Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

JMLR Workshop and Conference Proceedings
Volume 19: COLT 2011

Proceedings of the 24th Annual Conference on Learning Theory
June 9-11, 2011, Budapest, Hungary

Editors: Sham M. Kakade and Ulrike von Luxburg
Preface
Sham M. Kakade and Ulrike von Luxburg
[pdf]
Regret Bounds for the Adaptive Control of Linear Quadratic Systems
Yasin Abbasi-Yadkori, Csaba Szepesvári ; 19:1-26, 2011.
[abs] [pdf]
Blackwell Approachability and No-Regret Learning are Equivalent
Jacob Abernethy, Peter L. Bartlett, Elad Hazan ; 19:27-46, 2011.
[abs] [pdf]
Competitive Closeness Testing
Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan ; 19:47-68, 2011.
[abs] [pdf]
Oracle inequalities for computationally budgeted model selection
Alekh Agarwal, John C. Duchi, Peter L. Bartlett, Clement Levrard ; 19:69-86, 2011.
[abs] [pdf]
Bandits, Query Learning, and the Haystack Dimension
Kareem Amin, Michael Kearns, Umar Syed ; 19:87-106, 2011.
[abs] [pdf]
Minimax Policies for Combinatorial Prediction Games
Jean-Yves Audibert, Sébastien Bubeck, Gábor Lugosi ; 19:107-132, 2011.
[abs] [pdf]
Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments
Gábor Bartók, Dávid Pál, Csaba Szepesvári ; 19:133-154, 2011.
[abs] [pdf]
Sample Complexity Bounds for Differentially Private Learning
Kamalika Chaudhuri, Daniel Hsu ; 19:155-186, 2011.
[abs] [pdf]
Tight conditions for consistent variable selection in high dimensional nonparametric regression
Laëtitia Comminges, Arnak S. Dalalyan ; 19:187-206, 2011.
[abs] [pdf]
Multiclass Learnability and the ERM principle
Amit Daniely, Sivan Sabato, Shai Ben-David, Shai Shalev-Shwartz ; 19:207-232, 2011.
[abs] [pdf]
Mixability is Bayes Risk Curvature Relative to Log Loss
Tim van Erven, Mark D. Reid, Robert C. Williamson ; 19:233-252, 2011.
[abs] [pdf]
Distribution-Independent Evolvability of Linear Threshold Functions
Vitaly Feldman ; 19:253-272, 2011.
[abs] [pdf]
Lower Bounds and Hardness Amplification for Learning Shallow Monotone Formulas
Vitaly Feldman, Homin K. Lee, Rocco A. Servedio ; 19:273-292, 2011.
[abs] [pdf]
Complexity-Based Approach to Calibration with Checking Rules
Dean P. Foster, Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari ; 19:293-314, 2011.
[abs] [pdf]
Concentration-Based Guarantees for Low-Rank Matrix Reconstruction
Rina Foygel, Nathan Srebro ; 19:315-340, 2011.
[abs] [pdf]
On the Consistency of Multi-Label Learning
Wei Gao, Zhi-Hua Zhou ; 19:341-358, 2011.
[abs] [pdf]
The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond
Aurélien Garivier, Olivier Cappé ; 19:359-376, 2011.
[abs] [pdf]
Sparsity Regret Bounds for Individual Sequences in Online Linear Regression
Sébastien Gerchinovitz ; 19:377-396, 2011.
[abs] [pdf]
Safe Learning: bridging the gap between Bayes, MDL and statistical learning theory via empirical convexity
Peter Grünwald ; 19:397-420, 2011.
[abs] [pdf]
Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization
Elad Hazan, Satyen Kale ; 19:421-436, 2011.
[abs] [pdf]
A Close Look to Margin Complexity and Related Parameters
Michael Kallweit, Hans Ulrich Simon ; 19:437-456, 2011.
[abs] [pdf]
Maximum Likelihood vs. Sequential Normalized Maximum Likelihood in On-line Density Estimation
Wojciech Kotłowski, Peter Grünwald ; 19:457-476, 2011.
[abs] [pdf]
A New Algorithm for Compressed Counting with Applications in Shannon Entropy Estimation in Dynamic Data
Ping Li, Cun-Hui Zhang ; 19:477-496, 2011.
[abs] [pdf]
A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences
Odalric-Ambrym Maillard, Rémi Munos, Gilles Stoltz ; 19:497-514, 2011.
[abs] [pdf]
Robust approachability and regret minimization in games with partial monitoring
Shie Mannor, Vianney Perchet, Gilles Stoltz ; 19:515-536, 2011.
[abs] [pdf]
The Rate of Convergence of Adaboost
Indraneel Mukherjee, Cynthia Rudin, Robert E. Schapire ; 19:537-558, 2011.
[abs] [pdf]
Online Learning: Beyond Regret
Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari ; 19:559-594, 2011.
[abs] [pdf]
Neyman-Pearson classification under a strict constraint
Philippe Rigollet, Xin Tong ; 19:595-614, 2011.
[abs] [pdf]
Sequential Event Prediction with Association Rules
Cynthia Rudin, Benjamin Letham, Ansaf Salleb-Aouissi, Eugene Kogan, David Madigan ; 19:615-634, 2011.
[abs] [pdf]
Optimal aggregation of affine estimators
Joseph Salmon, Arnak Dalalyan ; 19:635-660, 2011.
[abs] [pdf]
Collaborative Filtering with the Trace Norm: Learning, Bounding, and Transducing
Ohad Shamir, Shai Shalev-Shwartz ; 19:661-678, 2011.
[abs] [pdf]
Contextual Bandits with Similarity Information
Aleksandrs Slivkins ; 19:679-702, 2011.
[abs] [pdf]
Adaptive Density Level Set Clustering
Ingo Steinwart ; 19:703-738, 2011.
[abs] [pdf]
Agnostic KWIK learning and efficient approximate reinforcement learning
István Szita, Csaba Szepesvári ; 19:739-772, 2011.
[abs] [pdf]
The Sample Complexity of Dictionary Learning
Daniel Vainsencher, Shie Mannor, Alfred M. Bruckstein ; 19:773-790, 2011.
[abs] [pdf]
Identifiability of Priors from Bounded Sample Sizes with Applications to Transfer Learning
Liu Yang, Steve Hanneke, Jaime Carbonell ; 19:791-808, 2011.
[abs] [pdf]

Open problems

Does an Efficient Calibrated Forecasting Strategy Exist?
Jacob Abernethy, Shie Mannor ; 19:811-814, 2011.
[abs] [pdf]
Bounds on Individual Risk for Log-loss Predictors
Peter D. Grünwald, Wojciech Kotłowski ; 19:815-818, 2011.
[abs] [pdf]
A simple multi-armed bandit algorithm with optimal variation-bounded regret
Elad Hazan, Satyen Kale ; 19:819-822, 2011.
[abs] [pdf]
Minimax Algorithm for Learning Rotations
Wojciech Kotłowski, Manfred K. Warmuth ; 19:823-826, 2011.
[abs] [pdf]
Missing Information Impediments to Learnability
Loizos Michael ; 19:827-830, 2011.
[abs] [pdf]
Monotone multi-armed bandit allocations
Aleksandrs Slivkins ; 19:831-836, 2011.
[abs] [pdf]

Page last modified on Wed Feb 15 12:01 CET 2012.