gives ∣Ung(⋅;αn)∣ ≤ C and ∣Unh(⋅;αn)2∣ ≤ C. Thus,

∣ (n − 2

n − 1
− 1)Ung(⋅;αn) +

4

n − 1
Unh(⋅;αn)2∣ ≤ 5

n − 1
C = OP(n−1),

proving that σ̃2
αn = σ̂2

αn + OP(n−1). Similar arguments show that σ̃2
q,αn = σ̂2

q,αn + OP(n−1),
σ̃2
αn,βn

= σ̂2
αn,βn

+OP(n−1) and σ̃2
q,αn,βn

= σ̂2
q,αn,βn

+OP(n−1).
To prove that σα⋆ > 0 whenever Pα⋆ ≠ P , assume σα⋆ = 0 and MMD(Pα⋆ , P ) > 0, seeking

a contradiction. Note that 0 = σ2
α⋆ = Var (h̃(X1, U1;α⋆)) implies h̃(X1, U1;α⋆) = C a.s.,

and, w.l.o.g., assume C ≥ 0. Since MMD(Pα⋆ , P ) = EX,U [h̃(X,U ;α⋆)], h̃(X1, U1;α⋆) = 0
a.s. implies MMD(Pα⋆ , P ) = 0, which would be a contradiction. Thus C > 0. Moreover,
observe that we can rewrite h̃(X1, U1, α⋆) = T1(X1) + T2(U1), for some maps T1 and T2.
Since X1 and U1 are independent, there exist two constants C1 and C2 s.t. T1(X1) = C1

and T2(U1) = C2 a.s., and at least one of C1 and C2 is non-zero. W.l.o.g. assume C1 > 0
which gives

C1 = EX2[k(X2,X1)] −EU2[k(X1, F (U2, α⋆))] =∶ s1(X1) − s2(X1).

This implies s1(x) − s2(x) = C1 for almost every x ∈ supp(P ). By definition of T2, we have
C2 = T2(U1) = −s1(F (U1, α⋆)) + s2(F (U1, α

∗)) a.s. Therefore, since supp(P ) ∩ supp(Pα⋆) /=
∅, this yields C2 = −C1 and, then, we have h̃(X1, U1, α⋆) = 0 a.s., which is contradiction to
MMD(Pα⋆ , P ) > 0. Thus σα⋆ > 0 when Pα⋆ ≠ P . The proof of σα⋆,β⋆ > 0 whenever Pα⋆ /= P
or Qβ⋆ /= P is similar and is thus omitted.
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A.2 Proof of Theorem 1 (Model Specification)

We first state a general lemma which is of interest per se.

Lemma 2 Suppose that Assumptions 1-4 hold.

(i) If
√
n[M̂MD2(Pα⋆ , P )−MMD2(Pα⋆ , P ), αn−α⋆] weakly tends to a real-valued random

vector [Zα⋆ , Vα⋆] then

√
n{M̂MD2(Pαn , P ) −MMD2(Pα⋆ , P )} lawÐ→ Zα⋆ +∇α⊺ MMD2(Pα, P )∣α=α⋆Vα⋆ ,

where Zα⋆ ∼ N (0, σ2
α⋆). Moreover, σ̃2

αn → σ2
α⋆ in probability.

(ii) If
√
n(αn−α⋆) = OP(1) and Pα⋆ = P , i.e., if H0,M is satisfied, then

√
nM̂MD2(Pαn , P )

= OP(n−1/2) and σ̃2
αn = OP(n−1).

(iii) If
√
n[M̂MD2

q(Pα⋆ , P )−MMD2(Pα⋆ , P ), αn−α⋆] weakly tends to a real-valued random
vector [Zq,α⋆ , Vα⋆] then

√
n{M̂MD2

q(Pαn , P ) −MMD2(Pα⋆ , P )} lawÐ→ Zq,α⋆ +∇α⊺ MMD2(Pα, P )∣α=α⋆Vα⋆ ,

where Zq,α⋆ ∼ N (0, σ2
q,α⋆). Moreover, σ̃2

q,αn → σ2
q,α⋆ > 0 in probability.

In the latter lemma, the weak convergence of the two centered MMD estimators is guar-
anteed by standard U -statistics results (through Hájek projections). Here, the main point
is their joint convergence with

√
n(αn −α⋆), which is usually guaranteed when αn −α⋆ can

be approximated by an i.i.d. expansion, a typical situation with M-estimators (van der
Vaart, 2000, Section 5.3). For instance, when a log density is sufficiently regular (twice
differentiable, in particular) w.r.t. its parameter, this is most often the case for maximum
likelihood estimators. Such i.i.d. expansions directly appear when αn are sample averages,
differentiable functionals of them, or sample quantiles. Note that the variance of Zα⋆ is zero
in the degenerate case Pα⋆ = P , which will be the case under H0,M.

Proof [of Lemma 2]

(i): A first order Taylor expansion yields

M̂MD2(Pαn , P ) = 1

n(n − 1)
n

∑
i,j=1
i/=j

h([X,U]i,j ;α⋆) +OP(∥αn − α⋆∥2)

+ 1

n(n − 1)
n

∑
i,j=1
i/=j

∇α⊺h([X,U]i,j ;α⋆) ⋅ (αn − α⋆). (25)

Note that the remainder term OP(∥αn−α⋆∥2) is due to Assumption 4 and is OP(n−1).
The weak convergence of

√
n{M̂MD2(Pαn , P ) − MMD2(Pα⋆ , P )} is a direct conse-

quence of weak convergence assumption, in addition to Leibniz’s Theorem applied
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to ∇αh at α = α⋆ (second part of Assumption 4). Recalling (20), the convergence
of the estimated variance σ̂2

αn is easily obtained by a first order Taylor expansion of
the maps α ↦ g([x,u]i,j,k;α) defined in (13) around α⋆, for every triplet of indices

(i, j, k), i ≠ j ≠ k. Therefore, σ̂2
αn = Ung(⋅;α⋆)−4{M̂MD2(Pαn , P )}2+oP(1) that tends

to σ2
α⋆ by the consistency of usual U -statistics. Note that we have again invoked As-

sumption 4 to manage the remainder term. This immediately implies the consistency
of σ̃2

αn by Lemma 1.

(ii): With obvious notations, rewrite (25) as

M̂MD2(Pαn , P ) = Unh(⋅;α⋆) + Un∇α⊺h(⋅;α⋆).(αn − α⋆) +OP(n−1).

Since Unh(⋅;α⋆) is a degenerate U -statistic, it is OP(n−1). Moreover, the mean of the
U -statistic Un∇α⊺h(⋅;α⋆) is zero because

E[∇αh([X,U]i,j ;α⋆)] = ∇αE[h([X,U]i,j ;α⋆)] = ∇αMMD2(Pα, P )∣α=α⋆ = 0.

Thus, the U -statistic Un∇α⊺h(⋅;α⋆) is OP(n−1/2). This implies
√
n M̂MD2(Pαn , P ) =

OP(n−1/2), the announced result.

Concerning the asymptotic variance, a Taylor expansion of α ↦ g(⋅;α) around α⋆ and
Assumption 4 yield

σ̂2
αn = Ung(⋅;αn) − 4{M̂MD2(Pαn , P}2

= Ung(⋅;α⋆) + Un∇α⊺g(⋅;α⋆)(αn − α⋆) +OP(∥αn − α⋆∥2) +OP(n−2).

Since it can be checked that Ung(⋅;α⋆) is a degenerate U -statistic, this term isOP(n−1).
Moreover, Un∇αg(⋅;α⋆) tends in probability to ∇αE[g([X,U]1∶3;α⋆)] (Assumption 4),

that is zero because α ↦ E[g([X,U]1∶3;α)] is minimized at α = α⋆. This implies that

the U -statistic Un∇αg(⋅;α⋆) is OP(n−1/2). Globally, we get σ̂2
αn = OP(n−1), which

immediately implies σ̃2
αn = OP(n−1) by Lemma 1.

(iii): The positivity of σq,α⋆ had already been noted at the end of Section 3.2. The rest can
be proved exactly as for (i).

The proof of Theorem 1 follows from Lemma 2, with a few adjustments: in the statement
of Lemma 2, the term ∇α⊺ MMD2(Pα, P )∣α=α⋆Vα⋆ accounts for the influence of parameter

estimation on the asymptotic distribution of M̂MD2(Pαn , P ) and M̂MD2
q(Pαn , P ). This

will no longer be the case under H0,M, because then ∇α⊺ MMD2(Pα, P )∣α=α⋆ = 0. This
explains why only

√
n(αn − α⋆) = OP(1) is required to prove Theorem 1. Moreover, since

√
n{M̂MD2(Pα⋆ , P )−MMD2(Pα⋆ , P )} and

√
n{M̂MD2

q(Pα⋆ , P )−MMD2(Pα⋆ , P )} are usual
U -statistics, they are jointly weakly convergent.
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1. Note that

√
n

M̂MD2
εn(Pαn , P )

σ̃αn + εnσ̃q,αn
=

√
n M̂MD2(Pαn , P )
σ̃αn + εnσ̃q,αn

+
√
nεn

√
n M̂MD2

q(Pαn , P )
√
nσ̃αn +

√
nεnσ̃q,αn

⋅

Invoking Lemma 2 (ii), we obtain

√
n M̂MD2(Pαn , P )
σ̃αn + εnσ̃q,αn

= OP(n−1/2)
OP(n−1/2) + εnσ̃q,αn

= OP(1)
OP(1) +

√
nεnσ̃q,αn

⋅

Since εn
√
n → ∞ in probability by assumption and σ̃q,αn → σq,α⋆ > 0 in probability,

this yields √
n M̂MD2(Pαn , P )
σ̃αn + εnσ̃q,αn

= oP(1).

Again, by Lemma 2 and the consistency of σ̃q,αn , we have
√
nεnσ̃q,αn → ∞ in proba-

bility, when
√
nσ̃αn = OP(1). This provides

√
nεn

√
n M̂MD2

q(Pαn , P )
√
nσ̃αn +

√
nεnσ̃q,αn

=
√
n M̂MD2

q(Pαn , P )
σ̃q,αn

+ oP(1)
lawÐ→
N(0, σ2

q,α⋆)
σq,α⋆

∼ N(0,1),

which proves the claim.

2. When Pα⋆ /= P ,
√
n{M̂MD2(Pαn , P ) −MMD2(Pα⋆ , P )} = Zα⋆ +OP(1) where Zα⋆ is a

non-degenerate random variable and σ̃αn → σα⋆ > 0 in probability, due to Lemmas 1
and 2 (i). Therefore, the denominator of Tn(M, P ) tends to σα⋆ in probability and

√
n M̂MD2(Pαn , P )
σ̃αn + εnσ̃q,αn

=
√
n

MMD2(Pα⋆ , P )
σα⋆

+OP(1).

Similarly, Lemma 2 (iii) and
√
n(αn − α⋆) = OP(1) yield

εn

√
n M̂MD2

q(Pαn , P )
σ̃αn + εnσ̃q,αn

= εn
√
n

MMD2(Pα⋆ , P )
σα⋆

+ oP(1).

This provides

√
n

M̂MD2
εn(Pαn , P )

σ̃αn + εnσ̃q,αn
= OP(1) +

√
n(1 + εn)

MMD2(Pα⋆ , P )
σα⋆

,

which implies the claim since MMD2(Pα⋆ , P ) > 0.

A.3 Technical Assumptions and Proof of Theorem 2 (Model Specification)

For a given δ > 0 and in addition to (18) and (19), define the classes of symmetric functions

G ∶= {[x,u]1∶3 ↦ g([x,u]1∶3;α)∣ α ∈ Bδ(α⋆)}, and
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Q ∶= {[x,u]1∶6 ↦ ξ([x,u]1∶6;α)∣ α ∈ Bδ(α⋆)},

where g(⋅, α) and ξ(⋅, α) were defined in (13) and (21), respectively.

In this section, we will assume that certain centered empirical U -processes weakly con-
verge to their appropriate limits in some function spaces: for some families L as above, we
will assume that

(nr/2(U(m)
n − P)`)

`∈L

lawÐ→ (Gr`)`∈L in (L∞(L), ∥ ⋅ ∥∞) , (26)

where the non-negative integer r−1 denotes the degree of degeneracy of the class of functions
L and Gr denotes a stochastic process on L with bounded and uniformly continuous sample
paths w.r.t. the L2-norm on the appropriate product space which is in accordance with

the arguments of ` ∈ L. When (26) is satisfied, we say that nr/2(U(m)
n − P) indexed by L

weakly converges. For example, when r = 1, (n1/2(U(2)
n − P)f)

f∈Fq
weakly converges to a

Gaussian process (G1f)f∈Fq in L∞(Fq) which has uniformly continuous sample paths w.r.t.

∥ ⋅ ∥L2(⊗
4
i=1P⊗PU ).

Sufficient conditions ensuring the weak convergence in (26) are, among others, provided
in Arcones and Giné (1993, 1994), van der Vaart and Wellner (1996). In particular, there
exist many sufficient conditions that do not rely on any differentiability property of the
functions in L, which makes (26) particularly useful when considering non-differentiable
generating functions. Moreover, as another strength of the functional convergence (26), it
also ensures that the centered empirical U -process satisfies some asymptotic equicontinuity
property, as follows:

lim
δ→0

lim sup
n→∞

P∗( sup
f,g∈L,∥f−g∥L2

<δ
∣nr/2(U(m)

n − P)(f − g)∣ > ε) = 0,

denoting P∗ the outer probability associated with P (van der Vaart and Wellner, 1996,
Section 1). To illustrate, when r = 1, the latter asymptotic equicontinuity property will
allow us to “replace” expressions of the form

√
n(Un−P)h(⋅;αn) by

√
n(Un−P)h(⋅;α⋆), since√

n(Un − P) (h(⋅;αn) − h(⋅;α⋆)) vanishes in probability due to asymptotic equicontinuity.

We impose the following assumption, which ensures that the centered empirical U -
processes of interest are asymptotically equicontinuous.

Assumption 6 There exists some δ > 0 such that the empirical U -processes

(
√
n(Un − P)f)

f∈F
, (

√
n(U(2)

n − P)q)
q∈Fq

, (
√
n(Un − P)g)

g∈G
, (

√
n(U(2)

n − P)ξ)
f∈Q

weakly converge to their appropriate limits in the functional sense. Moreover,

∥h(⋅;αn) − h(⋅;α⋆)∥L2(⊗
2
i=1P⊗PU ) , ∥q(⋅;αn) − q(⋅;α⋆)∥L2(⊗

4
i=1P⊗PU ) , and

∥g(⋅;αn) − g(⋅;α⋆)∥L2(⊗
3
i=1P⊗PU ) ,and ∥ξ(⋅;αn) − ξ(⋅;α⋆)∥L2(⊗

6
i=1P⊗PU )

tend to zero with n in probability.
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Instead of providing technical conditions that ensure the functional convergence of our
centered empirical U -processes, we have opted to impose the latter rather “high-level”
assumption to avoid an excessively technical discussion. Nonetheless, we provide explicit
sufficient conditions for Assumption 6 in Appendix B and verify these conditions in a ReLu-
type generative neural network example in Appendix C.

To later determine the exact rates of convergence of some quantities related to our model
specification test, we need to further introduce the auxiliary map

g̃(x, y;α) ∶ α ↦ 4

3
h̃2(x, y;α) + 8

3
E[h((X,F (U ;α)), (x, y))h̃(X,F (U ;α);α)], (27)

recalling (9). Note that g̃(⋅;α⋆) = 0 when P = Pα⋆ since h̃(⋅;α⋆) = 0 in this case. We impose
the following regularity conditions on h̃(x, y;α) and g̃(x, y;α).

Assumption 7 The maps α ↦ h̃(x, y;α) and α ↦ g̃(x, y;α) are twice continuously dif-
ferentiable in a neighborhood of α = α⋆, for every (x, y) ∈ S2. Additionally, the maps

ι ∶ α ↦ E[∇αh̃(X,F (U ;α);α⋆)] and ζ ∶ α ↦ E[∇αg̃(X,F (U ;α);α⋆)] are differentiable in a

neighborhood of α = α⋆. Moreover, E [∇αh̃(X,F (U ;α⋆);α⋆)] = ∇αE [h̃(X,F (U ;α⋆);α⋆)]
and E [∇αg̃(X,F (U ;α⋆);α⋆)] = ∇αE [g̃(X,F (U ;α⋆);α⋆)] and there exists a real constant
δ > 0 such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

E[ supα1,α2∈Bδ(α⋆) ∥∇
2
α,α⊺ h̃(X,F (U ;α2);α1)∥2

2] < ∞, and

E[ supα1,α2∈Bδ(α⋆) ∥∇
2
α,α⊺ g̃(X,F (U ;α2);α1)∥2

2] < ∞.
(28)

For any α0 ∈ Θ1, the map ∇αh̃(x,F (u;α0);α⋆) denotes hereafter the derivative of α ↦
h̃(x,F (u;α0);α) at α = α⋆. Thus, ∇αh̃(x,F (u;α⋆);α⋆) should not be confused with the

derivative of the map α ↦ h̃(x,F (u;α);α) at α = α⋆, that may not exist because α ↦
F (u;α) may not be differentiable. Similarly, ∇αg̃(x,F (u;α0);α⋆) denotes the derivative of

α ↦ g̃(x,F (u;α0);α) at α = α⋆.

Even if the map α ↦ F (u;α) might not be differentiable, Assumption 7 imposes that
h̃(x, y;α) and its derivatives are sufficiently smooth w.r.t. α for any (x, y). This is le-
gitimate because E [h((x, y), (X,F (U ;α)))] might be interpreted as a smoothing of the

(possibly) non-differentiable function h((x1, y), (x2, F (u;α))). A similar statement applies
to g̃(x, y;α). Moreover, we denote the classes of functions

Fc ∶= {[x,u]1∶2 ↦ h([x,u]1∶2;α) − h̃(x1, F (u1;α);α) − h̃(x2, F (u2;α);α)

+ MMD2(Pα, P ) ∣ α ∈ Bδ(α⋆)},

Gc ∶= {[x,u]1∶3 ↦ g([x,u]1∶3;α) − g̃(x1, F (u1;α);α) − g̃(x2, F (u2;α);α)

− g̃(x3, F (u3;α);α) + 2Pg(⋅;α) ∣ α ∈ Bδ(α⋆)},

F̃ ∶= {(x,u) ↦ ∇αh̃(x,F (u;α);α⋆) ∣ α ∈ Bδ(α⋆)}, and
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G̃ ∶= {(x,u) ↦ ∇αg̃(x,F (u;α);α⋆) ∣ α ∈ Bδ(α⋆)}.

We assume that the centered empirical (U -)processes indexed by the classes of functions
Fc, Gc, F̃ and G̃ converge to their appropriate functional limits.

Assumption 8 There exists some δ > 0 such that the centered empirical U -processes
(n(Un −P)f)f∈Fc and (n(Un −P)g)g∈Gc, and the empirical processes (√n(Pn −P)f)f∈F̃ and

(√n(Pn − P)g)
g∈G̃

weakly converge. Further, the map α ↦ σα is continuously differentiable

in a neighborhood of α⋆. Finally,

EX,U [∥∇αh̃(X,F (U ;αn);α⋆) − ∇αh̃(X,F (U ;α⋆);α⋆)∥2
2] , as well as

EX,U [∥∇αg̃(X,F (U ;αn);α⋆) − ∇αg̃(X,F (U ;α⋆);α⋆)∥2
2]

tend to zero in probability.

Again, we provide some sufficient conditions to ensure the functional convergence of
the latter centered empirical U -processes and empirical processes in Appendix B. Now,
we can derive the asymptotic distribution of our estimators of the MMD with estimated
parameters.

Lemma 3 Under Assumptions 1-2 and 6-8, the statements of Lemma 2 are valid.

Proof [of Lemma 3]
We prove the statements (i)-(iii) of Lemma 2 successively.

(i): Note that

√
n{M̂MD2(Pαn , P ) −MMD2(Pα⋆ , P )}

=
√
n{M̂MD2(Pαn , P ) −MMD2(Pαn , P ) − M̂MD2(Pα⋆ , P ) +MMD2(Pα⋆ , P )

+ M̂MD2(Pα⋆ , P ) −MMD2(Pα⋆ , P ) +MMD2(Pαn , P ) −MMD2(Pα⋆ , P )}
=

√
n(Un − P)(h(⋅;αn) − h(⋅;α⋆)) +

√
n(Un − P)h(⋅;α⋆)

+
√
n∇α⊺ MMD2(Pα, P )∣α=α⋆(αn − α⋆) +

√
noP(∥αn − α⋆∥),

by a Taylor expansion of α ↦MMD2(Pα, P ). Since the process
√
n(Un−P), indexed by

F , is asymptotically equicontinuous by Assumption 6 and the convergence ∥h(⋅;αn)−
h(⋅;α⋆)∥L2(P⊗PU⊗P⊗PU ) → 0 in probability holds, we get that

√
n(Un − P)(h(⋅;αn) −

h(⋅;α⋆)) is oP(1). Moreover, by Arcones and Giné (1993, Theorem 4.9),
√
n(Un −

P)h(⋅;α⋆) converges in law towards a normal random variable whose variance is

σ2
α⋆ = Var (2EX2,U2[h([X,U]1∶2;α⋆)∣X1, U1]).

By assumption,
√
n∇α⊺ MMD2(Pα⋆ , P )(αn−α⋆) converges to ∇α⊺ MMD2(Pα⋆ , P )Vα⋆

and the joint convergence follows from our assumptions. The fourth term is clearly
oP(1), since ∥αn − α⋆∥ = OP(n−1/2). Thus, we have

√
n{M̂MD2(Pαn , P ) −MMD2(Pα⋆ , P )} lawÐ→ Zα⋆ +∇α⊺ MMD2(Pα, P )∣α=α⋆Vα⋆ .
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Furthermore, σ̂2
αn = Ung(⋅;αn) − 4{M̂MD2(Pαn , P )}

2
. We have just deduced the con-

vergence of M̂MD2(Pαn , P ) to MMD2(Pα⋆ , P ) in probability. Similarly, since
√
n(Un−

P) indexed by G converges to a Gaussian limit and ∥g(⋅;αn)−g(⋅;α⋆)∥L2(⊗
3
i=1P⊗PU ) → 0

in probability, we have

Ung(⋅;αn) = E[X′,U ′]1∶3[g(⋅;αn)([X
′,U ′]1∶3)] + oP(1), and

∣E[X′,U ′]1∶3 [g(⋅;αn)([X
′,U ′]1∶3) − g([X ′,U ′]1∶3;α⋆)] ∣

≤ ∥g(⋅;αn) − g(⋅;α⋆)∥L2(⊗
3
i=1P⊗PU )

P→ 0,

where [X ′,U ′]1∶3 is an independent copy of [X,U]1∶3. Thus, this yields

Ung(⋅;αn) = E[g([X,U]1∶3;α⋆)] + oP(1),

proving that σ̂2
αn → σ2

α⋆ in probability. Therefore, we also have σ̃2
αn → σ2

α⋆ in proba-
bility by Lemma 1.

(ii): Obviously, when Pα⋆ = P , ∇αMMD2(Pα, P )∣α=α⋆ = 0 since α⋆ belongs to the interior
of Θ1 and is an argmin of α ↦ MMD2(Pα, P ). Moreover, Unh(⋅;α⋆) = OP(n−1)
by standard U -statistic arguments, because h(⋅;α⋆) is now a degenerate U -statistic
kernel. Note that, by Assumption 2,

√
n MMD2(Pαn , P ) = OP(n−1/2) since

MMD2(Pαn , P ) = (αn − α⋆)⊺∇2
α,α⊺ MMD2(Pα, P )∣α=α⋆(αn − α⋆) + oP (∥αn − α⋆∥2)

= OP (∥αn − α⋆∥2) ,

which is OP(n−1). Let us decompose the quantity of interest as

√
n M̂MD2(Pαn , P ) =

√
nUnh(⋅;αn) =

√
nUn(h(⋅;αn) − h(⋅;α⋆)) +OP(n−1/2).

Thus, it remains to prove that
√
nUn(h(⋅;αn)−h(⋅;α⋆)) = OP(n−1/2). To this aim, we

will use the asymptotic equicontinuity of degenerate U -statistic kernels. Obviously,
for any α ≠ α⋆, h(⋅;α) − h(⋅;α⋆) is generally not a degenerate U -statistic kernel.
Nonetheless, we can rewrite

√
nUn(h(⋅;αn) − h(⋅;α⋆)) =

√
n

n(n − 1)
n

∑
i,j=1
i/=j

{ψ([X,U]i,j ;αn) − ψ([X,U]i,j ;α⋆)}

+ 2
√
n

n

n

∑
i=1

h̃(Xi, F (Ui;αn);αn) +OP(n−1/2), (29)

ψ([x,u]1∶2;α) ∶= h([x,u]1∶2;α)−h̃(x1, F (u1;α);α)−h̃(x2, F (u2;α);α)+MMD2(Pα, P ).

Note that ψ([x,u]1∶2;α⋆) = h([x,u]1∶2;α⋆) because h̃(x, y;α⋆) = 0 for every (x, y),
when P = Pα⋆ . Moreover, the U -statistic Unψ(⋅;α) is now degenerate, for every α ∈ Θ1.
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For any ε > 0 and any positive constants δk, k ∈ {1,2}, we get

P(∣
√
n

n(n − 1)
n

∑
i,j=1
i/=j

{ψ([X,U]i,j ;αn) − ψ([X,U]i,j ;α⋆)}∣ > n−1/2ε)

≤ P( sup
f,g∈Fc∥f−g∥L2(⊗2

i=1P⊗Pu)
<δ2

∣n(Un − P)(f − g)∣ > ε) + P(∥αn − α⋆∥ ≥ δ1)

+P(∥ψ(⋅;αn) − ψ(⋅;α⋆)∥L2(⊗
2
i=1(P⊗PU )) ≥ δ2, ∥αn − α⋆∥ < δ1) =∶ T1 + T2 + T3.

By the asymptotic equicontinuity of n(Un − P) indexed by Fc (Assumption 8), there
exists δ2 s.t. T1 is arbitrarily small for n sufficiently large. Since

∥ψ(⋅;αn) − ψ(⋅;α⋆)∥L2(⊗
2
i=1(P⊗PU )) ≤ 4∥h(⋅;αn) − h(⋅;α⋆)∥L2(⊗

2
i=1(P⊗PU ))

that tends to zero in probability, δ1 can be chosen so that T2 and T3 are arbitrarily
small for sufficiently large n. Globally, we have obtained that

√
n

n(n − 1)
n

∑
i,j=1
i/=j

{ψ([X,U]i,j ;αn) − ψ([X,U]i,j ;α⋆)} = oP(n−1/2). (30)

Moreover, since h̃(x, y;α) is twice continuously differentiable w.r.t. α by Assumption 7,
we obtain by a limited expansion

2
√
n

n

n

∑
i=1

h̃(Xi, F (Ui;αn);αn)

= 2
√
n

n

n

∑
i=1

{h̃(Xi, F (Ui;αn);α⋆) + ∇α⊺ h̃(Xi, F (Ui;αn);α⋆)(αn − α⋆)

+ 2−1(αn − α⋆)⊺∇2
α,α⊺ h̃(Xi, F (Ui;αn); α̃n)(αn − α⋆)},

for some random parameter α̃n that satisfies ∥α̃n −α⋆∥ < ∥αn −α⋆∥. Due to (28) from
Assumption 7 and since h̃α⋆ = 0 under the null, this yields

2
√
n

n

n

∑
i=1

h̃(Xi, F (Ui;αn);αn)

= 2
√
n

n

n

∑
i=1

∇α⊺ h̃(Xi, F (Ui;αn);α⋆)(αn − α⋆) +OP(n−1/2)

=
√
n(αn − α⋆)⊺

2

n

n

∑
i=1

{∇αh̃(Xi, F (Ui;αn);α⋆) − ∇αh̃(Xi, F (Ui;α⋆);α⋆)}

+
√
n(αn − α⋆)⊺

2

n

n

∑
i=1

∇αh̃(Xi, F (Ui;α⋆);α⋆) +OP(n−1/2)

= 2
√
n(αn − α⋆)⊺Pn{∇αh̃(⋅, F (⋅;αn);α⋆) − ∇αh̃(⋅, F (⋅;α⋆);α⋆)}

+2
√
n(αn − α⋆)⊺Pn∇αh̃(⋅, F (⋅;α⋆);α⋆) +OP(n−1/2).
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Observe that E[∇αh̃(X,F (U ;α⋆);α⋆)] = ∇αE[h̃(X,F (U ;α⋆);α⋆)] = ∇α0 = 0 due to

Assumption 7 and Pα⋆ = P . Moreover, as the map α ↦ ι(α) = E[∇αh̃(X,F (U ;α);α⋆)]
is assumed to be differentiable at α = α⋆ (Assumption 7), a Taylor expansion provides

∥ι(αn)∥1 = ∥ι(α⋆) + (αn − α⋆)⊺∇αι(α⋆)∥1 + oP(∥αn − α⋆∥) = 0 +OP(n−1/2).

Deduce

∥P{∇αh̃(⋅, F (⋅;αn);α⋆) − ∇αh̃(⋅, F (⋅;α⋆);α⋆)}∥1 = ∥ι(αn) − ι(α⋆)∥1 = OP(n−1/2).

Therefore, we get

2
√
n

n

n

∑
i=1

h̃(Xi, F (Ui;αn);αn) = 2
√
n(αn − α⋆)⊺(Pn − P)∇αh̃(⋅, F (⋅;α⋆);α⋆)

+ 2
√
n(αn − α⋆)⊺(Pn − P){∇αh̃(⋅, F (⋅;αn);α⋆) − ∇αh̃(⋅;F (⋅;α⋆);α⋆)} +OP(n−1/2).

Since EX,U[∥∇αh̃(X,F (U ;αn);α⋆) − ∇αh̃(X,F (U ;α⋆);α⋆)∥2
2]

P→ 0 and
√
n((Pn −

P)f)
f∈F̃

converges to a tight Gaussian limit (Assumption 8), the asymptotic equicon-

tinuity of the latter process yields

2
√
n(αn − α⋆)⊺(Pn − P){∇αh̃(⋅, F (⋅;αn);α⋆) − ∇αh̃(⋅, F (⋅;α⋆);α⋆)} = oP(n−1/2).

Moreover, the usual CLT yields
√
n(αn−α⋆)⊺(Pn−P)∇αh̃(⋅, F (⋅;α⋆);α⋆) = OP(n−1/2).

In other words, we have obtained

2
√
n

n

n

∑
i=1

h̃(Xi, F (Ui;αn);αn) = OP(n−1/2). (31)

Therefore, by (29), (30) and (31), we get
√
nUn(h(⋅;αn) − h(⋅;α⋆)) = OP(n−1/2) and

M̂MD2(Pαn , P ) = OP(n−1).
Furthermore, note that we have also just proven that

σ̂2
αn = Ung(⋅;αn) − 4(M̂MD2(Pαn , P ))2 = Ung(⋅;αn) +OP(n−2).

Thus, it remains to show that Ung(⋅;αn) = OP(n−1) when Pα⋆ = P . To this aim,
observe that

3E [g([X,U]1∶3;α⋆) ∣X1, U1] /4 = h̃2(X1, F (U1;α⋆);α⋆)
+E [E [h([X,U]2,1;α⋆)h([X,U]2,3;α⋆) ∣ [X,U]1,2] ∣X1, U1]
+E [E [h([X,U]3,2;α⋆)h([X,U]3,1;α⋆) ∣ [X,U]1,3] ∣X1, U1]

= h̃2(X1, F (U1;α⋆);α⋆) + 2E [h([X,U]2,1;α⋆)h̃(X2, F (U2;α⋆);α⋆) ∣X1, U1] = 0,
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since h̃(⋅, ⋅;α⋆) = 0 when Pα⋆ = P , i.e., g(⋅;α⋆) is a degenerate U -statistic kernel.
Therefore, as a degenerate U -statistic, (Un − P)g(⋅;α⋆) is OP(n−1). Since Pg(⋅;αn) =
σ2
αn +OP(n−1), deduce

Ung(⋅;αn) = (Un − P)g(⋅;α⋆) + (Un − P)(g(⋅;αn) − g(⋅;α⋆)) + σ2
αn +OP(n−1).

Since α ↦ σα is continuously differentiable in a neighborhood of α⋆, there exists ᾱ ∈ Θ1

s.t. σα = (α − α⋆)⊺∇ασᾱ and ∥ᾱ − α⋆∥ < ∥α − α⋆∥. This yields σ2
αn = OP(∥αn − α⋆∥2) =

OP(n−1). We have obtained Ung(⋅;αn) = (Un − P)(g(⋅;αn) − g(⋅;α⋆)) + OP(n−1). By
the same type of decomposition as above, we get

√
n(Un − P)(g(⋅;αn) − g(⋅;α⋆)) =

√
n

n(n − 1)(n − 2)
n

∑
i,j,k=1
i/=j/=k

{g([X,U]i,j,k;αn)

− g̃(Xi, F (Ui;αn);αn) − g̃(Xj , F (Uj ;αn);αn) − g̃(Xk, F (Uk;αn);αn) + 2Pg(⋅;αn)

− g(Xi, F (Ui;α⋆),Xj , F (Uj ;α⋆),Xk, F (Uk;α⋆))} − 3
√
nPg(⋅;αn)

+ 3
√
n

n

n

∑
i=1

g̃(Xi, F (Ui;αn);αn).

By the asymptotic equicontinuity of the degenerate process n(Un −P) indexed by Gc,
we obtain

√
n(Un − P)(g(⋅;αn) − g(⋅;α⋆)) =

3
√
n

n

n

∑
i=1

g̃(Xi, F (Ui;αn);αn) +OP(n−1/2).

Now, since α ↦ g̃α(x, y) is twice continuously differentiable, a limited expansion yields

3
√
n

n

n

∑
i=1

g̃(Xi, F (Ui;αn);αn) =
√
n(αn − α⋆)

3

n

n

∑
i=1

∇αg̃(Xi, F (Ui;α⋆);α⋆)

+ 3(αn − α⋆)√
n

n

∑
i=1

{∇αg̃(Xi, F (Ui;αn);α⋆) − ∇αg̃(Xi, F (Ui;α⋆);α⋆)} +OP(n−1/2).

Note we have invoked Assumption 7 to manage the remainder term. Finally, due to
the asymptotic equicontinuity of the empirical U process indexed by G̃ and the usual
CLT, we obtain ∑ni=1 g̃(Xi, F (Ui;αn);αn)/

√
n = OP(n−1/2). This yields σ̂2

αn = OP(n−1)
and therefore σ̃2

αn = OP(n−1) also by Lemma 1.

(iii): Follows exactly by the same arguments as the proof of (i).

Note that the proof of Theorem 1 solely relied on Lemma 2, which is why Theorem 2
immediately follows from Lemma 3.
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A.4 Proof of Theorem 3 (Model Comparison)

If the maps α ↦ F (u;α) and β ↦ G(v;β) are twice differentiable for every u ∈ U and v ∈ V,
the same arguments as in Section 3.3 can be invoked to obtain the asymptotic behaviors
of Tn(M1,M2, P )’s numerator and denominator. As for Lemmas 2 and 3, we establish a
more general result than we need. To this aim, we require the following joint convergence
assumption.

Assumption 9 When n→∞,

√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M̂MD2(Pα⋆ , P ) −MMD2(Pα⋆ , P )
M̂MD2(Qβ⋆ , P ) −MMD2(Qβ⋆ , P )
M̂MD2

q(Pα⋆ , P ) −MMD2(Pα⋆ , P )
M̂MD2

q(Qβ⋆ , P ) −MMD2(Qβ⋆ , P )
αn − α⋆
βn − β⋆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

lawÐ→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Z
(1)
α⋆

Z
(2)
β⋆

Z
(1)
q,α⋆

Z
(2)
q,β⋆

V
(1)
α⋆

V
(2)
β⋆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

When α⋆ (resp. β⋆) minimizes the distance MMD(Pα, P ) over Θ1 (resp. MMD(Qβ, P )
over Θ2), the weak convergence of

√
n(αn − α⋆) (resp.

√
n(βn − β⋆)) is no longer required

and replaced by the weaker requirement
√
n(αn −α⋆) = OP(1) (resp.

√
n(βn −β⋆) = OP(1)).

Lemma 4 Assume that Assumptions 1-5 and 9 are satisfied by the competing models M1

and M2. Then the following is true:

(i)

√
n{M̂MD2(Pαn , P ) −MMD2(Pα⋆ , P ) − M̂MD2(Qβn , P ) +MMD2(Qβ⋆ , P )}

lawÐ→Wα⋆,β⋆ +∇α⊺ MMD2(Pα, P )∣α=α⋆V (1)
α⋆ −∇β⊺ MMD2(Qβ, P )∣β=β⋆V

(2)
β⋆

,

where Wα⋆,β⋆ ∶= Z
(1)
α⋆ −Z(2)

β⋆
∼ N(0, σ2

α⋆,β⋆
). Moreover, σ̃2

αn,βn
→ σ2

α⋆,β⋆
in probability.

(ii) If Pα⋆ = Qβ⋆ = P , then σα⋆,β⋆ = 0. Moreover, σ̃2
αn,βn

= OP(n−1) and

√
n{M̂MD2(Pαn , P ) − M̂MD2(Qβn , P )} = OP(n−1/2).

(iii)

√
n{M̂MD2

q(Pαn , P ) −MMD2(Pα⋆ , P ) − M̂MD2
q(Qβn , P ) +MMD2(Qβ⋆ , P )}

lawÐ→Wq,α⋆,β⋆ +∇α⊺ MMD2(Pα, P )∣α=α⋆V (1)
α⋆ −∇β⊺ MMD2(Qβ, P )∣β=β⋆V

(2)
β⋆

,

where Wq,α⋆,β⋆ ∶= Z
(1)
q,α⋆ −Z

(2)
q,β⋆

∼ N(0, σ2
q,α⋆,β⋆

). If the samples (Ui)i≥1 and (Vi)i≥1 are

independent, then σ2
q,α⋆,β⋆

> 0. Finally, σ̃2
q,αn,βn

→ σ2
q,α⋆,β⋆

in probability.
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Proof [of Lemma 4] As in Lemma 2, the proof is essentially based on two Taylor expansions.

Recall that M̂MD2(Pαn , P )−M̂MD2(Qβn , P ) = Unh(⋅;αn, βn). By a Taylor expansion of the
U -kernel h(⋅;αn, βn) around (α⋆, β⋆) and due to Assumptions 3-4 for both models, we have

h(⋅;αn, βn) = h(⋅;α⋆, β⋆) + ∇α⊺h(⋅;α⋆, β⋆).(αn − α⋆) + ∇β⊺h(⋅;α⋆, β⋆).(βn − β⋆)
+OP(∥αn − α⋆∥2) +OP(∥βn − β⋆∥2). (32)

The convergence of
√
n{M̂MD2(Pαn , P )−MMD2(Pα⋆ , P )−M̂MD2(Qβn , P )+MMD2(Qβ⋆ , P )}

immediately follows from Assumption 9. We prove the convergence of the estimated vari-
ance σ̂2

αn,βn
defined in (22) using a first order Taylor expansion of the map (α,β) ↦

g([x,u,v]i,j,k;α,β) defined in (23) around (α⋆, β⋆), for every triplet of indices (i, j, k),
i ≠ j ≠ k. By Lemma 1, we get the convergence of σ̃αn,βn to σα⋆,β⋆ . This yields (i).

In the case (ii), Pα⋆ = P = Qβ⋆ and α⋆ and β⋆ are minimizers of α ↦MMD(Pα, P ) and
β ↦ MMD(Qβ, P ) respectively. By direct calculation and recalling (14), we easily obtain
σα⋆,β⋆ = 0. Then, (32) provides Unh(⋅;αn, βn) = OP(n−1) because

E[∇αh([X,U,V ]1,2;α⋆, β⋆)] = ∇αE[h([X,U,V ]1,2;α⋆, β⋆)] = ∇αMMD(Pα⋆ , P ) = 0,

and similarly E [∇βh([X,U,V ]1,2;α⋆, β⋆)] = 0. Moreover, a Taylor expansion of the U -
kernel g(⋅;αn, βn) around (α⋆, β⋆) yields that Ung(⋅;αn, βn) = OP(n−1) when Pα⋆ = P = Qβ⋆
since Ung(⋅;α⋆, β⋆) is a degenerate U -statistic, as in the proof of Lemma 2 (ii). This implies

σ̂2
αn,βn

= Ung(⋅;αn, βn) − 4(M̂MD2(Pαn , P ) − M̂MD2(Qβn , P ))2 = OP(n−1).
The same reasonings apply to prove (iii), noting that M̂MD2

q(Pαn , P )−M̂MD2
q(Qβn , P ) =

U(2)
n q(⋅;αn, βn). In particular, mimic the same arguments as above for the U -kernels

q(⋅;αn, βn) and ξ(⋅;αn, βn), recalling (15) and (24). This yields
√
n{U(2)

n q(⋅;αn, βn) −
(MMD(Pα⋆ , P ) −MMD(Qβ⋆ , P ))} → N(0, σ2

q,α⋆,β⋆
) and σ̂q,αn,βn → σq,α⋆,β⋆ > 0.

The proof of Theorem 3 is a direct consequence of Lemma 4, mimicking the proof of
Theorem 1. Note that we only need the joint weak convergence of the first four compo-
nents of the random vector in Assumption 9, that is obtained by the Cramer-Wold device
and usual Hájek projections of U -statistics based on the sample (Xi, Ui, Vi). Contrary to
Theorem 1, one must differentiate the case Pα⋆ = P = Qβ⋆ and the case MMD(Pα⋆ , P ) =
MMD(Qβ⋆), but Pα⋆ /= P /= Qβ⋆ under the null. When Pα⋆ = P = Qβ⋆ , the proof is
identical to the proof of Theorem 1. When MMD(Pα⋆ , P ) = MMD(Qβ⋆) but Pα⋆ /= P /=
Qβ⋆ the proof structure is still identical to the latter case, but with the sole differences
that

√
nUnh(⋅;αn, βn) → N(0, σ2

α⋆,β⋆
), σ̃αn,βn → σα⋆,β⋆ > 0, εnσ̃q,αn,βn → 0, as well as

√
nεn{M̂MD2

q(Pαn , P ) − M̂MD2
q(Qβn , P )} → 0. The latter arguments yield (i) of Theorem

3 and the result follows.

Remark 3 In Lemma 4, it is possible that σ2
q,α⋆,β⋆

= 0 when the random variables U and
V are “perfectly dependent” and Pα⋆ = Qβ⋆, i.e., when F (Ui;α⋆) = G(Vi;β⋆) a.s. for every

40



Distribution Free MMD Tests For Model Selection

i. To be specific, by simple calculations, we always have

σ2
q,α⋆,β⋆/8 ∶=Var (E[k(X,G(V2;β⋆))∣V2] −E[k(X,F (U2;α⋆))∣U2]

+ E[k(X2,G(V ;β⋆))∣X2] −E[k(X2, F (U ;α⋆))∣X2]

+ E[k(F (U1;α⋆), F (U ;α⋆))∣U1] −E[k(G(V1;β⋆),G(V ;β⋆))∣V1]).

When F (Ui;α⋆) = G(Vi;β⋆) a.s., which is for example the case when both generators of the
optimal models are identical and Ui and Vi are generated by the same source of randomness,
then it becomes clear that σ2

q,α⋆,β⋆
= 0. However, this undesired phenomenon is avoided when

Ui and Vi are chosen to be independent, i.e., when the two competing models are generated
by independent sources of randomness, which is why we have imposed this assumption.

A.5 Technical Assumptions and Proof of Theorem 4 (Model Comparison)

Define h̃(x, y, z;α,β) ∶= h̃(1)(x, y;α) − h̃(2)(x, z;β), where h̃(1)(x, y;α) and h̃(2)(x, z;β) are
defined according to (9). Moreover, define

g̃(x, y, z;α,β) ∶=8

3
E[h ((X,F (U ;α),G(V ;β)), (x, y, z)) h̃ (X,F (U,α),G(V ;β);α,β) ]

+ 4

3
h̃2(x, y, z;α,β).

Define some classes of functions as in Section A.3, but now indexed by (α,β) instead of α
only, as

F(M) ∶= {[x,u,v]1∶3 ↦ h([x,u,v]1∶3;α,β)∣ α ∈ Bδ(α⋆), β ∈ Bδ(β⋆)},

G(M) ∶= {[x,u,v]1∶3 ↦ g([x,u,v]1∶3;α,β)∣ α ∈ Bδ(α⋆), β ∈ Bδ(β⋆)},

and, in the same spirit, the analogs F(M)
q , Q(M), F(M)

c , G(M)
c , F̃(M) and G̃(M) of Fq,

Q, Fc, Gc, F̃ and G̃. We need to adapt the regularity Assumptions 7 and 8 to the new
framework.

Assumption 10 The maps (α,β) ↦ h̃(x, y, z;α,β) and (α,β) ↦ g̃(x, y, z;α,β) are twice
continuously differentiable in a neighborhood of (α⋆, β⋆) at every (x, y, z) ∈ S × S × S. Ad-
ditionally, the maps

(α,β) ↦ E[∇(α,β)h̃(X,F (U ;α),G(V ;β);α⋆, β⋆)], and

(α,β) ↦ E[∇(α,β)g̃(X,F (U ;α),G(V ;β);α⋆, β⋆)]

are differentiable in a neighborhood of (α⋆, β⋆). We assume

E [∇(α,β)h̃(X,F (U ;α⋆),G(V,β⋆);α⋆, β⋆)] = ∇(α,β)E [h̃(X,F (U ;α⋆),G(V ;β⋆);α⋆, β⋆)]and

E [∇(α,β)g̃(X,F (U ;α⋆),G(V ;β⋆);α⋆, β⋆)] = ∇(α,β)E [g̃(X,F (U ;α⋆),G(V ;β⋆);α⋆, β⋆)] .
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Moreover,

∥h(⋅;αn, βn) − h(⋅;α⋆, β⋆)∥L2(⊗
2
i=1P⊗PU⊗PV ) , ∥q(⋅;αn, βn) − q(⋅;α⋆, β⋆)∥L2(⊗

4
i=1P⊗PU⊗PV ) ,

∥g(⋅;αn, βn) − g(⋅;α⋆, β⋆)∥L2(⊗
3
i=1P⊗PU⊗PV ) ,and ∥ξ(⋅;αn, βn) − ξ(⋅;α⋆, β⋆)∥L2(⊗

6
i=1P⊗PU⊗PV )

tend to zero in probability for n→∞. Finally, for some real constant δ > 0, we have

E[ sup
(α1,β1)∈Bδ(α⋆)×Bδ(β⋆),
(α2,β2)∈Bδ(α⋆)×Bδ(β⋆)

∥∇2
(α,β),(α,β)⊺ h̃(X,F (U ;α2),G(V ;β2);α,β)∣(α,β)=(α1,β1)∥

2
2]

+E[ sup
(α1,β1)∈Bδ(α⋆)×Bδ(β⋆),
(α2,β2)∈Bδ(α⋆)×Bδ(β⋆)

∥∇2
(α,β),(α,β)⊺ g̃(X,F (U ;α2),G(V ;β2);α,β)∣(α,β)=(α1,β1)∥

2
2] < ∞.

Assumption 11 There exists some δ > 0 such that the centered empirical U -processes

(√n(Un − P)f)
f∈F(M)

, (√n(Un − P)f)
f∈F

(M)
q

, (n(Un − P)f)
f∈F

(M)
c

, (√n(U(2)
n − P)f)

f∈Q(M)
,

(√n(Un − P)g)
g∈G(M)

and (n(Un − P)g)
g∈G

(M)
c

as well as the empirical processes (√n(Pn −
P)f)

f∈F̃(M)
and (√n(Pn − P)g)

g∈G̃(M)
weakly converge. Finally, the map (α,β) ↦ σα,β is

continuously differentiable in a neighborhood of (α⋆, β⋆) and

EX,U,V [∥∇(α,β)h̃(X,F (U ;αn),G(V ;βn);α⋆, β⋆) − ∇(α,β)h̃(X,F (U ;α⋆),G(V ;β⋆);α⋆, β⋆)∥2
2]

as well as

EX,U,V [∥∇(α,β)g̃(X,F (U ;αn),G(V ;βn);α⋆, β⋆) − ∇(α,β)g̃(X,F (U ;α⋆),G(V ;β⋆);α⋆, β⋆)∥2
2]

converge to 0 in probability.

Again, sufficient conditions to ensure the functional convergence of the considered em-
pirical U -processes can be found in Appendix B.

Lemma 5 Assume the models M1 and M2 satisfy Assumptions 1-2 and 9-11. Then the
conclusions of Lemma 4 apply.

Essentially, the proof of Lemma 5 goes along the same lines as the proof of Lemma 3,
replacing each quantity defined for model specification with the corresponding quantity for
model selection. Therefore, it has been omitted. Then, assuming Lemma 5 is satisfied, the
proof of Theorem 4 follows identically to the proof of Theorem 3.

Appendix B. Sufficient Condition for Functional Convergence of
Centered Empirical U-processes

In Section 3.4 and Section 4.3, we require that some centered empirical U -processes indexed
by certain classes of functions converge to their appropriate limits in the functional sense
(26). In this section, we provide some sufficient conditions that ensure such functional weak
convergences.

42



Distribution Free MMD Tests For Model Selection

Consider a generic class L of symmetric real-valued measurable functions on some prod-
uct probability space (Zq,⊗qi=1PZ). A class L is degenerate of order r − 1, r ≥ 1, if

E
(Zi)1≤i≤q−r+1∼⊗

q−r+1
i=1 PZ

[`(Z1, . . . , Zq)] = const ⊗qq−r+2 PZ-a.s. , and

Var (E(Zi)1≤i≤q−r∼⊗
q−r
i=1 PZ

[`(Z1, . . . , Zq)]) > 0

for every ` ∈ L. When r = 1, this simply means E [`(Z1, . . . , Zq)] = 0 and E[`(Z1, . . . , Zq) ∣
Z1] is not a constant; thus, the class L is also called non-degenerate in this case.

Let us recall the usual definition of covering numbers: for a given norm ∥ ⋅ ∥ on L, define
the ε-covering number of (L, ∥ ⋅ ∥) as

N(ε,L, ∥ ⋅ ∥) ∶= min{n ∶ ∃f1, . . . , fn ∈ L s.t. sup
f∈L

min
i≤n

∥f − fi∥ ≤ ε}.

Essentially, the covering number measures the size of L w.r.t. ∥ ⋅ ∥ and can be interpreted as
a measure of complexity of L w.r.t. ∥ ⋅ ∥. Hereafter, we define some regularity condition on a
generic class of functions L that is based on the covering numbers of L. This condition will
ensure the weak convergence of the centered empirical U -process nr/2((Un − P)`)

`∈L
and it

is mainly based on (simplified) conditions provided by Arcones and Giné (1993).

Definition 1 Let L denote a class of symmetric measurable functions on some product
probability space (Zq,⊗qi=1PZ) and let r be a positive integer. Then, L is called r-regular if
the following is satisfied:

1. S(z1, . . . , zq) ∶= sup`∈L ∣`(z1, . . . , zq)∣ < ∞ for all (z1, . . . , zq) ∈ Zq;

2. E(Zi)1≤i≤q∼⊗
q
i=1PZ

[S(Z1, . . . , Zq)2] < ∞;

3. limt→∞ tPZ(E(Zi)1≤i≤q−1∼⊗
q−1
i=1 PZ

[S(Z1, . . . , Zq−1, Z)2] > t) → 0;

4. L is image admissible Suslin;

5. for all probability measures Q such that E(Zi)1≤i≤q∼Q [S(Z1, . . . , Zq)2] < ∞, we have

∫
∞

0
{ sup

Q
logN(ε

√
E(Zi)1≤i≤q∼Q[S(Z1, . . . , Zq)2],L, ∥ ⋅ ∥L2(Q))}

r/2

dε < ∞, (33)

and ∫
∞

0
{ logN(ε,L, ∥ ⋅ ∥L2(⊗

q
i=1PZ))}

r/2

dε < ∞.

Any centered empirical U -process nr/2((Un−P)`)`∈L that is degenerate of degree r−1 and
r-regular weakly converges to a limit process in L∞(L), which is asymptotically uniformly
equicontinuous w.r.t. the norm ∥ ⋅ ∥L2(⊗

q
i=1PZ): see Arcones and Giné (1993, p. 1535).

In Definition 1, the concept of being image admissible Suslin is a measurability property
that may not be familiar to many readers. This is why we briefly discuss some sufficient
conditions to ensure the image admissible Suslin property of a considered class of functions
L. Assume that L is parameterized by a vector-valued parameter α (resp. β) which belongs
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to a neighborhood of α⋆ (resp. β⋆). In other words, we assume any class of functions L
may be rewritten as L = {`θ ∶ E ↦ R ∣ θ ∈ Θ0}, for some non-empty compact subset Θ0 of a
finite dimensional Euclidean space and E is the Cartesian product of S, U (resp. V) spaces.
From Dudley (1984), p. 101, this implies that L is image admissible Suslin if

• E endowed with its Borel σ−algebra is a Polish space (i.e., is metrizable to become a
separable and complete metric space), and

• the map (x, θ) ↦ fθ(x) from E ×Θ0 to R is jointly measurable.

These conditions are often met in practice and ensure the image admissible Suslin property
of L. Moreover, for certain classes of functions, it is well known that (33) is satisfied, such as
for VC-subgraph classes of functions or classes of functions that satisfy a Lipschitz-property,
see (van der Vaart and Wellner, 1996, Section 2.6 and 2.7). In particular, these conditions
may be directly checked provided the kernel k, (F (⋅;α))

α∈Θ1
and (G(⋅;β))

β∈Θ2
.

We are ready to provide sufficient conditions for the weak convergence statements in
Assumptions 6, 8 and 11 to hold. A sufficient condition to ensure that there exists some

δ > 0 such that the empirical U -processes (√n(Un−P)f)f∈F , (√n(U(2)
n −P)q)

q∈Fq
, (√n(Un−

P)g)
g∈G

and (√n(U(2)
n −P)ξ)

f∈Q
weakly converge to their appropriate limits in the functional

sense as claimed in Assumption 6 is as follows: there exists some δ > 0 such that the classes
of functions F , Fq, G and Q are 1-regular.

Moreover, a sufficient condition to ensure that there exists δ > 0 such that the centered
empirical U -processes (n(Un − P)f)

f∈Fc
and (n(Un − P)g)

f∈Gc
and the empirical processes

(√n(Pn −P)f)f∈F̃ and (√n(Pn −P)g)g∈G̃ converge to their appropriate functional limits as

claimed in Assumption 8 is: there exists some δ > 0 such that the classes of functions F̃
and G̃ are 1-regular and that the classes of functions Fc and Gc are 2-regular.

A sufficient condition to ensure that there exists some δ > 0 such that the centered
empirical U -processes (√n(Un − P)f)

f∈F(M)
, (√n(Un − P)f)

f∈F
(M)
q

, (n(Un − P)f)
f∈F

(M)
c

,

(√n(U(2)
n − P)f)

f∈Q(M)
, (√n(Un − P)g)

g∈G(M)
and (n(Un − P)g)

g∈G
(M)
c

and the empirical

processes (√n(Pn − P)f)
f∈F̃(M)

and (√n(Pn − P)g)
g∈G̃(M)

weakly converge to their appro-

priate functional limits as claimed in Assumption 11 is: there exists some δ > 0 such that

the classes of functions F(M), F(M)
q , F̃(M), Q(M), G(M) and G̃(M) are 1-regular and that

the class of functions F(M)
c and G(M)

c is 2-regular.

Note that the 1-regularity of the classes of functions F̃ , G̃, F̃(M) and G̃(M) is simply
a sufficient condition to ensure that they are Donsker classes (van der Vaart and Wellner,
1996, Section 2.5). Finally, it should again be emphasized that the concept of r-regularity
does not rely on any differentiability property of the considered functions. Therefore, it is
a suitable concept to ensure the asymptotic convergence of centered empirical U -processes
indexed by classes of non-differentiable functions, such as in Section 3.4 and Section 4.3.
See Appendix C for an example.
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Appendix C. A ReLu-Type Neural Network Model

The goal of this section is to provide a short example which illustrates that the conditions
for an application of Theorem 2 are verifiable when the generating function α ↦ F (⋅, α) is
non-smooth. Similar calculations yield that the assumptions of Theorem 4 are also satisfied
for this example, but due to space limitations we leave the detailed calculations to the
reader. The generative model with which we conduct our analysis is a special type of a
one-layer ReLu neural network given by

F (u;α) ∶ u↦
m

∑
k=1

ak max(u − bk,0) + c, (34)

a map that is parametrized by α ∶= (a1, . . . , am, b2, . . . , bm, c), since we impose b1 = 0. We
try to model P in terms of a generative model (Pα)α∈Θ1 where the law of any Pα is the
law of F (U ;α), U ∼ Unif([0,1]), and Θ1 denotes some subset of R2m with non-empty
interior. This model is clearly not differentiable w.r.t. (some of) the parameters bk. Thus,
one cannot rely on the results of Theorem 1. To make the exposition easier we assume that
α⋆ = argminαMMD(Pα, P ) is unique. This latter property is satisfied when all parameters
ak are positive and b1 = 0 < b1 < . . . < bm < 1 (Lemma 6 below), an identifiability condition
that is assumed from now on. Further, we assume our kernel is bounded by one and is
twice continuously differentiable with bounded first and second derivatives, which is, e.g.,
satisfied by the Gaussian kernel. This implies that it is globally Lipschitz continuous and
we denote the corresponding Lipschitz constant as Lk.

We will frequently use Theorem 2.10.20 in van der Vaart and Wellner (1996). It implies
that sums of Donsker classes are again Donsker. Moreover, products of uniformly bounded
Donsker classes are Donsker. Let L denote a generic class of uniformly bounded functions
with an upper bound C. We will show that each L ∈ {F ,Fq,Q,G,Fc,Gc, F̃ , G̃} has poly-
nomially bounded covering number w.r.t. ∥ ⋅ ∥L2(Q), where Q denotes an arbitrary discrete
probability measure. This then implies that the entropy integral in (33) is finite, since
(van der Vaart and Wellner, 1996, footnote 1 p. 84) implies that the entropy integral in
(33) only has to be considered for discrete probability measures. From this it immediately
follows that L is r-regular for r ∈ {1,2}.

First, recall that, for every norm ∥⋅∥ on L, the ε covering number N(ε,L, ∥⋅∥) is bounded
by the corresponding 2ε bracketing number, denoted N[](2ε,L, ∥ ⋅ ∥) (van der Vaart and
Wellner, 1996, p. 84). Further, every ReLu neural network with a bounded parameter set
and bounded inputs is globally Lipschitz w.r.t. its parameter α, denoting the corresponding
Lipschitz constant as L. Then, we have

∣k(F (U1;α1), F (U2;α2)) − k(F (U1;α3), F (U2;α4))∣ ≤ LkL∥(α1, α2) − (α3, α4)∥1, a.e.

By van der Vaart and Wellner (1996, Theorem 2.7.11), the 2LkLε bracketing number of the
classes K1 ∶= {k(F (⋅;α1), F (⋅;α2)) ∣ α1, α2 ∈ Θ1} and K2 ∶= {k(⋅, F (⋅;α2)) ∣ α ∈ Θ1} w.r.t.
an arbitrary norm ∥ ⋅ ∥ are bounded by the Cε covering number of Θ1 × Θ1 and Θ1 w.r.t.
∥ ⋅ ∥1, respectively, where C is a suitable constant. These covering numbers are polynomial
in ε as Θ1 ×Θ1, resp. Θ1, is contained in a ball of radius R > 0 and such covering numbers
are bounded by an expression of the form C1ε

−2(2m+1), C1 > 0 (Vershynin, 2018, Corollary
4.2.13). Now, consider a class L ∈ {F ,Fq,Q,G,Fc,Gc}. Any element in H is written as
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sums and/or products of uniformly bounded functions from K1 and K2. Thus, the proof of
van der Vaart and Wellner (1996, Theorem 2.10.20) - in their notation, αi = 1 - implies the
existence of C2 > 0 s.t.

sup
Q
N(ε,L, L2(Q)) ≤ sup

Q
N(C2ε,K1, ∥ ⋅ ∥L2(Q))j1N(C2ε,K2, ∥ ⋅ ∥L2(Q))j2 i = 1,2,

where the powers j1, j2 ∈ N depend on the respective function class L, and Q ranges over
all discrete probability measures. Due to the derivations above,

N(C2ε,Ki, L2(Q))ji ≤ N[](2C2ε,Ki, L2(Q))ji ≤ C3ε
−2ji(2m+1)

for a suitable C3 > 0. Thus, supQN(ε,L, L2(Q)) is bounded by an expression of the form

C4ε
−2(j1+j2)(2m+1), C4 > 0, implying that the entropy integrals in (33) are finite for every

positive integer r. Thus, {F ,Fq,Q,G,Fc,Gc} are r-regular for every r ∈ N and for every
ReLu neural network with bounded inputs and a bounded parameter set.

Let us continue by verifying the existence of moments for the derivatives of h̃(x,α)
and g̃(x, y;α) w.r.t. α (recall (9) and (27)). It is easy to see that the differentiability of
α ↦ h̃(x, y;α) and α ↦ g̃(x, y;α) follows from the differentiability of terms of the form
E [k(x,F (U ;α))], since they are sums, squares and products of these terms. In our model
(34) and setting bm+1 = 1, these terms can be written as

E [k(x,F (U ;α))] =
m

∑
k=1
∫

bk+1

bk
k(x, c +

k

∑
j=1

aj(u − bj))du.

Thus, E [k(x,F (U ;α)] is twice continuously differentiable w.r.t. α in a neighborhood of α⋆
for every fixed x, with bounded derivatives. This implies the existence of ∇α⋆ h̃(x, y;α⋆)
and ∇2

α⋆ h̃(x, y;α⋆) and its respective moment conditions. Similar arguments show that the
same is true for ∇α⋆ g̃(x, y;α⋆) and ∇2

α⋆ g̃(x, y;α⋆). Therefore, Assumption 7 is satisfied.
Note that this also implies that α ↦ σ2

α and α ↦ σ2
q,α are differentiable in a neighborhood

of α⋆.
As ∇α⋆ h̃(x, y;α⋆) and ∇α⋆ g̃(x, y;α⋆) are continuously differentiable in a neighborhood

of α⋆ and k has bounded derivatives, we also have that F̃ and G̃ are classes of Lipschitz
continuous bounded functions indexed by α ∈ Bδ(α⋆), choosing a δ > 0 small enough. There-
fore, mimicking the arguments above we can show that {F̃ , G̃} have polynomially bounded
covering numbers and are r-regular for every r ∈ N. Finally, all conditions mentioned in
Assumption 6-8 of the form ∥l(x,αn) − l(x,α⋆)∥L2 → 0 are satisfied for all l ∈ L. Indeed,
l(x,αn) − l(x,α⋆) → 0 in probability for every consistent estimator αn of α⋆, because all
considered functions are bounded and Lipschitz w.r.t. α.

It only remains to spell out conditions under which an estimator αn for α⋆ is asymptot-
ically normal. To this purpose, define

αn = argminα∈Θ1
n−1

n/2

∑
i=1

h((X2i, F (U2i;α)), (X2i−1, F (U2i−1;α))).

Note that αn is an M-estimator of α⋆ ∶= argminα∈Θ1
MMD(Pα, P ). By the same reasoning

as above, the map α ↦ h((x1, F (u1;α)), (x2, F (u2;α))) is differentiable in a neighbor-

hood of α⋆ for P ⊗ PU ⊗ P ⊗ PU almost every (x1, u1, x2, u2), with Lipschitz continuous
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derivative w.r.t. α. Additionally, the corresponding Lipschitz constant is independent of
(x1, u1, x2, u2). Since α ↦ MMD(Pα, P ) is twice continuously differentiable in a neighbor-
hood of α⋆ we obtain that αn is asymptotically normal (van der Vaart, 2000, Theorem
5.23).

Note that the most difficult task in this example is to ensure the uniqueness of α⋆, which
is necessary to apply standard results to obtain the asymptotic normality of αn. All other
statements above do not require the existence of a unique α⋆ and are also valid when there
are multiple argmins. We were able to show that, under the assumptions of Lemma 6 below,
that our model (34) always has a unique argmin. Thus, under the identifiability conditions
from Lemma 6 (a result that is of interest per se), Assumptions 1-4 and Assumptions 6-8
are satisfied and Theorem 2 applies.

Lemma 6 If ak, k ∈ {1, . . . ,m} are strictly positive and b1 = 0 < b2 < . . . < bm−1 < bm < 1,
then model (34) is identifiable.

Proof Denote by θ ∶= (a1, . . . , am, b2, . . . , bm, c) the vector of unknown parameters. Let Fθ
be the cdf of the random variable ∑mk=1 ak max(U − bk,0) + c. For notational convenience,
set sk ∶= a1 + . . . + ak and vk ∶= a1b1 + a2b2 + . . . + akbk, k ∈ {1, . . . ,m}. Note that sk ≥ vk for
any k. The support of our law is then Dθ ∶= (c, c + sm − vm). Set bm+1 = 1. For any t in Dθ,
write

Fθ(t) =
m

∑
k=1

P(
m

∑
j=1

aj max(U − bj ,0) + c ≤ t; bk ≤ U ≤ bk+1)

=
m

∑
k=1

P(skU − vk + c ≤ t; bk ≤ U ≤ bk+1)

=
m

∑
k=1

{1(skbk < t − c + vk < skbk+1)(
t − c + vk

sk
− bk) + 1(t − c + vk > skbk+1)(bk+1 − bk)}.

Any cdf Fθ is piecewise linear, with successive positive linear slopes 1/s1, 1/s2,...,1/sm.
Indeed, the interior of the intervals Ik ∶= [skbk + c− vk, skbk+1 + c− vk) are never empty since
bk+1 > bk. Moreover, their intersections with Dθ are never empty since skbk − vk ≥ 0 and

skbk+1 − vk ≤ sk − vk ≤ sm − vm.

Note that any Ik starts at tk = skbk + c − vk, ends at t′k = skbk+1 + c − vk, and check that
t′k = tk+1, k ∈ {1, . . . ,m − 1}. Since t1 = c and t′m = c + sm − vm, the intervals I1, . . . , Im−1 are
disjoint and yield a partition of Dθ.

Now consider two model parameters θ(1) and θ(2) s.t. Fθ(1)(t) = Fθ(2)(t) for any real
number t. In particular, assume their supports are the same. With obvious notations, this
implies c(1) = c(2) =∶ c. Moreover, their sequences of slopes have to be the same, implying

s
(1)
k = s(2)k for every k = 1, . . . ,m. This implies a

(1)
k = a(2)k for every k = 1, . . . ,m, now denoted

ak simply and similarly for their sums sk. Considering the starting points of the upward

sloping segments, we have to satisfy skb
(1)
k −v(1)k = skb(2)k −v(2)k , k ∈ {2, . . . ,m}. In particular,

s2b
(1)
2 −v(1)2 = s2b

(2)
2 −v(2)2 , or a1b

(1)
2 = a1b

(2)
2 equivalently. Since a1 > 0, we get b

(1)
2 = b(2)2 . Re-

cursively, it can be proved that b
(1)
k = b(2)k for any k ∈ {2, . . . ,m}. Indeed, assume b

(1)
j = b(2)j
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for j ∈ {1, . . . , k − 1}. Then skb
(1)
k − v(1)k = skb(2)k − v(2)k implies (sj − aj)b(1)k = (sj − aj)b(2)k

and then b
(1)
k = b(2)k , proving the result.
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