Home Page

Papers

Submissions

News

Scope

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Local Low-Rank Matrix Approximation

Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer
;
JMLR W&CP 28 (2) : 82–90, 2013

Abstract

Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is of low-rank. We propose a new matrix approximation model where we assume instead that the matrix is locally of low-rank, leading to a representation of the observed matrix as a weighted sum of low-rank matrices. We analyze the accuracy of the proposed local low-rank modeling. Our experiments show improvements in prediction accuracy over classical approaches for recommendation tasks.

Related Material