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Abstract

Score-based generative models (SGMs) are a recent class of deep generative models with
state-of-the-art performance in many applications. In this paper, we establish convergence
guarantees for a general class of SGMs in the 2-Wasserstein distance, assuming accurate
score estimates and smooth log-concave data distribution. We specialize our results to
several concrete SGMs with specific choices of forward processes modeled by stochastic
differential equations, and obtain an upper bound on the iteration complexity for each
model, which demonstrates the impacts of different choices of the forward processes. We
also provide a lower bound when the data distribution is Gaussian. Numerically, we ex-
periment with SGMs with different forward processes for unconditional image generation
on CIFAR-10. We find that the experimental results are in good agreement with our
theoretical predictions on the iteration complexity.
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1. Introduction

Diffusion models are a powerful family of probabilistic generative models which can generate
approximate samples from high-dimensional distributions (Sohl-Dickstein et al., 2015; Song
and Ermon, 2019; Ho et al., 2020). The key idea in diffusion models is to use a forward
process to progressively corrupt samples from a target data distribution with noise and then
learn to reverse this process for generation of new samples. Diffusion models have achieved
state-of-the-art performance in various applications such as image and audio generations,
and they are the main components in popular content generators including Stable Diffusion
(Rombach et al., 2022) and Dall-E 2 (Ramesh et al., 2022). We refer the readers to (Yang
et al., 2023; Croitoru et al., 2023) for surveys on diffusion models.

A predominant formulation of diffusion models is score-based generative models (SGM)
through Stochastic Differential Equations (SDEs) (Song et al., 2021), referred to as Score
SDEs in Yang et al. (2023). At the core of this formulation, there are two stochastic
processes in Rd: a forward process and a reverse process. In this paper, we consider a
general class of forward process (xt)t∈[0,T ] described by the following SDE:

dxt = −f(t)xtdt+ g(t)dBt, x0 ∼ p0, (1.1)

where both f(t) and g(t) are scalar-valued non-negative continuous functions of time t,
(Bt) is the standard d-dimensional Brownian motion, and p0 is the (unknown) target data
distribution. The forward process has the interpretation of slowly injecting noise to data
and transforming them to a noise-like distribution. If we reverse the forward process (1.1)
in time, i.e., letting (x̃t)t∈[0,T ] = (xT−t)t∈[0,T ], then under mild assumptions, the reverse
process (x̃t)t∈[0,T ] satisfies another SDE (see e.g. Anderson (1982); Cattiaux et al. (2023)):

dx̃t =
[
f(T − t)x̃t + (g(T − t))2∇x log pT−t(x̃t)

]
dt+ g(T − t)dB̄t, x̃0 ∼ pT , (1.2)

where pt(x) is the probability density function of xt (the forward process at time t), (B̄t)
is a standard Brownian motion in Rd and x̃T = x0 ∼ p0. Hence, the reverse process (1.2)
transforms a noise-like distribution pT into samples from p0, which is the goal of generative
modeling. Note that the reverse SDE (1.2) involves the score function, ∇x log pt(x), which
is unknown. An important subroutine in SGM is to estimate this score function based on
samples drawn from the forward process, typically by modeling time-dependent score func-
tions as neural networks and training them on certain score matching objectives (Hyvärinen
and Dayan, 2005; Vincent, 2011; Song et al., 2020). After the score is estimated, one can
numerically solve the reverse SDE to generate new samples that approximately follows the
data distribution (see Section 2). The Score-SDEs formulation is attractive because it gener-
alizes and unifies several well-known diffusion models. In particular, the noise perturbation
in Score Matching with Langevin dynamics (SMLD) (Song and Ermon, 2019) corresponds
to the discretization of so-called variance exploding (VE) SDEs where f ≡ 0 in (1.1); The
noise perturbation in Denoising Diffusion Probabilistic Modeling (DDPM) (Sohl-Dickstein
et al., 2015; Ho et al., 2020) corresponds to an appropriate discretization of the variance pre-
serving (VP) SDEs where f(t) = 1

2β(t) and g(t) =
√
β(t) for some noise variance schedule

β(t), see Song et al. (2021) for details.
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Despite the impressive empirical performances of diffusion models in various applica-
tions, the theoretical understandings of these models are relatively limited. In the past few
years, there has been a rapidly growing body of literature on the convergence theory of
diffusion models, assuming access to accurate estimates of the score function, see e.g. Block
et al. (2020); De Bortoli (2022); Lee et al. (2022, 2023); Chen et al. (2023a,d); Benton et al.
(2024); Chen et al. (2023b); Tang and Zhao (2024). While these studies have established
polynomial convergence bounds for fairly general data distribution, this line of work has
mostly focused on the analysis of the DDPM model where the corresponding forward SDE
(1.1) satisfies f = g2/2 > 0 (in fact many studies simply consider f ≡ 1/2 and g ≡ 1).
However, it is important to understand the impacts of different choices of forward processes
in diffusion models, which can potentially help provide theoretical guidance for selecting the
functions f and g in the design of diffusion models. In this work, we make some progress
towards addressing these issues using a theoretical approach based on convergence analysis.
We summarize our contributions in the following.

Our Contributions.

• We establish convergence guarantees for a general class of SGMs in the 2-Wasserstein
distance, assuming accurate score estimates and smooth log-concave data distribution
(with unbounded support), see Theorem 2. In particular, we allow general functions
f and g in the forward SDE (1.1). Theorem 2 directly translates to an upper bound
on the iteration complexity, which is the number of sampling steps/iterations needed
(in running the reverse process) to yield ε−accuracy in the 2-Wasserstein distance
between the data distribution and the generative distribution of the SGMs.

• We specialize our result to SGMs with specific functions f and g in the forward process.
We find that under mild assumptions, the class of VP-SDEs (as forward processes)
will lead to an iteration complexity bound Õ

(
d/ε2

)
where Õ ignores the logarithmic

factors and hides dependency on other parameters. On the other hand, in the class
of VE-SDEs, the choice of an exponential function g in Song et al. (2021) leads to an
iteration complexity of Õ

(
d/ε2

)
, while other simple choices including polynomials for

g lead to a worse complexity bound. We also find that VP-SDEs with polynomial and
exponential noise schedules, which appear to be new to the literature, lead to better
iteration complexity bounds (in terms of logarithmic dependence on d, ε) compared
with the existing models. See Table 2 and Proposition 4.

• We also establish two new results on lower bounds. We first show that if we use the
upper bound in Theorem 2, then in order to achieve ε accuracy, the iteration complex-
ity is Ω̃

(
d/ε2

)
for quite general functions f and g, where Ω̃ ignored the logarithmic

dependence on ε and d (Proposition 5). This result, however, does not show whether
our upper bound in Theorem 2 is tight or not. We next show that if the data distri-

bution p0 is Gaussian, then the lower bound for the iteration complexity is Ω
(√

d/ε
)

(Proposition 6).

• Numerically, we experiment SGMs with different forward SDEs for unconditional im-
age generation on the CIFAR-10 image dataset, using the neural network architectures
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from Song et al. (2021). We find that the experimental results are in good agreement
with our theoretical predictions: models with lower order of iteration complexity gen-
erally perform better, in the sense that they achieve lower FID scores and higher
Inception scores (with the same stochastic sampler and number of sampling steps)
over training iterations.

• Our main proof techniques (for the upper bound on the iteration complexity) rely on
obtaining an explicit contraction rate for the reverse SDE in Wasserstein distance using
properties of strongly log-concave distributions and Itô’s formula, and controlling
the discretization and score-matching errors by using synchronous coupling. This
approach is significantly different from the existing studies on convergence analysis of
SDE-based samplers such as Chen et al. (2023d), where Girsanov theorem and data
processing inequality are used to obtain convergence guarantees in total variation
distance or Kullback-Leibler (KL) divergence. Their techniques require the forward
process to be contractive that excludes VE-SDEs, whereas our methodology enables
us to cover a general class of models including both VP and VE-SDEs as special
cases. We also emphasize that the reverse SDE is non-homogeneous in nature due to
the score function, and one needs to perform a delicate analysis based on the result
in Theorem 2 in order to spell out the leading order terms to obtain bounds on the
iteration complexities for various VE-SDE and VP-SDE examples.

1.1 Related Work

The majority of the existing studies on the convergence analysis of diffusion models focus
on the SDE-based implementation, that is, the sampling process for data generation is
based on the discretization of the reverse-time SDE. For instance, (Lee et al., 2023; Chen
et al., 2023a,d; Benton et al., 2024) have established polynomial convergence rates in Total
Variation (TV) distance or KL divergence for the DDPM model, where they consider f ≡
1/2 and g ≡ 1 in the forward SDE. In contrast to these studies, our work provides a
unified convergence analysis for a more general class of diffusion models in the 2-Wasserstein
distance (W2), thus illustrating how the choice of f and g impacts the iteration complexity.
Focusing on W2 distance is not just of theoretical interest, but also of practice interest.
Indeed, one of the most popular performance metrics for the quality of generated samples
in image applications is Fréchet Inception Distance (FID), which measures the W2 distance
between the distributions of generated images with the distribution of real images (Heusel
et al., 2017). It is known that to obtain polynomial convergence rates in W2 distance, one
often needs to assume some form of log-concavity for the data distribution, see e.g. (Chen
et al., 2023d, Section 4) for discussions. Hence, we impose such (strong) assumptions on
the data distribution. Although some studies (see e.g. Chen et al. (2023d)) also provided
Wasserstein convergence bound for the DDPM model, they often assume that the data
distribution is bounded, in which case theW2 distance can be bounded by the TV distance.
In this work, we consider unbounded data distribution. We also emphasize that TV distance
does not upper bound Wasserstein distance on Rd (see e.g. Gibbs and Su (2002)) and KL
divergence does not imply Wasserstein convergence either (unless some additional conditions
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are satisfied (Bolley and Villani, 2005)). Hence, our results are not implied by the existing
convergence results for SDE-based samplers.

There is also a small but rapidly growing body of literature on convergence analysis
of the probability flow ODE implementation of diffusion models (Song et al., 2021). See,
e.g., Chen et al. (2023e,c); Li et al. (2024b); Gao and Zhu (2024); Li et al. (2024a). Our
work differs from this line of studies in that we consider SDE-based samplers instead of
ODE-based samplers.

Finally, our work is broadly related to the literature on the choice of noise schedules
for diffusion models. In classical models, the choice of the forward process, i.e. f and g in
(1.1), is often handcrafted and designed heuristically based on numerical performances of
the corresponding models. For instance, the majority of existing DDPM models (in which
f = g2/2) use the linear noise schedule (i.e. (g(t))2 = b + at for some a, b > 0) proposed
firstly in Ho et al. (2020). Nichol and Dhariwal (2021) proposed a cosine noise schedule
and showed that it can improve the log-likelihood numerically. For the SMLD model, the
noise schedule is often chosen as an exponential function, i.e. g(t) = abt for some a, b > 0,
following Song and Ermon (2019, 2020). In contrast to these studies, our work provides
a theoretical analysis on the impact of different choices of forward processes based on the
convergence analysis of diffusion models in W2 distance.

Notations. For any d-dimensional random vector z with finite second moment, the

L2-norm of z is defined as ‖z‖L2 =
(
E‖z‖2

)1/2
, where ‖ · ‖ denotes the Euclidean norm. We

denote L(z) as the law of z. Define P2(Rd) as the space consisting of all the Borel probability
measures ν on Rd with the finite second moment (based on the Euclidean norm). For any
two Borel probability measures ν1, ν2 ∈ P2(Rd), the standard 2-Wasserstein distance Villani

(2009) is defined by W2(ν1, ν2) :=
(
inf E

[
‖z1 − z2‖2

])1/2
, where the infimum is taken over

all joint distributions of the random vectors z1, z2 with marginal distributions ν1, ν2. Finally,
a differentiable function F : Rd → R is µ-strongly convex and L-smooth (i.e. ∇F is L-
Lipschitz) if for every x,y ∈ Rd, L2 ‖x−y‖2 ≥ F (x)−F (y)−∇F (y)>(x−y) ≥ µ

2‖x−y‖2.

2. Preliminaries on SDE-Based Diffusion Models

We first recall the background on score-based generative modeling with SDEs (Song et al.,
2021). Denote by p0 ∈ P(Rd) the unknown continuous data distribution, where P(Rd) is
the space of all probability measures on Rd. Given i.i.d. samples from p0, the goal is to
generate new samples whose distribution closely resembles the data distribution.

Forward process and reverse process. Let T > 0. We consider a d−dimensional
forward process (xt)t∈[0,T ] given in (1.1). One can easily solve (1.1) to obtain

xt = e−
∫ t
0 f(s)dsx0 +

∫ t

0
e−
∫ t
s f(v)dvg(s)dBs. (2.1)
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Denote by pt(x) the probability density of xt for t ≥ 0. Before we proceed, we give two
popular classes of the forward SDEs in the literature (Song et al. (2021)):

• Variance Exploding (VE) SDE: f(t) ≡ 0 and g(t) =

√
d[σ2(t)]
dt for some nondecreasing

function σ(t), e.g., g(t) = aebt for some positive constants a, b.

• Variance Preserving (VP) SDE: f(t) = 1
2β(t) and g(t) =

√
β(t) for some nondecreas-

ing function β(t), e.g., β(t) = at+ b for some positive constants a, b.

Under mild assumptions, the reverse (in time) process (x̃t)t∈[0,T ] = (xT−t)t∈[0,T ] satisfies
the SDE in (1.2). Hence, by starting from samples of pT , we can run the SDE (1.2) to time
T and obtain samples from the desired distribution p0. However, the distribution pT is not
explicit and hard to sample from because of its dependency on the initial distribution p0.
With the choice of our forward SDE (1.1), which has an explicit solution (2.1) such that we
can take

p̂T := N
(

0,

∫ T

0
e−2

∫ T
t f(s)ds(g(t))2dt · Id

)
, (2.2)

as an approximation of pT , where Id is the d−dimensional identity matrix. Note that p̂T
is simply the distribution of the random variable

∫ t
0 e
−
∫ t
s f(v)dvg(s)dBs in (2.1), which is

easy to sample from because it is Gaussian, and will be referred to as the prior distribution
hereafter. Note that it directly follows from (2.1) that

W2(pT , p̂T ) ≤ e−
∫ T
0 f(s)ds‖x0‖L2 . (2.3)

In view of (1.2), we now consider the SDE:

dzt =
[
f(T − t)zt + (g(T − t))2∇ log pT−t(zt)

]
dt+ g(T − t)dB̄t, z0 ∼ p̂T . (2.4)

Because pT 6= p̂T , this creates an error that when running the reverse SDE, and as a result,
the distribution of zT differs from x̃T ∼ p0.

Remark. Several studies (see, e.g. De Bortoli (2022); Chen et al. (2023d)) consider
VP-SDE, which is a time-inhomogeneous Ornstein-Uhlenbeck (OU) process, and use the
stationary distribution p∞ of the OU process as the prior distribution in their convergence
analysis. If we use p∞ instead of p̂T in (2.2) as the prior distribution, our main result
can be easily modified. Indeed, we only need to replace the error estimate (2.3) by an
estimate on W2(pT , p∞), which can be easily bounded (by a coupling approach) due to
the geometric convergence of the OU process to its stationarity. Because VE-SDE does
not have a stationary distribution, we choose the prior distribution p̂T in (2.2) in order to
provide a unifying analysis based on the general forward SDE (1.1) that does not require
the existence of a stationary distribution.

Score matching. Next, we consider score-matching. Note that the data distribution
p0 is unknown, and hence the true score function ∇x log pt(x) in (2.4) is also unknown. In
practice, it needs to be estimated/approximated by a time-dependent score model sθ(x, t),
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which is often a deep neural network parameterized by θ. Estimating the score function
from data has established methods, including score matching Hyvärinen and Dayan (2005),
denoising score matching Vincent (2011), and sliced score matching Song et al. (2020). For
instance, Song et al. (2021) use denoising score matching where the training objective for
optimizing the neural network is given by

min
θ

Et∼U [0,T ]

[
λ(t)Ex0Ext|x0

∥∥sθ(xt, t)−∇xt log pt|0(xt|x0)
∥∥2
]
. (2.5)

Here, λ(·) : [0, T ] → R>0 is some positive weighting function (e.g. λ(t) = g(t)2), U [0, T ]
is the uniform distribution on [0, T ], x0 ∼ p0 is the data distribution, and pt|0(xt|x0) is
the density of xt given x0. With the forward process in (1.1), we can easily infer from its
solution (2.1) that the transition kernel pt|0(xt|x0) follows a Gaussian distribution where
the mean the variance can be computed in closed form using f and g. Because we also
have access to i.i.d. samples from p0, the distribution of x0, the objective in (2.5) can
be approximated by Monte Carlo methods in practice, and the resulting loss function can
be then optimized. After the score function is estimated, we introduce a continuous-time
process that approximates (2.4):

dut =
[
f(T − t)ut + (g(T − t))2sθ(ut, T − t)

]
dt+ g(T − t)dB̄t, u0 ∼ p̂T , (2.6)

where we replace the true score function in (2.4) by the estimated score sθ.

Discretization and algorithm. To obtain an implementable algorithm, one can apply
different numerical methods for solving the reverse SDE (2.6), see Section 4 of Song et al.
(2021). In this paper, we consider the following Euler-type discretization of the continuous-
time stochastic process (2.6). Let η > 0 be the stepsize and without loss of generality,
let us assume that T = Kη, where K is a positive integer. Let y0 ∼ p̂T and for any
k = 1, 2, . . . ,K, we have

yk = yk−1 +

(∫ kη

(k−1)η
f(T − t)dt

)
yk−1 (2.7)

+

(∫ kη

(k−1)η
(g(T − t))2dt

)
sθ(yk−1, T − (k − 1)η) +

(∫ kη

(k−1)η
(g(T − t))2dt

)1/2

ξk,

where ξk are i.i.d. Gaussian random vectors N (0, Id).

We are interested in the convergence of the generated distribution L(yK) to the data
distribution p0, where L(yK) denotes the law or distribution of yK . Specifically, our goal is
to bound the 2-Wasserstein distance W2(L(yK), p0), and investigate the number of iterates
K that is needed in order to achieve ε accuracy, i.e. W2(L(yK), p0) ≤ ε. At a high level,
there are three sources of errors in analyzing the convergence: (1) the initialization of the
algorithm at p̂T instead of pT , (2) the estimation error of the score function, and (3) the
discretization error of the continuous-time process (2.6).
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3. Main Results

In this section, we state our main results.

3.1 Assumptions

We first state our assumptions and provide some discussions regarding these assumptions.

Assumption 1 Assume that p0 is differentiable and positive everywhere. Moreover, − log p0

is m0-strongly convex and L0-smooth for some m0, L0 > 0.

Remark 1 Our strong-log-concave assumption on the (unbounded) data distribution has
also been used in e.g. (Bruno et al., 2023; Gao and Zhu, 2024), which is a strong assump-
tion. We need this assumption mainly because we consider Wasserstein convergence for
score-based diffusions on a non-compact domain. In particular, we need the Wasserstein
contractions in the reverse process to obtain convergence and control the discretization and
score-matching errors, and this is achieved by deriving strong-log-concavity and smoothness
for the score function at any time t based on this assumption. In the literature, some studies
(Chen et al., 2023d) considered compactly supported data (without log-concavity) and estab-
lish Wasserstain convergence guarantees by early stopping the algorithm and projecting the
algorithm output to the compact domain, whereas our analysis considers unbounded data
distributions. It is an enormously interesting question how to relax Assumption 1. See the
conclusion section for further discussions.

Our next assumption is about the true score function ∇x log pt(x) for t ∈ [0, T ]. We
assume that ∇x log pt(x) is Lipschitz in time, where the Lipschitz constant has at most
linear growth in ‖x‖. Assumption 2 is needed in controlling the discretization error of the
continuous-time process (2.6).

Assumption 2 There exists some constant M1 such that

sup
1≤k≤K

sup
(k−1)η≤t≤kη

∥∥∇ log pT−t(x)−∇ log pT−(k−1)η(x)
∥∥ ≤M1η(1 + ‖x‖). (3.1)

To motivate Assumption 2, consider the idealized case where x0 ∼ N (0, σ2
0Id). Then, one

can compute that ∇x log pT−t(x) = − x
(a1(T−t))2σ2

0+a2(T−t) , where a1(T − t) := e−
∫ T−t
0 f(s)ds

and a2(T − t) :=
∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds. This implies that Assumption 2 is satisfied

with M1 = supt≥0

∣∣∣ ddt 1
(a1(t))2σ2

0+a2(t)

∣∣∣ = supt≥0
|2a1(t)a′1(t)σ2

0+a′2(t)|
((a1(t))2σ2

0+a2(t))
2 , provided that M1 ∈ (0,∞).

Indeed, for VE-SDE, M1 = supt≥0
(g(t))2

(σ2
0+
∫ t
0 (g(s))2ds)2

< ∞, provided that (g(t))2 ≤ c1 +
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c2

(∫ t
0 (g(s))2ds

)2
uniformly in t for some c1, c2 > 0, which is a very mild assumption

that is satisfied by all our examples in Section 3.3. For VP-SDE, i.e. f(t) = 1
2β(t) and

g(t) =
√
β(t), then a2(t) = 1 − e−

∫ t
0 β(s)ds and M1 = supt≥0

β(t)e−
∫ t
0 β(s)ds|1−σ2

0 |(
e−

∫ t
0 β(s)ds(σ2

0−1)+1
)2 < ∞,

provided that supt≥0 β(t)e−
∫ t
0 β(s)ds < ∞ which is a very mild assumption that is satisfied

by all our examples in Section 3.3.

We also make the following assumption on the score-matching approximation. Recall
(yk) are the iterates defined in (2.7).

Assumption 3 Assume that there exists M > 0 such that

sup
k=1,...,K

∥∥∇ log pT−(k−1)η (yk−1)− sθ (yk−1, T − (k − 1)η)
∥∥
L2
≤M. (3.2)

We make a remark here that the main results in our paper will still hold if Assumption 3
is to be replaced by the following L2-type assumption on the score function of the continuous-
time forward process (xt) in (1.1):

sup
k=1,...,K

‖∇ log pkη (xkη)− sθ (xkη, kη)‖L2
≤M, (3.3)

under the additional assumption that sθ(·, kη) is Lipschitz for every k and the observation
that ∇ log pkη(·) is Lipschitz under Assumption 1 (see Lemma 9). Assumption (3.3) is
considered in e.g. Chen et al. (2023d).

Finally, we make the following assumption on the stepsize η in the algorithm (2.7).

Assumption 4 Assume that the stepsize η is small such that it satisfies the conditions:

η ≤ min
0≤t≤T


(g(t))2

1
m0

e−2
∫ t
0 f(s)ds+

∫ t
0 e
−2
∫ t
s f(v)dv(g(s))2ds

− f(t)

(f(t))2 + (g(t))4(L(t))2 +M1(g(t))2

 , (3.4)

and

η ≤ min
0≤t≤T


1

(g(t))2

1
m0

e−2
∫ t
0 f(s)ds+

∫ t
0 e
−2
∫ t
s f(v)dv(g(s))2ds

− f(t)

 , (3.5)

where for any 0 ≤ t ≤ T ,

L(t) := min

((∫ t

0
e−2

∫ t
s f(v)dv(g(s))2ds

)−1

,
(
e
∫ t
0 f(s)ds

)2
L0

)
. (3.6)
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Note that in Assumption 4, L(t) defined in (3.6) can be interpreted as the Lipschitz
constant of ∇x log pt(x) (Lemma 9). Under Assumption 4, the stepsize η is sufficiently
small so that the discretization and score-matching errors will be controllable. For VE-SDE
where f = 0, (3.4)-(3.5) can be simplified as η ≤ min0≤t≤T

1
( 1
m0

+
∫ t
0 (g(s))2ds)((g(t))2(L(t))2+M1)

and η ≤ min0≤t≤T
1
m0

+
∫ t
0 (g(s))2ds

(g(t))2
, where L(t) = min

((∫ t
0 (g(s))2ds

)−1
, L0

)
. On the other

hand, For VP-SDEs where f(t) = 1
2β(t) and g(t) =

√
β(t), (3.4)-(3.5) can be simplified as

η ≤ min
0≤t≤T

{
m0 − (1−m0)e−

∫ t
0 β(s)ds

(m0 + (1−m0)e−
∫ t
0 β(s)ds)(1

2β(t) + 2β(t)(L(t))2 + 2M1)

}
, (3.7)

and

η ≤ min
0≤t≤T

2

β(t)
· m0 + (1−m0)e−

∫ t
0 β(s)ds

m0 − (1−m0)e−
∫ t
0 β(s)ds

, (3.8)

where L(t) = min

((
1− e−

∫ t
0 β(s)ds

)−1
, e
∫ t
0 β(s)dsL0

)
. To ensure that the right-hand sides

of (3.4)-(3.5) are positive for general VP-SDEs, a sufficient condition is m0 > 1/2.

3.2 Main Result

In this section, we state our main theoretical result, which provides a bound on the 2-
Wasserstein distance W2(L(yK), p0). To facilitate the presentation, we introduce a few
quantities with their interpretations given in Table 1. For any 0 ≤ t ≤ T , we define:

c(t) :=
m0(g(t))2

e−2
∫ t
0 f(s)ds +m0

∫ t
0 e
−2
∫ t
s f(v)dv(g(s))2ds

, (3.9)

µ(T − t) :=
(g(T − t))2

1
m0
e−2

∫ T−t
0 f(s)ds +

∫ T−t
0 e−2

∫ T−t
s f(v)dv(g(s))2ds

− f(T − t)

− η(f(T − t))2 − η(g(T − t))4(L(T − t))2, (3.10)

m(t) :=
2(g(t))2

1
m0
e−2

∫ t
0 f(s)ds +

∫ t
0 e
−2
∫ t
s f(v)dv(g(s))2ds

− 2f(t), (3.11)

c1(T ) := sup
0≤t≤T

e−
1
2

∫ t
0 m(T−s)dse−

∫ T
0 f(s)ds‖x0‖L2 , (3.12)

c2(T ) := sup
0≤t≤T

(
e−2

∫ t
0 f(s)ds‖x0‖2L2

+ d

∫ t

0
e−2

∫ t
s f(v)dv(g(s))2ds

)1/2

, (3.13)

10
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and moreover for any k = 1, 2, . . . ,K,

γk,η := 1−
∫ kη

(k−1)η
µ(T − t)dt+M1η

∫ kη

(k−1)η
(g(T − t))2dt, (3.14)

hk,η := c1(T )

∫ kη

(k−1)η
[f(T − s) + (g(T − s))2L(T − s)]ds

+ c2(T )

∫ T−(k−1)η

T−kη
f(s)ds+

(∫ T−(k−1)η

T−kη
(g(s))2ds

)1/2√
d. (3.15)

Quantities Interpretations Sources/References

c(t) in (3.9) Contraction rate of W2(L(zT ), p0) (5.1)

L(T − t) in (3.6) Lipschitz constant of ∇x log pT−t(x) Lemma 9

γk,η in (3.14)
Contraction rate of discretization

Proposition 8
and score-matching errors in yk

m(t) in (3.11) Contraction rate of E‖x̃T − zT ‖2 (5.5)

c1(T ) in (3.12) Bound for sup0≤t≤T ‖zt − x̃t‖L2 (A.6)

c2(T ) in (3.13) sup0≤t≤T ‖xt‖L2 (5.14)

hk,η in (3.15) Bound for sup(k−1)η≤t≤kη
∥∥zt − z(k−1)η

∥∥
L2

Lemma 10

Table 1: Summary of quantities, their interpretations and the sources

We are now ready to state our bound on the 2-Wasserstein distance W2(L(yK), p0).

Theorem 2 Suppose that Assumptions 1, 2, 3 and 4 hold. Then, we have

W2(L(yK), p0) ≤ e−
∫Kη
0 c(t)dt‖x0‖L2 + E1(f, g,K, η,M1) + E2(f, g,K, η,M,M1), (3.16)

where

E1(f, g,K, η,M1) :=
K∑
k=1

K∏
j=k+1

γj,η ·

(
M1η (1 + ‖x0‖L2 + c2(T ))

∫ kη

(k−1)η
(g(T − t))2dt

+
√
ηhk,η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2)
, (3.17)

and

E2(f, g,K, η,M,M1) :=

K∑
k=1

K∏
j=k+1

γj,η ·M
∫ kη

(k−1)η
(g(T − t))2dt, (3.18)

where c(t) is given in (3.9), γj,η is defined in (3.14), c2(T ) is defined in (3.13) and hk,η is
given in (3.15).

11
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We can interpret Theorem 2 as follows. The first term in (3.16) is the initialization
error ; it characterizes the convergence of the continuous-time reverse SDE (zt) in (2.4) to
the distribution p0 without discretization or score-matching errors. Specifically, it bounds
the errorW2(zT , p0), which is introduced due to the initialization of the reverse SDE (zt) at
p̂T instead of pT (see Proposition 7 for details). The second term E1(f, g,K, η,M1) and the
third term E2(f, g,K, η,M,M1) in (3.16) quantify the discretization error and the score-
matching error respectively in running the algorithm (yk) in (2.7). Note that Assumption 4
implies that µ(T − t) in (3.10) is positive when η is sufficiently small, which further suggests
from (3.14) that γj,η ∈ (0, 1) for any j = 1, 2, . . . ,K. This quantity γj,η that appears in
the definitions of E1(f, g,K, η,M1) and E2(f, g,K, η,M,M1) is important, because it plays
the role of a contraction rate of the error ‖zkη − yk‖L2

over iterations (see Proposition 8
for details). Conceptually, it guarantees that as the number of iterations increases, the
discretization and score-matching errors in the iterates (yk) do not propagate and grow in
time, which helps us control the overall discretization and score-matching errors.

3.3 Examples

In this section, we consider several examples of the forward processes and discuss the impli-
cations of Theorem 2. In particular, we consider a variety of choices for f and g in the SDE
(1.1), and investigate the iteration complexity, i.e., the number of iterates K that is needed
in order to achieve ε accuracy, i.e. W2(L(yK), p0) ≤ ε. While the bound in Theorem 2 is
quite complex in general, and it can be made more explicit when we consider special f and
g. We summarize the results in Table 2. The main idea behind the results in Table 2 is to
analyze the three terms in (3.16) in Theorem 2 carefully for each example. We first choose
T = Kη to be sufficiently large and fixed such that the first term in (3.16), that controls the
initialization error, is O(ε). Given T = Kη being fixed, the second term E1 in (3.16), that
controls the discretization error, can be upper bounded by a function of T = Kη and η,
which is O(ε), by choosing η to be sufficiently small. This also determines K since T = Kη
is chosen and fixed from the previous step. Finally, given T = Kη and η being fixed, the
third term E2 in (3.16), that controls the score-matching error, can be upper bounded by
a function of T = Kη, η and M , which is O(ε) by “choosing” M to be sufficiently small.
For each example, with the specific choice of f and g, one needs to spell out the explicit
dependence on T = Kη, η and M from (3.16) before we can carry out the above analysis
to obtain the results in Table 2. The detailed derivation of these results will be given in
Appendix B.

From Table 2, we have the following observations. By ignoring the logarithmic depen-
dence on ε, we can see that the VE-SDE from the literature Song and Ermon (2019) (f(t) =
0, g(t) = aebt with a, b > 0), as well as all the VP-SDE examples in Table 2, achieve the
complexity Õ

(
d/ε2

)
. In particular, the VP-SDEs that we proposed, i.e. f(t) = 1

2(b+ at)ρ,

g(t) = (b+ at)ρ/2 and f(t) = 1
2ae

bt, g(t) =
√
aebt/2 have marginal improvement in terms of

the logarithmic dependence on d and ε compared to the existing models in the literature.
Among the VP-SDE models, f(t) = 1

2ae
bt, g(t) =

√
aebt/2 has the best complexity perfor-

mance. Indeed, the complexity for f(t) = 1
2(b + at)ρ, g(t) = (b + at)ρ/2 is getting smaller

12
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f g K M η References

0 aebt O
(
d log( d

ε
)

ε2

)
O
(

ε
log( 1

ε
)

)
O
(
ε2

d

)
Song et al. (2021)

0 a O
(
d3/2 log( d

ε
)

ε3

)
O

(
ε√

log( d
ε
)

)
O
(

ε2

d log( d
ε
)

)
De Bortoli et al. (2021)

0
√

2at O
(
d5/4

ε5/2

)
O
(
ε3/2

)
O
(
ε2

d

)
our paper

0 (b+ at)c O
(
d

1
2(2c+1)

+1

ε
1

2c+1+2

)
O
(
ε1+ 2c

2c+1

)
O
(
ε2

d

) our paper

α σ O
(
d log( d

ε
)

ε2

)
O(ε) O

(
ε2

d

)
De Bortoli et al. (2021)

b+at
2

√
b+ at O

(
d
√

log( d
ε
)

ε2

)
O(ε) O

(
ε2

d

)
Ho et al. (2020)

(b+at)ρ

2 (b+ at)
ρ
2 O

(
d(log( d

ε
))

1
ρ+1

ε2

)
O(ε) O

(
ε2

d

)
our paper

aebt

2

√
ae

bt
2 O

(
d log(log( d

ε
))

ε2

)
O(ε) O

(
ε2

d

)
our paper

Table 2: The iteration complexity of the algorithm (2.7) in terms of ε and dimension d. Here
f, g correspond to the drift and diffusion terms in the forward SDE (1.1), and a, b, c, α, σ, ρ
are positive constants. K is the number of iterates, M is the score-matching approximation
error, and η is the stepsize required to achieve accuracy level ε (i.e. W2(L(yK), p0) ≤ ε).

as ρ increases. However, the complexity in Table 2 only highlights the dependence on d, ε
and ignores the dependence on other model parameters including ρ. Therefore, in practice,
we expect that for the performance of f(t) = 1

2(b+ at)ρ, g(t) = (b+ at)ρ/2 is getting better
when ρ is getting bigger, as long as it is below a certain threshold, since letting ρ→∞ will
make the complexity K explode with its hidden dependence on ρ. This suggests that in
practice, the optimal choice among the examples from Table 2 could be f(t) = 1

2(b+ at)ρ,

g(t) = (b+ at)ρ/2 for a reasonably large ρ. Later, in the numerical experiments (Section 4),
we will see that this is indeed the case.

Another observation from Table 2 is that the complexity K has a phase transition,
i.e. a discontinuity, when f decreases from α to 0 at α = 0 (by considering the examples

f ≡ α, g ≡ σ and f ≡ 0, g ≡ a), in the sense that the complexity jumps from O
(
d log(d/ε)

ε2

)
to O

(
d3/2 log(d/ε)

ε3

)
. The intuition is that the drift term α > 0 in the forward process

creates a mean-reverting effect to make the starting point of the reverse process p̂T closer
to the idealized starting point pT . Since we hide the dependence of complexity on α, and
only keep track the dependence on ε, d, it creates a phase transition at α = 0. A similar
phase transition phenomenon occurs for the complexity K when we consider the examples

f ≡ 0, g(t) = aebt and f ≡ 0, g(t) ≡ a, where the complexity jumps from O
(
d log(d/ε)

ε2

)
to

O
(
d3/2 log(d/ε)

ε3

)
as b decreases to 0.
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Remark 3 In the iteration complexities in Table 2, we omit the dependence on the constant
M1 from Assumption 2, where it is assumed to be a universal constant. One can easily
include the dependence on M1 for all the examples in Table 2, due to the explicit error bound
we obtain in Theorem 2. For example, when f(t) = 0, g(t) = aebt, the iteration complexity

K becomes O
(

log
(
d
ε

)
max

{
d
ε2
, M1 log(1/ε)d3/4

ε3/2

})
, see Remark 13 in Appendix B; when f(t) =

b+at
2 , g(t) =

√
b+ at, the iteration complexity K becomes O

(√
log
(
d
ε

)
max

{
d
ε2
, M1

√
d

ε

})
,

see Remark 19 in Appendix B.

3.4 Discussions

Our results in Table 2 naturally lead to several questions:

(1) For the VP-SDE examples in Table 2, we have seen that the iteration complexity is
always of order Õ

(
d/ε2

)
where Õ ignores the logarithmic dependence on ε, d. One

natural question is, for VP-SDE, is the complexity always of order Õ
(
d/ε2

)
?

(2) For our examples in Table 2, the best complexity is of order Õ
(
d/ε2

)
. Another natural

question is that are there other choices of f, g so that the complexity becomes better
than Õ(d/ε2)?

(3) If the answer to question (2) is negative, then are these upper bounds tight?

We have answers and results to these questions as follows.

First, we will show that the answer to question (1) is yes for a very wide class of
general VP-SDE models. In particular, we show in in the next proposition that under mild
assumptions on the function β(t), the class of VP-SDEs (i.e., f(t) = 1

2β(t) and g(t) =
√
β(t)

for some nondecreasing function β(t)) will always lead to the complexity Õ( d
ε2

) where Õ
ignores the logarithmic factors.

Proposition 4 Under the assumptions of Theorem 2, assume that β(t) is positive and

increasing in t and there exist some c1, c2, c3 > 0 such that β(t) ≤ c1

(∫ t
0 β(s)ds

)c3
+c2 <∞

for every t ≥ 0. Then, we have W2(L(yK), p0) ≤ O(ε) after K = O
(
d(log(d/ε))3c3+1

ε2

)
iterations, provided that M ≤ ε

(log(
√
d/ε))c3

and η ≤ ε2

d(log(1/ε))3/c3
.

It is easy to check that the assumptions in Proposition 4 are satisfied for all VP-SDEs
examples in Table 2. Note that Proposition 4 is a general result for a wide class of VP-SDEs,
and the dependence of the iteration complexity on the logarithmic factors of d and ε may
be improved for various examples considered in Table 2. The details will be discussed and
provided in Appendix B.2.
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Next, we will show that the answer to question (2) is negative. In particular, we will
show in the following proposition that if we use the upper bound (3.16) in Theorem 2, then
in order to achieve ε accuracy, i.e. W2(L(yK), p0) ≤ ε, the complexity K = Ω̃

(
d/ε2

)
under

mild assumptions, where Ω̃ ignores the logarithmic dependence on ε and d.

Proposition 5 Suppose the assumptions in Theorem 2 hold and we further assume that

mint≥0 g(t) > 0 and mint≥0(f(t)+(g(t))2L(t)) > 0 and max0≤s≤t c(s) ≤ c1

(∫ t
0 c(s)ds

)ρ
+c2

uniformly in t for some c1, c2, ρ > 0, where c(s) is defined in (3.9). We also assume
that µ(t) ≥ 1

4m(t) for any 0 ≤ t ≤ T (which holds for any sufficiently small η), where
µ(t),m(t) are defined in (3.10) and (3.11). If we use the upper bound (3.16), then in order
to achieve ε accuracy, i.e. W2(L(yK), p0) ≤ ε, we must have K = Ω̃

(
d
ε2

)
, where Ω̃ ignores

the logarithmic dependence on ε and d.

The assumptions in Proposition 5 are mild and one can readily check that they are
satisfied for all the examples in Table 2. If we ignore the dependence on the logarithmic
factors of d and ε, we can see from Table 2 that the VE-SDE example f(t) ≡ 0, g(t) = aebt,
and all the VP-SDE examples achieve the lower bound in Proposition 5.

In Proposition 5, we showed that using the upper bound (3.16) in Theorem 2, we have
the lower bound on the complexity K = Ω̃

(
d/ε2

)
. Therefore, the answer to question (2)

is negative. This leads to question (3), which is, whether the iteration complexity Õ(d/ε2)
(see Proposition 4 and Table 2) obtained from the upper bound in Theorem 2 is tight or
not. This leads us to investigate a lower bound for the number of iterates that is needed
to achieve ε accuracy. In the following proposition, we will show that the lower bound for

the iteration complexity of algorithm (2.7) is at least Ω
(√

d/ε
)

by constructing a special

example when the initial distribution p0 is Gaussian.

Proposition 6 Consider the special case when x0 follows a Gaussian distribution x0 ∼
N (0, σ2

0Id). Then, in order to achieve the 2-Wasserstein ε accuracy, the iteration complexity

has a lower bound Ω
(√

d
ε

)
, i.e. if there exists some T = T (ε) and η̄ = η̄(ε) such that

W2(L(yK), p0) ≤ ε for any K ≥ K̄ := T/η̄ (with η = T/K ≤ η̄), then we must have

K̄ = Ω
(√

d
ε

)
.

The answer to question (3) is complicated. On the one hand, the lower bound Ω
(√

d/ε
)

in Proposition 6 does not match the upper bound Õ(d/ε2). Note that the complexity

Ω
(√

d/ε
)

in Proposition 6 matches the upper bound for the complexity of an unadjusted

Langevin algorithm under an additional assumption which is a growth condition on the
third-order derivative of the log-density of the target distribution, see Li et al. (2022).
However, under our current assumptions, it is shown in Dalalyan and Karagulyan (2019)
that the upper bound for the complexity of an unadjusted Langevin algorithm matches the
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upper bound Õ(d/ε2) in Table 2 that is deduced from Theorem 2. Hence, we speculate
that the upper bound we obtained in Theorem 2 is tight under our current assumptions,
and it may not be improvable unless additional assumptions are imposed. It will be left
as a future research direction to explore whether under additional assumptions on the
data distribution p0, one can improve the upper bound in Theorem 2 and hence improve

the complexity to match the lower bound Ω
(√

d/ε
)

in Proposition 6, and furthermore,

whether under the current assumptions, there exists an example other than the Gaussian
distribution as illustrated in Proposition 6 that can match the upper bound Õ(d/ε2).

4. Numerical Experiments

In this section, we conduct numerical experiments based on various forward SDEs for uncon-
ditional image generation on the CIFAR-10 image dataset. Due to limitations in computa-
tional resources, the purpose of our experiments is not to beat or match the state-of-the-art
numerical results such as FID scores. Instead, our goal is to compare the performances of
diffusion models with different forward processes and better understand the impacts of such
model choices numerically in addition to our theoretical findings.

4.1 SDEs for the Forward Process

We consider Variance Exploding (VE) SDEs and Variance Preserving (VP) SDEs as the
forward processes in our experiments.

First, we consider various VE-SDEs which takes the form dxt =

√
d[σ2(t)]
dt dBt := g(t)dBt,

where σ2(t) is some non-decreasing function representing the scale of noise slowly added to
the data over time t ∈ [0, 1]. The transition kernel of VE-SDE is given by pt|0(xt|x0) =
N
(
xt; x0,

[
σ2(t)− σ2(0)

]
Id
)
. We consider several different noise functions σ(t) (equiva-

lently g(t)) below, and in the experiments we maintain the choice of σmin := σ(0) and
σmax = σ(1) as in Song et al. (2021), where σmin � σmax.

(1) g(t) = abt for some a, b > 0. (see Song and Ermon (2019); Song et al. (2021)). In this

case, we have σ(t) = σmin

(
σmax
σmin

)t
.

(2) g(t) = const, which yields (σ(t))2 = σ2
min + (σ2

max − σ2
min)t.

(3) g(t) =
√

2at for some constant a > 0, where (σ(t))2 = σ2
min + (σ2

max − σ2
min)t2.

(4) g(t) = (b + at)ρ−
1
2 for some a, b > 0, where σ(t) =

(
σmin

1
ρ +

(
σmax

1
ρ − σmin

1
ρ

)
t
)ρ

.

This noise schedule function σ(t) is motivated by Karras et al. (2022), where they
consider non-uniform discretization and the discretization/time steps are defined ac-
cording to a sequence of noise levels based on σ(t).
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Next, we consider various VP-SDEs in the numerical experiments, where VP-SDE can
be written as (see e.g. Song et al. (2021)) dxt = −1

2β(t)xtdt +
√
β(t)dBt, where β(t)

represents the noise scales over time t ∈ [0, 1]. We consider the following choices of β(t) in
our experiments with β(0) = βmin � β(1) = βmax (except the constant β(t) case).

(1) β(t) = b+ at = βmin + (βmax − βmin)t for t ∈ (0, 1] (see Ho et al. (2020)).

(2) β(t) = βconst, which is a constant.

(3) β(t) = (b+ at)ρ =
(
βmin

1
ρ +

(
βmax

1
ρ − βmin

1
ρ

)
t
)ρ

for t ∈ (0, 1].

(4) β(t) = abt = βmin ·
(
βmax

βmin

)t
for t ∈ (0, 1].

4.2 Experiment Setup

In this section we discuss the setup of the experiment.

Setup We focus on image generation with the “DDPM++ cont. (VP)” and “NCSN++
cont. (VE)” architectures from Song et al. (2021), whose generation processes correspond
to the discretizations of the reverse-time VP-SDE and VE-SDE respectively. The models
are trained on the popular 32× 32 image dataset CIFAR-10, and we use the code base and
structures in Song et al. (2021). However, we only have access to NVIDIA GeForce GTX
1080Ti, which has less available memory than the models in Song et al. (2021) requires;
thus we reduce the number of channels in the residual blocks of DDPM++ and NCSN++
from 128 to 32, which effectively downsizes the filters dimension of the convolutional layers
of the blocks by four times (see Appendix H in Song et al. (2021) for details of the neural
network architecture). This will likely reduce the neural network’s capability to capture
more intricate details in the original data. However, since the purpose of our experiments
is not to beat the state-of-the-art results, we focus on the performance comparison of dif-
ferent forward SDE models based on (non-deep) neural networks in Song et al. (2021) for
score estimations. All models are trained for 3 million iterations (compared to 1.3 million
iterations in Song et al. (2021)), since our models converge slower due to limitations of
computing resources.

Relevant hyperparameters We choose the following configuration for the forward
SDEs in the experiments. For VE-SDEs described in Section 4.1, we use σmin = 0.01 and
σmax = 50 Song and Ermon (2020). For VP-SDEs, we choose βconst = 0.005 for constant
β(t); βmin = 10−4, βmax = 0.03 for β(t) = abt, and βmin = 10−4, βmax = 0.02 (Ho et al.
(2020)) for the other VP-SDEs to maintain the progression of αi :=

∏i
j=1(1 − βi), where

{βi}Ni=1 is the discretization of β(t). Note that αi slowly progresses from 1−βmin to 0 for all
our VP-SDEs, and one can equivalently use αi’s to demonstrate the noise schedules instead
of βi (similar to Nichol and Dhariwal (2021)). Figure 1 shows the difference of αi for DDPM
models (corresponding to discretization of VP-SDEs) and σi (discretized noise level σ(t))
for NCSN (a.k.a. SMLD) models (corresponding to discretization of VE-SDEs).
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(a) DDPM (b) NCSN

Figure 1: The schedules of (αi) for DDPM models and (σi) for NCSN (a.k.a. SMLD) models
with different forward SDEs.

Sampling We generate samples using the Euler-Maruyama solver for discretizing the
reverse-time SDEs, referred to as the predictor in Song et al. (2021). We set the number of
discretized time steps N = 1000, which follows Ho et al. (2020) and Song et al. (2021).

Performance Metrics The quality of the generated image samples is evaluated with
Fréchet Inception Distance (FID, lower is better), which was first introduced by Heusel
et al. (2017) for measuring the 2-Wasserstein distance between the distribution of generated
images and the distribution of real images. We also report the Inception Score (IS) (see
Salimans et al. (2016)) of the generated images as a secondary measure. However, IS (higher
is better) only evaluates how realistic the generated images are without a comparison to
real images. Each FID and IS measure is evaluated based on 20, 000 samples.

4.3 Empirical Results

Table 3 and Figures 2–3 show the performances of various diffusion models corresponding
to different forward SDEs that we used. We have the following two important observations.

First, the experimental results are in good agreement with our theoretical prediction on
the iteration complexity in Table 2. With the same number of discretized time steps, models
(forward SDEs) with lower order of iteration complexity generally obtain a better FID score
and IS (lower FID and higher IS) over training iterations. In addition, as predicted by the
theory in Table 2, VE-SDE models generally perform worse than VP-SDEs. Among the
VE-SDE models, the choice of f ≡ 0 and g(t) = abt leads to the best performance in terms
of FID and IS scores. We also remark that VE-SDE models can perform significantly better
with a corrector (see Song et al. (2021) for Predictor-Corrector sampling), and get close to
the performance of VP-SDE models. However, our experimental results are based on the
stochastic sampler without any corrector in order to fit the setup of our theory.
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Second, our experimental results show that our proposed VP-SDE with a polynomial
variance schedule β(t) = (b+at)ρ for some ρ or an exponential variance schedule β(t) = abt

can outperform the other existing models, at least with simpler neural network architectures.
The optimal ρ is around 5 according to Table 3. This is again consistent with our discussion
in Section 3.3.

We also choose the best performing models from Table 3 and test the deeper neural
network architecture in Song et al. (2021) (which doubles the number of residual blocks per
resolution, except for reduced batch size and reduced number of filters due to our memory
limitation, as mentioned in Section 4.2). The results are shown in Figure 4 and Table 4.
We can see that the performance of different models remains consistent in a more complex
architecture setting.

Model FID↓ IS↑ References

DDPM (VP - β(t) = const) 17.46 8.19 De Bortoli et al. (2021)

DDPM (VP - β(t) = b+ at) 11.26 8.21 Ho et al. (2020)

DDPM (VP - β(t) = (b+ at)ρ, ρ = 2) 9.77 8.33

DDPM (VP - β(t) = (b+ at)ρ, ρ = 3) 9.67 8.32

DDPM (VP - β(t) = (b+ at)ρ, ρ = 5) 9.64 8.41 our paper

DDPM (VP - β(t) = (b+ at)ρ, ρ = 7) 10.22 8.41

DDPM (VP - β(t) = (b+ at)ρ, ρ = 10) 10.27 8.51

DDPM (VP - β(t) = abt) 9.98 8.39 our paper

NCSN (VE - g(t) = abt) 22.11 8.18 Song et al. (2021)

NCSN (VE - g(t) = const) 461.42 1.18 De Bortoli et al. (2021)

NCSN (VE - g(t) =
√

2at) 457.04 1.20 our paper

NCSN (VE - g(t) = (b+ at)ρ−
1
2 , ρ = 2) 369.51 1.34

NCSN (VE - g(t) = (b+ at)ρ−
1
2 , ρ = 3) 233.20 1.95

NCSN (VE - g(t) = (b+ at)ρ−
1
2 , ρ = 5) 137.55 4.01 our paper

NCSN (VE - g(t) = (b+ at)ρ−
1
2 , ρ = 7) 159.66 3.11

NCSN (VE - g(t) = (b+ at)ρ−
1
2 , ρ = 10) 99.89 4.91

Table 3: Performances of different SDE models on CIFAR-10 at 3,000,000 iterations
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(a) DDPM (b) NCSN (aka SMLD)

Figure 2: The FID score progressions of different SDE models on CIFAR-10

(a) DDPM (b) NCSN (aka SMLD)

Figure 3: The inception score (IS) progressions of different SDE models on CIFAR-10

5. Analysis: Proofs of the Main Results

5.1 Proof of Theorem 2

To prove Theorem 2, we study the three sources of errors discussed in Section 2: (1) the
initialization of the algorithm at p̂T instead of pT , (2) the estimation error of the score
function, and (3) the discretization error of the continuous-time process (2.6).

First, we study the error introduced due to the initialization at p̂T instead of pT . Recall
the reverse SDE zt given in (2.4). As discussed in Section 2, the distribution of zT differs
from p0, because z0 ∼ p̂T 6= pT . The following result provides a bound on W2(L(zT ), p0).
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Model FID↓ IS↑

DDPM deep (VP - β(t) = b+ at) 9.22 8.25

DDPM deep (VP - β(t) = (b+ at)ρ, ρ = 5) 8.20 8.55

DDPM deep (VP - β(t) = abt) 8.14 8.44

NCSN deep (VE - g(t) = abt) 20.00 8.41

Table 4: Performances of deep versions of the best performing models from Table 3 on
CIFAR-10 at 3,000,000 iterations. SMLD is also known as NCSN.

(a) FID (b) IS

Figure 4: The FID and IS score progressions of the deep version of the best performing
SDE models on CIFAR-10

Proposition 7 Assume that p0 is m0-strongly-log-concave. Then, we have

W2(L(zT ), p0) ≤ e−
∫ T
0 c(t)dt‖x0‖L2 , (5.1)

where c(t) is given in (3.9).

The main challenge in analyzing the SDE zt lies in studying the term ∇ log pT−t(zt). In
general, this term is neither linear in zt nor admits a closed-form expression. However, when
p0 is strongly log-concave, we are able to show that log pT−t(x) is also strongly concave.
This fact, together with Itô’s formula for SDEs, allows us to establish Proposition 7. The
proof of Proposition 7 is given in Section 5.1.2.

Now we consider the algorithm (2.7) with iterates (yk), and bound the errors due to
score estimations and discretizations together. For any k = 0, 1, 2, . . . ,K, yk has the same
distribution as ŷkη, where ŷt is a continuous-time process with the dynamics:

dŷt =
[
f(T − t)ŷbt/ηcη + (g(T − t))2sθ

(
ŷbt/ηcη, T − bt/ηcη

)]
dt+ g(T − t)dB̄t, (5.2)
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with ŷ0 ∼ p̂T . We have the following result that provides an upper bound for ‖zkη− ŷkη‖L2

in terms of ‖z(k−1)η − ŷ(k−1)η‖L2 . This result plays a key role in the proof of Theorem 2.

Proposition 8 Assume that p0 is m0-strongly-log-concave, i.e. − log p0 is m0-strongly
convex and ∇ log p0 is L0-Lipschitz. For any k = 1, 2, . . . ,K,

‖zkη − ŷkη‖L2
≤ γk,η‖z(k−1)η − ŷ(k−1)η‖L2

+M1η (1 + ‖x0‖L2 + c2(T ))

∫ kη

(k−1)η
(g(T − t))2dt+M

∫ kη

(k−1)η
(g(T − t))2dt

+
√
ηhk,η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2

, (5.3)

where γk,η is defined in (3.14), c2(T ) is defined in (3.13) and hk,η is given in (3.15).

We remark that the coefficient γj,η in front of the term
∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2

in (5.3)
lies in between zero and one. Indeed, it follows from Assumption 4 and the definition of
µ(t) in (3.10) that µ(t) ≥ M1η(g(t))2 for every 0 ≤ t ≤ T and ηmax0≤t≤T µ(t) < 1 such
that for any j = 1, 2, . . . ,K, 0 ≤ γj,η ≤ 1 where γj,η is defined in (3.14).

Now we are ready to prove Theorem 2.

5.1.1 Completing the Proof of Theorem 2

Proof Since ŷkη has the same distribution as yk, by applying (5.3), we have

W2(L(zKη),L(yK)) ≤ ‖zKη − ŷKη‖L2

≤
K∑
k=1

K∏
j=k+1

γj,η ·

(
M1η (1 + ‖x0‖L2 + c2(T ))

∫ kη

(k−1)η
(g(T − t))2dt

+M

∫ kη

(k−1)η
(g(T − t))2dt

+
√
ηhk,η

(∫ kη

(k−1)η

[
f(T − t) + (g(T − t))2L(T − t)

]2
dt

)1/2)
.

Moreover, we recall that T = Kη and by triangle inequality for 2-Wasserstein distance,
W2(L(yK), p0) ≤ W2(L(yK),L(zKη)) +W2(L(zKη), p0). The proof is completed by apply-
ing Proposition 7.
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5.1.2 Proof of Proposition 7

Proof For the forward SDE (1.1), the transition density is Gaussian, and we have pt(xt) =∫
Rd p(xt|x0)p0(x0)dx0, where

p(xt|x0) =
1(

2π
∫ t

0 e
−2
∫ t
s f(v)dv(g(s))2ds

)d/2 exp

(
− ‖xt − e−

∫ t
0 f(s)dsx0‖2

2
∫ t

0 e
−2
∫ t
s f(v)dv(g(s))2ds

)
.

This implies that

log pT−t(x) = log

∫
Rd

exp

(
− ‖x− e−

∫ T−t
0 f(s)dsx0‖2

2
∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds

)
p0(x0)dx0

− d

2
log

(
2π

∫ t

0
e−2

∫ t
s f(v)dv(g(s))2ds

)
= log

∫
Rd

exp

(
− ‖x− x0‖2

2
∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds

)
p0

(
e
∫ T−t
0 f(s)dsx0

)
dx0

+ de
∫ T−t
0 f(s)ds − d

2
log

(
2π

∫ t

0
e−2

∫ t
s f(v)dv(g(s))2ds

)
,

where we applied change-of-variable to obtain the last equation. Note that for any two
functions p, q : Rd → R, where p is mp-strongly-log-concave and q is mq-strongly-log-concave
(i.e. − log p is mp-strongly-convex and − log q is mq-strongly-convex) then it is known
that the convolution of p and q, i.e.

∫
Rd p(x − y)q(y)dy is (m−1

p + m−1
q )−1-strongly-log-

concave; see e.g. Proposition 7.1 in Saumard and Wellner (2014). It is easy to see that the

function x 7→ exp

(
− ‖x‖2

2
∫ T−t
0 e−2

∫T−t
s f(v)dv(g(s))2ds

)
is 1∫ T−t

0 e−2
∫T−t
s f(v)dv(g(s))2ds

-strongly-log-

concave, and the function x 7→ p0

(
e
∫ T−t
0 f(s)dsx

)
is m0

(
e
∫ T−t
0 f(s)ds

)2
-strongly-log-concave

since we assumed that x 7→ p0(x) is m0-strongly-log-concave. Hence, we conclude that
log pT−t(x) is a(T − t)-strongly-concave, where

a(T − t) :=
1

1
m0
e−2

∫ T−t
0 f(s)ds +

∫ T−t
0 e−2

∫ T−t
s f(v)dv(g(s))2ds

. (5.4)

Next, let us recall the definition of m(T − t) in (3.11) and the dynamics of x̃t and zt in
(1.2) and (2.4) respectively. By Itô’s formula,

d
(
‖x̃t − zt‖2e

∫ t
0 m(T−s)ds

)
= m(T − t)e

∫ t
0 m(T−s)ds‖x̃t − zt‖2dt+ 2e

∫ t
0 m(T−s)ds〈x̃t − zt, dx̃t − dzt〉

= m(T − t)e
∫ t
0 m(T−s)ds‖x̃t − zt‖2dt+ 2e

∫ t
0 m(T−s)ds〈x̃t − zt, f(T − t)(x̃t − zt)〉dt

+ 2e
∫ t
0 m(T−s)ds 〈x̃t − zt, (g(T − t))2 (∇ log pT−t(x̃t)−∇ log pT−t(zt))

〉
dt

≤ e
∫ t
0 m(T−s)ds (m(T − t) + 2f(T − t)− 2(g(T − t))2a(T − t)

)
‖x̃t − zt‖2dt = 0.
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This implies that ‖x̃t − zt‖2e
∫ t
0 m(T−s)ds ≤ ‖x̃0 − z0‖2, so that

E‖x̃T − zT ‖2 ≤ e−
∫ T
0 m(T−s)dsE‖x̃0 − z0‖2. (5.5)

Consider a coupling of (x̃0, z0) such that x̃0 ∼ pT , z0 ∼ p̂T and E‖x̃0 − z0‖2 =W2
2 (pT , p̂T ).

Together with (2.3), we conclude that

W2
2 (L(zT ), p0) =W2

2 (L(zT ),L(x̃T )) ≤ E‖x̃T − zT ‖2

≤ e−
∫ T
0 m(T−s)dsW2

2 (pT , p̂T )

≤ e−
∫ T
0 m(s)dse−2

∫ T
0 f(s)ds‖x0‖2L2

= e−2
∫ T
0 c(t)dt‖x0‖2L2

.

The proof is complete.

5.1.3 Proof of Proposition 8

We first state a key technical lemma, which will be used in the proof of Proposition 8. The
proof of the following result will be provided in Appendix A.1.

Lemma 9 Suppose that Assumption 1 holds. Then, ∇x log pT−t(x) is L(T − t)-Lipschitz
in x, where L(T − t) is given in (3.6).

Proof By recalling the dynamics of zt and ŷt from (2.4) and (5.2), it follows that

zkη − ŷkη

= z(k−1)η − ŷ(k−1)η +

∫ kη

(k−1)η
f(T − t)

(
z(k−1)η − ŷ(k−1)η

)
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t(z(k−1)η)−∇ log pT−t

(
ŷ(k−1)η

))
dt

+

∫ kη

(k−1)η

[
f(T − t)(zt − z(k−1)η)

+ (g(T − t))2
(
∇ log pT−t(zt)−∇ log pT−t(z(k−1)η)

) ]
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t

(
ŷ(k−1)η

)
− sθ

(
ŷ(k−1)η, T − (k − 1)η

))
dt.
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This implies that

‖zkη − ŷkη‖L2

≤

∥∥∥∥∥z(k−1)η − ŷ(k−1)η +

∫ kη

(k−1)η
f(T − t)

(
z(k−1)η − ŷ(k−1)η

)
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t(z(k−1)η)−∇ log pT−t

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ kη

(k−1)η

[
f(T − t)(zt − z(k−1)η)

+ (g(T − t))2
(
∇ log pT−t(zt)−∇ log pT−t(z(k−1)η)

) ]
dt

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t

(
ŷ(k−1)η

)
− sθ

(
ŷ(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

. (5.6)

Next, we provide upper bounds for the three terms in (5.6).

Bounding the first term in (5.6). We can compute that

∥∥∥∥∥z(k−1)η − ŷ(k−1)η +

∫ kη

(k−1)η
f(T − t)

(
z(k−1)η − ŷ(k−1)η

)
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t(z(k−1)η)−∇ log pT−t

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
2

=
∥∥z(k−1)η − ŷ(k−1)η

∥∥2
+

∥∥∥∥∥
∫ kη

(k−1)η
f(T − t)

(
z(k−1)η − ŷ(k−1)η

)
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t(z(k−1)η)−∇ log pT−t

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
2

+ 2

∫ kη

(k−1)η
f(T − t)

∥∥z(k−1)η − ŷ(k−1)η

∥∥2
dt

+ 2

∫ kη

(k−1)η

〈
z(k−1)η − ŷ(k−1)η,

(g(T − t))2
(
∇ log pT−t(z(k−1)η)−∇ log pT−t

(
ŷ(k−1)η

))〉
dt.
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From the proof of Proposition 7, we know that log pT−t(x) is a(T − t)-strongly-concave,
where a(T − t) is given in (5.4). Hence we have

∥∥∥∥∥z(k−1)η − ŷ(k−1)η +

∫ kη

(k−1)η
f(T − t)

(
z(k−1)η − ŷ(k−1)η

)
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t(z(k−1)η)−∇ log pT−t

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
2

≤

(
1−

∫ kη

(k−1)η
m(T − t)dt

)∥∥z(k−1)η − ŷ(k−1)η

∥∥2

+

(∫ kη

(k−1)η
f(T − t)

∥∥z(k−1)η − ŷ(k−1)η

∥∥ dt
+

∫ kη

(k−1)η
(g(T − t))2L(T − t)

∥∥z(k−1)η − ŷ(k−1)η

∥∥ dt)2

≤

(
1−

∫ kη

(k−1)η
m(T − t)dt+ 2η

∫ kη

(k−1)η
(f(T − t))2dt

+ 2η

∫ kη

(k−1)η
(g(T − t))4(L(T − t))2dt

)
·
∥∥z(k−1)η − ŷ(k−1)η

∥∥2
,

where we applied Cauchy-Schwartz inequality and Lemma 9, and m(T − t) is defined in
(3.11). Hence, we conclude that

∥∥∥∥∥z(k−1)η − ŷ(k−1)η +

∫ kη

(k−1)η
f(T − t)

(
z(k−1)η − ŷ(k−1)η

)
dt

+

∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t

(
z(k−1)η

)
−∇ log pT−t

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
L2

≤

(
1−

∫ kη

(k−1)η
µ(T − t)dt

)∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2
, (5.7)

where we used the inequality
√

1− x ≤ 1− x
2 for any 0 ≤ x ≤ 1 and the definition of µ(T−t)

in (3.10) which can be rewritten as

µ(T−t) := (g(T−t))2a(T−t)−f(T−t)−η(f(T−t))2−η(g(T−t))4(L(T−t))2, 0 ≤ t ≤ T,

where a(T − t) is given in (5.4).
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Bounding the second term in (5.6). Using Lemma 9, we can compute that

∥∥∥∥∥
∫ kη

(k−1)η

[
f(T − t)(zt − z(k−1)η) + (g(T − t))2

(
∇ log pT−t(zt)−∇ log pT−t(z(k−1)η)

)]
dt

∥∥∥∥∥
2

≤

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]‖zt − z(k−1)η‖dt

)2

≤ η
∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2‖zt − z(k−1)η‖2dt,

which implies that

∥∥∥∥∥
∫ kη

(k−1)η

[
f(T − t)(zt − z(k−1)η) + (g(T − t))2

(
∇ log pT−t(zt)−∇ log pT−t

(
z(k−1)η

))]
dt

∥∥∥∥∥
L2

≤

(
η

∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt · sup

(k−1)η≤t≤kη
E‖zt − z(k−1)η‖2

)1/2

=
√
η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2

sup
(k−1)η≤t≤kη

∥∥zt − z(k−1)η

∥∥
L2
.

(5.8)

Bounding the third term in (5.6). We notice that

∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t(ŷ(k−1)η)− sθ

(
ŷ(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

≤

∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−(k−1)η(ŷ(k−1)η)− sθ

(
ŷ(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t

(
ŷ(k−1)η

)
−∇ log pT−(k−1)η

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
L2

.

By Assumption 3, we have

∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−(k−1)η(ŷ(k−1)η)− sθ

(
ŷ(k−1)η, T − (k − 1)η

))
dt

∥∥∥∥∥
L2

≤M
∫ kη

(k−1)η
(g(T − t))2dt. (5.9)
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Moreover, by Assumption 2, we have∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t

(
ŷ(k−1)η

)
−∇ log pT−(k−1)η

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
L2

≤
∫ kη

(k−1)η
(g(T − t))2

∥∥∇ log pT−t
(
ŷ(k−1)η

)
−∇ log pT−(k−1)η

(
ŷ(k−1)η

)∥∥
L2
dt

≤
∫ kη

(k−1)η
(g(T − t))2M1η

(
1 +

∥∥ŷ(k−1)η

∥∥
L2

)
dt

≤M1η
(

1 +
∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2

+ ‖z(k−1)η‖L2

)∫ kη

(k−1)η
(g(T − t))2dt. (5.10)

Furthermore, we can compute that∥∥z(k−1)η

∥∥
L2
≤
∥∥z(k−1)η − x̃(k−1)η

∥∥
L2

+
∥∥x̃(k−1)η

∥∥
L2
, (5.11)

where x̃t is defined in (1.2). Moreover, by the proof of Proposition 7, we have∥∥z(k−1)η − x̃(k−1)η

∥∥
L2
≤
(
E‖x̃0 − z0‖2

)1/2
= e−

∫ T
0 f(s)ds‖x0‖L2 ≤ ‖x0‖L2 , (5.12)

where we applied (2.1) to obtain the equality in the above equation. Moreover, since
(x̃t)0≤t≤T is the time-reversal process of (xt)0≤t≤T , we have∥∥x̃(k−1)η

∥∥
L2

=
∥∥xT−(k−1)η

∥∥
L2
≤ sup

0≤t≤T
‖xt‖L2 =: c2(T ). (5.13)

Next, let us show that c2(T ) can be computed as given by the formula in (3.13). By
applying Itô’s formula to equation (2.1), we have

d
(
‖xt‖2e2

∫ t
0 f(s)ds

)
= 2f(t)‖xt‖2e2

∫ t
0 f(s)dsdt+ 2e2

∫ t
0 f(s)ds〈xt, dxt〉+ e2

∫ t
0 f(s)ds · d · (g(t))2dt.

By taking expectations, we obtain

d
(
E‖xt‖2e2

∫ t
0 f(s)ds

)
= e2

∫ t
0 f(s)ds · d · (g(t))2dt,

so that

E‖xt‖2 = e−2
∫ t
0 f(s)dsE‖x0‖2 + d

∫ t

0
e−2

∫ t
s f(v)dv(g(s))2ds.

Therefore, we conclude that

c2(T ) = sup
0≤t≤T

‖xt‖L2 = sup
0≤t≤T

(
e−2

∫ t
0 f(s)ds‖x0‖2L2

+ d

∫ t

0
e−2

∫ t
s f(v)dv(g(s))2ds

)1/2

.

(5.14)
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Therefore, by applying (5.10), (5.11), (5.12) and (5.13), we have

∥∥∥∥∥
∫ kη

(k−1)η
(g(T − t))2

(
∇ log pT−t

(
ŷ(k−1)η

)
−∇ log pT−(k−1)η

(
ŷ(k−1)η

))
dt

∥∥∥∥∥
L2

≤
(
M1η

∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2

+M1η (1 + ‖x0‖L2 + c2(T ))
)∫ kη

(k−1)η
(g(T − t))2dt.

It follows that the third term in (5.6) is upper bounded by

(
M1η

∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2

+M1η (1 + ‖x0‖L2 + c2(T )) +M
)∫ kη

(k−1)η
(g(T − t))2dt.

(5.15)

Bounding (5.6). On combining (5.7), (5.8) and (5.15), we conclude that

‖zkη − ŷkη‖2L2
(5.16)

≤

{
γk,η

∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2

+M1η (1 + ‖x0‖L2 + c2(T ))

∫ kη

(k−1)η
(g(T − t))2dt+M

∫ kη

(k−1)η
(g(T − t))2dt

+
√
η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2

sup
(k−1)η≤t≤kη

‖zt − z(k−1)η‖L2

}2

,

where we used the definition of γk,η in (3.14). We need one more result, which provides
an upper bound for sup(k−1)η≤t≤kη ‖zt − z(k−1)η‖L2 . The proof of Lemma 10 is given in
Appendix A.2.

Lemma 10 For any k = 1, 2, . . . ,K,

sup
(k−1)η≤t≤kη

∥∥zt − z(k−1)η

∥∥
L2
≤ c1(T )

∫ kη

(k−1)η

[
f(T − s) + (g(T − s))2L(T − s)

]
ds

+ c2(T )

∫ T−(k−1)η

T−kη
f(s)ds+

(∫ T−(k−1)η

T−kη
(g(s))2ds

)1/2√
d,

where c1(T ) and c2(T ) are given in (3.12)-(3.13) respectively.
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By applying Lemma 10, we conclude from (5.16) that

‖zkη − ŷkη‖L2

≤ γk,η
∥∥z(k−1)η − ŷ(k−1)η

∥∥
L2

+M1η (1 + ‖x0‖L2 + c2(T ))

∫ kη

(k−1)η
(g(T − t))2dt+M

∫ kη

(k−1)η
(g(T − t))2dt

+
√
ηhk,η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2

,

where hk,η is defined in (3.15). The proof of Proposition 8 is hence complete.

5.2 Proof of Proposition 5

Proof By (3.15), we have hk,η ≥ min0≤t≤T g(t)
√
η
√
d. Therefore, we have

RHS of (3.16)

≥ e−
∫Kη
0 c(t)dt‖x0‖L2 +

K∑
k=1

K∏
j=k+1

(
1−

∫ jη

(j−1)η
µ(T − t)dt

)

·

M ∫ kη

(k−1)η
(g(T − t))2dt+

√
ηhk,η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2


≥ e−
∫Kη
0 c(t)dt‖x0‖L2

+
K∑
k=1

(
1− η max

0≤t≤T
µ(t)

)K−k (√
η min

0≤t≤T
g(t)
√
η
√
d
√
η min

0≤t≤T

(
f(t) + (g(t))2L(t)

))
≥ e−

∫Kη
0 c(t)dt‖x0‖L2

+
√
η
√
d

1− e−Kηmax0≤t≤T µ(t)

max0≤t≤T µ(t)

(
min

0≤t≤T
g(t) min

0≤t≤T

(
f(t) + (g(t))2L(t)

))
,

where the equality above is due to the formula for the finite sum of a geometric series and
we used the inequality that 1 − x ≤ e−x for any 0 ≤ x ≤ 1 to obtain the last inequality

above. Therefore, in order for RHS of (3.16) ≤ ε, we must have e−
∫Kη
0 c(t)dt‖x0‖L2 ≤ ε,

which implies that Kη →∞ as ε→ 0 and in particular

T = Kη = Ω(1), (5.17)

and we also need

√
η
√
d

1− e−Kηmax0≤t≤T µ(t)

max0≤t≤T µ(t)

(
min

0≤t≤T
g(t) min

0≤t≤T

(
f(t) + (g(t))2L(t)

))
≤ ε. (5.18)
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Note that by the definition of µ(t) in (3.11) and c(t) in (3.9), we have max0≤t≤T µ(t) ≤
max0≤t≤T c(t) = max0≤t≤Kη c(t). Note Assumption 1 implies that

‖x0‖L2 ≤
√

2d/m0 + ‖x∗‖, (5.19)

where x∗ is the unique minimizer of − log p0. See Lemma 11 in Gürbüzbalaban et al.

(2021). Hence we have e−
∫Kη
0 c(t)dt = O(ε/

√
d). Together with the assumption that

max0≤s≤t c(s) ≤ c1

(∫ t
0 c(s)ds

)ρ
+c2 uniformly in t for some c1, c2, ρ > 0, it is easy to see that

max0≤t≤Kη c(t) = O
((

log
(√

d/ε
))ρ)

and hence max0≤t≤T µ(t) = O
((

log
(√

d/ε
))ρ)

.

Moreover, under our assumption µ(t) ≥ 1
4m(t) for any 0 ≤ t ≤ T , where µ(t),m(t) are

defined in (3.10) and (3.11) and since we assumed mint≥0 g(t) > 0, we have m(t) > 0 for
any t. Together with T = Kη = Ω(1) from (5.17), we have max0≤t≤T µ(t) ≥ Ω(1). Since
Kη →∞ as ε→ 0, we have 1− e−Kηmax0≤t≤T µ(t) = Ω(1). Therefore, it follows from (5.18)

that η = Õ
(
ε2

d

)
, where Õ ignores the logarithmic dependence on ε and d and we used the

assumptions that mint≥0 g(t) > 0 and mint≥0(f(t) + (g(t))2L(t)) > 0. Hence, we conclude

that we have the following lower bound for the complexity: K = Ω̃
(
d
ε2

)
, where Ω̃ ignores

the logarithmic dependence on ε and d. This completes the proof.

5.3 Proof of Proposition 6

Proof When x0 ∼ N (0, σ2
0Id), we can compute that

∇x log pT−t(x) = ∇x log

∫
Rd

exp

(
− ‖x− e−

∫ T−t
0 f(s)dsx0‖2

2
∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds

)
p0(x0)dx0

= ∇x log

∫
Rd

exp

(
− ‖x− e−

∫ T−t
0 f(s)dsx0‖2

2
∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds

)
exp

(
−‖x0‖2

2σ2
0

)
dx0

= ∇x log

∫
Rd

exp

(
−‖((a1(T − t))2σ2

0 + a2(T − t))x0 − a1(T − t)σ2
0x‖2

2a2(T − t)σ2
0((a1(T − t))2σ2

0 + a2(T − t))

)
· exp

(
− ‖x‖2

2((a1(T − t))2σ2
0 + a2(T − t))

)
dx0

= − 1

(a1(T − t))2σ2
0 + a2(T − t)

x,

where

a1(T − t) := e−
∫ T−t
0 f(s)ds, a2(T − t) :=

∫ T−t

0
e−2

∫ T−t
s f(v)dv(g(s))2ds. (5.20)

Therefore, under the assumption x0 ∼ N (0, σ2
0Id), the discretization of (2.4) is given by:

yk =

(
1−

∫ kη

(k−1)η
α(T − t)dt

)
yk−1 +

(∫ kη

(k−1)η
(g(T − t))2dt

)1/2

ξk, (5.21)
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where

α(T − t) :=
(g(T − t))2

(a1(T − t))2σ2
0 + a2(T − t)

− f(T − t), (5.22)

where a1(T − t) and a2(T − t) are defined in (5.20), and ξk are i.i.d. Gaussian random
vectors N (0, Id) and y0 follows the same distribution as p̂T in (2.2).

Since yK and x0 are both centered Gaussian random vectors, by using the explicit
formula for the W2 distance between two Gaussian distributions, we have

W2 (L(yK),L(x0)) =

(
Tr

(
ΣK + σ2

0Id − 2
(

Σ
1/2
K σ2

0IdΣ
1/2
K

)1/2
))1/2

,

where Σk = E
[
yky

>
k

]
, k = 0, 1, . . . ,K, is the covariance matrix of yk. It is easy to compute

that for any k = 1, 2, . . . ,K, Σk =
(

1−
∫ kη

(k−1)η α(T − t)dt
)2

Σk−1 +
∫ kη

(k−1)η(g(T − t))2dt ·Id,

where α(T − t) is defined in (5.22) with Σ0 =
∫ T

0 e−2
∫ T
s f(v)dv(g(s))2ds · Id. Therefore, one

can deduce that Σk = σ̂2
kId, k = 0, 1, . . . ,K, where

σ̂2
k =

(
1−

∫ kη

(k−1)η
α(T − t)dt

)2

σ̂2
k−1 +

∫ kη

(k−1)η
(g(T − t))2dt, (5.23)

with σ̂2
0 =

∫ T
0 e−2

∫ T
s f(v)dv(g(s))2ds. Moreover, we get

W2 (L(yK),L(x0)) =
(

Tr
(
σ̂2
KId + σ2

0Id − 2
(
σ̂Kσ

2
0σ̂K

)1/2
Id

))1/2
=
√
d |σ̂K − σ0| . (5.24)

One can easily compute from (5.23) that

σ̂2
K =

K∑
j=1

K∏
i=j+1

(
1−

∫ iη

(i−1)η
α(T − t)dt

)2 ∫ jη

(j−1)η
(g(T − t))2dt

+

K∏
i=1

(
1−

∫ iη

(i−1)η
α(T − t)dt

)2 ∫ T

0
e−2

∫ T
s f(v)dv(g(s))2ds, (5.25)

where α(T − t) is defined in (5.22).

By discrete approximation of a Riemann integral, with fixed Kη = T , we have∣∣∣∣σ̂2
K −

∫ T

0
e−2

∫ T
t α(T−s)ds(g(T − t))2dt− e−2

∫ T
0 α(s)ds

∫ T

0
e−2

∫ T
s f(v)dv(g(s))2ds

∣∣∣∣ = Θ(η),

as η → 0. Indeed, one can show that there exists some c0 ∈ R, such that

σ̂2
K =

∫ T

0
e−2

∫ T
t α(T−s)ds(g(T − t))2dt+ e−2

∫ T
0 α(s)ds

∫ T

0
e−2

∫ T
s f(v)dv(g(s))2ds+ c0η+O(η2),

(5.26)
as η → 0. Next, let us show that (5.26) holds as well as spell out the constant c0 explicitly.
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First, we can compute that

log
K∏
i=1

(
1−

∫ iη

(i−1)η
α(T − t)dt

)2

= 2
K∑
i=1

log

(
1−

∫ iη

(i−1)η
α(T − t)dt

)

= 2
K∑
i=1

−∫ iη

(i−1)η
α(T − t)dt− 1

2

(∫ iη

(i−1)η
α(T − t)dt

)2

+O(η3)

 ,

which implies that

log
K∏
i=1

(
1−

∫ iη

(i−1)η
α(T − t)dt

)2

− log
(
e−2

∫ T
0 α(T−t)dt

)
= −η

∫ T

0
(α(T − t))2dt+O(η2).

Therefore, we have

K∏
i=1

(
1−

∫ iη

(i−1)η
α(T − t)dt

)2

= e−2
∫ T
0 α(s)dse

log
∏K
i=1

(
1−
∫ iη
(i−1)η

α(T−t)dt
)2
−log

(
e−2

∫T
0 α(T−t)dt

)

= e−2
∫ T
0 α(s)ds

(
1− η

∫ T

0
(α(T − t))2dt+O(η2)

)
.

Similarly, we can show that

K∑
j=1

K∏
i=j+1

(
1−

∫ iη

(i−1)η
α(T − t)dt

)2 ∫ jη

(j−1)η
(g(T − t))2dt

=
K∑
j=1

∫ jη

(j−1)η
e−2

∫Kη
jη α(T−s)ds(g(T − t))2dt

− η
∫ T

0
e−2

∫ T
t α(T−s)ds

(∫ T

t
(α(T − s))2ds

)
(g(T − t))2dt+O(η2).

Moreover,

K∑
j=1

∫ jη

(j−1)η
e−2

∫Kη
jη α(T−s)ds(g(T − t))2dt

=

∫ T

0
e−2

∫ T
t α(T−s)ds(g(T − t))2dt+ η

∫ T

0
e−2

∫ T
t α(T−s)dsα(T − t)(g(T − t))2dt+O(η2).

Hence, we conclude that (5.26) holds with

c0 = −e−2
∫ T
0 α(s)ds

∫ T

0
(α(t))2dt

∫ T

0
e−2

∫ T
s f(v)dv(g(s))2ds

−
∫ T

0
e−2

∫ t
0 α(s)ds

(∫ t

0
(α(s))2ds

)
(g(t))2dt+

∫ T

0
e−2

∫ t
0 α(s)dsα(t)(g(t))2dt. (5.27)
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On the other hand, x̃T−t has the same distribution as xt for any 0 ≤ t ≤ T , where

dx̃t = −α(T − t)x̃tdt+ g(T − t)dB̄t,

with x̃0 ∼ pT such that

x̃0 = e−
∫ T
0 f(s)dsx0 +

∫ T

0
e−
∫ T
s f(v)dvg(s)dBs.

Since x̃T has the same distribution as x0, their covariance matrices are the same such that

E
[
x̃T x̃>T

]
=

∫ T

0
e−2

∫ T
t α(T−s)ds(g(T − t))2dt · Id

+ e−2
∫ T
0 α(s)ds

(
e−2

∫ T
0 f(s)dsσ2

0 +

∫ T

0
e−2

∫ T
s f(v)dv(g(s))2ds

)
· Id = E

[
x0x

>
0

]
= σ2

0Id.

This implies that

σ̂2
K = σ2

0 − e−2
∫ T
0 α(s)dse−2

∫ T
0 f(s)dsσ2

0 + c0η +O(η2), (5.28)

where α(·) is defined in (5.22) and c0 is given in (5.27), and by the definition of α(·), we
can equivalently write (5.28) as

σ̂2
K = σ2

0 − e−2
∫ T
0 γ(s)dsσ2

0 + c0η +O(η2), (5.29)

where

γ(t) :=
(g(t))2

(a1(t))2σ2
0 + a2(t)

, (5.30)

with a1(·), a2(·) defined in (5.20).

If there exists some T = T (ε) and η̄ = η̄(ε) such that W2(L(yK), p0) ≤ ε for any K ≥
K̄ := T/η̄ (with η = T/K ≤ η̄) then we must have W2 (L(yK),L(x0)) =

√
d |σ̂K − σ0| ≤ ε,

for any K ≥ K̄ := T/η̄ so that∣∣σ̂2
K − σ2

0

∣∣ = |σ̂K − σ0|(σ̂K + σ0) ≤ ε√
d

(
2σ0 +

ε√
d

)
, (5.31)

for any K ≥ K̄ := T/η̄ (with η = T/K ≤ η̄). Then, it follows from (5.29) and (5.31) that∣∣∣−e−2
∫ T
0 γ(s)dsσ2

0 + c0η +O(η2)
∣∣∣ ≤ O (ε/√d) . (5.32)

Since (5.32) holds for any η ≤ η̄, by letting η → 0 in (5.32), we get

e−2
∫ T
0 γ(s)dsσ2

0 ≤ O
(
ε/
√
d
)
. (5.33)

By the definition of γ(t) in (5.30), it is positive and continuous for any t > 0 and therefore,
it follows from (5.33) that T →∞ as ε→ 0, and in particular T ≥ Ω(1). Finally, by letting

η = η̄ in (5.32), applying (5.33), we deduce that η̄ ≤ O
(

ε√
d

)
. Hence, by T ≥ Ω(1), we

conclude that K̄ = T
η̄ ≥ O

(√
d
ε

)
. This completes the proof.
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6. Conclusion and Future Work

In this paper, we establish convergence guarantees for a general class of score-based gener-
ative models in the 2-Wasserstein distance for smooth log-concave data distributions. Our
theoretical result directly leads to iteration complexity bounds for various score-based gen-
erative models with different forward processes. Moreover, our experimental results align
well with our theoretical predictions on the iteration complexity.

Our work serves as a first step towards a better understanding of the impacts of dif-
ferent choices of forward processes in the SDE implementation of diffusion models. It is
a significant open question how to relax the assumption of strong log-concavity on the
data distribution. Our convergence analysis borrows the idea of synchronous coupling used
in sampling with Langevin algorithms (Dalalyan and Karagulyan, 2019). To go beyond
the log-concave setting, one may consider more sophisticated coupling methods such as
reflection coupling (see e.g. Eberle (2016)) to obtain contraction rates of SDEs in Wasser-
stein distance. However, it is not clear whether the reflection coupling can be applied to
the convergence analysis of score-based diffusion models, because the reverse SDE is time-
inhomogeneous and it is also unclear whether the coefficients in the reverse SDE satisfy a
dissipativity-type condition in Eberle (2016). In addition to considering weaker conditions
on the target data distribution, another interesting direction is to study the convergence
theory for alternative sampling schemes (beyond the Euler-Maruyama discretization of re-
verse SDEs), such as (stochastic) EDM in Karras et al. (2022). Furthermore, it is also
important to study the complexity of score estimations and establish an end-to-end con-
vergence theory for diffusion models (see e.g. Chen et al. (2023b); Han et al. (2024) for
some recent progress). Finally, our empirical analysis focuses on image generation using
CIFAR-10 data exclusively. It would be intriguing to explore additional datasets and tasks.
We leave them for future research.
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Appendix A. Additional Technical Proofs

A.1 Proof of Lemma 9

Proof First of all, by following the proof of Proposition 7, we have

pT−t(x) =

∫
Rd
q1(x− x0)q0(x0)dx0, (A.1)

where

q1(x) :=

exp

(
− ‖x‖2

2
∫ T−t
0 e−2

∫T−t
s f(v)dv(g(s))2ds

)
(

2π
∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds

)d/2 , q0(x) :=
(
e
∫ T−t
0 f(s)ds

)d
p0

(
e
∫ T−t
0 f(s)dsx

)
.

Let X1 and X0 be two independent random vectors with densities q1 and q0 respectively.
Then it follows from (A.1) that pT−t is the density of X1 + X0. Moreover, let us write:
q1(x) = e−ϕ1(x) and q0(x) = e−ϕ0(x). Then it follows from the proof of Proposition 7.1. in
Saumard and Wellner (2014) that

∇2(− log pT−t)(x) = −Var(∇ϕ0(X0)|X0 + X1 = x) + E[∇2ϕ0(X0)|X0 + X1 = x] (A.2)

= −Var(∇ϕ1(X1)|X0 + X1 = x) + E[∇2ϕ1(X1)|X0 + X1 = x]. (A.3)

Note that it follows from the proof of Proposition 5.1.2 that

∇2(− log pT−t)(x) �
(∫ T−t

0
e−2

∫ T−t
s f(v)dv(g(s))2ds+ e−

∫ T−t
0 f(s)dsm−1

0

)−1

· Id. (A.4)

On the other hand, Var(∇ϕ0(X0)|X0 + X1 = x) � 0d×d, Var(∇ϕ1(X1)|X0 + X1 = x) �
0d×d, and ∇ log p0 is L0-Lipschitz so that ∇2ϕ0 �

(
e
∫ T−t
0 f(s)ds

)2
L0 · Id, and moreover,

∇2ϕ1 �
(∫ T−t

0 e−2
∫ T−t
s f(v)dv(g(s))2ds

)−1
· Id. Together with (A.2) and (A.3), we have

∇2(− log pT−t)(x) � min

((∫ T−t

0
e−2

∫ T−t
s f(v)dv(g(s))2ds

)−1

,
(
e
∫ T−t
0 f(s)ds

)2
L0

)
· Id.

(A.5)
Hence, it follows from (A.4) and (A.5) that log pT−t is L(T − t)-Lipschitz, where L(T − t)
is given in (3.6). This completes the proof.

A.2 Proof of Lemma 10

Proof We can compute that for any (k − 1)η ≤ t ≤ kη,

zt − z(k−1)η = x̃t − x̃(k−1)η

+

∫ t

(k−1)η

[
f(T − s)(zs − x̃s) + (g(T − s))2 (∇ log pT−s(zs)−∇ log pT−s(x̃s))

]
ds,
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and therefore∥∥zt − z(k−1)η

∥∥
L2

≤
∥∥x̃t − x̃(k−1)η

∥∥
L2

+

∫ t

(k−1)η

[
f(T − s) + (g(T − s))2L(T − s)

]
‖zs − x̃s‖L2ds.

We obtained in the proof of Proposition 7 that

‖zt − x̃t‖L2 ≤ e−
1
2

∫ t
0 m(T−s)ds‖z0 − x̃0‖L2 ,

and moreover, from the proof of Proposition 7, we have ‖z0− x̃0‖L2 ≤ e−
∫ T
0 f(s)ds‖x0‖L2 so

that
‖zt − x̃t‖L2 ≤ e−

1
2

∫ t
0 m(T−s)dse−

∫ T
0 f(s)ds‖x0‖L2 .

Therefore, we have∥∥zt − z(k−1)η

∥∥
L2
≤
∥∥x̃t − x̃(k−1)η

∥∥
L2

+ c1(T )

∫ kη

(k−1)η

[
f(T − s) + (g(T − s))2L(T − s)

]
ds,

(A.6)

where c1(T ) bounds sup0≤t≤T ‖zt − x̃t‖L2 and it is given in (3.12). Moreover, we recall
that the backward process (x̃t)0≤t≤T has the same distribution as the forward process
(xT−t)0≤t≤T , so that

∥∥x̃t − x̃(k−1)η

∥∥
L2

=
∥∥xT−t − xT−(k−1)η

∥∥
L2

, where xt satisfies the SDE:

dxt = −f(t)xtdt+ g(t)dBt, with x0 ∼ p0. Therefore, we have

xT−(k−1)η − xT−t = −
∫ T−(k−1)η

T−t
f(s)xsds+

∫ T−(k−1)η

T−t
g(s)dBs.

We can compute that

‖xT−(k−1)η − xT−t‖L2 ≤
∫ T−(k−1)η

T−t
f(s)‖xs‖L2ds+

∥∥∥∥∥
∫ T−(k−1)η

T−t
g(s)dBs

∥∥∥∥∥
L2

≤ sup
0≤t≤T

‖xt‖L2

∫ T−(k−1)η

T−kη
f(s)ds+

(∫ T−(k−1)η

T−kη
(g(s))2ds

)1/2√
d,

where we used Itô’s isometry. Therefore, we have

‖xT−(k−1)η − xT−t‖L2 ≤ c2(T )

∫ T−(k−1)η

T−kη
f(s)ds+

(∫ T−(k−1)η

T−kη
(g(s))2ds

)1/2√
d,

where we recall from (5.14) that c2(T ) = sup0≤t≤T ‖xt‖L2 with an explicit formula given
in (3.13). It follows that Lemma 10 holds.

Appendix B. Derivation of Results in Table 2

In this section, we prove the results that are summarized in Table 2. We discuss variance
exploding SDEs in Appendix B.1, variance preserving SDEs in Appendix B.2, and constant
coefficient SDEs in Appendix B.3.
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B.1 Variance-Exploding SDEs

In this section, we consider variance-exploding SDEs with f(t) ≡ 0 in the forward process
(1.1). We can immediately obtain the following corollary of Theorem 2.

Corollary 11 Assume that Assumptions 1, 2, 3 and 4 hold. Then, we have

W2(L(yK), p0) ≤ e−
∫Kη
0 c(t)dt‖x0‖L2

+
K∑
k=1

K∏
j=k+1

γj,η ·

(
M1η

(
1 + 2‖x0‖L2 +

√
d

(∫ T

0
(g(t))2dt

)1/2
)∫ kη

(k−1)η
(g(T − t))2dt

+M

∫ kη

(k−1)η
(g(T − t))2dt+

√
ηhk,η

(∫ kη

(k−1)η
(g(T − t))4(L(T − t))2dt

)1/2)
. (B.1)

In the next few sections, we consider special functions g in Corollary 11 and derive the
corresponding results in Table 2.

B.1.1 Example 1: f(t) ≡ 0 and g(t) = aebt

When g(t) = aebt for some a, b > 0, we can obtain the following result from Corollary 11.

Corollary 12 Let g(t) = aebt for some a, b > 0. Then, we have W2(L(yK), p0) ≤ O(ε)

after K = O
(
d log(d/ε)

ε2

)
iterations provided that M ≤ ε

log(1/ε) and η ≤ ε2

d .

Proof Let g(t) = aebt for some a, b > 0. First, we can compute that

(g(t))2L(t) = min

(
(g(t))2∫ t

0 (g(s))2ds
, L0(g(t))2

)
= min

(
2be2bt

e2bt − 1
, L0

a2

4b2
(e2bt − 1)2

)
.

If e2bt ≥ 2, then e2bt − 1 ≥ 1
2e

2bt and (g(t))2L(t) ≤ 4b. On the other hand, if e2bt < 2, then

(g(t))2L(t) ≤ L0
a2

4b2
. Therefore, for any 0 ≤ t ≤ T , (g(t))2L(t) ≤ max

(
4b, L0a2

4b2

)
. By the

definition of c(t) in (3.9), we can compute that

c(t) =
m0(g(t))2

1 +m0

∫ t
0 (g(s))2ds

=
m0a

2e2bt

1 +m0
a2

2b (e2bt − 1)
. (B.2)

This implies that∫ t

0
c(s)ds =

∫ t

0

2bm0a
2e2bsds

2b−m0a2 +m0a2e2bs
= log

(
2b−m0a

2 +m0a
2e2bt

2b

)
. (B.3)
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By letting t = T = Kη in (B.3) and using (5.19), we obtain

e−
∫Kη
0 c(t)dt‖x0‖L2 ≤

2b

2b−m0a2 +m0a2e2bKη

(√
2d/m0 + ‖x∗‖

)
.

Moreover,

hk,η ≤
(√

2d/m0 + ‖x∗‖
)

max

(
4b,

L0a
2

4b2

)
η +

a√
2b

(
e2b(T−(k−1)η) − e2b(T−kη)

)1/2√
d,

and for any 0 ≤ t ≤ T :

µ(t) ≥ m0a
2e2bt

1 +m0
a2

2b (e2bt − 1)
− ηmax

(
16b2,

L2
0a

4

16b4

)
≥M1η(g(t))2 = ηM1a

2e2bt,

provided that

η ≤ 1

2

min(m0a
2, 2b)

max
(

16b2,
L2
0a

4

16b4

) +
1

2

m0a
2

1 +m0
a2

2b (e2bT − 1)
.

Furthermore, µ(t) ≤ m0a2e2bt

1+m0
a2

2b
(e2bt−1)

≤ max(m0a
2, 2b), so that 0 ≤ γj,η ≤ 1 for every j =

1, 2, . . . ,K, provided that η ≤ min

 1
max(m0a2,2b)

, 1
2

min(m0a2,2b)

max

(
16b2,

L2
0a

4

16b4

) + 1
2

m0a2

1+m0
a2

2b
(e2bT−1)

.

Since 1− x ≤ e−x for any 0 ≤ x ≤ 1, we conclude that

K∏
j=k+1

γj,η =
K∏

j=k+1

(
1−

∫ jη

(j−1)η
µ(T − t)dt+M1η

∫ jη

(j−1)η
(g(T − t))2dt

)

≤
K∏

j=k+1

e
−
∫ jη
(j−1)η

µ(T−t)dt+M1η
∫ jη
(j−1)η

(g(T−t))2dt
= e−

∫Kη
kη µ(T−t)dt+M1η

∫Kη
kη (g(T−t))2dt.

(B.4)

Moreover,

∫ Kη

kη
µ(T − t)dt ≥

∫ Kη

kη

m0a
2e2b(T−t)dt

1 +m0
a2

2b (e2b(T−t) − 1)
− (K − k)η2 max

(
16b2,

L2
0a

4

16b4

)

= log

(
2b−m0a

2 +m0a
2e2b(T−kη)

2b−m0a2 +m0a2e2b(T−Kη)

)
− (K − k)η2 max

(
16b2,

L2
0a

4

16b4

)
,
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and M1η
∫Kη
kη (g(T − t))2dt = M1η

a2

2b

(
e2b(K−k)η − 1

)
. By applying Corollary 11 with T =

Kη, we conclude that

W2(L(yK), p0) ≤
2b
(√

2d/m0 + ‖x∗‖
)

2b−m0a2 +m0a2e2bKη
+

K∑
k=1

2be
(K−k)η2 max

(
16b2,

L2
0a

4

16b4

)
+M1η

a2

2b
(e2b(K−k)η−1)

2b−m0a2 +m0a2e2b(K−k)η

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
a√
2b

(e2bKη − 1)1/2

))
· a

2

2b

(
e2b(K−(k−1))η) − e2b(K−k)η)

)
+ ηmax

(
4b,

L0a
2

4b2

)
·

((√
2d/m0 + ‖x∗‖

)
max

(
4b,

L0a
2

4b2

)
η

+
a√
2b

(
e2b(K−(k−1))η) − e2b(K−k)η

)1/2√
d

))
.

By the mean-value theorem, we have e2b(K−(k−1))η) − e2b(K−k)η) ≤ 2be2b(K−(k−1))ηη, which
implies that

W2(L(yK), p0) ≤ O

( √
d

e2bKη

)
+O

(
e
Kη2 max

(
16b2,

L2
0a

4

16b4

)
+M1η

a2

2b
e2bKη

·
K∑
k=1

1

e2b(K−k)η
·

((
M +M1η

√
debKη

)
e2b(K−(k−1))ηη + ηeb(K−(k−1))η√η

√
d

))

≤ O

( √
d

e2bKη

)
+O

(
e
Kη2 max

(
16b2,

L2
0a

4

16b4

)
·

((
M +M1η

√
debKη

)
Kη +

√
η
√
d

))
≤ O(ε),

provided thatKη = log(
√
d/ε)

2b , M ≤ ε
log(1/ε) , and η ≤ ε2

d , which implies thatK ≥ O
(
d log(d/ε)

ε2

)
.

This completes the proof.

Remark 13 In Corollary 12, we can also spell out the dependence of iteration complexity on
M1 from Assumption 2. It follows from the proof of Corollary 12 thatW2(L(yK), p0) ≤ O(ε)

provided that Kη = log(
√
d/ε)

2b , M ≤ ε
log(1/ε) , and η ≤ ε2

d , with the additional constraint that

η ≤ M
M1

√
debKη

≤ ε3/2

M1 log(1/ε)d3/4
, which implies that K ≥ O

(
log
(
d
ε

)
max

{
d
ε2
, M1 log(1/ε)d3/4

ε3/2

})
.

B.1.2 Example 2: f(t) ≡ 0 and g(t) ≡ a

When g(t) ≡ a for some a > 0, we can obtain the following result from Corollary 11.
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Corollary 14 Let g(t) ≡ a for some a > 0. Then, we have W2(L(yK), p0) ≤ O(ε) after

K = O
(
d3/2 log(d/ε)

ε3

)
iterations provided that M ≤ O

(
ε√

log(d/ε)

)
and η ≤ O

(
ε2

d log(d/ε)

)
.

Proof When g(t) ≡ a, by applying Corollary 11 with T = Kη and (5.19), we have

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
1 +m0a2Kη

+

K∑
k=1

1

1 +m0a2(K − k)η
e(K−k)η

2L2
0a

4+M1η(K−k)ηa2

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
da
√
Kη
))

a2η

+ ηL0a
2 ·
((√

2d/m0 + ‖x∗‖
)
L0a

2η + a
√
η
√
d
))

.

It is easy to verify that

K∑
k=1

e(K−k)η
2L2

0a
4+M1η

2(K−k)a2

1 +m0a2(K − k)η
≤
(

1 +
log((K − 1)ηm0a

2)

ηm0a2

)
eKη

2L2
0a

4+M1η
2Ka2 .

Therefore,

W2(L(yK), p0) ≤ O

( √
d

1 +m0a2Kη
+

(
1 +

log((K − 1)ηm0a
2)

ηm0a2

)
eKη

2L2
0a

4+M1η
2Ka2

·
((
M +M1η

√
d
√
Kη
)
a2η + ηL0a

2 ·
(√

dL0a
2η + a

√
η
√
d
)))

.

Hence, we conclude that W2(L(yK), p0) ≤ O(ε) provided that Kη =
√
d
ε , M = O

(√
ηd
)
,

and η ≤ O
(

ε2

d log(d/ε)

)
, so that M = O(

√
ηd) ≤ O

(
ε√

log(d/ε)

)
, which implies that K ≥

O
(
d3/2 log(d/ε)

ε3

)
. This completes the proof.

B.1.3 Example 3: f(t) ≡ 0 and g(t) =
√

2at

When g(t) =
√

2at for some a > 0, we can obtain the following result from Corollary 11.

Corollary 15 Let g(t) =
√

2at for some a > 0. Then, we have W2(L(yK), p0) ≤ O(ε)

after K = O
(
d5/4

ε5/2

)
iterations provided that M ≤ ε3/2 and η ≤ ε2

d .

Proof When g(t) =
√

2at for some a > 0, we have

(g(t))2L(t) = min

(
(g(t))2∫ t

0 (g(s))2ds
, L0(g(t))2

)
= min

(
2

t
, 2tL0a

)
≤ 2
√
aL0.
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We can also compute from (3.9) that∫ t

0
c(s)ds =

∫ t

0

2m0asds

1 +m0as2
= log

(
1 +m0at

2
)
. (B.5)

By letting t = T = Kη in (B.5) and using (5.19), we obtain

e−
∫Kη
0 c(t)dt‖x0‖L2 ≤

√
2d/m0 + ‖x∗‖

1 + am0K2η2
.

Moreover,

hk,η ≤ 2
(√

2d/m0 + ‖x∗‖
)√

aL0η +
(
(T − (k − 1)η)2 − (T − kη)2

)1/2√
d,

and for any 0 ≤ t ≤ T :

µ(t) =
2am0t

1 + am0t2
− 4ηmin

(
1

t2
, t2a2L2

0

)
≥M1η(g(t))2 = 2aM1ηt,

provided that η ≤ min
(

m0

4L0(a2L2
0+am0)

, m0

4a2L2
0(L0+m0)

, m0
2M1(1+am0T 2)

)
. Additionally,

µ(t) ≤ 2am0t

1 + am0t2
≤
√
am0,

so that 0 ≤ γj,η ≤ 1 for any j = 1, 2, . . . ,K, provided that

η ≤ min

(
m0

4L0(a2L2
0 + am0)

,
m0

4a2L2
0(L0 +m0)

,
m0

2M1(1 + am0T 2)
,

1
√
am0

)
.

We recall from (B.4) that

K∏
j=k+1

γj,η ≤ e−
∫Kη
kη

µ(T−t)dt+M1η
∫Kη
kη

(g(T−t))2dt.

Moreover, one can verify that∫ Kη

kη
µ(T − t)dt ≥ log

(
1 + am0(K − k)2η2

)
− 4(K − k)η2aL0,

and

M1η

∫ Kη

kη
(g(T − t))2dt = M1η

∫ Kη

kη
2a(Kη − t)dt = M1η(K − k)2η2.

By applying Corollary 11 with T = Kη and (5.19), we conclude that

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
1 + am0K2η2

+

K∑
k=1

1

1 + am0(K − k)2η2
e4Kη

2aL0+M1η
3K2

·

(
2
(
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
√

2aKη
))

(K − k + 1)η2

+ 2
√
aL0η

(
2
(√

2d/m0 + ‖x∗‖
)√

aL0η + (2(K − k + 1))1/2η
√
d
))

.
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This implies that

W2(L(yK), p0) ≤ O

( √
d

K2η2
+ eO((Kη)2η)

(
Kη(M +M1

√
dKη2) +

√
η
√
d
))
≤ O(ε),

provided that Kη = d1/4√
ε

, M ≤ ε3/2, and η ≤ ε2

d , so that K ≥ O
(
d5/4

ε5/2

)
. This completes

the proof.

B.1.4 Example 4: f(t) ≡ 0 and g(t) = (b+ at)c

When g(t) = (b+ at)c for some a, b, c > 0, we obtain the following result from Corollary 11.

Corollary 16 Let g(t) = (b + at)c for some a, b, c > 0. Then, we have W2(L(yK), p0) ≤

O(ε) after K = O
(
d

1
2(2c+1)

+1

ε
1

2c+1+2

)
iterations provided that M ≤ ε1+ 2c

2c+1 and η ≤ ε2

d .

Proof When g(t) = (b+ at)c for some a, b, c > 0, we can compute that

(g(t))2L(t) = min

(
(b+ at)c

1
a(2c+1)((b+ at)2c+1 − b2c+1)

, L0(b+ at)2c

)
. (B.6)

It is straightforward to verify that (g(t))2L(t) ≤ max

(
a(2c+1)

(1− 1
22c+1 )b

, L0(2b)2c

)
. By (3.9), we

have

e−
∫Kη
0 c(t)dt

(√
2d/m0 + ‖x∗‖

)
=

√
2d/m0 + ‖x∗‖

1 + m0
a(2c+1)((b+ aKη)2c+1 − b2c+1)

.

Also,

hk,η ≤
(√

2d/m0 + ‖x∗‖
)

max

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)2c

)
η

+

(
(b+ a(T − (k − 1)η))2c

a

)1/2√
η
√
d,

and for any 0 ≤ t ≤ T :

µ(t) =
(b+ at)2c

1
m0

+ 1
a(2c+1) ((b+ at)2c+1 − b2c+1)

− ηmin

(
(b+ at)2c

1
a2(2c+1)2 ((b+ at)2c+1 − b2c+1)2

, L2
0(b+ at)4c

)
≥M1η(g(t))2 = M1η(b+ at)2c,
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provided that η ≤ 1
2 , η ≤

b2c

1
m0

+ 1√
m0

+1

2L2
0(a(2c+1)( 1√

m0
+1)+b2c+1)

4c
2c+1

and η ≤ 1
2
m0

+ 2
a(2c+1)

((b+aT )2c+1−b2c+1)
.

In addition,

µ(t) ≤ (b+ at)2c

1
m0

+ 1
a(2c+1)((b+ at)2c+1 − b2c+1)

≤ max

(
a(2c+ 1)

b
,m0b

2c

)
,

so that 0 ≤ γj,η ≤ 1 for any j = 1, 2, . . . ,K. We recall from (B.4) that

K∏
j=k+1

γj,η ≤ e−
∫Kη
kη

µ(T−t)dt+M1η
∫Kη
kη

(g(T−t))2dt.

Moreover,∫ Kη

kη
µ(T − t)dt ≥ log

(
1 +

m0

a(2c+ 1)

(
(b+ a(K − k)η)2c+1 − b2c+1

))
− (K − k)η2 max

(
a2(2c+ 1)2

(1− 1
22c+1 )2b2

, L2
0(2b)4c

)
,

and we can compute that

M1η

∫ Kη

kη
(g(T − t))2dt =

M1η

a(2c+ 1)

(
(b+ a(K − k)η)2c+1 − b2c+1

)
.

By applying Corollary 11 with T = Kη and (5.19), we conclude that

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
1 + m0

a(2c+1)((b+ aKη)2c+1 − b2c+1)

+

K∑
k=1

e
(K−k)η2 max

(
a2(2c+1)2

(1− 1
22c+1 )2b2

,L2
0(2b)4c

)
+

M1η
a(2c+1)

((b+a(K−k)η)2c+1−b2c+1)

1 + m0
a(2c+1) ((b+ a(K − k)η)2c+1 − b2c+1)

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d

(
(b+ aKη)2c+1 − b2c+1

a(2c+ 1)

)1/2
))

· (b+ a(K − k + 1)η)2c+1 − (b+ a(K − k)η)2c+1

a(2c+ 1)

+ ηmax

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)2c

)

·

((√
2d/m0 + ‖x∗‖

)
max

(
a(2c+ 1)

(1− 1
22c+1 )b

, L0(2b)2c

)
η

+

(
(b+ a((K − (k − 1))η))2c

a

)1/2√
η
√
d

))
.
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This implies that

W2(L(yK), p0) ≤ O

( √
d

(Kη)2c+1
+ eO((Kη)η+(Kη)2c+1η)

(
(Kη)2cM +

√
η
√
d
))
≤ O(ε),

provided that Kη = d
1

2(2c+1)

ε
1

2c+1
, M ≤ ε1+ 2c

2c+1 , and η ≤ ε2

d , so that K ≥ O
(
d

1
2(2c+1)

+1

ε
1

2c+1+2

)
. This

completes the proof.

B.2 Variance-Preserving SDEs

In this section, we consider Variance-Preserving SDEs with f(t) = 1
2β(t) and g(t) =

√
β(t)

in the forward process (1.1). We can obtain the following corollary of Theorem 2.

Corollary 17 Under the assumptions of Theorem 2, we have

W2(L(yK), p0) ≤ ‖x0‖L2

m0e
∫Kη
0 β(s)ds + 1−m0

+
K∑
k=1

e
∫Kη
kη

1
2
β(Kη−t)dt+

∫Kη
kη

η
4

(β(Kη−t))2dt+
∫Kη
kη 4ηmax(1,L2

0)(β(Kη−t))2dt+M1η
∫Kη
kη β(Kη−t)dt

m0e
∫ (K−k)η
0 β(s)ds + 1−m0

·

(
M1η(1 + 2‖x0‖L2 +

√
d)

∫ kη

(k−1)η
β(Kη − t)dt

+M

∫ kη

(k−1)η
β(Kη − t)dt+

√
η

(
1

2
+ 2 max(1, L0)

)(∫ kη

(k−1)η
(β(Kη − t))2dt

)1/2

·

(
e−
∫Kη
0

1
2
β(s)ds‖x0‖L2

(
1

2
+ 2 max(1, L0)

)∫ kη

(k−1)η
β(Kη − s)ds

+
(
‖x0‖2L2

+ d
)1/2 ∫ (K−(k−1))η

(K−k)η

1

2
β(s)ds+

(∫ (K−(k−1))η

(K−k)η
β(s)ds

)1/2√
d

))
. (B.7)

Proof We apply Theorem 2 applied to the variance-preserving SDE (f(t) = 1
2β(t) and

g(t) =
√
β(t)). First, we can compute that

L(T − t) = min

(
1

1− e−
∫ T−t
0 β(s)ds

, e
∫ T−t
0 β(s)dsL0

)
.
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If e
∫ T−t
0 β(s)ds ≥ 2, then 1

1−e−
∫T−t
0 β(s)ds

≤ 2 and otherwise e
∫ T−t
0 β(s)dsL0 ≤ 2L0. Therefore,

for any 0 ≤ t ≤ T , L(T − t) ≤ 2 max(1, L0). By applying Theorem 2, we have

W2(L(yK), p0) ≤ e−
∫Kη
0

c(t)dt‖x0‖L2
+

K∑
k=1

K∏
j=k+1

γj,η

·

(
M1η (1 + ‖x0‖L2

+ c2(T ))

∫ kη

(k−1)η
(g(T − t))2dt

+M

∫ kη

(k−1)η
(g(T − t))2dt+

√
ηhk,η

(∫ kη

(k−1)η
[f(T − t) + (g(T − t))2L(T − t)]2dt

)1/2)
,

where, the definition of γj,η in (3.14) depends on µ(T − t), such that for any 0 ≤ t ≤ T :

µ(T − t) =
(g(T − t))2

1
m0
e−2

∫ T−t
0

f(s)ds +
∫ T−t
0

e−2
∫ T−t
s

f(v)dv(g(s))2ds
− f(T − t)

− η(f(T − t))2 − η(g(T − t))4(L(T − t))2,

≥ m0β(T − t)
e−
∫ T−t
0

β(s)ds +m0(1− e−
∫ T−t
0

β(s)ds)

− 1

2
β(T − t)− η

4
(β(T − t))2 − 4η(β(T − t))2 max(1, L2

0),

where we assume η is sufficiently small such that 0 ≤ γj,η ≤ 1, for every j = 1, 2, . . . ,K.
One can verify that

hk,η ≤ e−
∫ T
0

1
2β(s)ds‖x0‖L2

(
1

2
+ 2 max(1, L0)

)∫ kη

(k−1)η
β(T − s)ds

+
(
‖x0‖2L2

+ d
)1/2 ∫ T−(k−1)η

T−kη

1

2
β(s)ds+

(∫ T−(k−1)η

T−kη
β(s)ds

)1/2√
d.

Next, for VP-SDE, we have f(t) = 1
2β(t) and g(t) =

√
β(t) so that we can compute:

c(t) =
m0β(t)

e−
∫ t
0 β(s)ds +m0

∫ t
0 e
−
∫ t
s β(v)dvβ(s)ds

=
m0β(t)

e−
∫ t
0 β(s)ds +m0(1− e−

∫ t
0 β(s)ds)

.

It follows that∫ T

0
c(t)dt =

∫ ∫ T
0 β(s)ds

0

m0dx

m0 + (1−m0)e−x
= log

(
m0e

∫ T
0 β(s)ds + 1−m0

)
.

Hence, we obtain

e−
∫ T
0 c(t)dt‖x0‖L2 =

‖x0‖L2

m0e
∫ T
0 β(s)ds + 1−m0

.

By using T = Kη, we complete the proof.

Next, we prove Proposition 4.
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B.2.1 Proof of Proof of Proposition 4

Proof It follows from Corollary 17 and (5.19) that

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
m0e

∫Kη
0

β(s)ds + 1−m0

+

K∑
k=1

e(1+2M1η)
∫ (K−k)η
0

1
2β(t)dt+( η4+4ηmax(1,L2

0))
∫ (K−k)η
0 (β(t))2dt

m0e
∫ (K−k)η
0 β(s)ds + 1−m0

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
))∫ (K−k+1)η

(K−k)η
β(t)dt

+
√
η

(
1

2
+ 2 max(1, L0)

)(∫ (K−k+1)η

(K−k)η
(β(t))2dt

)1/2

·

(
e−
∫Kη
0

1
2β(s)ds

(√
2d/m0 + ‖x∗‖

)(1

2
+ 2 max(1, L0)

)∫ (K−k+1)η

(K−k)η
β(s)ds

+

((√
2d/m0 + ‖x∗‖

)2
+ d

)1/2 ∫ (K−(k−1))η

(K−k)η

1

2
β(s)ds+

(∫ (K−(k−1))η

(K−k)η
β(s)ds

)1/2√
d

))
.

Since β(t) is increasing in t, we can compute

W2(L(yK), p0) ≤ O

( √
d

e
∫Kη
0

β(s)ds
+ eM1η

∫Kη
0

β(t)dt+( η4+4ηmax(1,L2
0))β(Kη)

∫Kη
0

β(t)dt

·

((
M +M1η

√
d
)
β(Kη) + β(Kη) ·

(
√
dηβ(Kη) +

√
β(Kη)

√
η
√
d

)))
.

Since β(t) ≤ c1

(∫ t
0 β(s)ds

)c3
+ c2 uniformly in t for some c1, c2, c3 > 0, we have

W2(L(yK), p0) ≤ O

( √
d

e
∫Kη
0

β(s)ds
+ e

M1η
∫Kη
0

β(t)dt+( η4+4ηmax(1,L2
0))
(
c1(
∫Kη
0

β(t)dt)
1+c3+c2

∫Kη
0

β(t)dt
)

·

((
M +M1η

√
d
)(∫ Kη

0

β(t)dt

)c3

+

(
√
dη

(∫ Kη

0

β(t)dt

)2c3

+

(∫ Kη

0

β(t)dt

)3c3/2
√
η
√
d

)))
≤ O(ε),

provided that
∫Kη

0 β(s)ds = log
(√

d/ε
)

, M ≤ ε
(log(

√
d/ε))c3

, and η ≤ ε2

d(log(1/ε))3/c3
. Since

β(t) is increasing, log
(√

d/ε
)
≥ β(0)Kη, so that K ≤ log(d/ε)

β(0)η = O
(
d(log(d/ε))3c3+1

ε2

)
if we

take η = ε2

d(log(d/ε))3/c3
. This completes the proof.

In the next two subsections, we consider special functions β(t) in Corollary 17 and derive
the corresponding results in Table 2.
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B.2.2 Example 1: β(t) = (b+ at)ρ

We first consider the special case β(t) = (b+at)ρ. This includes the special case β(t) = b+at
when ρ = 1 that is studied in Ho et al. (2020).

Corollary 18 Assume β(t) = (b + at)ρ. Then, we have W2(L(yK), p0) ≤ O(ε) after K =

O
(
d(log(d/ε))

1
ρ+1

ε2

)
iterations provided that M ≤ ε and η ≤ ε2

d .

Proof When β(t) = (b+ at)ρ, by Corollary 17 and (5.19), we can compute that

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
m0e

1
a(ρ+1)

((b+aKη)ρ+1−bρ+1) + 1−m0

+

K∑
k=1

e
1+2M1η

2a(ρ+1)
((b+a(K−k)η)ρ+1−bρ+1)+( η4+4ηmax(1,L2

0))
1

a(2ρ+1)
((b+a(K−k)η)2ρ+1−b2ρ+1)

m0e
1

a(ρ+1)
((b+a(K−k)ηη)ρ+1−bρ+1) + 1−m0

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
))

·
(
(b+ a(K − k + 1)η)ρ+1 − (b+ a(K − k)η)ρ+1

)
a(ρ+ 1)

+
√
η

(
1

2
+ 2 max(1, L0)

)((
(b+ a(K − k + 1)η)2ρ+1 − (b+ a(K − k)η)2ρ+1

)
a(2ρ+ 1)

)1/2

·

(
e−

((b+aKη)ρ+1−bρ+1)
2a(ρ+1)

(√
2d/m0 + ‖x∗‖

)(1

2
+ 2 max(1, L0)

)
·
(
(b+ a(K − k + 1)η)ρ+1 − (b+ a(K − k)η)ρ+1

)
a(ρ+ 1)

+
1

2

((√
2d/m0 + ‖x∗‖

)2
+ d

)1/2 ((b+ a(K − k + 1)η)ρ+1 − (b+ a(K − k)η)ρ+1
)

a(ρ+ 1)

+

(
1

a(ρ+ 1)

(
(b+ a(K − k + 1)η)ρ+1 − (b+ a(K − k)η)ρ+1

))1/2√
d

))
.

Thus, we can compute that

W2(L(yK), p0) ≤ O

( √
d

e
(b+aKη)ρ+1

a(ρ+1)

+

K∑
k=1

e
1+2M1η

2a(ρ+1)
((b+a(K−k)η)ρ+1−bρ+1)+( η4+4ηmax(1,L2

0))
(b+aKη)2ρ+1

a(2ρ+1)

m0e
1

a(ρ+1)
((b+a(K−k)ηη)ρ+1−bρ+1) + 1−m0

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
))

((K − k + 1)η)ρη

+
√
η((K − k + 1)η)ρ

√
η ·

(
√
d((K − k + 1)η)ρη + ((K − k + 1)η)ρ/2

√
η
√
d

)))

≤ O

( √
d

e
(b+aKη)ρ+1

a(ρ+1)

+ e(
η
4+4ηmax(1,L2

0))
(b+aKη)2ρ+1

a(2ρ+1) ·

(
M +M1η

√
d+

(
√
dη +

√
η
√
d

)))
≤ O(ε),
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provided that Kη = (a(ρ+1))
1
ρ+1

a

(
log
(√

d/ε
)) 1

ρ+1 − b
a , M ≤ ε, and η ≤ ε2

d , which implies

that K ≥ O
(
d(log(d/ε))

1
ρ+1

ε2

)
. This completes the proof.

Remark 19 In Corollary 18, we can also spell out the dependence of iteration complexity on
M1 from Assumption 2. It follows from the proof of Corollary 18 thatW2(L(yK), p0) ≤ O(ε)

provided that Kη = (a(ρ+1))
1
ρ+1

a

(
log
(√

d/ε
)) 1

ρ+1− b
a , M ≤ ε, and η ≤ ε2

d , with the additional

constraint that η ≤ M
M1

√
d
≤ ε

M1

√
d
, which implies that K ≥ O

((
log
(
d
ε

)) 1
ρ+1 max

{
d
ε2
, M1

√
d

ε

})
.

B.2.3 Example 2: β(t) = aebt

Corollary 20 Assume β(t) = aebt. Then, we have W2(L(yK), p0) ≤ O(ε) after K =

O
(
d log(log(d/ε))

ε2

)
iterations provided that M ≤ ε and η ≤ ε2

d .

Proof When β(t) = aebt, by Corollary 17 and (5.19), we can compute that

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
m0e

a
b

(ebKη−1) + 1−m0

+
K∑
k=1

e(1+2M1η) a
2b

(eb(K−k)η−1)+( η
4

+4ηmax(1,L2
0))a

2

2b
(e2b(K−k)η−1)

m0e
a
b

(eb(K−k)η−1) + 1−m0

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
)) a

b

(
eb(K−k+1)η − eb(K−k)η

)
+
√
η

(
1

2
+ 2 max(1, L0)

)(
a2

2b

(
e2b(K−k+1)η − e2b(K−k)η

))1/2

·

(
e−

a
2b

(ebKη−1)
(√

2d/m0 + ‖x∗‖
)(1

2
+ 2 max(1, L0)

)
a

b

(
eb(K−k+1)η − eb(K−k)η

)
+

1

2

((√
2d/m0 + ‖x∗‖

)2
+ d

)1/2 a

b

(
eb(K−k+1)η − eb(K−k)η

)
+
(a
b

(
eb(K−k+1)η − eb(K−k)η

))1/2√
d

))
.
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Thus, we can compute that

W2(L(yK), p0) ≤ O

( √
d

e
a
b
ebKη

+

K∑
k=1

e(1+2M1η) a
2b

(eb(K−k)η−1)+( η
4

+4ηmax(1,L2
0))a

2

2b
(e2b(K−k)η−1)

m0e
a
b

(eb(K−k)η−1) + 1−m0

·

((
M +M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
√
d
))

eb(K−k)ηη

+
√
ηeb(K−k)η√η

(
e−

a
2b
ebKηeb(K−k)ηη +

√
deb(K−k)ηη + e

1
2
b(K−k)η√η

√
d
)))

≤ O

( √
d

e
a
b
ebKη

+ e( η
4

+4ηmax(1,L2
0))a

2

2b
e2bKη ·

(
M +M1η

√
d+

(√
dη +

√
η
√
d
)))

≤ O(ε),

provided that Kη = 1
b log

(
b
a log

(√
d
ε

))
, M ≤ ε, and η ≤ ε2

d , which implies that K ≥

O
(
d log(log(d/ε))

ε2

)
. This completes the proof.

B.3 Constant Coefficient SDE

Corollary 21 Under the assumptions of Theorem 2, assume that f(t) ≡ α > 0 and g(t) ≡
σ > 0. Further assume that m0 ≥ 2α

σ2 and η ≤ min
{

1, α
2α2+2(2α+σ2L0)2

}
. Then, we have

W2(L(yK), p0) ≤
√

2d/m0 + ‖x∗‖
m0σ2(e2αKη−1)

2α + 1
+

2

α
M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
σ
√
d√

2α

)
σ2

+
2

α

(
Mσ2 + η1/2C̃1

(
3α+ σ2L0

))
,

where C̃1 :=
(√

2d/m0 + ‖x∗‖
)

(4α+ σ2L0) + α
√

dσ2

2α + σ
√
d. In particular, for any given

ε > 0, we have W2(L(yK), p0) ≤ ε provided that M ≤ εα
8σ2 ,

η ≤ min

 ε2α2

64C̃2
1 (3α+ σ2L0)

2 ,
α

8M1

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+ σ

√
d√

2α

)
σ2

 ,

and Kη ≥ 1
2α log

((
4
(√

2d/m0+‖x∗‖
)

ε − 1

)
2α

m0σ2 + 1

)
.

Remark 22 Corollary 21 implies thatW2(L(yK), p0) ≤ ε by choosing (if we just keep track

of the dependence on ε and d) M = O(ε), η = O
(
ε2

d

)
, and K ≥ O

(
d
ε2

log
(
d
ε

))
.
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B.3.1 Proof of Corollary 21

Proof Using a similar argument as in previous sections, one can readily obtain the following
upper bound on hk,η in (3.15) for the special case f(t) ≡ α > 0 and g(t) ≡ σ > 0:

hk,η ≤ ηW2(p0, p̂T )
(
3α+ σ2L0

)
+ ηα

((√
2d/m0 + ‖x∗‖

)2
+
dσ2

2α

)1/2

+
√
ησ
√
d

≤ η
(√

2d/m0 + ‖x∗‖
)

(3α+ σ2L0) + ηα
(√

2d/m0 + ‖x∗‖
)

+ ηα

√
dσ2

2α
+
√
ησ
√
d

=
√
ηC1,

where

C1 :=
√
η

((√
2d/m0 + ‖x∗‖

)
(4α+ σ2L0) + α

√
dσ2

2α

)
+ σ
√
d. (B.8)

Moreover, we recall the formula for µ(T − t) from (3.10) so that we can compute that

µ(T − t)−M1η(g(T − t))2

≥ σ2

1
m0
e−2α(T−t) + σ2

2α(1− e−2α(T−t))
− α− ηα2 − ησ4(2ασ−2 + L0)2 −M1ησ

2 ≥ α

2
,

provided that m0 ≥ 2α
σ2 and η ≤ α

2α2+2σ4(2ασ−2+L0)2+2M1σ2 . Since c(t) = σ2

e−2αt

m0
+σ2

2α
(1−e−2αt)

>

0, we have
∫Kη

0 c(t)dt = log
(
m0σ2(e2αKη−1)

2α + 1
)

. Hence, by Theorem 2 and (5.19), we have

W2(L(yK), p0)

≤
√

2d/m0 + ‖x∗‖
m0σ2(e2αKη−1)

2α + 1
+

K∑
k=1

(
1− αη

2

)K−k
·
(
M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+

σ√
2α

√
d

)
ησ2

)

+

K∑
k=1

(
1− αη

2

)K−k
·
(
Mησ2 + η3/2C1

(
α+ σ2

(
2ασ−2 + L0

)))
≤
√

2d/m0 + ‖x∗‖
m0σ2(e2αKη−1)

2α + 1

+
2

α

(
M1η

(
1 + 2

(√
2d/m0 + ‖x∗‖

)
+
σ
√
d√

2α

)
σ2 +Mσ2 + η1/2C1

(
3α+ σ2L0

))
,

where

C1 ≤ C̃1 :=

((√
2d/m0 + ‖x∗‖

)
(4α+ σ2L0) + α

√
dσ2

2α

)
+ σ
√
d,

where C1 is defined in (B.8) and we used the assumption that the stepsize η ≤ 1. In partic-

ular, given any ε > 0, we have W2(L(yK), p0) ≤ ε if we take M ≤ εα
8σ2 , η ≤ ε2α2

64C̃2
1 (3α+σ2L0)2

,

η ≤ α

8M1

(
1+2

(√
2d/m0+‖x∗‖

)
+σ
√
d√

2α

)
σ2

, and Kη ≥ 1
2α log

((
4
(√

2d/m0+‖x∗‖
)

ε − 1

)
2α

m0σ2 + 1

)
.

This completes the proof.

54


	Introduction
	Related Work

	Preliminaries on SDE-Based Diffusion Models
	Main Results
	Assumptions
	Main Result
	Examples
	Discussions

	Numerical Experiments
	SDEs for the Forward Process
	Experiment Setup
	Empirical Results

	Analysis: Proofs of the Main Results
	Proof of Theorem 2
	Completing the Proof of Theorem 2
	Proof of Proposition 7
	Proof of Proposition 8

	Proof of Proposition 5
	Proof of Proposition 6

	Conclusion and Future Work
	Additional Technical Proofs
	Proof of Lemma 9
	Proof of Lemma 10

	Derivation of Results in Table 2
	Variance-Exploding SDEs
	Example 1: f(t)0 and g(t)=aebt
	Example 2: f(t)0 and g(t)a
	Example 3: f(t)0 and g(t)=2at
	Example 4: f(t)0 and g(t)=(b+at)c

	Variance-Preserving SDEs
	Proof of Proof of Proposition 4
	Example 1: (t)=(b+at)
	Example 2: (t)=aebt

	Constant Coefficient SDE
	Proof of Corollary 21



