A Proof of Lemma 2

Proof: Since the support of LL distributions is \mathbb{R}^d, two such distributions are equivalent (absolutely continuous with respect to each other) and the divergence is well-defined.

We start by calculating the following integral, assuming $\mu_1 \leq \mu_2$:

\[
I = \int_{\mathbb{R}} \frac{\omega - \mu_2}{\sigma_2} \cdot \exp \left\{ \frac{\omega - \mu_1}{\sigma_1} \right\} d\omega \\
= \frac{\sigma_1}{\sigma_2} \left[\int_{-\infty}^{\mu_1} \frac{\omega - \mu_2}{\sigma_2} \cdot \exp \left\{ - \frac{\omega - \mu_1}{\sigma_1} \right\} d\omega \\
+ \int_{\mu_1}^{\mu_2} \frac{\omega - \mu_2}{\sigma_2} \cdot \exp \left\{ \frac{\omega - \mu_1}{\sigma_1} \right\} d\omega \\
+ \int_{\mu_2}^{\infty} \frac{\omega - \mu_2}{\sigma_2} \cdot \exp \left\{ \frac{\omega - \mu_1}{\sigma_1} \right\} d\omega \right] .
\]

Changing variables $y = \frac{\omega - \mu_1}{\sigma_1}$ yields,

\[
I = \frac{\sigma^2_1}{\sigma_2} \left[\int_{-\infty}^{\mu_2 - \mu_1} (-y + \frac{\mu_2 - \mu_1}{\sigma_1}) \cdot \exp \left\{ y \right\} dy \\
- \int_{0}^{\frac{\mu_2 - \mu_1}{\sigma_1}} (-y + \frac{\mu_2 - \mu_1}{\sigma_1}) \cdot \exp \left\{ -y \right\} dy \\
- \int_{\frac{\mu_2 - \mu_1}{\sigma_1}}^{\infty} (-y + \frac{\mu_2 - \mu_1}{\sigma_1}) \cdot \exp \left\{ -y \right\} dy \right] \\
= \frac{2\sigma_1^2}{\sigma_2} \left[\frac{\mu_2 - \mu_1}{\sigma_1} \cdot \frac{\sigma_1}{\sigma_2} + \exp \left\{ - \frac{\mu_2 - \mu_1}{\sigma} \right\} \right] .
\]

We thus conclude for the general case,

\[
I = \frac{2\sigma_1^2}{\sigma_2} \left[\frac{\mu_2 - \mu_1}{\sigma_1} + \exp \left\{ - \frac{\mu_2 - \mu_1}{\sigma} \right\} \right] . \tag{15}
\]

As for the Kulback-Leibler Divergence, we use the chain formula for independent random variables,

\[
KL(Q\|P) = \sum_{k=1}^{d} D_{KL}(Q_k\|P_k) = \sum_{k=1}^{d} \int_{\mathbb{R}} \log \left(\frac{Q_k}{P_k} \right) dQ_k \\
= \sum_{k=1}^{d} \int_{\mathbb{R}} \log \left(\frac{\sigma_{P,k}}{\sigma_{Q,k}} \right) + \int_{\mathbb{R}} (2\sigma_{Q,k})^{-1} \times e^{-\frac{\omega_k - \mu_{Q,k}}{\sigma_{Q,k}}} \left[\frac{\omega_k - \mu_{P,k}}{\sigma_{P,k}} - \frac{\omega_k - \mu_{Q,k}}{\sigma_{Q,k}} \right] d\omega_k
\]

The first term of the integral is given in (15), and the second term is exactly the 1-dimensional σ-weighted ℓ_1-norm, therefore, $(2\sigma_{Q,k})^{-1} EQ \left[\frac{\omega_k - \mu_{Q,k}}{\sigma_{Q,k}} \right] = 1$, which completes the proof.

B Proof of Lemma 3

Proof: We prove that,$ \Pr_{\omega \sim Q} (y(\omega \cdot x) < 0) = \Pr_{\omega \sim Q} [y(\omega \cdot \mu) \cdot x) < -y(\mu \cdot x)] \\
\quad = \mathcal{E}(x, y, \mu_Q, \sigma_Q) .
\]

The random variable

\[
Z = y(\omega - \mu) \cdot x,
\]

is a sum of d independent zero-mean laplace distributed random variables,

\[
Z_k \sim \text{Laplace}(0, \sigma_Q |x_k|) ,
\]

each is equal in distribution to a difference between two i.i.d. exponential random variables. Therefore,

\[
\Pr_{\omega \sim Q} (y(\omega \cdot x) < 0) = \Pr \left(\sum_{k=1}^{d} A_k - \sum_{k=1}^{d} B_k < -y(\mu \cdot x) \right) ,
\]

where $A_k, B_k \sim \text{Exp}(\lambda_k)$ and,

\[
\lambda_k = \lambda_k(x) = (\sigma_Q |x_k|)^{-1} \quad k = 1, \ldots, d.
\]

Without the loss of generality we assume that the coordinates of x are sorted, i.e $\lambda_1 < \lambda_2 \cdots < \lambda_d$. Calculating the convolution for $x_j \neq x_k$ and $z \geq 0$,

\[
f_{A_j + \lambda_k}(z) = \int_{0}^{z} \lambda_j \lambda_k e^{-\lambda_j(t)z} e^{-\lambda_k(t)} dt
\]

\[
= \frac{\lambda_j \lambda_k}{\lambda_j - \lambda_k} [e^{-\lambda_k z} - e^{-\lambda_j z}] .
\]

Exploiting the structure of the resulting convolution, we convolve it with the th density and get,

\[
f_{A_j + A_k + A_l}(z) = \lambda_j \lambda_k \lambda_l \times \left[(\lambda_m - \lambda_j) e^{-\lambda_j z} - (\lambda_m - \lambda_k) e^{-\lambda_k z} + (\lambda_j - \lambda_k) e^{-\lambda_m z} \right] .
\]

Performing convolution for all d densities yields,

\[
f_{\sum_{k=1}^{d} A_k}(z) = \sum_{k=1}^{d} \xi_k e^{-\lambda_k z} \quad z \geq 0 ,
\]

where we define $\xi_k = \xi_k(x) = \frac{(-1)^{k-1} \prod_{j=1}^{d} \lambda_j}{\prod_{n=1, n \neq k}^{d} |\lambda_n - \lambda_k|}$.

Similarly, we get the same result for $f_{-\sum_{k=1}^{d} B_k}(z)$, yet it is defined for $z \leq 0$. From (16) we convolute the

\[
\text{Notice that if } x_k = 0 \text{ the random variable } \omega_k x_k \text{ equals zero too, therefore we assume without loss of generality that } x_k \neq 0 .
\]
difference and get,
\[
\begin{align*}
 f_{\sum_{k=1}^d A_k - B_k}(z) &= \left(f_{\sum_{k=1}^d A_k} * f_{-\sum_{k=1}^d B_k} \right)(z) \\
 &= \int_{-\infty}^{\min(z,0)} \left(\sum_{m=1}^d \xi_m e^{\lambda_m t} \right) \left(\sum_{k=1}^d \xi_k e^{\lambda_k(z-t)} \right) dt \\
 &= \sum_{m,n=1}^d \xi_m \xi_k e^{-\lambda_k z} e^{(\lambda_m + \lambda_k) t} \bigg|_{-\infty}^{\min(z,0)} \\
 &= \sum_{m,n=1}^d \xi_m \xi_k e^{-\lambda_k |z|} e^{(\lambda_m + \lambda_k) |z|} \\
 \text{for } \psi_k &= \psi_k(x) = \sum_{m=1}^d \xi_m \xi_k \cdot \frac{x}{\lambda_m + \lambda_k}.
\end{align*}
\]

We integrate to get the CDF,
\[
\ell_{\text{off}}(y(\omega \cdot x)) = \int_{z=-\infty}^{\infty} \sum_{k=1}^d \psi_k e^{-\lambda_k |z|} \, dz
\]
\[
= \left\{ \begin{array}{ll}
\sum_{k=1}^d \frac{\psi_k}{\lambda_k} e^{-\lambda_k y(\mu \cdot x)} & y(\mu \cdot x) \geq 0 \\
1 - \sum_{k=1}^d \frac{\psi_k}{\lambda_k} e^{-\lambda_k y(\mu \cdot x)} & y(\mu \cdot x) < 0
\end{array} \right.
\]

Finally, we define \(\alpha_k(x) = \frac{\psi_k(x)}{\lambda_k} \) and obtain for \(\xi = \text{sort}(|x|)(3)\),
\[
\alpha_k(x) = \xi_k \left(\prod_{j=1}^d \xi_j \right)^{-2} \prod_{j=1,j\neq k}^d \left| \xi_j^{-1} - \xi_k^{-1} \right|^{-1} \\
\times \sum_{m=1}^d (-1)^{m+k} \left(\xi_k^{-1} + \xi_m^{-1} \right)^{-1} \prod_{j=1,j\neq m}^d \left| \xi_j^{-1} - \xi_m^{-1} \right|^{-1}.
\]

In particular, from the symmetry of \(f_{\sum_{k=1}^d A_k - B_k}(z)\), we have for \(\mu = 0\), that
\[
\frac{1}{2} = \Pr_{\omega \sim Q}(y(\omega \cdot x) < 0) = \sum_{k=1}^d \alpha_k(x)
\]
which concludes the proof.

C Proof of Theorem 4

Proof: From the assumption that the data is linearly separable we conclude that the set \(\{\mu_Q \mid y_i x_i \cdot \mu_Q \geq 0, i = 1, \ldots, m\}\) is not empty. Additionally, the set is defined via linear constraints and thus convex. The objective (7) is convex in \(\sigma\) as its second derivative with respect to \(\sigma\) is \(d\sigma^2 > 0\).

The regularization term of (7) is convex in \(\mu\) as the second derivative of \(|z| + \exp(-|z|)\) is always positive and well defined for all values of \(z\) (see also Remark 1 for a discussion of this function for values \(z \approx 0\)).

D Proof of Lemma 10

Proof: Assume \(f, g \in S\) and denote by \(h = f * g\). The derivative of a convolution between two differentiable functions always exists, and equals to, \(\frac{d}{dz} (f * g) =

Figure 6: Illustration of the cumulative sums, \(\sum_{i=1}^{k} \alpha_i(x)\), for five 10-dimensional vectors.

As for the loss term \(\ell(y_i x_i \cdot \mu)\), we use the following auxiliary lemma.

Lemma 10 The following set of probability density functions over the reals
\[
\mathcal{S} = \left\{ f_{\text{pdf}} \mid f \in \mathcal{C}, f(z) = f(-z), \quad \text{and } \forall z_1, z_2, |z_2| > |z_1| \Rightarrow f(z_2) < f(z_1) \right\}
\]
is closed under convolution, i.e \(f, g \in \mathcal{S} \Rightarrow f * g \in \mathcal{S}\).

Since the random variables \(\omega_1, \ldots, \omega_d\) are independent, the density \(f_{Z_i}(z)\) of the margin \(Z_i = y_i (\omega - \mu_Q) \cdot x_i\), is obtained by convoluting \(d\) independent zero-mean Laplace distributed random variables \(y_i (\omega_k - \mu_Q) \cdot x_{i,k}\). Since the 1-dimensional Laplace pdf is in \(\mathcal{S}\), it follows from Lemma 10 by induction that so is \(f_{Z_i}\). As a member of \(\mathcal{S}\), the positivity of the derivative \(f'_{Z_i}(z)\) for \(z \leq 0\) is concluded from Lemma 10. Finally, we note that the integral of the density is \(\ell_{\text{off}}\), the cumulative density function, \(\mathcal{E}(x_i, y_i, \mu_Q, \sigma_Q) = \int_{-\infty}^{y_i \mu_Q \cdot x_i} f_{Z_i}(z) \, dz\).

Thus, the second derivative of \(\mathcal{E}(x_i, y_i, \mu_Q, \sigma_Q)\) for positive values of the margin, equals to \(f''_{Z_i}(z)\) for \(z \leq 0\), and hence positive. Changing variables according to (6) completes the proof.
We compute for the convolution derivative,

\[h'(z) = \int_{-\infty}^{\infty} f(z-t) \cdot \left(\frac{dg(t)}{dt} \right) dt \]

\[= \int_{-\infty}^{0} f(z-t) \cdot \left(\frac{dg(t)}{dt} \right) dt + \int_{0}^{\infty} f(z-t) \cdot \left(\frac{dg(t)}{dt} \right) dt \]

\[= \int_{-\infty}^{0} f(z-t) \cdot \left(\frac{dg(t)}{dt} \right) dt + \int_{0}^{\infty} f(z+t) \cdot \left(\frac{dg(t)}{dt} \right) dt \]

\[= \int_{0}^{\infty} \left[f(z-t) - f(z+t) \right] \left(\frac{dg(t)}{dt} \right) dt , \]

where the last equality follows the fact \(\frac{dg(t)}{dt} \) is an odd function as a derivative of an even function. Since \(f, g \in \mathbb{S}, h(z) \in C_1 \) (i.e continuously differentiable almost everywhere), and since \(h'(z) \) is odd, we have that \(h(z) \) is even. Using the monotonicity property of \(f, g \), i.e \(|z_2| > |z_1| \Rightarrow f(z_2) < f(z_1) \), we get,

\[\int_{-\infty}^{0} \left[f(z-t) - f(z+t) \right] \left(\frac{dg(t)}{dt} \right) dt \]

\[= - \text{sign}(z) \int_{-\infty}^{0} \left| f(z-t) - f(z+t) \right| \left| \frac{dg(t)}{dt} \right| dt . \]

Since \(f, g \) are pdfs, the integral is always defined, and thus the sign of the derivative of \(h \) depends on the sign of its argument, and in particular it is an increasing function for \(z < 0 \) and decreasing for \(z > 0 \), yielding the third property for \(h \). Thus, \(h \in \mathbb{S} \), as desired.

E Proof of Lemma 5

Proof: Setting \(\mu = 0 \) and \(\sigma = 1 \) the objective becomes \(0 + cm\eta \). Since the loss is non-negative we get that the minimizers satisfy,

\[cm\eta \geq \]

\[-d \log \sigma^* e + \sigma^* \sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|} \]

\[+ e \sum_{i} \ell(y_i x_i \cdot \mu^*) \geq \]

\[-d \log \sigma^* e + \sigma^* \sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|} . \]

Substituting the optimal value of \(\sigma^* \) from (8) we get,

\[cm\eta \geq -d \log \frac{ed}{\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|}} \]

\[= d \log \frac{\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|}}{d} . \]

Rearranging, we get,

\[d\exp \left(\frac{cm\eta}{d} \right) \geq \sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|} \geq \|\mu^*\|_1 , \]

and we can conclude,

\[\sigma^* \geq \exp \left(- \frac{cm\eta}{d} \right) . \]

F Proof of Theorem 6

Proof: While the empirical loss term depends only on \(\mu \), and was proved to be strictly convex for example that satisfies \(y_i x_i \cdot \mu \geq 0 \) in theorem 4, the regularization term is optimized over both \(\mu, \sigma \). Incorporating the optimal value for sigma from (8) into the objective yields the following:

\[F(\mu, \sigma^*(\mu)) = d \log \left(\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|} \right) \]

\[+ e \sum_{i} \ell(y_i x_i \cdot \mu) . \]

Differentiating the regularization term twice with respect to \(\mu \) results in the following Hessian matrix,

\[H(\mu) = \frac{d}{\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|}} \]

\[\left\{ \text{diag}(\exp [-\mu]) - \frac{v \cdot v^T}{\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|}} \right\} , \]

for the \(d \)-dimensional vector \(v_k = \text{sign}(\mu_k) \left(1 - \exp[-|\mu_k|] \right) \), and \(\text{diag}(\exp [-\mu]) \) is a diagonal vector for which its \(i \)-th elements equals \(\exp(-\mu_i) \). The Hessian \(H(\mu) \) is a difference of two positive semi-definite matrices. We upper bound the maximal eigenvalues of the second term by its trace, indeed,

\[\max_{j} \lambda_j \left(\frac{d}{\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|}} \right)^2 \]

\[\leq \frac{dv^T v}{\left(\sum_{k=1}^{d} |\mu_k^*| + e^{-|\mu_k^*|} \right)^2} \]

\[= \frac{d \sum_{k=1}^{d} (1 - e^{-|\mu_k|})^2}{\left(\sum_{k=1}^{d} |\mu_k| + e^{-|\mu_k|} \right)^2} \]

\[< \frac{d \times d}{d^2} = 1 . \]
Thus, the minimal eigenvalue of $H(\mu)$ is bounded from below by -1, and the Hessian of the sum of the objective and $\frac{1}{2}\|\mu\|^2$ has positive eigenvalues, therefore strictly convex.

For the second part, we use [17, Corollary 7.2.3] stating the a diagonally-dominated matrix with non-negative diagonal values is PSD. We next show that indeed $\|\mu\|_\infty \leq 1$ is a sufficient condition for the Hessian to be diagonally dominated. It is straightforward to verify that both conditions follows from the following set of inequalities, for all $k = 1, \ldots, d$,

$$e^{-|\mu_k|} \sum_{j=1}^d (|\mu_j| + e^{-|\mu_j|}) - (1 - e^{-|\mu_k|}) \sum_{j=1}^d (1 - e^{-|\mu_j|}) > 0$$

or equivalently,

$$e^{-|\mu_k|} + e^{-|\mu_j|} \frac{1}{d} \sum_{j=1}^d |\mu_j| + \frac{1}{d} \sum_{j=1}^d e^{-|\mu_j|} - 1 > 0$$

$$\Leftrightarrow e^{-|\mu_k|} \left(\frac{d+1}{d} + \frac{1}{d} |\mu_k| \right) + e^{-|\mu_k|} \left(\frac{1}{d} \sum_{j=1,j\neq k}^d |\mu_j| \right) + \frac{1}{d} \sum_{j=1,j\neq k}^d e^{-|\mu_j|} - 1 > 0.$$ \tag{17}

Fixing μ_k the left-hand-side is decomposed to a sum of one variable convex functions μ_j. We minimize it for each μ_j by taking the derivative and setting it to zero, yielding,

$$\frac{1}{d} \left(\text{sign}(\mu_j) \left[e^{-|\mu_k|} - e^{-|\mu_j|} \right] \right) = 0 \Rightarrow \mu_j = \mu_k. \tag{18}$$

From here we conclude that (17) is satisfied if $\|\mu\|_\infty \leq a$ for a scalar $a > 0$ that satisfy,

$$g(a) = 2e^{-a} + ae^{-a} - 1 > 0.$$

The function $g(a)$ is monotonically decreasing and continuous, with $g(1) = 3/e - 1 > 0$, which completes the proof. In fact, one can compute numerically and find that $a^* \approx 1.146$ satisfy $g(a^*) \approx 0$, which leads to a slightly better constant than stated in the theorem.

\section{Proof of Lemma 8}

\textbf{Proof:} Denote the change of the loss term of (12) by,

$$\Delta_t = \sum_{i=1}^m \log \left(1 + D_i e^{-y_i x_i \cdot \mu^{(t)}}\right) - \sum_{i=1}^m \log \left(1 + D_i e^{-y_i x_i \cdot \left[\mu^{(t)} + \delta^{(t)}\right]}\right).$$

We start by bounding Δ_t from below, then add to it the difference of the regularization term, before and after the update. Bounding the improvement for a
single example, we get,
\[\frac{\Delta_{t,i}}{c} = - \log \left(\frac{1 + D_t e^{-y_i x_i \mu_Q^{(t+1)}}}{1 + D_t e^{-y_i x_i \mu_Q^{(t)}}} \right) \]
\[= - \log \left(1 - \frac{D_t e^{-y_i x_i \mu_Q^{(t)}}}{1 + D_t e^{-y_i x_i \mu_Q^{(t+1)}}} \right) \]
\[= - \log \left(1 - \frac{D_t}{1 + e^{y_i x_i \mu_Q^{(t+1)}}} \right) \]
\[= - \log \left(1 - q_t(i) \left[1 - e^{-y_i x_i, k \delta_k^{(t)}} \right] \right). \]

By using \(-\log(1 - z) \geq z \) for \(z < 1 \) we get,
\[- \log \left(1 - q_t(i) \left[1 - e^{-y_i x_i, k \delta_k^{(t)}} \right] \right) \geq q_t(i) \left[1 - e^{-y_i x_i, k \delta_k^{(t)}} \right]. \]

Convexity of the exponent, for every \(\sigma_{Q,k} \in (0, 1) \), yields,
\[e^{-y_i x_i, k \delta_k^{(t)}} \leq \sigma_{Q,k} \left| x_{i,k} \right| e^{-\text{sign}(y_i x_i) \frac{\delta_k^{(t)}}{\sigma_{Q,k}}} + (1 - \sigma_{Q,k} \left| x_{i,k} \right|) e^{0}. \]

Summing over the examples,
\[\Delta_t \geq c \sum_{i=1}^{m} q_t(i) \sigma_{Q,k} \left| x_{i,k} \right| \left(1 - e^{-\text{sign}(y_i x_i) \frac{\delta_k^{(t)}}{\sigma_{Q,k}}} \right) \]
\[= e \sum_{i=1, y_i x_i \geq 0} q_t(i) \sigma_{Q,k} \left| x_{i,k} \right| \left(1 - e^{-\frac{\delta_k^{(t)}}{\sigma_{Q,k}}} \right) \]
\[+ e \sum_{i=1, y_i x_i < 0} q_t(i) \sigma_{Q,k} \left| x_{i,k} \right| \left(1 - e^{-\frac{\delta_k^{(t)}}{\sigma_{Q,k}}} \right) \]
\[= e \sigma_{Q,k} \left(\gamma_k^+ \left[1 - e^{-\frac{\delta_k^{(t)}}{\sigma_{Q,k}}} \right] + \gamma_k^- \left[1 - e^{-\frac{\delta_k^{(t)}}{\sigma_{Q,k}}} \right] \right), \]

adding the regularization terms completes the proof.

\[\square \]

K Experiments- Data Details:

Synthetic data: We generated 4,000 vectors \(x_i \in \mathbb{R}^8 \) sampled from a zero mean isotropic normal distribution \(x_i \sim \mathcal{N}(0, 1) \). Labels were assigned by generating once per run \(\omega \in \mathbb{R}^8 \) at random and using:
\[y_i = \text{sign}(\omega \cdot x_i). \]
Each input \(x_i \) training data was then corrupted with probability \(p \) by adding to it a random vector sampled from a zero mean isotropic Gaussian, \(\epsilon_i \sim \mathcal{N}(0, \sigma \mathbf{I}) \), with some positive standard-deviation \(\sigma \). Each run was repeated 20 times, and results are average test-error over the 20 runs. All boosting algorithms were run for 1,000 iterations, except for the RobuCoP algorithm which was executed until a convergence criterion was met, which often was about 20 rounds.

Vocal Joystick: For each problem, we picked three sets of size 2,000 each, for training, parameter tuning and testing. Each example is a frame of spoken value described with 13 MFCC coefficients transformed into 27 features. In order to examine the robustness of different algorithms, we contaminate 10% of the data with an additive zero-mean i.i.d Gaussian noise, for different values of the standard-deviation \(\sigma \).