Home Page




Editorial Board



Open Source Software



RSS Feed

JMLR Workshop and Conference Proceedings

Volume 39: Proceedings of the Sixth Asian Conference on Machine Learning

Editors: Dinh Phung, Hang Li




Dinh Phung, Hang Li

Accepted Papers

Theoretical Analyses on Ensemble and Multiple Kernel Regressors

Akira Tanaka, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo

Sparsity on Statistical Simplexes and Diversity in Social Ranking

Ke Sun, Hisham Mohamed, Stephane Marchand-Maillet

Support vector machines with indefinite kernels

Ibrahim Alabdulmohsin, Xin Gao, Xiangliang Zhang Zhang

Efficient Sample Mining for Object Detection

Olivier Canevet, Francois Fleuret

Sample Distillation for Object Detection and Image Classification

Olivier Canevet, Leonidas Lefakis, Francois Fleuret

Dual online inference for latent Dirichlet allocation

Khoat Than, Tung Doan

Structured Denoising Autoencoder for Fault Detection and Analysis

Takaaki Tagawa, Yukihiro Tadokoro, Takehisa Yairi

Polya-gamma augmentations for factor models

Arto Klami

A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization

Keigo Kimura, Yuzuru Tanaka, Mineichi Kudo

Bibliographic Analysis with the Citation Network Topic Model

Kar Wai Lim, Wray Buntine

Quasi Newton Temporal Difference Learning

Arash Givchi, Maziar Palhang

Sparse binary zero-sum games

David Auger, Jianlin Liu, Sylkvie Ruette, David Saint-Pierre, Oliver Teytaud

Interval Insensitive Loss for Ordinal Classification

Kostiantyn Antoniuk, Vojtech Franc, Vaclav Hlavac

Towards Maximum Likelihood: Learning Undirected Graphical Models using Persistent Sequential Monte Carlo

Hanchen Xiong, Sandor Szedmak, Justus Piater

Nonlinear Dimensionality Reduction of Data by Deep Distributed Random Samplings

Xiao-Lei Zhang

Learning with Augmented Multi-Instance View

Yue Zhu, Jianxin Wu, Yuan Jiang, Zhi-Hua Zhou

Online matrix prediction for sparse loss matrices

Ken-ichiro Moridomi, Kohei Hatano, Eiji Takimoto, Koji Tsuda

Online Passive Aggressive Active Learning and Its Applications

Jing Lu, Peilin Zhao, Steven Hoi

Ordinal Random Fields for Recommender Systems

Shaowu Liu, Truyen Tran, Gang Li

Reinforcement learning with value advice

Mayank Daswani, Peter Sunehag, Marcus Hutter

A UCB-Like Strategy of Collaborative Filtering

Atsuyoshi Nakamura

Variational Gaussian Inference for Bilinear Models of Count Data

Young-Jun Ko, Mohammad Khan

Pseudo-reward Algorithms for Contextual Bandits with Linear Payoff Functions

Ku-Chun Chou, Hsuan-Tien Lin, Chao-Kai Chiang, Chi-Jen Lu

Ensembles for Time Series Forecasting

Mariana Oliveira, Luis Torgo

Reduction from Cost-Sensitive Multiclass Classification to One-versus-One Binary Classification

Hsuan-Tien Lin