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Abstract

We investigate sample-based learning of conditional distributions on multi-dimensional unit boxes,
allowing for different dimensions of the feature and target spaces. Our approach involves clustering
data near varying query points in the feature space to create empirical measures in the target
space. We employ two distinct clustering schemes: one based on a fixed-radius ball and the other
on nearest neighbors. We establish upper bounds for the convergence rates of both methods and,
from these bounds, deduce optimal configurations for the radius and the number of neighbors. We
propose to incorporate the nearest neighbors method into neural network training, as our empirical
analysis indicates it has better performance in practice. For efficiency, our training process utilizes
approximate nearest neighbors search with random binary space partitioning. Additionally, we
employ the Sinkhorn algorithm and a sparsity-enforced transport plan. Our empirical findings
demonstrate that, with a suitably designed structure, the neural network has the ability to adapt
to a suitable level of Lipschitz continuity locally. For reproducibility, our code is available at
https://github.com/zcheng-a/LCD_kNN.

Keywords: non-parametric statistics, Wasserstein distance, deep learning, Lipschitz continuity

1. Introduction

Learning the conditional distribution is a crucial aspect of many decision-making scenarios. While
this learning task is generally challenging, it presents unique complexities when explored in a contin-
uous space setting. Below, we present a classic example (cf. Booth et al. (1992); Pflug and Pichler
(2016)) that highlights this core challenge.
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For simplicity, we suppose the following model

Y = 1
2X + 1

2U,

where the feature variable X and the noise U are independent Uniform([0, 1]), and Y is the target
variable. Upon collecting a finite number of independent samples D = {(Xm, Ym)}Mm=1, we aim
to estimate the conditional distribution of Y given X. Throughout, we treat this conditional
distribution as a measure-valued function of x, denoted by Px. A naive approach is to first form an
empirical joint measure

ψ̂ :=
1

M

M∑
m=1

δ(Xm,Ym),

where δ stands for the Dirac meaasure, and then use the conditional distribution induced from ψ̂
as an estimator. As the marginal distribution of X is continuous, with probability 1 (as P(Xm =
Xm′) = 0 for all m 6= m′), we have that1

P̂x =

{
δYm , x = Xm for some m,

Uniform([0, 1]), otherwise.

Regardless of the sample size M , P̂x fails to approximate the true conditional distribution,

Px = Uniform
(
[x, x+ 1

2 ]
)
, x ∈ [0, 1].

Despite the well-known convergence of the (joint) empirical measure to the true distribution
Dudley (1969); Fournier and Guillin (2015), the resulting conditional distribution often fails to
provide an accurate approximation of the true distribution. This discrepancy could be due to the
fact that calculating conditional distribution is an inherently unbounded operation. As a remedy,
clustering is a widely employed technique. Specifically, given a query point x in the feature space,
we identify samples where Xm is close to x and use the corresponding Ym’s to estimate Px. Two
prominent methods within the clustering approach are the kernel method and the nearest neighbors
method2. Roughly speaking, the kernel method relies primarily on proximity to the query point
for selecting Xm’s, while the nearest neighbors method focuses on the rank of proximity. Notably,
discretizing the feature space (also known as quantization), a straightforward yet often effective
strategy, can be seen as a variant of the kernel method with static query points and flat kernels.

The problem of estimating conditional distributions can be addressed within the non-parametric
regression framework, by employing clustering or resorting to non-parametric least squares, among
others. Alternatively, it is feasible to estimate the conditional density function directly: a widely-
used method involves estimating the joint and marginal density functions using kernel smoothing
and then calculating their ratio. This method shares similarities with the clustering heuristics
mentioned earlier. For a more detailed review of these approaches, we refer to Section 1.2.

This work draws inspiration from recent advancements in estimating discrete-time stochastic
processes using conditional density function estimation (Pflug and Pichler (2016)) and quantization
methods (Backhoff et al. (2022); Acciaio and Hou (2023)). A notable feature of these works is
their use of the Wasserstein distance to calculate local errors: the difference between the true and
estimated conditional distributions at a query point x. One could average these local errors across

1. In accordance to the model, we set the conditional distribution to Uniform([0, 1]) at points where it is not well-
defined.

2. These should not be confused with similarly named methods used in density function estimation.
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Learning conditional distributions on continuous spaces

different values of x’s to gauge the global error. Employing Wasserstein distances naturally frames
the study within the context of weak convergence, thereby enabling discussions in a relatively
general setting, although this approach may yield somewhat weaker results in terms of the mode
of convergence. Moreover, utilizing a specific distance rather than the general notion of weak
convergence enables a more tangible analysis of the convergence rates and fluctuations. We would
like to point out that the advancements made in Backhoff et al. (2022); Acciaio and Hou (2023),
as well as our analysis in this paper, relies on recent developments concerning the Wasserstein
convergence rate of empirical measures under i.i.d. sampling from a static distribution (cf. Fournier
and Guillin (2015)).

1.1 Main contributions

First, we introduce some notations to better illustrate the estimators that we study. Let X and Y be
multi-dimensional unit cubes, with potentially different dimensions, for feature and target spaces.
For any integer M ≥ 1, any D = {(xm, ym)}Mm=1 ∈ (X×Y)M , and any Borel set A ⊂ X, we define a
probability measure on Y by

µ̂DA :=


(∑M

m=1 1A(xm)
)−1∑M

m=1 1A(xm)δym ,
∑M

m=1 1A(xm) > 0,

λY, otherwise,
(1)

where λY is the Lebesgue measure on Y and, for y ∈ Y, δy is a Dirac measure with atom at y. In
general, one could consider weighting δym ’s (cf. (Györfi et al., 2002, Section 5), (Biau and Devroye,
2015, Chapter 5)), which may offer additional benefits in specific applications. As such adjustments
are unlikely to affect the convergence rate, however, we use uniform weighting for simplicity.

With (random) data D = {(Xm, Ym)}Mm=1, we aim to estimate the conditional distribution of Y
given X. We view this conditional distribution as a measure-valued function P : X → P(Y) and
use a subscript for the input argument and write Px. Consider a clustering scheme3 given by the
map AD : X → 2X. We investigate estimators of the form x 7→ µ̂DAD(x)

. We use P̂A to denote said

estimator and suppress D from the notation for convenience. In later sections, we consider two
kinds of maps AD (i) a ball with fixed radius centered at x, called an r-box and (ii) the k nearest
neighbors of x, called k-nearest-neighbor estimator. See Definitions 5 and 9 for more details.

One of our main contribution pertains to analyzing the error∫
X
W
(
Px, P̂

A
x

)
ν(dx), (2)

where W is the 1-Wasserstein distance (see (Villani, 2008, Particular Case 6.2)) and ν ∈ P(X)
is arbitrary and provides versatility to the evaluation criterion. A canonical choice for ν is the
Lebesgue measure on X, denoted by λX. This is particularly relevant in control settings where
X represents the state-action space and accurate approximations across various state and action
scenarios are crucial for making informed decisions. The form of error above is also foundational
in stochastic process estimation under the adapted Wasserstein distance (cf. (Backhoff et al., 2022,
Lemma 3.1)), making the techniques we develop potentially relevant in other contexts. Under the
assumption that P is Lipschitz continuous (Assumption 2) and standard assumptions on the data
collection process (Assumption 3), we analyze the convergence rate and fluctuation by bounding

3. In general, the clustering scheme may require information on (x1, . . . , xM ). For example, clustering the k-nearest-
neighbor near a query point x requires to know all xm’s.
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the following two quantities

E
[∫

X
W
(
Px, P̂

A
x

)
ν(dx)

]
and Var

[∫
X
W
(
Px, P̂

A
x

)
ν(dx)

]
.

Moreover, by analyzing the above quantities, we gain insights into the optimal choice of the clus-
tering mapping A. For the detail statements of these results, we refer to Theorems 7, 10, 8, and 11.
We also refer to Section 2.4 for related comments.

To illustrate another aspect of our contribution, we note by design x 7→ P̂Ax is piece-wise con-
stant. This characteristic introduces limitations. Notably, it renders the analysis of performance
at the worst-case x elusive. Contrastingly, by building a Lipschitz-continuous parametric estimator
P̃Θ from the raw estimator P̂A, in Proposition 13 we demonstrate that an upper bound on the
aforementioned expectation allows us to derive a worst-case performance guarantee. Guided by
Proposition 13, we explore a novel approach of training a neural network for estimation, by using
P̂A as training data and incorporating suitably imposed Lipschitz continuity. To be comprehensive,
we include in Section 1.2 a review of studies on Lipschitz continuity in neural networks.

In Section 3.1, we define P̃ θ as a neural network that approximates P , where θ represents the
network parameters. We train P̃ θ with the objective:

arg min
θ

N∑
n=1

W
(
P̂A
X̃n
, P̃ θ

X̃n

)
,

where (X̃n)Nn=1 is a set of randomly selected query points. For implementation purposes, we use

the k-nearest-neighbor estimator in the place of P̂A (see Definition 9). To mitigate the computa-
tional costs stemming from the nearest neighbors search, we employ the technique of Approximate
Nearest Neighbor Search with Random Binary Space Partitioning (ANN-RBSP), as discussed in
Section 3.1.1. In Section 3.1.2, we computeW using the Sinkhorn algorithm, incorporating normal-
ization and enforcing sparsity for improved accuracy. To impose a suitable level of local Lipschitz
continuity on P̃ θ, in Section 3.1.3, we employ a neural network with a specific architecture and
train the networks using a tailored procedure. The key component of this architecture is the con-
vex potential layer introduced in Meunier et al. (2022). In contrast to most extant literature that
imposes Lipschitz continuity on neural networks, our approach does not utilize specific constraint
or regularization of the objective function, but relies on certain self-adjusting mechanism embedded
in the training.

In Section 3.2, we evaluate the performance of the trained P̃ θ, denoted by P̃Θ, using three
sets of synthetic data in 1D and 3D spaces. Our findings indicate that P̃Θ generally outperforms
P̂A, even though it is initially trained to match P̂A. This superior performance persists even
when comparing P̃Θ to different P̂A using various clustering parameters, without retraining P̃Θ.
Furthermore, despite using the same training parameters, P̃Θ consistently demonstrates the ability
to adapt to a satisfactory level of local Lipschitz continuity across all cases. Moreover, in one of
the test cases, we consider a kernel that exhibits a jump discontinuity, and we find that P̃Θ handles
this jump case well despite Lipschitz continuity does not hold.

Lastly, we provide further motivation of our approach by highlighting some potential applications
for P̃Θ. The first application is in model-based policy gradient method in reinforcement learning.
We anticipate that the enforced Lipschitz continuity allows us to directly apply the policy gradient
update via compositions of P̃Θ and cost function for more effective optimality searching. The
second application of P̃Θ is in addressing optimisation in risk-averse Markov decision processes,
where dynamic programming requires knowledge beyond the conditional expectation of the risk-to-
go (cf. Chow et al. (2015); Huang and Haskell (2017); Coache et al. (2023); Cheng and Jaimungal
(2023)). The study of these applications is left for further research.
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1.2 Related works

In this section, we will first review the clustering approach in estimating conditional distributions,
and then proceed to review recent studies on Lipschitz continuity in neural networks.

1.2.1 Estimating conditional distributions via clustering

The problem of estimating conditional distributions is frequently framed as non-parametric re-
gression problems for real-valued functions. For instance, when dY = 1, estimate the conditional
α-quantile of Y given X. Therefore, we begin by reviewing some of the works in non-parametric
regression.

The kernel method in non-parametric regression traces its origins back to the Nadaraya-Watson
estimator (Nadaraya (1964); Watson (1964)), if not earlier. Subsequent improvements have been
introduced, such as integral smoothing (Gasser and Müller (1979), also known as the Gasser-Müller
estimator), local fitting with polynomials instead of constants (Fan (1992)), and adaptive kernels
(Hall et al. (1999)). Another significant area of discussion is the choice of kernel bandwidth, as
detailed in works like Hardle and Marron (1985); Gijbels and Goderniaux (2004); Köhler et al.
(2014). Regarding convergence rates, analyses under various settings can be found in Stone (1982);
Hall and Hart (1990); Kohler et al. (2009, 2010), with Stone (1982) being particularly relevant to
our study for comparative purposes. According to Stone (1982), if the target function is Lipschitz
continuous, with i.i.d. sampling and that the sampling distribution in the feature space has a
uniformly positive density, then the optimal rate of the ‖·‖1-distance between the regression function

and the estimator is of the order M
− 1
dX+2 . For a more comprehensive review of non-parametric

regression using kernel methods, we refer to the books such as Györfi et al. (2002); Ferraty and
Vieu (2006); Wasserman (2006) and references therein.

Non-parametric regression using nearest neighbors methods originated from classification prob-
lems (Fix and Hodges (1951)). Early developments in this field can be found in Mack (1981);
Devroye (1982); Bhattacharya and Gangopadhyay (1990). For a comprehensive introduction to
nearest neighbors methods, we refer to Györfi et al. (2002). More recent reference such as Biau
and Devroye (2015) offers further detailed exploration of the topic. The nearest neighbor method
can be viewed as a variant of the kernel method that adjusts the bandwidth based on the number
of local data points—a property that has gained significant traction. Recently, the application of
the nearest neighbor method has expanded into various less standard settings, including handling
missing data (Rachdi et al. (2021)), reinforcement learning (Shah and Xie (2010); Giegrich et al.
(2024)), and time series forecasting (Mart́ınez et al. (2017)). For recent advancements in conver-
gence analysis beyond the classical setting, see Zhao and Lai (2019); Padilla et al. (2020); Ryu and
Kim (2022); Demirkayaa et al. (2024).

Although the review above mostly focuses on clustering approach, other effective approaches
exist, such as non-parametric least square, or more broadly, conditional elicitability (e.g., Györfi
et al. (2002); Muandet et al. (2017); Wainwright (2019); Coache et al. (2023)). Non-parametric
least square directly fits the data using a restricted class of functions. At first glance, this approach
appears distinct from clustering. However, they share some similarities in their heuristics: the
rigidity of the fitting function, due to imposed restrictions, allows data points near the query point
to affect the estimation, thereby implicitly incorporating elements of clustering.

Apart from non-parametric regression, conditional density function estimation is another signif-
icant method for estimating conditional distributions. One approach is based on estimating joint
and marginal density functions, and then using the ratio of these two to produce an estimator for the
conditional density function. A key technique used in this approach is kernel smoothing. Employing
a static kernel for smoothing results in a conditional density estimator that shares similar clustering
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heuristics to those found in the kernel method of non-parametric regression. For a comprehensive
overview of conditional density estimation, we refer to reference books such as Scott (2015); Simonoff
(1996). For completeness, we also refer to (Muandet et al., 2017, Section 5.1) for a perspective on
static density function estimation from the standpoint of reproducing kernel Hilbert space. Further
discussions on estimation using adaptive kernels can be found in, for example, Bashtannyk and
Hyndman (2001); Lacour (2007); Bertin et al. (2016); Zhao and Tabak (2023).

Despite extensive research in non-parametric regression and conditional density function esti-
mation, investigations from the perspective of weak convergence have been relatively limited, only
gaining more traction in the past decade. Below, we highlight a few recent studies conducted in
the context of estimating discrete-time stochastic processes under adapted Wasserstein distance, as
the essence of these studies are relevant to our evaluation criterion (2). Pflug and Pichler (2016)
explores the problem asymptotically, employing tools from conditional density function estimation
with kernel smoothing. Subsequently, Backhoff et al. (2022) investigates a similar problem with a
hypercube as state space, employing the quantization method. Their approach removes the need
to work with density functions. They calculate the convergence rate, by leveraging recent devel-
opments in the Wasserstein convergence rate of empirical measures Fournier and Guillin (2015).
Moreover, a sub-Gaussian concentration with parameter M−1 is established. The aforementioned
results are later extended to Rd in Acciaio and Hou (2023), where a non-uniform grid is used to mit-
igate assumptions on moment conditions. Most recently, Hou (2024) examines smoothed variations
of the estimators proposed in Backhoff et al. (2022); Acciaio and Hou (2023). Other developments
on estimators constructed from smoothed quantization can be found in Šmı́d and Kozmı́k (2024).

Lastly, regarding the machine learning techniques used in estimating conditional distributions,
conditional generative models are particularly relevant. For reference, see Mirza and Osindero
(2014); Papamakarios et al. (2017); Vaswani et al. (2017); Fetaya et al. (2020). These models have
achieved numerous successes in image generation and natural language processing. We suspect
that, due to the relatively discrete (albeit massive) feature spaces in these applications, clustering
is implicitly integrated into the training procedure. In continuous spaces, under suitable setting,
clustering may also become an embedded part of the training procedure. For example, implemen-
tations in Li et al. (2020b); Vuletić et al. (2024); Hosseini et al. (2024) do not explicitly involve
clustering and use training objectives that do not specifically address the issues highlighted in the
motivating example at the beginning of the introduction. Their effectiveness could possibly be
attributed to certain regularization embedded within the neural network and training procedures.
Nevertheless, research done in continuous spaces that explicitly uses clustering approaches when
training conditional generative models holds merit. Such works are relatively scarce. For an ex-
ample of this limited body of research, we refer to Xu and Acciaio (2022), where the conditional
density function estimator from Pflug and Pichler (2016) is used to train an adversarial generative
network for stochastic process generation.

1.2.2 Lipschitz continuity in neural networks

Recently, there has been increasing interest in understanding and enforcing Lipschitz continuity
in neural networks. The primary motivation is to provide a certifiable guarantee for classification
tasks performed by neural networks: it is crucial that minor perturbations in the input object have
a limited impact on the classification outcome.

One strategy involves bounding the Lipschitz constant of a neural network, which can then be
incorporated into the training process. For refined upper bounds on the (global) Lipschitz constant,
see, for example, Bartlett et al. (2017); Virmaux and Scaman (2018); Tsuzuku et al. (2018); Fazlyab
et al. (2019); Xue et al. (2022); Fazlyab et al. (2024). For local bounds, we refer to Jordan and
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Dimakis (2021); Bhowmick et al. (2021); Shi et al. (2022) and the references therein. We also refer
to Zhang et al. (2022) for a study of the Lipschitz property from the viewpoint of boolean functions.

Alternatively, designing neural network architectures that inherently ensure desirable Lipschitz
constants is another viable strategy. Works in this direction include Meunier et al. (2022); Singla
et al. (2022); Wang and Manchester (2023); Araujo et al. (2023). Notably, the layer introduced in
Meunier et al. (2022) belongs to the category of residual connection (He et al. (2016)).

Below, we review several approaches that enforce Lipschitz constants during neural network
training. Tsuzuku et al. (2018); Liu et al. (2022) explore training with a regularized objective func-
tion that includes upper bounds on the network’s Lipschitz constant. Gouk et al. (2021) frame the
training problem into constrained optimization and train with projected gradients descent. Given
the specific structure of the refined bound established in Fazlyab et al. (2019), Pauli et al. (2022)
combines training with semi-definite programming. They develop a version with a regularized ob-
jective function and another that enforces the Lipschitz constant exactly. Fazlyab et al. (2024) also
investigates training with a regularized objective but considers Lipschitz constants along certain di-
rections. Huang et al. (2021) devises a training procedure that removes components from the weight
matrices to achieve smaller local Lipschitz constants. Trockman and Kolter (2021) initially imposes
orthogonality on the weight matrices, and subsequently enforces a desirable Lipschitz constant
based on that orthogonality. Ensuring desirable Lipschitz constants with tailored architectures,
Singla et al. (2022); Wang and Manchester (2023) train the networks directly. Although the archi-
tecture proposed in Meunier et al. (2022) theoretically ensures the Lipschitz constant, it requires
knowledge of the spectral norm of the weight matrices, which does not admit explicit expression in
general. Their training approach combines power iteration for spectral norm approximation with
the regularization methods used in Tsuzuku et al. (2018).

Finally, we note that due to their specific application scenarios, these implementations concern
relatively stringent robustness requirements and thus necessitate more specific regularization or
constraints. In our setting, it is generally desirable for the neural network to automatically adapt to
a suitable level of Lipschitz continuity based on the data, while also avoiding excessive oscillations
from over-fitting. The literature directly addressing this perspective is limited (especially in the
setting of conditional distribution estimation). We refer to Bai et al. (2021); Bountakas et al.
(2023); Cohen et al. (2019) for discussions that could be relevant.

1.3 Organization of the paper

Our main theoretical results are presented in Section 2. Section 3 is dedicated to the training of P̃Θ.
We will outline the key components of our training algorithm and demonstrate its performance on
three sets of synthetic data. We will prove the theoretical results in Section 4. Further implementa-
tion details and ablation analysis are provided in Section 5. In Section 6, we discuss the weaknesses
and potential improvements of our implementation. Appendix B and C respectively contain ad-
ditional plots and a table that summarizes the configuration of our implementation. Additionally,
Appendix D includes a rougher version of the fluctuation results.

Notations and terminologies

Throughout, we adopt the following set of notations and terminologies.

◦ On any normed space (E, ‖ · ‖), for all x ∈ E and γ > 0, B(x, γ) denotes the closed ball of
radius γ around x, namely B(x, γ) = {x′ ∈ E | ‖x− x′‖ ≤ γ}.

◦ For any measurable space (E,E ), P(E) denotes the set of probability distributions on (E,E ).
For all x ∈ E, δx ∈ P(E) denotes the Dirac mass at x.
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◦ We endow normed spaces (E, ‖ · ‖) with their Borel sigma-algebra B(E), and W denotes the
1-Wasserstein distance on P(E).

◦ On X = [0, 1]d, we denote by λX the Lebesgue measure. We say a measure ν ∈ P(X) is
dominated by Lebesgue measure with a constant C > 0 if ν(A) ≤ CλX(A) for all A ∈
B([0, 1]d).

◦ The symbol ∼ denotes equivalence in the sense of big O notation, indicating that each side
dominates the other up to a multiplication of some positive absolute constant. More precisely,
an ∼ bn means there are finite constants c, C > 0 such that

c an ≤ bn ≤ C an, n ∈ N.

Similarly, . implies that one side is of a lesser or equal, in the sense of big O notation,
compared to the other.

2. Theoretical results

In Section 2.1, we first formally set up the problem and introduce some technical assumption. We
then study in Section 2.2 and 2.3 the convergence and fluctuation of two versions of P̂A, namely,
the r-box estimator and the k-nearest-neighbor estimator. Related comments are organized in
Section 2.4. Moreover, in Section 2.5, we provide a theoretical motivation for the use of P̃Θ, the
Lipschitz-continuous parametric estimator trained from P̂A.

2.1 Setup

For dX, dY ≥ 1 two integers, we consider X := [0, 1]dX and Y := [0, 1]dY , endowed with their respective
sup-norm ‖ · ‖∞.

Remark 1 The sup-norm is chosen for simplicity of the theoretical analysis only: as all norms
on Rn are equivalent (for any generic n ≥ 1), our results are valid, up to different multiplicative
constants, for any other choice of norm.

We aim to estimate an unknown probabilistic kernel

P : X→ P(Y)

x 7→ Px(dy).

To this end, given an integer-valued sample size M ≥ 1, we consider a set of (random) data
points D := {(Xm, Ym)}Mm=1 associated to P . We also define the set of projections of the data points
onto the feature space as DX := {Xm}Mm=1.

Throughout this section, we work under the following technical assumptions.

Assumption 2 (Lipschitz continuity of kernel) There exists L ≥ 0 such that, for all (x, x′) ∈
X2,

W(Px, Px′) ≤ L‖x− x′‖∞.

Assumption 3 The following is true:

8
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(i) D is i.i.d.with probability distribution ψ := ξ⊗P , where ξ ∈ P(X) and where ξ⊗P ∈ P(X×Y)
is (uniquely, by Caratheodory extension theorem) defined by

(ξ ⊗ P ) (A×B) :=

∫
X
1A(x)Px(B)ξ(dx), A ∈ B(X), B ∈ B(Y).

(ii) There exists c ∈ (0, 1] such that, for all A ∈ B(X), ξ(A) ≥ c λX(A).

These assumptions allow us to analyze convergence and gain insights into the optimal clustering
hyper-parameters without delving into excessive technical details. Assumption 2 is mainly used for
determining the convergence rate. If the convergence rate is not of concern, it is possible to establish
asymptotic results with less assumptions. We refer to Devroye (1982); Backhoff et al. (2022) for
relevant results. The conditions placed on ξ in Assumption 3 are fairly standard, though less
stringent alternatives are available. For instance, Assumption 3 (i) can be weakened by considering
suitable dependence Hall and Hart (1990) or ergodicity in the context of stochastic processes Rudolf
and Schweizer (2018). Assumption 3 (ii), implies there is mass almost everywhere and is aligned
with the motivation from control settings discussed in the introduction. Assumptions 2 and 3 are
not exceedingly stringent and provides a number of insights into the estimation problem. More
general settings are left for further research.

The estimators discussed in subsequent sections are of the form P̂A, as introduced right after
(1), for two specific choices of clustering schemes A constructed with the data D.

Remark 4 In the following study, we assert all the measurability needed for P̂A to be well-defined.
These measurability can be verified using standard measure-theoretic tools listed in, for example,
(Aliprantis and Border, 2006, Section 4 and 15).

2.2 Results on r-box estimator

The first estimator, which we term the r-box estimator, is defined as follows.

Definition 5 Choose r, a real number, s.t. 0 < r < 1
2 . The r-box estimator for P is defined by

P̂ r : X→ P(Y)

x 7→ P̂ rx := µ̂DBr(x),

where, for all x ∈ X, Br(x) := B(βr(x), r) and βr(x) := r ∨ x ∧ (1− r), where r ∨ · and · ∧ (1− r)
are applied entry-wise.

Remark 6 The set Br(x) is defined such that it is a ball of radius around x whenever x is at least r
away from the boundary ∂X (in all of its components), otherwise, we move the point x in whichever
components are within r from ∂X to be a distance r away from ∂X. Consequently, for all 0 < r < 1

2
and for all x ∈ X, Br(x) has a bona fide radius of r, as the center βr(x) is smaller or equal to r
away from ∂X.

For the r-box estimator, we have the following convergence results. The theorem below discusses
the convergence rate of the average Wasserstein distance between the unknown kernel evaluated at
any point and its estimator, when the radius r is chosen optimally with respect to the data sample
M . Section 4.2 is dedicated to its proof.
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Theorem 7 Under Assumptions 2 and 3, choose r as follows

r ∼

M
− 1
dX+2 , dY = 1, 2

M
− 1
dX+dY , dY ≥ 3.

Then, there is a constant C > 0 (which depends only on dX, dY, L, c), such that, for all probability
distribution ν ∈ P(X), we have

E
[∫

X
W
(
Px, P̂

r
x

)
ν(dx)

]
≤ sup

x∈X
E
[
W
(
Px, P̂

r
)]
≤ C ×


M
− 1
dX+2 , dY = 1,

M
− 1
dX+2 ln(M), dY = 2,

M
− 1
dX+dY , dY ≥ 3.

(3)

Next, we bound the associated variance whose proof is postponed to Section 4.3.

Theorem 8 Under Assumptions 3, consider r ∈ (0, 1
2 ]. Let ν ∈ P(X) be dominated by λX with a

constant C > 0. Then,

Var

[∫
X
W
(
Px, P̂

r
x

)
dν(x)

]
≤ 4dX+1C

2

c2(M + 1)
.

2.3 Results on k-nearest-neighbor estimator

Here, we focus in the second estimator – the k-nearest-neighbor estimator, defined as follows.

Definition 9 Let k ≥ 1 an integer. The k-nearest-neighbor estimator for P is defined by

P̌ k : X→ P(Y)

x 7→ P̌ kx := µ̂DN k,DX (x)
,

where, for any integer M ≥ 1 and any DX ∈ XM , N k,DX(x) contains (exactly) k points of DX which
are closest to x, namely

N k,DX(x) :=
{
x′ ∈ DX

∣∣ ‖x− x′‖∞ is among the k-smallest of (‖x− x′‖∞)x′∈DX

}
,

Here, in case of a tie when choosing the k-th smallest, we break the tie randomly with uniform
probability.

We have the following analogs of the convergence results (Theorems 7 and 8) for the k-nearest-
neighbor estimator. The proofs are postponed to Section 4.4 and Section 4.5, respectively.

Theorem 10 Under Assumptions 2 and 3, and choosing k as

k ∼

M
2

dX+2 , dY = 1, 2,

M
dY

dX+dY , dY ≥ 3,

there is a constant C > 0 (which depends only on dX, dY, L, c), such that, for all probability distri-
bution ν ∈ P(X), we have

E
[∫

X
W
(
Px, P̌

k
x

)
ν(dx)

]
≤ sup

x∈X
E
[
W
(
Px, P̌

k
x

)]
≤ C ×


M
− 1
dX+2 , dY = 1,

M
− 1
dX+2 lnM, dY = 2,

M
− 1
dX+dY , dY ≥ 3.

(4)

10
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Theorem 11 Under Assumptions 3, for any ν ∈ P(X), we have

Var

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
≤ 1

k
. (5)

Moreover, if ν is dominated by λX with a constant C > 0, then

Var

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
≤ 22dX+1C

2
M

c2k2

((
8

√
2dX ln(M)

M − 1
+

k

M − 1

)2

+

√
2π√

M − 1

(
8

√
2dX ln(M)

M − 1
+

k

M − 1

)
+

4

M − 1

)
.

With k chosen as in Theorem 10, this reduces to

Var

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
.

M−
2(2∨dY)

dX+dY ln(M), 2 ∨ dY ≤ dX,
M−1, 2 ∨ dY > dX.

2.4 Comments on the convergence rate

This section gathers several comments on the convergence results we have developed in Sections 2.2
and 2.3.

2.4.1 On the convergence rate

We first comment on the expectations in Theorem 7 and 10.

Sharpness of the bounds. Currently, we cannot establish the sharpness of the convergence
rates in Theorems 7 and 10. However, we can compare our results to established results in similar
settings. For dY = 1, we may compare it to the optimal rate of non-parametric regression of a

Lipschitz continuous function. It is shown in Stone (1982) that the optimal rate is M
− 1
dX+2 , the

same as in Theorems 7 and 10 when dY = 1. For dY ≥ 3, as noted in Backhoff et al. (2022),
we may compare to the Wasserstein convergence rate of empirical measure in the estimation of a
static distribution on RdX+dY . We refer to Fournier and Guillin (2015) for the optimal rate, which
coincides with those in Theorems 7 and 10.

Error components. We discuss the composition of our upper bound on the expected average
Wasserstein error by dissecting the proof of Theorem 7 and 10. In the proofs, we decompose
the expected average errors into two components: approximation error and estimation error. The
approximation error occurs when treating Px′ as equal to Px when x′ is close to the query point
x, leading to an error of size L‖x− x′‖∞. The estimation error is associated with the Wasserstein
error of empirical measure under i.i.d. sampling (see (21)). From Definitions 5 and 9, the r-box
estimator effectively manages the approximation error but struggles with controlling the estimation
error, whereas the k-nearest-neighbor estimator exhibits the opposite behavior.

Explicit bounds. We primarily focus on analyzing the convergence rates of the r-box and
k-nearest-neighbor estimators as M → ∞. Therefore, within the proofs of these results, we track
only the rates (and ignore various constant coefficients). If more explicit bounds are preferred,
intermediate results such as (23), or (27) could be good starting points for computing them. Addi-
tionally, in Section A, we provide a numerical illustration that highlights the impact of the Lipschitz
constant L and the choices of r and k on the bounds.

11
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2.4.2 On the fluctuation

We next discuss the variances studied in Theorems 8 and 11. In Appendix D, we also include
results derived from the Azuma-Hoeffding inequality (e.g., (Wainwright, 2019, Corollary 2.20)),
though they provide rougher rates.

Condition that ν is dominated by λX. In Theorems 8 and 11, we assume that the ν is
dominated by λX. This assumption is somewhat necessary. To illustrate, let us examine the non-
parametric regression problem under a comparable scenario. We consider a fixed query point. In
this context, the central limit theorem for k-nearest-neighbor estimator is well-established, and the
normalizing rate is k−

1
2 (cf. (Biau and Devroye, 2015, Theorem 14.2)). This suggests that the rate

in (5) is sharp. For the r-box estimator, we believe that a supporting example can be constructed
where ν is highly concentrated. On the other hand, we conjecture that if ξ ∼ ν, the variance could
potentially attain the order of M−1. For a pertinent result, we direct the reader to (Backhoff et al.,
2022, Theorem 1.7).

Sharpness of the bounds. Regarding the variance in Theorem 8, it is upper bounded by the
commonly observed order of M−1. We believe that this rate is sharp, though we do not have a
proof at this time. As for Theorem 11, the variance is subject to a rougher rate when 2 ∨ dY ≤ dX.
We, however, conjecture that this variance attains the order of M−1 as long as ν is dominated by
λX.

2.5 Towards implementation with neural networks

In light of recent practices in machine learning, during the learning of P , we may combine the r-box
method or k-nearest-neighbor method into the training of certain parameterized model. To this end
we let

P̃ : T× X→ P(Y)

(θ, x) 7→ P̃ θx

be a parameterized model (e.g., a neural network), where T is the parameter space and θ ∈ T is the
parameter to be optimized over. Given an integer N ≥ 1, we may train P̃ θ on a set of query points
Q = (X̃n)Nn=1 satisfying the assumption below.

Assumption 12 The query points Q = {(X̃n)}Nn=1 are i.i.d. with uniform distribution over X, and
are independent of the data points D = {(Xm, Ym)}Mm=1.

We propose the training objectives below

arg min
θ∈T

1

N

N∑
n=1

W
(
P̂ r
X̃n
, P̃ θ

X̃n

)
or arg min

θ∈T

1

N

N∑
n=1

W
(
P̌ k
X̃n
, P̃ θ

X̃n

)
, (6)

that is, minimize the mean of 1-Wasserstein errors between the parametrized model and the empir-
ical r-box (or k-nearest-neighbour) approximation of the conditional distribution at the location of
the random query points.

The following proposition together with Theorem 7 or Theorem 10 justifies using the objectives
in (6). It is valid for any estimator for P that satisfies the bounds in (3) or (4). Centered on appropri-
ate Lipschitz continuity conditions, the proposition offers insights into the worst-case performance
guarantees. The proof is deferred to Section 4.6. We also refer to Altekrüger et al. (2023) for a
worst-case performance guarantee for conditional generative models, which is contingent upon Lip-
schitz continuity. For related practical approaches, we refer to, for example, Nguyen et al. (2024)
and the references therein. In contrast, similar guarantees for the r-box and k-nearest-neighbor
estimators are more elusive due to their inherently piece-wise constant nature.
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Proposition 13 Suppose Assumptions 2, 3, and 12 hold. Let P of P be an estimator constructed
using the data points D only. Consider a training procedure that produces a (random) Θ = Θ(D,Q)
satisfying

sup
x,x′∈X

W(P̃Θ
x , P̃

Θ
x′ )

‖x− x′‖∞
≤ LΘ (7)

for some (random) LΘ > 0. Then,

E
[∫

X
W(Px, P̃

Θ
x ) dx

]
≤ E

[
(L+ LΘ)W

(
λX,

1

N

N∑
n=1

δX̃n

)]

+ E
[∫

X
W(Px, P x) dx

]
+ E

[
1

N

N∑
n=1

W
(
P X̃n , P̃

Θ
X̃n

)]
.

(8)

Moreover, with probability 1,

sup
x∈X
W
(
Px, P̃

Θ
x

)
≤ (dX + 1)

1
dX+1 (L+ LΘ)

dX
dX+1

(∫
X
W(Px, P̃

Θ
x ) dx

) 1
dX+1

. (9)

Remark 14 Assuming LΘ ≤ L for some (deterministic) L > 0, by (9) and Jensen’s inequality, we
have

E
[
sup
x∈X
W
(
Px, P̃

Θ
x

)]
≤ (dX + 1)

1
dX+1 (L+ L)

dX
dX+1E

[∫
X
W(Px, P̃

Θ
x ) dx

] 1
dX+1

.

This together with (8) provides a worst-case performance guarantee for P̃Θ.

Remark 15 Proposition 13 along with Remark 14 provides insights into the worst-case perfor-
mance guarantees, but more analysis is needed. Specifically, understanding the magnitude of LΘ

and E
[

1
N

∑N
n=1W(P X̃n , P̃

Θ
X̃n

)
]

requires deeper knowledge of the training processes for P̃Θ, which

are currently not well understood in the extant literature. Alternatively, in the hypothetical case

where P̃Θ = P , LΘ would match L as specified in Assumption 2, and E
[

1
N

∑N
n=1W

(
P X̃n , P̃

Θ
X̃n

)]
would obey Theorem 7 or 10. However, practical applications must also consider the universal ap-
proximation capability of P̃ θ. To the best of our knowledge, research on universal approximation
with regularity constraints remains relatively limited. For a somewhat related study, we refer to
Hong and Kratsios (2024) who explore the approximation of real-valued functions under Lipschitz
continuity constraints.

3. Implementation with neural networks

Let X and Y be equipped with ‖ · ‖1. Following the discussion in Section 2.5, we let P̃ θ : X→ P(Y)
be parameterized by a neural network and develop an algorithm that trains P̃ θ based on k-nearest-
neighbor estimator. The k-nearest-neighbor estimator P̌ k is preferred as P̌ kx consistently outputs
k atoms. This regularity greatly facilities implementation. For instance, it enables the use of 3D
tensors during Sinkhorn iterations to enhance execution speed (see Section 3.1.2 later). We refer
also to the sparsity part of Section 5.2 for another component that necessitates the aforementioned
regularity of P̌ k. These components would not be feasible with the r-box estimator P̂ r, as P̂ rx
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produces an undetermined number of atoms. Furthermore, there is a concern that in some realiza-
tions, P̂ rx at certain x may contain too few data points, potentially leading P̃Θ

x to exhibit unrealistic
concentration.

We next provide some motivation for this implementation. For clarity, we refer to the r-box
estimator and the k-nearest-neighbor estimator as raw estimators. Additionally, we refer to P̃Θ,
once trained, as the neural estimator. While raw estimators are adequate for estimating P on
their own, they are piece-wise constant in x by design. On the other hand, a neural estimator is
continuous in x. This continuity provides a performance guarantee in supW distance, as outlined
in Proposition 13 and the following remark. Moreover, the neural estimator inherently possesses
gradient information. As discussed in the introduction, this feature renders the neural estimators
useful in downstream contexts where gradient information is important, e.g., when performing
model-based reinforcement learning.

We construct P̃ θ such that it maps x ∈ X to atoms in Y with equal probabilities. For the related
universal approximation theorems, we refer to Kratsios (2023); Acciaio et al. (2024). We represent
these atoms with a vector with Natom entries denoted by yθ(x) = (yθ1(x), . . . , yθNatom

(x)) ∈ YNatom ,
where Natom ∈ N is chosen by the user. In our implementation, we set Natom = k. To be precise,
we construct P̃ θ such that

P̃ θx =
1

Natom

Natom∑
j=1

δyθj (x), x ∈ N. (10)

This is known as the Lagrangian discretization (see (Peyré and Cuturi, 2019, Section 9)). In
Algorithm 1, we present a high level description of our implementation of training P̃ θ based on the
raw k-nearest-neighbor estimator.

Algorithm 1 Deep learning conditional distribution in conjunction with k-NN estimator

Input: data {(Xm, Ym)}Mm=1 valued in RdX × RdY , neural estimator P̃ θ represented by yθ(x) as elaborated in (10),
parameters such as k,Natoms, Nbatch ∈ N+, and learning rate ηθ

Output: trained parameter Θ for the neural estimator
1: repeat
2: for n = 1, . . . , Nbatch do
3: generate a query point X̃n ∼ Uniform(X)
4: find the k nearest neighbors of X̃n from data (Xm)Mm=1 and collect accordingly (Ỹn,i)

k
i=1

5: end for
6: compute with Sinkhorn algorithm (Y is equipped with ‖ · ‖1)

L[θ] :=

Nbatch∑
n=1

W

 1

k

k∑
i=1

δỸn,i
,

1

Natom

Natom∑
j=1

δyθj (X̃n)

 (11)

7: update θ ← θ − ηθ∇θL[θ]
8: until Convergence
9: return Θ = θ

3.1 Overview of key components

In this section, we outline the three key components of our implementation. Each of these compo-
nents addresses a specific issue:

◦ Managing the computational cost arising from the nearest neighbors search.

◦ Implementing gradient descent after computing W.
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Figure 1: An instance of RBSP in [0, 1]2.

The 2D unit box is partitioned into 16 rectangles based on 500 samples from Uniform([0, 1]). Note that the
overlap between the bounding rectangles is intentionally maintained. Each partitioning is performed along

an axis selected at random, dividing the samples within the pre-partitioned rectangle according to a
random ratio drawn from Uniform([0.45, 0.55]). The edge ratio for mandatory bisecting along the longest

edge is 5. If this ratio is exceeded, partitioning along the longest edge is enforced. The black dots represent
samples within the respective rectangle.

◦ Selecting an appropriate Lipschitz constant for the neural estimator, preferably at a local
level.

Further details and ablation analysis on these three components can be found in Section 5.

3.1.1 Approximate Nearest Neighbors Search with Random Binary Space
Partitioning (ANNS-RBSP)

Given a query point, performing an exact search for its k-nearest-neighbor requires O(M) opera-
tions. While a single search is not overly demanding, executing multiple searches as outlined in
Algorithm 1 can result in significant computational time, even when leveraging GPU-accelerated
parallel computing. To address this, we use ANNS-RBSP as a more cost-effective alternative. Prior
to searching, we sort (Xm)Mm=1 along each axis and record the order of indices. During the search,
the data is divided into smaller subsets by repeatedly applying bisection on these sorted indices,
with a random bisecting ratio, on a randomly chosen axis. Furthermore, we apply a restriction
that mandates bisection along the longest edge of a rectangle when the edge ratio exceeds certain
value (a hyper-parameter of the model). We record the bounding rectangle for each subset created
through this partitioning process. Once partitioning is complete, we generate a small batch of query
points within each rectangle and identify the k nearest neighbors for each query point within that
same rectangle. For a visual representation of ANNS-BSP, we refer to Figure 1. Leveraging the
sorted indices, we can reapply this partitioning method during every training episode without much
computational cost. We refer to Section 5.1 for additional details. There are similar ideas in the
extant literature (cf. Hajebi et al. (2011); Ram and Sinha (2019); Li et al. (2020a)). Given the
substantial differences in our setting, however, we conduct further empirical analysis in Section 5.1
to showcase the advantage of our approach against exact search.
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3.1.2 Computing W for gradient descent

The following discussion pertains to the computation of (11), with the subsequent gradient descent
in consideration. For simplicity, let us focus on the summand and reduce the problem to the
following minimization. Let (ỹ1, . . . , ỹk) ∈ Yk be fixed, we aim to find

arg min
y∈Yn

W

1

k

k∑
i=1

δỹi ,
1

n

n∑
j=1

δyj

 . (12)

The criterion in (12) is convex asW is convex in both arguments (cf. (Villani, 2008, Theorem 4.8)).
To solve (12), as is standard, we cast it into a discrete optimal transport problem. To do so, first
introduce the (k×n)-cost matrix Cy, where Cy,ij := ‖ỹi−yj‖1. As the criterion in (12) has uniform
weights on the atoms, we next aim to solve the problem

arg min
T∈[0,1]k×n

ϕy(T) :=
∑

(i,j)∈{1,...,k}×{1,...,n}

TijCy,ij

 (13)

subject to
n∑
j=1

Tij =
1

k
, i = 1, . . . , k and

k∑
i=1

Tij =
1

n
, j = 1, . . . , n.

Let T∗y be an optimal transport plan that solves (13) for y fixed. Taking derivative of y 7→ ϕy(·)
yields

∂yjϕy(T)
∣∣
T=T∗y

=
∑

i∈{1,...,k}

T∗y,ij ∂yj‖ỹi − yj‖1, j = 1, . . . , n. (14)

This gradient is in general not the gradient corresponding to (12), as T∗y depends on y, while (14)
excludes such dependence. Nevertheless, it is still viable to update y using the gradient descent
that employs the partial gradient specified in (14). To justify this update rule, first consider y′ ∈ Y
satisfying ϕy′(T∗y) ≤ ϕy(T∗y), then observe that

W

1

k

k∑
i=1

δỹi ,
1

n

n∑
j=1

δy′j

 ≤ ϕy′(T∗y) ≤ ϕy(T∗y) =W

1

k

k∑
i=1

δỹi ,
1

n

n∑
j=1

δyj

 .

This inequality is strict if ϕy′(T∗y) < ϕy(T∗y). We refer to (Peyré and Cuturi, 2019, Section 9.1) and
the reference therein for related discussions.

The Sinkhorn algorithm, which adds an entropy regularization, is a widely-used algorithm for
approximating the solution to (13). Specifically, here, it is an iterative scheme that approximately
solves the following regularized problem, subject to the constraints in (13),

arg min
Tε∈[0,1]k×n

 ∑
i,j∈{1,...,k}×{i,...,n}

TεijCij + ε
∑

i,j∈{1,...,k}×{i,...,n}

Tεij(log Tij − 1)

 , (15)

where ε > 0 is a hyper-parameter, and should not be confused with the ε used elsewhere. We
refer to Section 5.2 for further details. We also refer to (Peyré and Cuturi, 2019, Section 4) and
the reference therein for convergence analysis of the Sinkhorn algorithm. It is well known that the
regularization term in (15) is related to the entropy of a discrete random variable. Larger values of
ε encourages the regularized optimal transport plan to be more diffusive. That is, for larger values
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of ε, the mass from each yj is distributed more evenly across all ỹi’s. Performing gradient descent
along the direction in (14) tends to pull yj ’s towards the median of the ỹi’s, as we are equipping
Y with the norm ‖ · ‖1. Conversely, small values of ε often leads to instability, resulting in NaN
loss/gradient. To help with these issues, we implement the Sinkhorn algorithm after normalizing
the cost matrix. Additionally, we use a large ε (e.g., 1) in the first few training episodes, then switch
to a smaller ε (e.g., 0.1) in later episodes. Furthermore, we impose sparsity on the transport plan by
manually setting the smaller entries of the transport plan to 0. The specific detailed configurations
and related ablation analysis are provided in Section 5.2 and Appendix C.

3.1.3 Network structure that induces locally adaptive Lipschitz continuity

As previously discussed, it is desirable for the neural estimator to exhibit certain Lipschitz continuity.
In practice, however, determining an appropriate Lipschitz constant for training the neural estimator
P̃ θ is challenging, largely because understanding the true Lipschitz continuity of P (if it exists)
in a data-driven manner is very challenging. Additionally, the estimate provided in Proposition
13 is probabilistic. Fortunately, a specific network structure allows the neural estimator, when
properly trained, to exhibit locally adaptive Lipschitz continuity. Subsequently, we provide a high-
level overview of this network structure. Further detailed configurations and ablation analysis are
presented in Section 5.3 and Appendix C.

Consider a fully connected feed-forward neural network with equal width hidden layers and
layer-wise residual connection (He et al. (2016)). Let Nneuron denote the width of the hidden layers.
For activation, we use Exponential Linear Unit (ELU) function (Clevert et al. (2016)), denoted by
σ. For hidden layers, we employ the convex potential layer introduced in Meunier et al. (2022),

xout = xin − ‖W‖−1
2 WTσ (Wxin + b) . (16)

By (Meunier et al., 2022, Proposition 3), the convex potential layer is 1-Lipschitz continuous in
‖ · ‖2 sense. For the input layer, with a slight abuse of notation, we use

xout = N−1
neurondiag(|W|−1

1 ∧ 1)σ (Wxin + b) , (17)

where |W|1 computes the absolute sum of each row of the weight matrix to form a vector of size
Nneuron, the reciprocal and · ∧ 1 are applied entry-wise, and diag produces a diagonal square matrix
based on the input vector. In short, the normalization in (17) is only applied to the rows of W
with `1-norm exceeding 1. Consequently, the input layer is 1-Lipschitz continuous in ‖ · ‖1 sense. A
similar treatment is used for the output layer but without activation,

xout = L d−1
Y diag(|W|−1

1 ∧ 1) (Wxin + b) . (18)

where L > 0 is a hyper-parameter. The output represents atoms on Y with uniform weight,
therefore, no N−1

atom is required here.
The spectral norm ‖W‖2 in (16), however, does not, in general, have an explicit expression.

Following the implementation in Meunier et al. (2022), we approximate each ‖W‖2 with power
iteration. Power iterations are applied to all hidden layers simultaneously during training. To
control the pace of iterations, we combine them with momentum-based updating. We refer to
Algorithm 2 for the detailed implementation. Our implementation differs from that in Meunier
et al. (2022), as Meunier et al. (2022) controls the frequency of updates but not the momentum.
In a similar manner, for input and output layers, instead of calculating the row-wise `1-norm
explicitly, we update them with the same momentum used in the hidden layers. Our numerical
experiments consistently show that a small momentum value of τ = 10−3 effectively maintains
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Algorithm 2 Power iteration with momentum for updating ‖W‖2 estimate, applied to all convex
potential layers simultaneously at every epoch during training

Input: weight matrix W ∈ Rd×d of a convex potential layer, previous estimate ĥ ∈ R and auxiliary vector û ∈ Rd,
momentum τ ∈ (0, 1)

Output: updated ĥ and û, in particular, ĥ will be used as a substitute of ‖W‖2 in (16)
1: v←Wû/‖Wû‖2
2: u←WTv/‖WTv‖2
3: h← 2/

(∑
i(Wu · v)i

)2
4: ĥ← τ ĥ+ (1− τ)h
5: û← τ û + (1− τ)u
6: return ĥ, û

power
iteration

momentum-
based

updating

adaptive continuity while maintaining a satisfactory accuracy. The impact of L in (18) and τ in
Algorithm 2 is discussed in Section 5.3.

During training, due to the nature of our updating schemes, the normalizing constants do not
achieve the values required for the layers to be 1-Lipschitz continuous. We hypothesize that this
phenomenon leads to a balance that ultimately contributes to adaptive continuity: on one hand, the
weights W stretch to fit (or overfit) the data, while on the other, normalization through iterative
methods prevents the network from excessive oscillation. As shown in Section 5.3.2 and 5.3.3, the
L value in (18) and the momentum τ in Algorithm 2 affect the performance significantly. For
completeness, we also experiment with replacing (16) by fully connected feedforward layers similar
to (17), with or without batch normalization (Ioffe and Szegedy (2015)) after affine transformation.
This alternative, however, failed to produce satisfactory results.

3.2 Experiments with synthetic data

We consider data simulated from three different models. The first two have dX = dY = 1, while the
third has dX = dY = 3. Here we no longer restrict Y to be the unit box, however, we still consider
X to be a dX-dimensional unit box (not necessarily centered at the origin).

In Model 1 and 2, X ∼ Uniform([0, 1]). Model 1 is a mixture of two independent Gaussian
random variables with mean and variance depending on x,

Y = ξ
(

0.1
(
1 + cos(2πX)

)
+ 0.12

∣∣1− cos(2πX)
∣∣Z + 0.5

)
,

where Z ∼ Normal(0, 1) and ξ is a Rademacher random variable independent of Z. For Model 2,
we have

Y = 0.51[0,1)(X) + 0.5U,

where U ∼ Uniform([0, 1]). The conditional distribution in Model 2 is intentionally designed to be
discontinuous in the feature space. This choice was made to evaluate performance in the absence of
the Lipschitz continuity stipulated in Assumption 2. Model 3 is also a mixture of two independent
Gaussian random variables, constructed by considering X ∼ Uniform([−1

2 ,
1
2 ]3) and treating X as

a column vector (i.e., X take values in R3×1),

Y = ζ
(

cos(AX) + 0.1 cos(ΣX)W
)

+ (1− ζ)
(

cos(A′X) + 0.1 cos(Σ′X)W ′
)
.

Above, the cos functions act on vector/matrix entrywise, A ∈ R3×3, and Σx also takes value in R3×3.
Each element of Σx is defined as vijx for some vij ∈ R1×3. The entries of A and vij are drawn from
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standard normal in advance and remain fixed throughout the experiment. The matrices A′ and
Σ′x are similarly constructed. Furthermore, W and W ′ are independent three-dimensional standard
normal r.v.s, while ζ represents the toss of a fair coin, independent of X, W , and W ′.

For the purpose of comparison, two different network structures are examined. The first, termed
LipNet, is illustrated in Section 3.1. The second, termed StdNet, is a fully connected feedforward
network with layer-wise residual connections He et al. (2016), ReLU activation, and batch normal-
ization immediately following each affine transformation, without specifically targeting Lipschitz
continuity. With a hyper-parameter k for the k-nearest-neighbor estimator, which we specify later,
each network contains 5 hidden layers with 2k neurons. These networks are trained using the Adam
optimizer Kingma and Ba (2017) with a learning rate of 10−3. For StdNet in Model 1 and 2, the
learning rate is set to 0.01, as it leads to better performance. Other than the learning rates, StdNet
and LipNet are trained with identical hyper-parameters across all models. We refer to Appendix C
for a summary of hyper-parameters involved.

We generate 104 samples for Models 1 and 2. Given the convergence rate specified in Theorem
10, we note that the sample size are considered relatively small. For these two models, we chose
k = 100 and utilized neural networks P̃ θ that output atoms of size Natom = k. The choice of
k is determined by a rule of thumb. In particular, our considerations include the magnitude of
k suggested by Theorem 10 and the computational costs associated with the Sinkhorn iterations
discussed in Section 3.1.2. The results under Model 1 and 2 are plotted in Figure 2, 3 and 4. Figure
2 provides a perspective on joint distributions, while Figure 3 and 4 focus on conditional CDFs
across different x values.

Figure 2 suggets that both StdNet and LipNet adequately recover the joint distribution. The
LipNet’s accuracy is, however, notably superior and produces smooth movements of atoms (as seen
in the third row of Figure 2). Although further fine-tuning may provide slight improvements in
StdNet’s performance, StdNet will still not achieve the level of accuracy and smoothness observed
in LipNet. The average absolute value of derivative of each atom (fourth row of Figure 2), makes
it evident that LipNet demonstrates a capacity of automatically adapting to a suitable level of
Lipschitz continuity locally. In particular, in Model 2, the atoms of LipNet respond promptly to
jumps while remaining relatively stationary around values of x where the kernel is constant. We
emphasize that LipNet is trained using the same hyper-parameters across Models 1, 2, and 3.

Figure 3 shows the estimated conditional distribution at different values of x. Figure 3 indicates
that the raw k-nearest-neighbor estimator deviates frequently from the actual CDFs. This deviation
of the raw k-nearest-neighbor estimator is expected, as it attempts to estimate an unknown CDF
with only k = 100 samples given an x. Conversely, the neural estimator, especially the LipNet,
appears to offer extra corrections even if they are trained based on the raw k-nearest-neighbor
estimator. This could be attributed to neural estimators implicitly leveraging information beyond
the immediate neighborhood.

Figure 4 compares theW-distance between each estimator and the true conditional distribution
at various values of x, using the following formula (see (Peyré and Cuturi, 2019, Remark 2.28)),

W(F,G) =

∫
R

∣∣F (r)−G(r)
∣∣ dr, (19)

where F and G are CDFs. This quantity can be accurately approximated with trapezoidal rule. In
Model 1, the neural estimator generally outperforms the raw estimator with k = 100 across most
values of x, even though the raw estimator is used for training the neural estimators. Furthermore,
LipNet continues to outperform raw estimators with larger values of k – even though LipNet is
trained with a raw estimator with k = 100. In Model 2, LipNet continues to demonstrate a superior
performance, except when compared to the raw estimator with k = 1, 000 at x distant from 0.5,
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(a) Model 1, StdNet (b) Model 1, LipNet (c) Model 2, StdNet (d) Model 2, LipNet

Figure 2: Various estimators under Model 1 and 2, joint distributions.

The first row presents the data. Neural networks with different structures are trained on the same set of
data for comparison. The second row shows scatter plots of atoms at various x values. The third row

illustrates the evolution of 20 atoms as x varies. The final row presents the average of the derivative of each
atom with respect to x, with a notable difference in the y axis scale.
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Figure 3: Various estimators under Model 1 and 2, conditional CDFs.

We compare the conditional CDFs at various values of x, derived from StdNet, LipNet, the raw k-nearest
estimator with k = 100 (also used in the training of StdNet and LipNet), and the ground truth. The first
row pertains to data set 1. The second row pertains to data set 2. Subfigure titles display the values of x.
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Figure 4: Errors at different x’s of various estimators under Model 1 and 2.

We compute the W-distance between estimators and the true conditional distribution at different x’s.
StdNet and LipNet are trained based on the raw k-nearest-neighbor estimator with k = 100.
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the reason is that, here, the conditional distribution is piece-wise constant in x, which enhances the
performance of the raw estimator at larger k values.

The aforementioned findings indicate superior performance by LipNet. We, however, recognize
that improvements are not always guaranteed, as demonstrated in Figures 3 and 4.

Figure 5: Various estimators under Model 3, projections of conditional CDFs.

We compare the projected conditional CDFs at x = (0.12,−0.33, 0.1). The estimations are obtained from
StdNet, LipNet, the raw estimator with k = 300 (also used in training StdNet and LipNet), and the ground

truth. Subfigure titles display the vectors used for projection. Note the difference in the x axis scale.

For Model 3, we generate 106 samples and select k = 300. We train both neural estimators
using Adam optimizer with a learning rate of 10−3. Hyperparameters such as L in (18) and τ in
Algorithm 2 are consistent with those used for Models 1 and 2. We refer to Table 4 for the detailed
configuration.

In Figure 5, we visualize the outcomes in Model 3: the conditional CDFs at an arbitrarily
chosen x are projected onto various vectors. We observe that the neural estimators considerably
outperform the raw k-nearest-neighbor estimator, likely owing due to their implicit use of global
information outside of the immediate neighbors during training. For further comparisons, we present
additional figures in Appendix B: Figures 15, 16 and 17 feature the exact same neural estimators
as shown in Figure 5, but with the raw k-nearest-neighbor estimators employing different k values,
k = 1, 000, 3, 000, 10, 000. Raw k-nearest-neighbor estimators with k = 1, 000, 3, 000 are superior
to that with k = 300, while at k = 10, 000, the accuracy begins to decline. Upon comparison,
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Raw k = 1, 000 Raw k = 3, 000 StdNet LipNet

Figure 6: Histogram of 10, 000 projected Wasserstein-1 errors.
Each histogram consists of 20 uniformly positioned bins between 0 to 0.1. The errors of different
estimators are computed with the same set of query points and projection vectors. Errors larger

than 0.1 will be placed in the right-most bins. Note StdNet and LipNet are trained with k = 300.

the neural estimator trained with k = 300 consistently outperforms the raw k-nearest-neighbor
estimators for all values of k.

Figure 7: LipNet under Model 3, projected trajectories of 20 atoms.

We illustrate the projected trajectories of 20 atoms by evaluating LipNet at 100 evenly allocated points
along the straight line that intersects the origin and x = (0.12,−0.33, 0.1), situated within [0, 1]3. The

x-axis denotes the specific points along the line, consistent across all subfigures. Subfigure titles display the
vectors used for projection. Note the difference in the y axis scale.

For a more comprehensive comparison, we randomly select 10, 000 query points. For each query
point, we randomly generate a vector in R3, normalized under ‖·‖1, and project the atoms produced
by the estimators onto said vector. With the same vector, we also compute the corresponding true
CDFs of the projected Y given the query point. We then approximately compute the W-distance
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between the projected distributions via (19). The resulting histograms are shown in Figure 6, which
suggests that LipNet performs best. The rationale for employing this projection approach, rather
than directly computing the W-distance between discrete and continuous distributions over R3, is
due to the higher cost and lower accuracy of the latter approach (see also the discussion in Section
5.2). While this projection approach provides a cost-effective alternative for performance evaluation,
it may not fully capture the differences between the estimations and ground truth.

Lastly, to demonstrate how atoms, in the neural estimator, move as x varies, Figure 7 shows the
projected trajectories along a randomly selected straight line through the origin. The movement
of atoms in LipNet is smooth, consistent with previous observations. Interestingly, the movement
of atoms in StdNet isn’t excessively oscillatory either, although its continuity is slightly rougher
compared to LipNet. The reader may execute the Jupyter notebook on our github repisitory
https://github.com/zcheng-a/LCD_kNN to explore the projected conditional CDFs and atoms’ trajectories
for different x values.

4. Proofs

4.1 Auxiliary notations and lemmas

In this section, we will introduce a few technical results that will be used in the subsequent proofs.

We first define

R(m) := sup
x∈X

∫
Ym
W

(
Px,

1

m

m∑
`=1

δy`

)
m⊗
`=1

Px(dy`), m ∈ N. (20)

We stipulate that R(0) = 1. By Fournier and Guillin (2015), we have

R(m) ≤
_
C ×


m−

1
2 , dY = 1,

m−
1
2 ln(m), dY = 2,

m
− 1
dY , dY ≥ 3,

(21)

for some constant
_
C > 0 depending only on dY. For comprehension, we also point to Kloeckner

(2020); Fournier (2023) for results that are potentially useful in analyzing explicit constant, though
it is out of the scope of this paper.

The lemma below pertains to the so-called approximation error, which arises when treating
data points Yj with Xj around an query point as though they are generated from the conditional
distribution at the query point.

Lemma 16 Under Assumption 2, for any integer J ≥ 1 and x, x1, . . . , xJ ∈ XJ+1, we have

∣∣∣∣∣∣
∫
YJ
W

 1

J

J∑
j=1

δyj , Px

 J⊗
j=1

Pxj (dyj)−
∫
YJ
W

 1

J

J∑
j=1

δyj , Px

 J⊗
j=1

Px(dyj)

∣∣∣∣∣∣ ≤ L

J

J∑
j=1

‖xj − x‖∞.
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Proof For x, x1, . . . , xJ ∈ XJ+1, note that∣∣∣∣∣∣
∫
YJ
W

 1

J

J∑
j=1

δyj , Px

 J⊗
j=1

Pxj (dyj)−
∫
YJ
W

(
1

J

J∑
k=1

δyj , Px

)
J⊗
j=1

Px(dyj)

∣∣∣∣∣∣
≤

J∑
`=1

∣∣∣∣∣∣
∫
YJ
W

 1

J

J∑
j=1

δyj , Px

 `−1⊗
j=1

Px(dyj)⊗
J⊗
j=`

Pxj (dyj)

−
∫
YJ
W

 1

J

J∑
j=1

δyj , Px

⊗̀
j=1

Px(dyj)⊗
J⊗

j=`+1

Pxj (dyj)

∣∣∣∣∣∣ ,
where for the sake of neatness, at ` = 1, J , we set

0⊗
j=1

Px(dyj)⊗
J⊗
j=1

Pxj (dyj) =
J⊗
j=1

Pxj (dyj) and
J⊗
j=1

Px(dyj)⊗
J⊗

j=J+1

Pxj (dyj) =
J⊗
j=1

Pxj (dyj).

Regarding the `-th summand, invoking Fubini-Toneli theorem to integrate y` first then combining
the integrals on outer layers using linearity, we obtain∣∣∣∣∣∣

∫
YJ
W

 1

J

J∑
j=1

δyj , Px

 `−1⊗
j=1

Px(dyj)⊗
J⊗
j=`

Pxj (dyj)

−
∫
YJ
W

 1

J

J∑
j=1

δyj , Px

⊗̀
j=1

Pj(dyj)⊗
J⊗

j=`+1

Pxj (dyj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
YJ−1

∫
Y
W

 1

J

J∑
j=1

δyj , Px

 (Px − Px`) (dy`)
`−1⊗
j=1

dPx(yj)⊗
J⊗

j=`+1

Pxj (dyj)

∣∣∣∣∣∣
≤ sup

(yj)j 6=`∈YJ−1

∣∣∣∣∣∣
∫
Y
W

 1

J

J∑
j=1

δyj , Px

(Px` − Px) (dy`)

∣∣∣∣∣∣
≤ 1

J
W(Px` , Px) ≤ L

J
‖x` − x‖∞,

where in the second last inequality we have invoked Kantorovich-Rubinstein duality (cf. (Villani,

2008, Particular case 5.16)) and the fact that, for all (yj)j 6=` ∈ YJ−1, the map y` 7→ W
(

1
J

∑J
j=1 δyj , Px

)
is 1

J -Lipschitz, and where in the last equality, we have used Assumption 2.

We will be using the lemma below, which regards the stochastic dominance between two binomial
random variables.

Lemma 17 Let n ∈ N and 0 ≤ p < p′ ≤ 1. Then, Binomial(n, p′) stochastically dominates
Binomial(n, p).

Proof Let U1, . . . , Un
i.i.d.∼ Uniform[0, 1] and define

H :=
n∑
i=1

1[0,p](Ui), H ′ :=
n∑
i=1

1[0,p′](Ui).
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Clearly, H ∼ Binomial(n, p) and H ′ ∼ Binomial(n, p′). Moreover, we have H ≤ H ′, and thus
P(H > r) ≤ P(H ′ > r), which completes the proof.

4.2 Proof of Theorem 7

The proof of Theorem 7 relies the technical lemma below that we state and prove now.

Lemma 18 Let p ∈ [0, 1] a real number, and let M ≥ 1 and d ≥ 1 two integers. We then have

M∑
m=1

(
M

m

)
pm(1− p)M−mm−

1
d ≤ ((M + 1)p)−

1
d + ((M + 1)p)−1 .

Proof We compute

M∑
m=1

(
M

m

)
pm(1− p)M−mm−

1
d =

1

(M + 1)p

M∑
m=1

(
M + 1

m+ 1

)
pm+1(1− p)M−m(m+ 1)m−

1
d

=
1

(M + 1)p

M+1∑
m=2

(
M + 1

m

)
pm(1− p)M+1−mm(m− 1)−

1
d

=
1

(M + 1)p

M+1∑
m=2

(
M + 1

m

)
pm(1− p)M+1−m(m− 1)1− 1

d

+
1

(M + 1)p

M∑
m=2

(
M + 1

m

)
pm(1− p)M+1−m(m− 1)−

1
d ,

where we used that m = m− 1 + 1 in the last equality. Then, using that (m− 1)1− 1
d ≤ m1− 1

d and

(m− 1)−
1
d ≤ 1 for all m ≥ 2, we continue to obtain

M∑
m=1

(
M

m

)
pm(1− p)M−mm−

1
d ≤ 1

(M + 1)p

M+1∑
m=2

(
M + 1

m

)
pm(1− p)M+1−mm1− 1

d

+
1

(M + 1)p

M∑
m=2

(
M + 1

m

)
pm(1− p)M+1−m

≤ 1

(M + 1)p

M+1∑
m=0

(
M + 1

m

)
pm(1− p)M+1−mm1− 1

d +
1

(M + 1)p
,

where the second term in the last equality are derived from the binomial formula. Finally, intro-
ducing a random variable V with binomial distribution B(M + 1, p), and using Jensen inequality

for the concave function R+ 3 x 7→ x1− 1
d ∈ R+, we obtain

M∑
m=1

(
M

m

)
pm(1− p)M−mm−

1
d ≤ 1

(M + 1)p
E
[
V 1− 1

d

]
+

1

(M + 1)p

≤((M + 1)p)1− 1
d

(M + 1)p
+

1

(M + 1)p
= ((M + 1)p)−

1
d + ((M + 1)p)−1 ,

which conclude the proof.
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We are now ready to prove Theorem 7.
Proof [Proof of Theorem 7]

For ν ∈ P(X), we obviously have

E
[∫

X
W(Px, P̂

r
x )ν(dx)

]
≤ sup

x∈X
E
[
W(Px, P̂

r
x )
]
,

we then focus on proving the right hand side inequality in Theorem 7. To this end, we fix x ∈ X
and, to alleviate the notations, we let B := Br(x) as introduced in Definition 5. Let NB :=∑M

m=1 1B(Xm). By Definition 5 and Assumption 3 (i), we have

E
[
W(Px, P̂

r
x )
]

= E
[
W(Px, µ̂

D
B)
]

=

M∑
m=0

E
[
1NB=mW(Px, µ̂

D
B)
]

=

M∑
m=1

(
M

m

)
E

[
1X1,...,Xm∈B1Xm+1,...,XM 6∈BW

(
1

m

m∑
l=1

δYl , Px

)]
+ P [X1, . . . , XM 6∈ B]W(λY, Px)

≤
M∑
m=1

(
M

m

)
P [Xm+1, . . . , XM 6∈ B]E

[
1X1,...,Xm∈BW

(
1

m

m∑
l=1

δYl , Px

)]
+ ξ(Bc)MR(0)

=

M∑
m=1

(
M

m

)
µ(Bc)M−m

∫
(B×Y)m

W

(
1

m

m∑
l=1

δyl , Px

)
m⊗
`=1

ψ(dx` dy`) + ξ(Bc)MR(0). (22)

To compute the integral terms, observe that, for fixed m ≥ 1, by definition of R(m) in (20), Lemma
16 and Remark 6,∫

(B×Y)m
W

(
1

m

m∑
l=1

δyl , Px

)
m⊗
`=1

ψ(dx` dy`) =

∫
Bm

∫
Ym
W

(
1

m

m∑
l=1

δyl , Px

)
m⊗
l=1

Pxl(dyl)
m⊗
`=1

ξ(dx`)

≤
∫
Bm

(∫
Ym
W

(
1

m

m∑
l=1

δyl , Px

)
m⊗
`=1

Px(dy`) +
L

m

m∑
`=1

‖x` − x‖∞

)
m⊗
`=1

ξ(dx`)

≤
∫
Bm

(R(m) + 2Lr)
m⊗
`=1

ξ(dx`) = (R(m) + 2Lr)ξ(B)m.

This together with (22) implies that, for any x ∈ X,

E
[
W(Px, P̂

r
x )
]
≤

M∑
m=1

(
M

m

)
ξ(Bc)M−mξ(B)m(R(m) + 2Lr) + ξ(Bc)MR(0)

≤ 2Lr +
M∑
m=1

(
M

m

)
ξ(Bc)M−mξ(B)mR(m) + ξ(Bc)MR(0). (23)

The remainder of the proof is split into three cases. In order to proceed, we will put together
(21), Lemma 18, and (23). Below we only keep track of the rate.

• For dY = 1, we have

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + (ξ(B)(M + 1))−

1
2 + (ξ(B)(M + 1))−1 + (1− ξ(B))M

≤ 2Lr +
(
c(2r)dX(M + 1)

)− 1
2

+
(
c(2r)dX(M + 1)

)−1
+ e−cMrdX .
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Controlling the dominating term(s) by setting r ∼ r−
dX
2 M−

1
2 , we yield

r ∼M−
1

dX+2 and E
[
W(Px, P̂

r
x )
]
.M

− 1
dX+2 .

• For dY = 2, we have

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + ln(M) (ξ(B)(M + 1))−

1
2 + (ξ(B)(M + 1))−1 + (1− ξ(B))M

≤ 2Lr + ln(M)
(
c(2r)dX(M + 1)

)− 1
2

+
(
c(2r)dX(M + 1)

)−1
+ e−cMrdX .

Since r ∼ ln(M)r−
dX
2 M−

1
2 may not have a closed-form solution, we simply follow the case of

dY = 1 to yield

r ∼M−
1

dX+2 and E
[
W(Px, P̂

r
x )
]
.M

− 1
dX+2 lnM.

• For dY ≥ 3, we have

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + (ξ(B)(M + 1))

− 1
dY + (ξ(B)(M + 1))−1 + (1− ξ(B))M

≤ 2Lr +
(
c(2r)dX(M + 1)

)− 1
dY +

(
c(2r)dX(M + 1)

)−1
+ e−cMrdX .

By setting r ∼ r−
dX
dYM

− 1
dY , we yield

r ∼M−
1

dX+dY and E
[
W(Px, P̂

r
x )
]
.M

− 1
dX+dY .

The proof is complete.

4.3 Proof of Theorem 8

Proof [Proof of Theorem 8] We will proceed by using Efron-Stein inequality. Let (X ′1, Y
′

1) be
an independent copy of (X1, Y1), and define D′ := {(X ′1, Y ′1), (X2, Y2), . . . , (XM , YM )}. In view of
Assumption 3 (i), by the triangle inequality of W, it is sufficient to investigate

1

2
M E

[(∫
X
W
(
µ̂DBr(x), µ̂

D′
Br(x)

)
dν(x)

)2
]
.

Notice that, by definitions (1),{
µ̂DBr(x) 6= µ̂D

′

Br(x)

}
⊆
{
X1 ∈ Br(x)

}
∪
{
X ′1 ∈ Br(x)

}
.

Additionally, by definitions (1) again, on the event that
{
µ̂DBr(x) 6= µ̂D

′

Br(x)

}
, we have

W
(
µ̂DBr(x), µ̂

D′
Br(x)

)
≤

(
1 +

M∑
`=2

1Br(x)(X`)

)−1

.
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The above together with the condition that ν is dominated by λX implies that

E

[(∫
X
W
(
µ̂DBr(x), µ̂

D′
Br(x)

)
ν(dx)

)2
]
≤ C2E

(∫
B(X1,2r)∪B(X′1,2r)

W
(
µ̂DBr(x), µ̂

D′
Br(x)

)
λX(dx)

)2


≤ C2E

∫
B(X1,2r)∪B(X′1,2r)

(
1 +

M∑
`=2

1Br(x)(X`)

)−1

λX(dx)

2
≤ 4C

2E

∫
B(X1,2r)

(
1 +

M∑
`=2

1Br(x)(X`)

)−1

λX(dx)

2
= 4C

2E

λX(B(X1, 2r))
2

∫
B(X1,2r)

(
1 +

M∑
`=2

1Br(x)(X`)

)−1
λX(dx)

λX(B(X1, 2r))

2
≤ 4C

2
(4r)2dXE

E
∫

B(X1,2r)

(
1 +

M∑
`=2

1Br(x)(X`)

)−2
λX(dx)

λX(B(X1, 2r))

∣∣∣∣∣X1

 , (24)

where we have used Jensen’s inequality and tower property in the last line. In view of Assumption 3
(i), expanding the inner conditional expectation into an integral with respect to regular conditional
distribution (cf. (Bogachev, 2007, Section 10)) then invoking Fubini-Tonelli theorem, we yield

E

∫
B(X1,2r)

(
1 +

M∑
`=2

1Br(x)(X`)

)−2
λX(dx)

λX(B(X1, 2r))

∣∣∣∣∣X1


=

∫
B(X1,2r)

∫
XM−1

(
1 +

M∑
`=2

1Br(x)(x`)

)−2 M⊗
`=2

ξ(dx`)
λX(dx)

λX(B(X1, 2r))
. (25)

For the inner integral in (25), by Assumption 3 (ii), we have∫
XM−1

(
1 +

M∑
`=m+1

1Br(x)(x`)

)−2 M⊗
`=2

ξ(dx`)

=
M−1∑
`=0

(
M − 1

`

)
ξ
(
Br(x)

)`(
1− ξr

(
Br(x)

))M−1−`
(1 + `)−2

=
1

M(M + 1)ξ
(
Br(x)

)2 M−1∑
`=0

(
M + 1

`+ 2

)
ξ
(
Br(x)

)`+2
(

1− ξ
(
Br(x)

))M−1−` `+ 2

`+ 1

≤ 2

M(M + 1)ξ
(
Br(x)

)2 M+1∑
`=2

(
M + 1

`

)
ξ
(
Br(x)

)`(
1− ξ

(
Br(x)

))M+1−`

≤ 2

M(M + 1)ξ
(
Br(x)

)2 .
This together with (24), (25) and Assumption 3 (ii) implies

E

[(∫
X
W
(
µ̂DBr(x), µ̂

D′
Br(x)

)
dν(x)

)2
]
≤ 8

22dXC
2

c2M(M + 1)
.
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Invoking Efron-Stein inequality, we conclude the proof.

4.4 Proof of Theorem 10

In order to prove Theorem 10, we first establish a few technical lemmas. The following lemma is a
first step toward finding the average rate of k-nearest neigbhor method.

Lemma 19 Suppose Assumption 2 and 3. Let R be defined in Section 4.1. Then, for any x ∈ X,
we have

E
[
W
(
Px, P̌

k
x

)]
≤ R(k) +

L

k

k∑
m=1

E
[
Z(m)
x

]
,

where Zx(m),m = 1, . . . ,M are the order statistics of (‖Xm − x‖∞)Mm=1 in ascending order.

Proof We fix x ∈ X for the rest of the proof. By Assumption 3, we have

E
[
W
(
Px, P̌

k
x

)]
= M !E

[
1‖X1−x‖∞≤‖X2−x‖∞≤···≤‖XM−x‖∞W

(
Px,

1

k

k∑
`=1

δY`

)]

= M !

∫
(X×Y)M

1‖x1−x‖∞≤‖x2−x‖∞≤···≤‖xM−x‖∞W

(
Px,

1

k

k∑
`=1

δy`

)
M⊗
`=1

ψ(dx` dy`)

= M !

∫
XM

1‖x1−x‖∞≤‖x2−x‖∞≤···≤‖xM−x‖∞

∫
Yk
W

(
Px,

1

k

k∑
`=1

δy`

)
k⊗
`=1

Px`(dy`)

M⊗
j=1

ξ(dx`).

In view of Lemma 16, replacing Px` above with Px, we have

E
[
W
(
Px, P̌

k
x

)]
≤M !

∫
XM

1‖x1−x‖∞≤‖x2−x‖∞≤···≤‖xM−x‖∞

∫
Yk
W

(
Px,

1

k

k∑
`=1

δy`

)
k⊗
`=1

Px(dy`)
M⊗
j=1

ξ(dx`)

+
L

k

k∑
`=1

M !

∫
XM

1‖x1−x‖∞≤‖x2−x‖∞≤···≤‖xM−x‖∞dX(x`, x)
M⊗
j=1

ξ(dx`)

=

∫
Yk
W

(
1

k

k∑
l=1

δyl , Px

)
k⊗
`=1

Px(dy`)

+
L

k

k∑
`=1

M !

∫
XM

1‖x1−x‖∞≤‖x2−x‖∞≤···≤‖xM−x‖∞dX(x`, x)

M⊗
j=1

ξ(dx`).

In view of R defined above (21) and Zx(m) defined in the statement of this lemma, we conclude the
proof.

The next lemma provides an upper bound to
∑k

m=1 E
[
Z

(m)
x

]
listed in Lemma 19.

Lemma 20 Let Zx(m) be defined as in Lemma 19. Under Assumption 3, for any x ∈ X, we have

k∑
m=1

E
[
Zx(m)

]
≤ 2

c
1
dX dX

M !

Γ(M + 1
dX

+ 1)

k∑
m=1

m−1∑
j=0

Γ(j + 1
dX

)

j!
.
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Proof For any x ∈ X, we compute, since Zx(m) ∈ [0, 1],

E
[
Zx(m)

]
=

∫ 1

0
P
[
Zx(m) ≥ r

]
dr =

∫ 1

0

(
1− P

[
Zx(m) < r

])
dr,

and we observe that
{
Zx(m) < r

}
= {N(x, r) ≥ m} with N(x, r) := ] {1 ≤ m ≤M | ‖Xm − x‖ < r}.

We hence have

E
[
Zx(m)

]
=

∫ 1

0
(1− P [N(x, r) ≥ m]) dr.

Since N(x, r) ∼ Binomial(M, ξ(B(x, r))) and ξ(B(x, r)) ≥ cλX(B(x, r)) ≥ c r
dX

2dX
by Assumption 3

(ii), we obtain that P [N(x, r) ≥ m] ≥ P [N ′(x, r) ≥ m] with N ′(x, r) ∼ Binomial(M, c r
dX

2dX
) due to

Lemma 17. This implies

E
[
Zx(m)

]
≤
∫ 1

0

(
1− P

[
N ′(x, r) ≥ m

])
dr =

∫ 1

0
P
[
N ′(x, r) < m

]
dr

=
m−1∑
j=0

(
M

j

)∫ 1

0

(
c
rdX

2dX

)j (
1− cr

dX

2dX

)M−j
dr

=
2

c
1
dX dX

m−1∑
j=0

(
M

j

)∫ c

2dX

0
r

1
dX

+j−1
(1− r)M−j dr

≤ 2

c
1
dX dX

m−1∑
j=0

Γ(M + 1)

Γ(j + 1)Γ(M − j + 1)

Γ( 1
dX

+ j)Γ(M − j + 1)

Γ( 1
dX

+M + 1)

=
2M !

c
1
dX dXΓ( 1

dX
+M + 1)

m−1∑
j=0

Γ( 1
dX

+ j)

j!
, (26)

and the proof is over.

We are now in position to prove Theorem 10.
Proof [Proof of Theorem 10] By combining Lemma 19 and Lemma 20, noting that the upper bound
is constant in x, we have

sup
x∈X

E
[
W
(
Px, µ̂N k(x)

)]
≤ R(k) +

L

k

2M !

c
1
dX dXΓ(M + 1

dX
+ 1)

k∑
m=1

m−1∑
j=0

Γ(j + 1
dX

)

j!
. (27)

Below we only investigate the rate of the right hand side of (27) as M →∞, and do not keep track
of the constant. We first analyze the second term in the right hand side of (27). By Gautschi’s
inequality (Merkle, 2008, (10.6)), we have

Γ(j + 1
dX

)

j!
=

Γ(j + 1
dX

)

Γ(j + 1)
≤ j

1
dX
−1
, j ∈ {0} ∪ N.

Thus,

k∑
m=1

m−1∑
j=0

Γ(j + 1
dX

)

j!
≤

k∑
m=1

m−1∑
j=0

j
1
dX
−1

.
k∑

m=1

m
1
dX . k

1+ 1
dX . (28)
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By Gautschi’s inequality (Merkle, 2008, (12.2)) again, we have

M !

Γ(M + 1
dX

+ 1)
=

Γ(M + 1)

Γ(M + 1
dX

+ 1)
≤M−

1
dX . (29)

The above implies

sup
x∈X

E
[
W
(
Px, µ̂N k(x)

)]
. R(k) +M

− 1
dX k

1
dX .

We will split the remainder of the proof into three cases.

• For dY = 1, by letting k−
1
2 ∼M−

1
dX k

1
dX , we yield

k ∼M
2

dX+2 and sup
x∈X

E
[
W
(
Px, µ̂N k(x)

)]
.M

− 1
dX+2

• For dY = 2, since the explicit solution of k−
1
2 ln k ∼M−

1
dX k

1
dX is elusive, we simply follow the

configuration derived in the case of dY = 1 and yield

k ∼M
2

dX+2 and sup
x∈X

E
[
W
(
Px, µ̂N k(x)

)]
.M

− 1
dX+2 lnM.

• For dY ≥ 3, by letting k
− 1
dY ∼M−

1
dX k

1
dX , we yield

k ∼M
dY

dX+dY and sup
x∈X

E
[
W
(
Px, µ̂N k(x)

)]
.M

− 1
dX+dY .

The proof is complete.

4.5 Proof of Theorem 11

Proof [Proof of Theorem 11] We will proceed by using Efron-Stein inequality. Let (X ′1, Y
′

1) be
an independent copy of (X1, Y1), and define D′ := {(X ′1, Y ′1), (X2, Y2), . . . , (XM , YM )}. In view of
Assumption 3 (i), by the triangle inequality of W, it is sufficient to investigate

1

2
M E

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]
.

Note that for W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)

to be positive, the event Ax ∪A′x is necessary, where

Ax :=
{
X1 ∈ N k,DX(x)

}
and A′x :=

{
X ′1 ∈ N k,DX(x)

}
.

Moreover,

W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
≤ 1

k
.
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It follows that

E

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]
≤ 1

k2
E

[(∫
X
1Ax∪A′xν(dx)

)2
]

(30)

≤ 1

k2
E
[∫

X
1Ax∪A′xν(dx)

]
≤ 2

k2

∫
X
P [Ax] ν(dx).

where the second inequality is due to the fact that the integral value always fall into in [0, 1], and
we have used Fubini-Tonelli theorem and the subadditivity of probability in the third inequality.
Regarding P [Ax], by the symmetry stemming from Assumption 3 (i) and the random tie-breaking
rule in Definition 9, we have

P [Ax] =

(
M − 1

k − 1

)(
M

k

)−1

=
k

M
.

Consequently,

M E

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]
≤ 2

k
.

Invoking Efron-Stein inequality, we conclude the proof of (5).
We now assume additionally that ν ≤ CλX to prove the second statement. Following from (30),

by using the positivity and subadditivity of indicator functions as well as AM–GM inequality, we
have

E

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]

≤ 4

k2
E

[(∫
X
1Axν(dx)

)2
]
≤ 4C

2

k2
E

[(∫
X
1AxλX(dx)

)2
]

≤ 4C
2

k2

∫
[0,1]

P

[(∫
X
1AxλX(dx)

)2

> δ

]
dδ,

where in the second inequality we have used the condition that ν is dominated by λX, and in the
last one the alternative expression of expectation for positive random variables. Let CubeιX be the
set of cubes within X with edge length ι. Since ν is dominated by λX, with probability 1 we have

Ax =
{

at most (k − 1) of X`, ` = 2, . . . ,M , falls into B‖X1−x‖∞
x

}
,

A′x =
{

at most (k − 1) of X`, ` = 2, . . . ,M , falls into B
‖X′1−x‖∞
x

}
.

It follows that{
M∑
m=2

1B(Xm) > k, ∀B ∈ CubeιX with ∂B 3 X1

}
⊆
{∫

X
1Axλ(dx) ≤ (2ι)dX

}
.

By combining the above and setting δ = (2ι)2dX , we yield

E

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]

≤ 4C
2

k2

∫
[0,1]

P

[
1

M − 1

M∑
m=2

1B(Xm) ≤ k

M − 1
, ∃B ∈ Cube

1
2
δ

1
dX

X

]
dδ. (31)
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In order to proceed, we state and prove a useful technical lemma using the Rademacher complexity
technique (cf. (Wainwright, 2019, Section 4)). Below we let CubeX be the set of cubes inside X with
edge lengths within [0, 1].

Lemma 21 Let X2, . . . , XM be introduced in Assumption 3 (i). For ε ≥ 0,

P

[
1

M − 1

M∑
m=2

1B(Xm) ≤ cλX(B)− 8

√
2dX ln(M)

M − 1
− ε, ∃B ∈ CubeX

]
≤ exp

(
−M − 1

2
ε2

)
.

Proof Let xM = (xM2 , . . . , xMM ) ∈ XM−1. To utilize the machinery of Rademacher complexity,
we will upper bound the cardinality of the set {1B(xM ) : B ∈ CubeX}, where 1B applies entry-
wise. More precisely, 1B(xM ) = (1B(xM2 ), . . . ,1B(xMM )). To start with, we first note that for
d = 1, . . . , dX, the projected (xM2,d, . . . , x

M
M,d) at most separates axis-d into M intervals. Additionally,

each element in {1B(xM ) : B ∈ CubeX} corresponds to selecting two intervals (one for starting and
one for ending of the cube) on each axis. Therefore, the cardinality is at most M2dX , i.e., CubeX
has polynomial discrimination 2dX. It follows from (Wainwright, 2019, Lemma 4.14 and Theorem
4.10) that, for any ε ≥ 0,

P

[
sup

B∈CubeX

∣∣∣∣∣ 1

M − 1

M∑
m=2

1B(Xm)− ξ(B)

∣∣∣∣∣ ≥ 8

√
2dX ln(M)

M − 1
+ ε

]
≤ exp

(
−M − 1

2
ε2

)
.

Finally, in view of Assumption 3 (ii), we conclude the proof of Lemma 21.

In view of (31) and Lemma 21, for δ ∈ [0, 1], we consider ε ≥ 0 such that

k

M − 1
=
cδ

1
2

2dX
− 8

√
2dX ln(M)

M − 1
− ε.

Note that this is feasible only if 4dX
c2

(
8
√

2dX ln(M)
M−1 + k

M−1

)2

≤ 1.4 It follows that

P

[
1

M − 1

M∑
m=2

1B(Xm) ≤ k

M − 1
, ∀B ∈ Cube

1
2
δ

1
2dX

X

]

≤


1, δ ∈

[
0, 4dX

c2

(
8
√

2dX ln(M)
M−1 + k

M−1

)2
]
,

exp

(
−M−1

2

(
cδ

1
2

2dX
− 8
√

2dX ln(M)
M−1 − k

M−1

)2
)
, δ ∈

(
2dX
c

(
8
√

2dX ln(M)
M−1 + k

M−1

)2

, 1

]
.

The above together with (31) implies

1

2
ME

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]

≤ 2C
2
M

k2

(
4dX

c2

(
8

√
2dX ln(M)

M − 1
+

k

M − 1

)2

+

∫ 1

2dX
c

(
8
√

2dX ln(M)

M−1
+ k
M−1

) exp

−M − 1

2

(
cη

2dX
− 8

√
2dX ln(M)

M − 1
− k

M − 1

)2
 2η dη

)
,

4. We do not include this condition in the statement of Theorem 11, as the bound presented remains valid, albeit
vacuous, if this condition is not met.
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where we have performed a change of variable η = δ
1
2 in the last line. Relating to exponential and

normal density functions, we calculate the integral to obtain

1

2
ME

[(∫
X
W
(
µ̂DN k,DX (x)

, µ̂D
′

N k,D
′
X
(x)
)
ν(dx)

)2
]

≤ 2C
2
M

k2

4dX

c2

((
8

√
2dX ln(M)

M − 1
+

k

M − 1

)2

+

√
2π√

M − 1

(
8

√
2dX ln(M)

M − 1
+

k

M − 1

)
+

4

M − 1

)
,

where we note the right hand side is of O

((√
ln(M)

k + 1√
M

)2

+ 1
k

(√
ln(M)

k + 1√
M

)
+ 1

k2

)
. Invok-

ing Efron-Stein inequality, we conclude the proof.

4.6 Proof of Proposition 13

Proof [Proof of Proposition 13] By triangle inequality,

E
[∫

X
W(Px, P̃

Θ
x ) dx

]
≤ E

[∫
X
W(Px, P

Θ
x )

(
λX −

1

N

N∑
n=1

δX̃n

)
(dx)

]

+ E

[
1

N

N∑
n=1

W(PX̃n , P X̃n)

]
+ E

[
1

N

N∑
n=1

W(P
X̃n
, P̃Θ

X̃n
)

]
.

Then, by Assumption 2 and (7),

E

[∫
X
W(Px, P

Θ
x )

(
λX −

1

N

N∑
n=1

δX̃n

)
(dx)

]
≤ E

[
(L+ LΘ)W

(
λX,

1

N

N∑
n=1

δX̃n

)]
.

In view of Assumption 12, we have

E

[
1

N

N∑
n=1

W(PX̃n , P X̃n)

]
=

1

N

N∑
n=1

E
[
E
[
W(PX̃n , P X̃n)

∣∣∣X̃n

]]
= E

[∫
X
W(Px, P x) dx

]
.

Combining the above, we prove the first statement.
As for the second statement, consider Q,Q′ : X → P(Y) that are Lipschitz-continuous with

constants L,L′. Suppose that

W(Qx∗ , Q
′
x∗) = sup

x∈X
W(Qx, Q

′
x) = δ

for some δ > 0 and x∗ ∈ X. This supremum is indeed attainable because X is compact that
x 7→ W(Qx, Q

′
x) is continuous. Consequently, by triangle inequality and the Lipschitz-continuity,

we have

W(Qx, Q
′
x) ≥

(
W(Qx, Q

′
x∗)−W(Q′x, Q

′
x∗)
)
∨ 0

≥
(
W(Qx∗ , Q

′
x∗)−W(Qx∗ , Qx)−W(Q′x∗ , Q

′
x)
)
∨ 0

≥
(
δ − (L+ L′)‖x− x∗‖∞

)
∨ 0, x ∈ X.
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We may then lower bound
∫
XW(Qx, Q

′
x) dx with the volume of the cone on right hand side above

(note the worst case is when x∗ = (0, 0)),∫
X
W(Qx, Q

′
x) dx ≥

∫ δ

0

(
δ − z
L+ L′

)dX
dz =

δdX+1

(dX + 1)(L+ L′)dX
.

It follows that

sup
x∈X
W(Qx, Q

′
x) ≤ (dX + 1)

1
dX+1 (L+ L′)

dX
dX+1

(∫
X
W(Qx, Q

′
x) dx

) 1
dX+1

,

which completes the proof.

5. Implementation details and ablation analysis

In this section, we will provide further implementation details and conduct ablation analysis of the
components highlighted in Section 3.1.

5.1 Comparing ANNS-RBSP to exact NNS

Algorithm 3 outlines a single slice of RBSP, which divides an array of x’s into two arrays of a
random ratio along a random axis. Throughout the training, we execute RBSP 5 times during each
training epoch, yielding 25 = 32 parts. Within each part, we then select a small batch of 8 query
points, locating the k nearest neighbors for each query point within the same part. In Table 1, we
compare the execution times of exact NNS and ANNS-RBSP. ANNS-RBSP offers considerable time
savings for M = 106, while exact NNS is more efficient for M = 105 or fewer.

Algorithm 3 Single slice of random binary space partitioning

Input: data DX = (xi)
M
i=1 ⊂ [0, 1]dX , arrays of indexes Sd, d = 1, . . . , dX of length M with the j-th entry indicating the

position of the j-th smallest value in the d-th dimension of DX, a boolean array B of length M with the i-th entry
indicating whether xi is involved in the current slicing, a rectangle R that bounds xi’s involved in the current
slicing, i.e., R corresponds to B, a parameter redge ∈ (1,∞) for avoiding thin rectangles, an interval [p, p] ∈ (0, 1)
for random bisecting ratio

Output: two boolean arrays B,B′ of length M indicating the bisected data, two bounding rectangles R,R′ that
correspond to B,B′

1: Randomly pick a dimension d
2: if The edge ratio of R exceeds redge then
3: Replace d with that corresponds to the longest edge
4: end if
5: Rearrange B according to Sd by B̃← B[Sd]
6: Pick out the indexes from Sd involved in ANNS by S̃d ← Sd[B̃]
7: Generate p ∼ Uniform([p, p]) and round p into p̃ so that p̃ len(S̃d) is an integer

8: Bisect S̃d in two arrays with length p̃ len(S̃d) and (1− p̃)len(S̃d), denoted by S̃d and S̃′d
9: Form new bounding rectangles R,R′ using S̃d, S̃

′
d,DX and the original R (may enforce some overlap here)

10: Initialize two boolean arrays B,B′ with length M and all entries being False
11: B[S̃d]← True, B′[S̃′d]← True
12: return B,B′, R,R′

It’s important to note that ANNS-RBSP may introduce additional errors by inaccurately in-
cluding points that are not within the k nearest neighbors. As elucidated in the proof of Theorem
10, the magnitude of this induced error can be understood by comparing the excessive distance
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Table 1 Execution times of two NNS methods.

k=300

M = 104 M = 105 M = 106

dX = 1 (0.1, 9.2) (3.7, 11.0) (19.5,11.2)

dX = 3 (0.2, 9.8) (4.2, 11.2) (24.6,11.3)

dX = 10 (0.4, 9.9) (5.9, 11.4) (52.4,11.6)

k=1000

M = 104 M = 105 M = 106

dX = 1 (0.1, 7.2) (3.8, 10.9) (19.6,11.1)

dX = 3 (0.2, 7.2) (4.2, 11.2) (24.7,11.4)

dX = 10 (0.4, 7.4) (5.9, 11.4) (52.8,11.5)

This table compares the execution times for 500 runs of exact NNS versus ANNS-RBSP, both utilizing
parallel computing, facilitated by PyTorch, with an NVIDIA L40 GPU. Each iteration (approximately)

finds the 300 nearest neighbors from M samples for all of 256 randomly generated query points. The values
within each parenthesis denote the seconds consumed by both methods, with the first number

corresponding to exact NNS. For faster processing, exact NNS employs a 3D tensor. ANNS-RBSP
regenerates a new partition each run. The table does not include the time required to sort the data along

all dimensions, which takes about 0.2 seconds in the worst case and is not repeatedly executed.

incurred to that of exact NNS. For simplicity, we investigate the difference below

∆ :=
1

Nbatch

Nbatch∑
i=1

1

k

k∑
j=1

∥∥∥X̌ ′ij − X̃i

∥∥∥
1
− 1

k

k∑
j=1

∥∥∥X̌ij − X̃i

∥∥∥
1

 ,

where X̃i’s are query points, and X̌ij , X̌
′
ij are the k-nearest-neighbor identified by exact NNS and

ANNS-RBSP, respectively. In our experiments, we evaluated scenarios with dX = 3, 10 and k = 300.
Regarding the data, we generated M = 104, 105, 106 samples from Uniform([0, 1]dX). Once the data
set is generated, we fixed the data and conducted 100 simulations of ∆, each with Nbatch = 256
query points. This process was repeated 10 times, each with a separately generated data. The
results are illustrated in Figure 8. It is expected that ∆ will approach 0 as the sample size M tends
to infinity. The convergence rate is likely influenced by factors such as dX, k, and Nbatch. Further
analysis of the convergence of ANNS-RBSP will be conducted in future studies.

5.2 An implementation of the Sinkhorn algorithm

In this section, we will detail our implementation of the Sinkhorn algorithm and highlight a few
novel treatments that seem to enhance the training of the neural estimator. While the mechanisms
are not yet fully understood, they constitute important improvement in the accuracy of the neural
estimator.

Let us first recall the iterative procedure involved in the Sinkhorn algorithm. We follow the
setup in Section 3.1.2. In particular, the row indexes of the cost matrix stand for atoms in the
empirical measures, while the column indexes stand for atoms produced by the neural estimator.
We set Natom = k and let u(0), v(0) be column vectors of size k with all entries being k−1. We will
suppress the dependence on y from the notation. Upon setting

Kε := exp

(
−C

ε

)
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(a) dX = 3 (b) dX = 10

Figure 8: Empirical CDFs of ∆.

We compare the empirical CDFs of ∆. Each line corresponding to a independently generated set of data.
Each plot includes 10 empirical CDFs. Note the difference in the x axis scale.
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with entry-wise exponential, the Sinkhorn algorithm performs repeatedly

u(`+1) =
u(0)

Kεv(`)
and v(`+1) =

v(0)

(Kε)>u(`+1)
, (32)

where the division is also calculated entry-wise. After a certain number of iterations, denoted as
Niter, we obtain an approximate optimal transport plan for problem (15):

Tε = diag(u(Niter))Kε diag(v(Niter)).

Let us set ε = 1 momentarily. Note that if the entries of C are excessively large, K effectively
becomes a zero matrix, which impedes the computations in (32). This issue may occur at the
initiation of the neural estimator or during training, possibly due to the use of stochastic gradient
descent. To tackle this issue, we employ a rule-of-thump normalization that

K̃ε := exp

(
− C

c̃ε

)
with c̃ := min

i
max
j

Cij , (33)

and use K̃ε instead of Kε in (32). Regarding the selection of ε and the number of iterations, we
currently lack a method for adaptively determining these values. Instead, we adjust them manually
based on training episodes. This manual adjustment works well for all models discussed in this
paper. For more information, please see Appendix C.

As alluded in Section 3.1.2, we enforce sparsity on the transport plan to improve the performance
of the neural estimator. Let T̃ε be the output of the Sinkhorn algorithm. We construct T̂ε and
Ťε by setting the row-wise and column-wise maximum of T̃ε to k−1, respectively, and setting the
remaining entries to 0. We then use

T
ε

= γT̂ε + (1− γ)Ťε, (34)

where γ ∈ [0, 1] is a hyper-parameter, in gradient descent (14). We observe that T̂ε relates each
atom in the empirical measure to a single corresponding atom from the neural estimator, and Ťε

does the same in reverse. The optimal choice of γ remains an open question, though we have set
γ = 0.5 in all three models.

Next, we explore the impact of enforcing sparsity and varying the choices of γ. Figure 9 compares
the performance in Model 1 under different sparsity parameters. When no sparsity is enforced, the
neural estimator tend to handles singularities more adeptly, but may overlooks points located on
the periphery of the empirical joint distribution, potentially resulting in overly concentrated atoms
from the neural estimator (see around x = 0.1, 0.9). Compare Figure 4 and 10 for the extra error
due to the lack of enforced sparsity. This phenomenon is more noticeable in Model 3. We refer to
panel (2,3) of Figure 18 in Appendix B for an example. Moreover, Figure 19, which is obtained
without enforced sparsity, indicates a downgrade in accuracy when compared to Figure 6.

For completeness, we present in Table 2 the accuracy of LipNet across various ε values, both
with and without enforced sparsity. As demonstrated in the table, the improvement resulting from
enforced sparsity is evident. It is worth noting that smaller values of ε generally require more
iterations to achieve convergence (see, e.g., (Peyré and Cuturi, 2019, Section 4.2)). Additionally,
other hyper-parameters may also significantly influence the training outcomes. Further exploration
of these related issues will be conducted in future studies.

Finally, it is not recommended to use T
ε

at the early stages of training, as our empirical exper-
iments suggest this could deteriorates performance. In training, we start by not enforcing sparsity
and then begin to enforce it in later episodes. We refer to Appendix C for further details of the
training configuration.
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C. Bénézet, Z. Cheng, and S. Jaimungal

(a) No sparsity enforced (b) γ = 0 (c) γ = 0.5 (d) γ = 1

Figure 9: LipNet under Model 1 with different sparsity enforcement.

Figure 10: Errors at different x’s of various estimators under Model 1, LipNet is trained without
enforced sparsity.

We compute the W-distance between estimators and the true conditional distribution at different x’s. The
setting is similar to Figure 4, but LipNet is trained without enforcing sparsity on the transport plan. The

errors of LipNet at around x = 0.1, 0.9 are slightly higher than those in Figure 4.
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Table 2 Projected Wasserstein error under different Sinkhorn parameters.

LipNet without enforced sparsity

ε−1 mean 25%-quantile median 75%-quantile number of NaN steps

10 5.18 2.18 3.99 7.34 0
30 1.43 0.83 1.21 1.78 0
100 1.50 0.96 1.31 1.73 1217
300 9.15 4.97 8.62 12.30 9500

LipNet with enforced sparsity

ε−1 mean 25%-quantile median 75%-quantile number of NaN steps

10 1.42 0.91 1.20 1.60 0

30 1.24 0.79 1.07 1.42 0

100 1.52 0.97 1.32 1.76 0

300 5.00 4.96 5.01 5.05 0

Raw estimator

k mean 25%-quantile median 75%-quantile

300 2.69 1.62 2.22 3.23
1000 1.57 0.95 1.30 1.91
3000 1.41 0.88 1.21 1.70
10000 2.38 1.45 2.02 2.97

This table displays the evaluation error of LipNet across various values of ε, both with and without
enforced sparsity. For comparison, the error of the raw k-nearest-neighbor estimator is also included. The

mean and quantiles are reported at a scale of 10−2. Boldfaced numbers indicate the best results, while
underlined numbers denote the runner-up. Note that ε is only applied after the first 500 training episodes.

For additional details on the configuration, please refer to Table 4. The evaluation is performed by
computing the projected Wasserstein distance, as outlined in Section 3.2.

5.3 More on LipNet

We will investigates the impact of various hyper-parameters on the performance of LipNet. The
LipNets presented in this section are trained with the same hyper-parameters as in Section 3.2 (see
also Appendix C), expect for those specified otherwise.

5.3.1 Activation function

Switching the activation function from ELU to Rectified Linear Unit (ReLU) appears to retain
the adaptive continuity property. In Figure 11, we illustrate the joint distribution and the average
absolute derivatives of all atoms of LipNet with ReLU activation. The outcomes are on par with
those achieved using ELU activation as shown in Figure 2.

5.3.2 Value of L in (18)

Note that the LipNets discussed in Section 3.2 were trained with L = 0.1. If the normalizing
constants in LipNet are exactly computed, L reflects the Lipschitz constant of LipNet, upto the
discrepancy in the choice of norms in different layers. The effect of L in our implementation,
however, is rather obscure. Figure 12 showcases the performance of LipNets across various L values
in Model 1. The comparison in Model 2 is presented in Figure 20 in Appendix B. The best choice
of L appears to depend on the ground truth model. For Model 3, we compared the performance
of L = 0.1 and L = 1 and observed no significant differences. Generally, we prefer a smaller L;
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(a) Model 1, all atoms (b) Model 2, ave. abs.
der.

(c) Model 2, all atoms (d) Model 2, ave. abs.
der.

Figure 11: LipNet under Model 1 with ReLU activation.

however, smaller values of L tend to exhibit greater sensitivity to other training parameters. For
instance, in Model 3, with L = 0.1, starting enforcing sparsity too soon leads to significantly poorer
performance, while the impact on the outcomes for L = 1 is much less noticeable.
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(a) L = 0.01 (b) L = 0.03 (c) L = 1 (d) L = 3

Figure 12: LipNet under Model 1 with various L’s.

5.3.3 Momentum τ in Algorithm 2

In our training of LipNet, we use τ = 10−3. Figure 13 demonstrates the impact of various τ values
on neural estimator’s performance in Model 1. It is clear that the performance declines with a τ
that is too large. While we initially speculated that a smaller τ might cause atoms to exhibit more
erratic movements as x changes, observations contradict this hypothesis. We now believe that a
suitable τ value helps prevent neurons from stagnating in the plateau region of the ELU activation
function. This is supported by the outcomes observed with τ = 10−6, where atom movements are
overly simplistic. Additional comparisons in Model 2 are presented in Figure 21.

Despite considering as a potential improvement the inclusion of batch normalization in the
convex potential layer (16), right after the affine transformation, along with a corresponding offset
in the position of ‖W‖2, our experiments with both ELU and ReLU activations, using the default
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(a) τ = 10−1 (b) τ = 10−2 (c) τ = 10−5 (d) τ = 10−6

Figure 13: LipNet under Model 1 with various τ ’s.

batch normalization momentum of 0.1, resulted in reduced performance. Lowering said batch
normalization momentum often leads to a NaN network.

6. Weakness and potential improvement

In this section, we provide some discussion on the weakness and possible improvement of our
implementation in Section 3.

Extra correction. In more realistic scenarios, the true conditional distribution is often un-
known or intractable. In such cases, it is unclear whether a neural estimator offers extra correction
over raw estimators. A potential solution to this issue is to train StdNet and LipNet simultaneously.
If StdNet and LipNet align more closely with each other than with the raw estimator involved in
their training, it is possible that the neural estimators are providing extra corrections.

Hyper-parameters for Sinkhorn algorithm. Our implementation of the Sinkhorn algorithm
involves several hyper-parameters: (i) k in Definition 9 ; (ii) Natom in (10); (iii) ε in (33); (iv) γ in
(34); and (v) additional hyper-parameters listed in Section C. The impact of these hyper-parameters
is not yet fully understood. Additionally, an adaptive ε that balances the accuracy and stability of
the Sinkhorn iteration is desirable. Furthermore, as illustrated in Section 5.2, enforcing sparsity on
the transport plan generally yields better approximations at x where the conditional distribution
is more diffusive, but may performs worse where the conditional distribution exhibits atoms. This
observation motivates further investigation into a sparsity policy that adjusts according to the
indications from the raw estimator.

Adaptive continuity. The impact of hyper-parameters in LipNet also warrants further in-
vestigation. In addition, despite the results presented in this study, more evidence is needed to
understand how LipNet and its variations perform under various conditions.

Scalability. While the implementation produces satisfactory results when M and k are rela-
tively small (recall that we set Natom = k), our further experiments indicate a scalability bottleneck.
For example, in Model 1, significantly increasing M and k does not necessarily improve the per-
formance of neural estimators in a comparable manner. For completeness, we provide a report of
the computational time consumption under various settings in Section C. To address this issue, we
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could experiment with varying the ratios between Natoms and k, rather than setting them equal,
in hopes of reducing the strain on the Sinkhorn algorithm. We note that varying the ratio be-
tween Natoms and k requires adjusting the enforced sparsity accordingly. Another issue relates to
the dimensions of X and Y. In view of the curse of dimensionality in Theorem 10, our method is
inherently suited for low-dimensional settings. Fortunately, in many practical scenarios, the data
exhibits low-dimensional structures, such as: (i) the sampling distribution of X concentrating on
a low-dimensional manifold; and (ii) the mapping x 7→ Px exhibiting low-dimensional dependence.
For (i), we might resort to dimension reduction techniques, although an extension of the results in
Section 2 has yet to be established. For (ii), a data-driven method that effectively leverages the
low-dimensional dependence is of significant interest.

Conditional generative models. Utilizing a conditional generative model could potentially
lead to further improvements. One advantage of conditional generative models is the ease of incor-
porating various training objectives. For instance, it can easily adapt to the training objectives in
(6) to accommodate multiple different hyper-parameters simultaneously. We may also incorporate
the joint empirical measure in the training process. This flexibility also allows for the integration
of specific tail conditions as needed.

Lastly, we would like to point out an issue observed in our preliminary experiments when utilizing
a näıve conditional generative model: it may assign excessive probability mass to the blank region
between two distinct clusters (for example, in Model 1 around (x, y) = (0.1, 0.5)). This possibly
stems from the inherent continuity of neural networks. One possible solution is to consider using a
mixture of multiple conditional generative models.
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Appendix A. Numerical finite-sample bounds

In this section, we present numerical computations of finite-sample bounds for the r-box and k-
nearest-neighbor estimators in the case where dX = dY = 3 and C = c = 1, i.e., both the sampling
distribution of X and ν are uniform. Through this analysis, we also aim to explore the impact of
the Lipschitz constant L and the hyperparameters r and k, as introduced in Sections 2.2 and 2.3.

To begin, we note that an explicit expression for R(m), as defined in (21), can be found in
(Kloeckner, 2020, Theorem 2.1). Additionally, we introduce a parameter σ to represent the level of
uncertainty in Px. This uncertainty parameter is motivated by the observation that R(m) is derived
as a bound across all probability measures on [0, 1]dY . In scenarios where, for each x ∈ X, Px is

supported on an cube (possibly dependent on x) of diameter σ
1
dY ∈ (0, 1), we can replace R(m)

in (23) and (27) with σR(m). A similar approach applies to other cases, such as small moment
conditions. The precise definition of the uncertainty parameter σ and its data-driven estimation
will be explored in future work. Here, we use σ to investigate how the magnitude of uncertainty
affects the bounds and the corresponding optimal configurations.

For the r-box estimator, we utilize (23). In the current setting, ξ(B) in (23) simplifies to (2r)dX .
Consequently, the bound becomes

E
[
W(Px, P̂

r
x )
]
≤ 2Lr + σ

M∑
m=1

(
M

m

)(
1− (2r)dX

)M−m
(2r)dXmR(m) + σ

(
1− (2r)dX

)M
R(0).

The second term on the right-hand side can be approximated using Monte Carlo sampling from a
binomial distribution with n = M and p = (2r)dX . The Monte Carlo approximation is performed
with 1, 000 samples.

For the k-nearest-neighbor estimator, we combine (27) with (28) and (29) to obtain the following
upper bound

E
[
W
(
Px, µ̂N k(x)

)]
≤ σR(k) +

2L

k
M
− 1
dX

k∑
m=1

m−1∑
j=0

j
1
dX
−1
.

Table 3 below reports the optimal values and configurations of r and k based on these bounds,
with different L and σ. For visualization, these bounds are also plotted in Figure 14.

Table 3 Finite sample bounds with dX = dY = 3, C = c = 1, M = 106.

σ = 0.1

r-box k-NN

L min. bound (10−2) r∗ min. bound (10−2) k∗

0.1 3.79 0.095 4.49 3548

0.3 6.57 0.055 7.57 707

1 11.00 0.005 11.90 10

σ = 1

r-box k-NN

L min. bound (10−2) r∗ min. bound (10−2) k∗

0.1 12.00 0.3 14.53 112201

0.3 20.78 0.175 24.96 22387

1 37.94 0.095 44.85 3548
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Figure 14: Finite sample bounds with dX = dY = 3, C = c = 1, M = 106.
Note that the error is capped at 1, as the finite sample bounds are calculated for unit boxes. For

the minimal values, we refer to Table 3.
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Appendix B. Additional plots

In this section, we present additional plots to further support and complement the discussions
provided earlier.

Figure 15: Various estimators under Model 3, projections of conditional CDFs, k = 1000 for
k-NN estimator.

This follows the setting of Figure 5, expect that we set k = 1000 for the k-NN estimator plotted here. The
neural estimator is trained under the same setting as that in Figure 5 Plot titles display the vectors used for

projection. Note the difference in the x axis scale.

Appendix C. Additional Implementation Details

Table 4 below summarizes hyper-parameters of the neural networks. Additionally, we report the
time consumption in Table 5 under various settings. All timings were obtained from a machine
equipped with an Nvidia L40 GPU. It is important to note that the computational time does not
fully reflect the curse of dimensionality, as the flexibility in choosing the hyper-parameter k allows
for adjustments in practice. The appropriate selection of k, as discussed in Section A, is a nuanced
issue and needs to be carefully re-evaluated based on the specific field information at hand.
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Figure 16: Various estimators under Model 3, projections of conditional CDFs, k = 3000 for
k-NN estimator.

This follows the setting of Figure 5, expect that we set k = 3000 for the k-NN estimator plotted here. The
neural estimator is trained under the same setting as that in Figure 5 Plot titles display the vectors used for

projection. Note the difference in the x axis scale.
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Figure 17: Various estimators under Model 3, projections of conditional CDFs, k = 104 for k-NN
estimator.

This follows the setting of Figure 5, expect that we set k = 104 for the k-NN estimator plotted here. The
neural estimator is trained under the same setting as that in Figure 5 Plot titles display the vectors used for

projection. Note the difference in the x axis scale.
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C. Bénézet, Z. Cheng, and S. Jaimungal

Figure 18: Various estimators under Model 3, projections of conditional CDFs, both StdNet and
Lipnet are trained without enforced sparsity.

This follows the setting of Figure 5, expect that we do not enforce sparsity on the transport plan during the
training of the neural estimator. Plot titles display the vectors used for projection. Note the difference in

the x axis scale.

Raw k = 1000 Raw k = 3, 000 StdNet LipNet

Figure 19: Histogram of 10, 000 projected Wasserstein-1 errors, without enforced sparsity on
transport plan.

This follows the setting of Figure 6, expect that we do not enforce sparsity on the transport plan during the
training of the neural estimator. Histograms for raw estimators remain the same. The histogram consists of

20 uniformly positioned bins between 0 to 0.1. The errors of different estimators are computed with the
same set of query points and projection vectors. Errors larger than 0.1 will be placed in the right-most bins.
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(a) L = 0.01 (b) L = 0.03 (c) L = 1 (d) L = 3

Figure 20: LipNet under Model 2 with various L’s.
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(a) τ = 10−1 (b) τ = 10−2 (c) τ = 10−5 (d) τ = 10−6

Figure 21: LipNet under Model 2 with various τ ’s.
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Table 4 Hyper-parameters
Hyper-parameters Configuration Note

Sample size 1e4 for Model 1 & 2, 1e6 for Model 3

k 100 for Model 1 & 2, 300 for Model 3 See Definition 9

Network stucture
StdNet:

Layer-wise residual connection He et al. (2016),
batch normalization (Ioffe and Szegedy (2015)) after

affine transformation

LipNet:
Layer-wise residual connection (He et al. (2016))

with convex potential layer (Meunier et al. (2022))
Input dimension dX

Output dimension dY ×Natom Natom = k, see (10)

Number of hidden layers 5

Number of neurons
each hidden layer

2k k as in Definition 9

Activation function
StdNet: ReLU
LipNet: ELU

See Section 5.3.1

L 0.1 See (18)

τ 1e-3 See Algorithm 2

Optimizer Adam (Kingma and Ba (2017)) with learning rate 10−3
Learning rate is 10−2

for StdNet
in Model 1 & 2

Batch size
100 for Model 1 & 2

256 for Model 3

Number of episodes 5e3 for Model 1 & 2, 1e4 for Model 3

RBSP setting 25 partition, 8 query points each part See Section 3.1.1

Random bisecting ratio ∼ Uniform([0.45, 0.55])
See Section 3.1.1
and Algorithm 3

Ratio for mandatory slicing
along the longest edge

5
See Section 3.1.1

and redge in Algorithm 3

Number of Sinkhorn iterations
5, if epoch ≤ 500
10, if epoch > 500

ε
1, if epoch ≤ 100

0.1, if epoch ∈ [100, 500]
0.05, if epoch > 500

See (33)

Enforced sparsity
Off, if epoch ≤ 500
On, if epoch > 500

See Section 5.2

γ 0.5 See (34)
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Table 5 Computational times of 500 training steps for LipNet, with M = 106.

k d = 3 d = 10

30 (24.6, 12.1) (55.7, 16.3)

100 (27.0, 15.9) (56.2, 16.9)

300 (29.2, 18.5) (63.7, 24.7)

1000 (75.9, 64.8) (151.3, 134.2)

This table presents the training time of LipNet for varying values of k and dX = dY = d. For other
hyper-parameters, please refer to Table 5. All times are reported in seconds. The first entry in each cell

corresponds to the training time when using exact nearest neighbor search, while the second entry
represents the time when employing ANNS-RBSP. The experiments were conducted on a machine equipped

with an Nvidia L40 GPU.

Appendix D. Another set of results on fluctuation

D.1 On r-box estimator

Theorem 22 Under Assumptions 2 and 3, and choosing r as in Theorem 7, let ν ∈ P(X) be
dominated by λX with constant C > 0. Then, there is a constant C > 0 (which depends only on
dX, c, C and the constants involved in r), such that, for any ε ≥ 0, we have

P
[∫

X
W
(
Px, P̂

r
x

)
dν(x) ≥ E

[∫
X
W
(
Px, P̂

r
x

)
dν(x)

]
+ ε

]
≤


exp

(
−CM

2
dX+2 ε2

)
, dY = 1, 2,

exp

(
−CM

dX
dX+dY ε2

)
, dY ≥ 3.

Proof Let ν ∈ P(X) as in the statement of the Theorem. We define

Z :=

∫
X
W(Px, P̂

r
x ) dν(x),

and introduce the following discrete time filtration: F0 := {∅,Ω} and Fm := σ(
⋃m
i=1 σ(Xi, Yi)) for

m = 1, . . . ,M . We consider the Doob’s martingale Zm := E [Z | Fm] , m = 1, . . . ,M . Note that
ZM = Z. We will apply Azuma-Hoeffding inequality (cf. (Wainwright, 2019, Corollary 2.20)) to
complete the proof.

Let us define

Dm := {(X1, Y1), . . . , (Xm, Ym), (xm+1, ym+1), . . . , (xM , yM )}, m = 1, . . . ,M, (35)

D0 := {(x`, y`)}M`=0, and DM := D. Note that, for all m < M , we have, by Assumptions 3 (i),
conditional Fubini-Tonelli theorem, and independent lemma,

Zm =

∫
X

∫
(X×Y)M−m

W
(
Px, µ̂

Dm
Br(x)

) M⊗
`=m+1

ψ(dx` dy`)ν(dx).

This together with the linearity of integral, the fact that ψ is a probability, and the triangular
inequality of W implies that for m = 1, . . . ,M ,

|Zm − Zm−1| ≤
∫
X

∫
(X×Y)M−m+1

W
(
µ̂D

m

Br(x), µ̂
Dm−1

Br(x)

) M⊗
`=m

ψ(dx` dy`)ν(dx). (36)
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Notice that, by definitions (1) and (35),{
µ̂DmBr(x) 6= µ̂

Dm−1

Br(x)

}
⊆
{
Xm ∈ Br(x)

}
∪
{
xm ∈ Br(x)

}
. (37)

Additionally, by definitions (1) and (35) again, on the event that
{
µ̂DmBr(x) 6= µ̂

Dm−1

Br(x)

}
, we have

W
(
µ̂D

m

Br(x), µ̂
Dm−1

Br(x)

)
≤

(
1 +

m−1∑
`=1

1Br(x)(X`) +
M∑

`=m+1

1Br(x)(x`)

)−1

≤

(
1 +

M∑
`=m+1

1Br(x)(x`)

)−1

.(38)

Combining (36),(37), (38), and Fubini-Tonelli theorem, we get

|Zm − Zm−1| ≤
∫
X

∫
B(Xm,2r)∪B(xm,2r)

∫
XM+1−m

(
1 +

M∑
`=m+1

1Br(x)(x`)

)−1 M⊗
`=m+1

ξ(dx`)ν(dx)ξ(dxm)

≤ sup
xm∈X

∫
B(Xm,2r)∪B(xm,2r)

∫
XM+1−m

(
1 +

M∑
`=m+1

1Br(x)(x`)

)−1 M⊗
`=m+1

ξ(dx`)ν(dx) (39)

where the 2r in the domain of the integral stems from the usage of βr in the definition of Br (see
Definition 5). Now, for fixed x, xm ∈ X, we have∫

XM−m+1

(
1 +

M∑
`=m+1

1Br(x)(x`)

)−1 M⊗
`=m+1

ξ(dx`)

=
M−m∑
`=0

(
M −m

`

)
ξ
(
Br(x)

)`(
1− ξr

(
Br(x)

))M−m−`
(1 + `)−1

=
1

(M −m+ 1)ξ
(
Br(x)

) M−m∑
`=0

(
M −m+ 1

`+ 1

)
ξ
(
Br(x)

)`+1
(

1− ξ
(
Br(x)

))M−m−`
=

1

(M −m+ 1)ξ
(
Br(x)

) M−m+1∑
`=1

(
M −m+ 1

`

)
ξ
(
Br(x)

)`(
1− ξ

(
Br(x)

))M−m+1−`

=
1−

(
1− ξ

(
Br(x)

))M−m+1

(M −m+ 1)ξ
(
Br(x)

) ≤ 1 ∧
(
(M −m+ 1)ξ

(
Br(x)

))−1 ≤ 1 ∧
(

(M −m+ 1)c(2r)dX
)−1

,

where we have used Assumption 3 (ii) in the last inequality. Recall C introduced in Theorem 22.
In view of (39), we have

|Zm − Zm−1| ≤ sup
xm∈X

∫
B(Xm,2r)∪B(xm,2r)

1 ∧
(

(M −m+ 1)c(2r)dX
)−1

ν(dx)

≤ 2C(4r)dX
(

1 ∧
(

(M −m+ 1)c(2r)dX
)−1

)
=
(
C22dX+1rdX

)
∧ C2dX+1

c(M −m+ 1)
:= Cm.

By Azuma-Hoeffding inequality (cf. (Wainwright, 2019, Corollary 2.20)), one obtains

P(Z − E [Z] ≥ ε) ≤ exp

(
− 2ε2∑M

m=1C
2
m

)
.
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To complete the proof, we substitute in the configuration of Theorem 7. Since we only aim to
investigate the rate of

∑M
m=1C

2
m as M →∞, we simply set

r = M
− 1
dX+d with d := 2 ∨ dY.

It follows that
M∑
m=1

C2
m ∼

M∑
m=1

M
− 2dX
dX+d ∧m−2

.
∫ ∞

1
M
− 2dX
dX+d ∧ z−2 dz ∼

∫ M

dX
dX+d

1
M
− 2dX
dX+d dz +

∫ ∞
M

dX
dX+d

z−2 dz ∼M−
dX
dX+d ,

which completes the proof.

D.2 On k-nearest-neighbor estimator

Theorem 23 Under Assumptions 2 and 3, and the choice of k as in Theorem 10, there is a constant
C > 0 (which depends only on c and the constants involved in k), such that, for any ν ∈ P(X) and
ε ≥ 0, we have

P
[∫

X
W
(
Px, P̌

k
x

)
ν(dx) ≥ E

[∫
X
W
(
Px, P̌

k
x

)
ν(dx)

]
+ ε

]
≤


exp

(
−CM

2
dX+2 ε2

)
, dY = 1, 2,

exp

(
−CM

dY
dX+dY ε2

)
, dY ≥ 3.

Proof [Proof of Theorem 23] For notational convenience, we will write µ̂DN k(x)
for µ̂DN k,D(x)

. Clearly,

with D = D, we recover µ̂DN k(x)
= µ̂DN k,D(x)

= P̌ kx . In what follows, we let

Z :=

∫
X
W
(
Px, P̌

k
x

)
ν(dx).

We also define F0 := {∅,Ω} and Fm := σ(
⋃m
i=1 σ(Xi, Yi)) for m = 1, . . . ,M . The proof relies on an

application of Azuma-Hoeffding inequality (cf. (Wainwright, 2019, Corollary 2.20)) to the Doob’s
martingale {E [Z|Fm]}Mm=0. In order to proceed, we introduce a few more notations:

x := (x1, . . . , xM ), X := (X1, . . . , XM ),

Xm := (X1, . . . , Xm, xm+1, . . . , xM ),

Dm := {(X1, Y1), . . . , (Xm, Ym), (xm+1, ym+1), . . . , (xM , yM )},
ηk,xx := the k-th smallest of {‖xm − x‖∞}Mm=1.

By independence lemma, we have

E
[
Z
∣∣Fm

]
=

∫
(X×Y)M−m

∫
X
W
(
Px, µ̂

Dm
N k(x)

)
ν(dx)

M⊗
`=m+1

ψ(dx` dy`)

=

∫
(X×Y)M−m

∫
X
W

(
Px,

1

k

(
m∑
i=1

1‖Xi−x‖∞≤ηk,X
m

x
δYi +

M∑
`=m+1

1‖x`−x‖∞≤ηk,X
m

x
δy`

))
ν(dx)

M⊗
`=m+1

ψ(dx` dy`),
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where we note that (X × Y)M−m and
⊗M

`=m+1 ψ(dx` dy`) in the right hand side can be replaced

by (X× Y)M−m+1 and
⊗M

`=m ψ(dx` dy`) as the integrand is constant in xm and ψ is a probability
measure. Therefore, by Fubini’s theorem and triangle inequality for W, we have∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣
≤
∫
X

∫
(X×Y)M−m+1

W

(
1

k

(
m∑
i=1

1‖Xi−x‖∞≤ηk,X
m

x
δYi+

M∑
`=m+1

1‖x`−x‖∞≤ηk,X
m

x
δy`

)
1

k

(
m−1∑
i=1

1
‖Xi−x‖∞≤ηk,X

m−1
x

δYi+
M∑
`=m

1
‖x`−x‖∞≤ηk,X

m−1
x

δy`

))
M⊗
`=m

ψ(dx` dy`) dx.

(40)

Above, the only difference between the two measures inside W is the m-th summand. Due to the
definition ofW and the boundedness of X, the transport cost induced by altering the m-th summand
is at most k−1. It follows that∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣ ≤ 1

k
, m = 1, . . . ,M. (41)

Below we further refine the upper bound of the absolute difference in the left hand side of (40)
when m = 1, . . . ,M − k. For the integrand in the right hand side of (40) to be positive, it is
necessary that

1‖Xm−x‖∞≤ηk,X
m

x
+ 1

‖xm−x‖∞≤ηk,X
m−1

x
≥ 1.

This, together with the tie breaking rule stipulated in Definition 9, further implies that

1Am1
+ 1Am2

≥ 1,

where

Am1 :=
{

at most (k − 1) of x`, ` = m+ 1, . . . ,M −m, falls into B‖Xm−x‖∞x

}
,

Am2 :=
{

at most (k − 1) of x`, ` = m+ 1, . . . ,M −m, falls into B‖xm−x‖∞x

}
.

Combining the above with the reasoning leading to (41), we yield∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣
≤ 1

k

(∫
X

∫
(X×Y)M−m

1Am1

M⊗
`=m+1

ξ(dx`)ν(dx) +

∫
X

∫
(X×Y)M−m+1

1Am2

M⊗
`=m

ξ(dx`)ν(dx)

)

Above, we have replaced ψ in (40) by ξ because Am1 and Am2 no longer depend on y`, ` = m+1, . . . ,M .
The analogue applies to the domain of integral as well. We continue to have∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣
≤ 1

k

(∫
X

∫
(X×Y)M−m

1Am1

M⊗
`=m+1

ξ(dx`)ν(dx) +

∫
X

∫
(X×Y)M−m+1

1Am2

M⊗
`=m

ξ(dx`)ν(dx)

)
(42)

=:
1

k
(Im1 + Im2 ).
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Regarding I1
m defined in (42), note that by Assumption 3,∫

(X×Y)M−m
1Am1

M⊗
`=m+1

ξ(dx`) = P
[
at most (k − 1) of X̌1, . . . , X̌M−m falls into B‖x

′−x‖∞
x

] ∣∣∣
x′=Xm

,

where X̌1, . . . , X̌M−m
i.i.d.∼ ξ. Below we define a CDF G(r) := crd, r ∈ [0, c−

1
d ]. By Assumption 3

(ii), for any x, x′ ∈ X, we have∫
X
1
x̌∈B‖x

′−x‖∞
x

ξ(dx̌) ≥ c
∫
X
1
x̌∈B‖x

′−x‖∞
x

dx̌ ≥ c
∫
X
1
x̌∈B‖x

′−x‖∞
0

dx̌ = G(‖x′ − x‖∞),

where we have used the fact that ‖x′ − x‖∞ ≤ 1 ≤ c−
1
d in the last equality. It follows from Lemma

17 that∫
(X×Y)M−m

1Am1

M⊗
`=m+1

ξ(dx`) ≤
k−1∑
j=0

(
M −m

j

)
G(‖Xm − x‖∞)j

(
1−G(‖Xm − x‖∞)

)M−m−j
,

and thus, by letting U ∼ Uniform(X),

Im1 ≤
∫
X

k−1∑
j=0

(
M −m

j

)
G(‖Xm − x‖∞)j

(
1−G(‖Xm − x‖∞)

)M−m−j
dx

= E

k−1∑
j=0

(
M −m

j

)
G(‖x′ − U‖∞)j

(
1−G(‖x′ − U‖∞)

)M−m−j ∣∣∣
x′=Xm

,

where we note that the upper bounded no longer involves ν. For x′ ∈ X, it is obvious that

P
[
‖x′ − U‖∞ ≤ r

]
≥ P

[
‖U‖∞ ≤ r

]
, r ∈ R,

i.e., ‖U‖∞ stochastically dominates ‖x′ −U‖∞. Note additionally that, by Lemma 17 again, below
is a non-decreasing function,

r 7→
k−1∑
j=0

(
M −m

j

)
G(r)j

(
1−G(r)

)M−m−j
.

Consequently,

Im1 ≤ E

k−1∑
j=0

(
M −m

j

)
G(‖U‖∞)j

(
1−G(‖U‖∞)

)M−m−j
dx

 .
Since ‖U‖∞ has CDF r 7→ rdX , r ∈ [0, 1] and G(r) = crd, r ∈ [0, c−

1
d ], we continue to obtain

Im1 ≤
k−1∑
j=0

(
M −m

j

)∫ 1

r=0
crdXj(1− crdX)M−m−j drdX

≤ c−1
k−1∑
j=0

(M −m)!

j!(M −m− j)!

∫ 1

0
rj(1− r)M−m−j dr.
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With a similar calculation as in (26), which involves beta distribution and gamma function, we
arrive at

Im1 ≤ c
k−1∑
j=0

(M −m)!

j!(M −m− j)!
j!(M −m− j)!
(M −m+ 1)!

≤ c−1k

M −m
. (43)

Regarding Im2 defined in (42), we first let X̌0, X̌1, . . . , X̌M−m
i.i.d.∼ ξ. Then, note that∫

(X×Y)M−m
1Am2

M⊗
`=m+1

ξ(dx`) ≤ P
[
at most (k − 1) of X̌1, . . . , X̌M−m falls into B‖X̌0−x‖∞

x

]
≤
(
M −m− 1

k − 1

)(
M −m

k

)−1

=
k

M −m
,

where the inequality in the second line is due to the symmetry stemming from Assumption 3 (i), and
the fact that congestion along with the tie-breaking rule specified in Definition 9 may potentially
rules out certain permutations. Consequently,

Im2 ≤
k

M −m
. (44)

Putting together (41), (42), (43), and (44), we yield

∣∣E [Z∣∣Fm

]
− E

[
Z
∣∣Fm−1

]∣∣ ≤ Cm :=
C(c−1 + 1)

M −m
∧ 1

k
, m = 1, . . . ,M.

By Azuma-Hoeffding inequality (cf. (Wainwright, 2019, Corollary 2.20)),

P
[∫

X
W
(
Px, µ̂

D
N k(x)

)
ν(dx)− E

[∫
X
W
(
Px, µ̂

D
N k(x)

)
ν(dx)

]
≥ ε
]
≤ exp

(
− ε2

2
∑M

m=1C
2
m

)
, ε ≥ 0.

To complete the proof, we substitute in the configuration of Theorem 10. Below we only investigate
the rate of

∑M
m=1C

2
m as M →∞, and do not keep track of the constant. For simplicity, we set

k = k ∼M
d

dX+d with d := 2 ∨ dY

It follows that

M∑
m=1

C2
m ∼

bM−M
d

dX+d c∑
m=1

1

(M −m)2
+
M

d
dX+d

M
2d

dX+d

∼
∫ ∞
M

d
dX+d

1

r2
dr +

1

M
d

dX+d

∼M−
d

dX+d ,

which completes the proof.
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function. Ann. Inst. H. Poincaré Probab. Statist., 52:939–980, 2016.

P. K. Bhattacharya and A. K. Gangopadhyay. Kernel and nearest-neighbor estimation of a condi-
tional quantile. The Annals of Statistics, 18:1400–1415, 1990.

A. Bhowmick, M. D’Souza, and G. S. Raghavan. Lipbab: Computing exact lipschitz constant of
relu networks. International Conference on Artificial Neural Networks, 2021.

G. Biau and L. Devroye. Lectures on the Nearest Neighbor Method. Springer, 2015.

V. I. Bogachev. Measure Theory Volume II. Springer-Verlag Berlin Heidelberg, 2007.

J. Booth, P. Hall, and A. Wood. Bootstrap estimation of conditional distributions. The Annals of
Statistics, 20:1594–1610, 1992.

P. Bountakas, A. Zarras, A. Lekidis, and C. Xenakis. Defense strategies for adversarial machine
learning: A survey. Computer Science Review, 49, 2023.

Z. Cheng and S. Jaimungal. Distributional dynamic risk measures in markov decision processes.
arXiv:2203.09612, 2023.

Y. Chow, A. Tamar, S. Mannor, and M. Pavone. Risk-sensitive and robust decision-making: a cvar
optimization approach. Advances in Neural Processing Systems, 2015.

59
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