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Abstract

JNCC2 implements the naive credal classifier 2 (NCC2). This is an extension of naive Bayes to
imprecise probabilities that aims at delivering robust classifications also when dealing with small
or incomplete data sets. Robustness is achieved by delivering set-valued classifications (that is,
returning multiple classes) on the instances for which (i) the learning set is not informative enough
to smooth the effect of choice of the prior density or (ii) the uncertainty arising from missing data
prevents the reliable indication of a single class. JNCC2 is released under the GNU GPL license.
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1. Introduction

JNCC2 is the Java implementation of naive credal classifier 2 (NCC2) (Corani and Zaffalon, 2008).
NCC2 extends naive Bayes (NBC) to imprecise probabilities (Walley, 1991) in order to deliver
reliable classifications even on small or incomplete data sets.

A problem of NBC is that, on small data sets, it may return prior-dependent classifications, that
is, it might identify a different class as the most probable one, depending on the prior density adopted
to infer the classifier. In some cases this can lead NBC to issue fragile predictions. To deal with
this problem, NCC2 specifies a set of prior densities, referred to as prior credal set; the credal set is
then turned into a set of posteriors via element-wise application of Bayes’ rule. Eventually, NCC2
returns the classes that are non-dominated with respect to the set of posterior densities (class c1

dominates class c2 if the probability of c1 is larger than the probability of c2 for all the posteriors).
When faced with an instance that would be classified in a prior-dependent way by naive Bayes,
NCC2 will detect multiple non-dominated classes and will then return multiple classes; this is an
indeterminate classification.

As for missing data, NCC2 assumes that the missingness process (MP) which generates missing
data can be either MAR (that is, missing at random), or unknown; in the latter case, it is referred
to as non-MAR. As MAR missing data can be safely ignored (Little and Rubin, 1987), NCC2
ignores them. On the other hand, NCC2 deals conservatively with non-MAR missing data, that
is, it considers all the possible replacements for non-MAR missing data. NCC2 can handle mixed
situations where some features are subject to a MAR MP and some others to a non-MAR MP;
moreover, the list of features subject to the MAR and to the unknown MP can be different between
training and test set. The conservative treatment of non-MAR missing data generates additional
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indeterminacy of NCC2, as a way to preserve reliability despite the information hidden by missing
values and by the fact that the MP is unknown.

NCC2 can hence be seen as separating “easy” instances, over which it returns a single class,
from “hard” instances, over which it returns an indeterminate classification. Experimental evalua-
tions have shown that the accuracy of naive Bayes sharply drops on the hard instances, while on the
same instances NCC2 remains reliable thanks to the indeterminate classifications.

Programming language: Java.
Developer: Giorgio Corani (IDSIA, Switzerland).
Open source license: GNU GPL.
Website: www.idsia.ch/˜giorgio/jncc2.html.
Software required: Java Runtime Environment 5.0 or higher.
Operating system: OS independent.
User interface: command-line.

Figure 1: Essential information about JNCC2.

The zip file downloadable from the JNCC2 website contains executables, sources, examples,
user manual and tutorial. A GUI version of the software will be released in the near future and will
be published on the same website.

2. Indicators of Performance

The performance of NBC is measured by the accuracy, that is, the percentage of correct classifica-
tions.

The performance of NCC2 is measured by several indicators: determinacy: the percentage of
classifications having as output a unique class; single accuracy: the accuracy of NCC2 when it
is determinate; indeterminate output size: the average number of classes returned when NCC2 is
indeterminate; set-accuracy: the percentage of indeterminate classifications that contain the actual
class.

To assess the effectiveness of the approach based on imprecise probabilities, the accuracy of
naive Bayes is moreover measured separately on the instances recognized as hard and easy by
NCC2. If NCC2 is effective at separating easy from hard instances, a significant difference will be
found between the two measures.

Moreover, JNCC2 computes the confusion matrices of NBC and NCC2; in case of NCC2 the
confusion matrix refers to the determinate classifications only.

3. Some Implementation Details

JNCC2 loads data from ARFF files; this is a plain text format, originally developed for WEKA
(Witten and Frank, 2005). A large number of ARFF data sets, including the data sets from the
UCI repository, is available from the address http://www.cs.waikato.ac.nz/ml/weka/index_
datasets.html.
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As a pre-processing step, JNCC2 discretizes all the numerical features, using the supervised
discretization algorithm of Fayyad and Irani (1993). The discretization intervals are computed on
the training set, and then applied unchanged on the test set.

NCC2 is implemented exploiting the computationally efficient procedure described in (Corani
and Zaffalon, 2008, Appendix A).

Algorithm 1 Pseudocode for validation via testing file.
validateTestFile()

/*loads training and test file; reads list of non-Mar features; discretizes features*/
parseArffFile();
parseArffTestingFile();
parseNonMar();
discretizeNumFeatures();

/*learns and validates NBC*/
nbc = new NaiveBayes(trainingSet);
nbc.classifyInstances(testSet);

/*learns and validates NCC2; the list of non-Mar features in training and testing is required*/
ncc2 = new NaiveCredalClassifier2(trainingSet, nonMarTraining, nonMarTesting);
ncc2.classifyInstances(testingSet);

/*writes output files*/
writePerfIndicators();
writePredictions();

JNCC2 can perform three kinds of experiments: training and testing, cross-validation, and clas-
sification of instances of the test set whose class is unknown. The pseudo code of the experiment
with training and testing is described by Algorithm 1.

4. Examples

To run the following examples, move to the directory examples/completeData, generated under
the JNCC2 directory after unzipping the package. To perform a training and testing experiment,
type for instance:

“java jncc20.Jncc . iris.training.arff iris.testing.arff”.

As a consequence, JNCC2 will load the training and test set, discretize the numerical features, learn
both NBC and NCC2, and use them to predict the instances of the test set. Then it will write the
performance measures and the predictions to file. Similar experiments can be performed also with
the glass and contact-lenses data sets, provided in the same directory.

To run a cross-validation experiment, type for instance:

“java jncc20.Jncc . iris.training.arff cv”.
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JNCC2 will perform 10 runs of 10-folds stratified cross-validation, that is, 100 training/test experi-
ments. JNCC2 will report the performance indicators to file, together with their observed standard
deviations, but it will not write the predictions. (As a side remark, if one wants to run cross-
validation, there is no need of splitting the original data set into a training and a testing file, as it is
has been done in this directory.)

The directory examples/missingData contains two examples of data sets containing missing
data; a look at the provided files NonMar.txt should make it clear how to declare the non-MAR
features.

The directory examples/unkClasses contains two examples in which the class of the instances
of the testing set is not available. For the iris data set, the experiment is for instance started as
follows:

“java jncc20.Jncc . iris.training.arff iris.testingUnkClasses.arff
unknownclasses”.
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