Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Factorial Multi-Task Learning : A Bayesian Nonparametric Approach

Sunil Gupta, Dinh Phung, Svetha Venkatesh
;
JMLR W&CP 28 (3) : 657–665, 2013

Abstract

Multi-task learning is a paradigm shown to improve the performance of related tasks through their joint learning. However, for real-world data, it is usually difficult to assess the task relatedness and joint learning with unrelated tasks may lead to serious performance degradations. To this end, we propose a framework that groups the tasks based on their relatedness in a low dimensional subspace and allows a varying degree of relatedness among tasks by sharing the subspace bases across the groups. This provides the flexibility of no sharing when two sets of tasks are unrelated and partial/total sharing when the tasks are related. Importantly, the number of task-groups and the subspace dimensionality are automatically inferred from the data. This feature keeps the model beyond a specific set of parameters. To realize our framework, we present a novel Bayesian nonparametric prior that extends the traditional hierarchical beta process prior using a Dirichlet process to permit potentially infinite number of child beta processes. We apply our model for multi-task regression and classification applications. Experimental results using several synthetic and real-world datasets show the superiority of our model to other recent state-of-the-art multi-task learning methods.

Related Material