Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

JMLR W&CP: Volume 5: AISTATS 2009

JMLR Workshop and Conference Proceedings
Volume 5: AISTATS 2009

Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics
April 16-18, 2009, Clearwater Beach, Florida USA

Editors: David van Dyk and Max Welling
Preface
David van Dyk and Max Welling
[pdf]

Clusterability: A Theoretical Study
Margareta Ackerman, Shai Ben-David ; 5:1-8, 2009.
[abs] [pdf]

Latent Force Models
Mauricio Alvarez, David Luengo, Neil Lawrence ; 5:9-16, 2009.
[abs] [pdf]

Variational Bridge Regression
Artin Armagan ; 5:17-24, 2009.
[abs] [pdf]

Learning Low Density Separators
Shai Ben-David, Tyler Lu, David Pal, Miroslava Sotakova ; 5:25-32, 2009.
[abs] [pdf]

Supervised Spectral Latent Variable Models
Liefeng Bo, Cristian Sminchisescu ; 5:33-40, 2009.
[abs] [pdf]

Estimating Tree-Structured Covariance Matrices via Mixed-Integer Programming
Hector Corrada Bravo, Stephen Wright, Kevin Eng, Sunduz Keles, Grace Wahba ; 5:41-48, 2009.
[abs] [pdf]

A New Perspective for Information Theoretic Feature Selection
Gavin Brown ; 5:49-56, 2009.
[abs] [pdf]

Structure Identification by Optimized Interventions
Alberto Giovanni Busetto, Joachim Buhmann ; 5:57-64, 2009.
[abs] [pdf]

Online Inference of Topics with Latent Dirichlet Allocation
Kevin Canini, Lei Shi, Thomas Griffiths ; 5:65-72, 2009.
[abs] [pdf]

Handling Sparsity via the Horseshoe
Carlos M. Carvalho, Nicholas G. Polson, James G. Scott ; 5:73-80, 2009.
[abs] [pdf]

Relational Topic Models for Document Networks
Jonathan Chang, David Blei ; 5:81-88, 2009.
[abs] [pdf]

Probabilistic Models for Incomplete Multi-dimensional Arrays
Wei Chu, Zoubin Ghahramani ; 5:89-96, 2009.
[abs] [pdf]

On Partitioning Rules for Bipartite Ranking
Stephan Clemencon, Nicolas Vayatis ; 5:97-104, 2009.
[abs] [pdf]

Gaussian Margin Machines
Koby Crammer, Mehryar Mohri, Fernando Pereira ; 5:105-112, 2009.
[abs] [pdf]

Learning Thin Junction Trees via Graph Cuts
Shahaf Dafna, Carlos Guestrin ; 5:113-120, 2009.
[abs] [pdf]

Matching Pursuit Kernel Fisher Discriminant Analysis
Tom Diethe, Zakria Hussain, David Hardoon, John Shawe-Taylor ; 5:121-128, 2009.
[abs] [pdf]

Statistical and Computational Tradeoffs in Stochastic Composite Likelihood
Joshua Dillon, Guy Lebanon ; 5:129-136, 2009.
[abs] [pdf]

Variational Inference for the Indian Buffet Process
Finale Doshi, Kurt Miller, Jurgen Van Gael, Yee Whye Teh ; 5:137-144, 2009.
[abs] [pdf]

Choosing a Variable to Clamp
Frederik Eaton, Zoubin Ghahramani ; 5:145-152, 2009.
[abs] [pdf]

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training
Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, Pascal Vincent ; 5:153-160, 2009.
[abs] [pdf]

Semi-Supervised Affinity Propagation with Instance-Level Constraints
Inmar Givoni, Brendan Frey ; 5:161-168, 2009.
[abs] [pdf]

Multi-Manifold Semi-Supervised Learning
Andrew Goldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, Robert Nowak ; 5:169-176, 2009.
[abs] [pdf]

Residual Splash for Optimally Parallelizing Belief Propagation
Joseph Gonzalez, Yucheng Low, Carlos Guestrin ; 5:177-184, 2009.
[abs] [pdf]

Sparse Probabilistic Principal Component Analysis
Yue Guan, Jennifer Dy ; 5:185-192, 2009.
[abs] [pdf]

Visualization Databases for the Analysis of Large Complex Datasets
Saptarshi Guha, Paul Kidwell, Ryan P. Hafen, William S. Cleveland ; 5:193-200, 2009.
[abs] [pdf]

Active Learning as Non-Convex Optimization
Andrew Guillory, Erick Chastain, Jeff Bilmes ; 5:201-208, 2009.
[abs] [pdf]

Network Completion and Survey Sampling
Steve Hanneke, Eric P. Xing ; 5:209-215, 2009.
[abs] [pdf]

Distilled sensing: selective sampling for sparse signal recovery
Jarvis Haupt, Rui Castro, Robert Nowak ; 5:216-223, 2009.
[abs] [pdf]

Infinite Hierarchical Hidden Markov Models
Katherine Heller, Yee Whye Teh, Dilan Gorur ; 5:224-231, 2009.
[abs] [pdf]

An Expectation Maximization Algorithm for Continuous Markov Decision Processes with Arbitrary Reward
Matthew Hoffman, Nando de Freitas, Arnaud Doucet, Jan Peters ; 5:232-239, 2009.
[abs] [pdf]

Maximum Entropy Density Estimation with Incomplete Presence-Only Data
Bert Huang, Ansaf Salleb-Aouissi ; 5:240-247, 2009.
[abs] [pdf]

Exploiting Probabilistic Independence for Permutations
Jonathan Huang, Carlos Guestrin, Xiaoye Jiang, Leonidas Guibas ; 5:248-255, 2009.
[abs] [pdf]

Particle Belief Propagation
Alexander Ihler, David McAllester ; 5:256-263, 2009.
[abs] [pdf]

Data Biased Robust Counter Strategies
Michael Johanson, Michael Bowling ; 5:264-271, 2009.
[abs] [pdf]

Sleeping Experts and Bandits with Stochastic Action Availability and Adversarial Rewards
Varun Kanade, H. Brendan McMahan, Brent Bryan ; 5:272-279, 2009.
[abs] [pdf]

Covariance Operator Based Dimensionality Reduction with Extension to Semi-Supervised Settings
Minyoung Kim, Vladimir Pavlovic ; 5:280-287, 2009.
[abs] [pdf]

Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression
Nicole Kramer, Masashi Sugiyama, Mikio Braun ; 5:288-295, 2009.
[abs] [pdf]

Convex Perturbations for Scalable Semidefinite Programming
Brian Kulis, Suvrit Sra, Inderjit Dhillon ; 5:296-303, 2009.
[abs] [pdf]

Sampling Techniques for the Nystrom Method
Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar ; 5:304-311, 2009.
[abs] [pdf]

Deep Learning using Robust Interdependent Codes
Hugo Larochelle, Dumitru Erhan, Pascal Vincent ; 5:312-319, 2009.
[abs] [pdf]

Group Nonnegative Matrix Factorization for EEG Classification
Hyekyoung Lee, Seungjin Choi ; 5:320-327, 2009.
[abs] [pdf]

Kernel Learning by Unconstrained Optimization
Fuxin Li, Yunshan Fu, Yu-Hong Dai, Cristian Sminchisescu, wang jue ; 5:328-335, 2009.
[abs] [pdf]

Latent Wishart Processes for Relational Kernel Learning
Wu-Jun Li, zhihua zhang, Dit-Yan Yeung ; 5:336-343, 2009.
[abs] [pdf]

Tighter and Convex Maximum Margin Clustering
Yu-Feng Li, Ivor W. Tsang, Jame Kwok, Zhi-Hua Zhou ; 5:344-351, 2009.
[abs] [pdf]

Learning Exercise Policies for American Options
Yuxi Li, Csaba Szepesvari, Dale Schuurmans ; 5:352-359, 2009.
[abs] [pdf]

Learning Sparse Markov Network Structure via Ensemble-of-Trees Models
Yuanqing Lin, Shenghuo Zhu, Daniel Lee, Ben Taskar ; 5:360-367, 2009.
[abs] [pdf]

A kernel method for unsupervised structured network inference
Christoph Lippert, Oliver Stegle, Zoubin Ghahramani, Karsten Borgwardt ; 5:368-375, 2009.
[abs] [pdf]

Estimation Consistency of the Group Lasso and its Applications
Han Liu, Jian Zhang ; 5:376-383, 2009.
[abs] [pdf]

Learning a Parametric Embedding by Preserving Local Structure
Laurens van der Maaten ; 5:384-391, 2009.
[abs] [pdf]

Tractable Search for Learning Exponential Models of Rankings
Bhushan Mandhani, Marina Meila ; 5:392-399, 2009.
[abs] [pdf]

Exact and Approximate Sampling by Systematic Stochastic Search
Vikash Mansinghka, Daniel Roy, Eric Jonas, Joshua Tenenbaum ; 5:400-407, 2009.
[abs] [pdf]

Spanning Tree Approximations for Conditional Random Fields
Patrick Pletscher, Cheng Soon Ong, Joachim Buhmann ; 5:408-415, 2009.
[abs] [pdf]

Chromatic PAC-Bayes Bounds for Non-IID Data
Liva Ralaivola, Marie Szafranski, Guillaume Stempfel ; 5:416-423, 2009.
[abs] [pdf]

Inverse Optimal Heuristic Control for Imitation Learning
Nathan Ratliff, Brian Ziebart, Kevin Peterson, J. Andrew Bagnell, Martial Hebert, Anind K. Dey, Siddhartha Srinivasa ; 5:424-431, 2009.
[abs] [pdf]

Learning the Switching Rate by Discretising Bernoulli Sources Online
Steven de Rooij, Tim van Erven ; 5:432-439, 2009.
[abs] [pdf]

Sequential Learning of Classifiers for Structured Prediction Problems
Dan Roth, Kevin Small, Ivan Titov ; 5:440-447, 2009.
[abs] [pdf]

Deep Boltzmann Machines
Ruslan Salakhutdinov, Geoffrey Hinton ; 5:448-455, 2009.
[abs] [pdf]

Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm
Mark Schmidt, Ewout van den Berg, Michael Friedlander, Kevin Murphy ; 5:456-463, 2009.
[abs] [pdf]

Novelty detection: Unlabeled data definitely help
Clayton Scott, Gilles Blanchard ; 5:464-471, 2009.
[abs] [pdf]

PAC-Bayesian Generalization Bound for Density Estimation with Application to Co-clustering
Yevgeny Seldin, Naftali Tishby ; 5:472-479, 2009.
[abs] [pdf]

PAC-Bayes Analysis Of Maximum Entropy Classification
John Shawe-Taylor, David Hardoon ; 5:480-487, 2009.
[abs] [pdf]

Efficient graphlet kernels for large graph comparison
Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, Karsten Borgwardt ; 5:488-495, 2009.
[abs] [pdf]

Hash Kernels
Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, Alex Strehl, Vishy Vishwanathan ; 5:496-503, 2009.
[abs] [pdf]

Locally Minimax Optimal Predictive Modeling with Bayesian Networks
Tomi Silander, Teemu Roos, Petri Myllymaki ; 5:504-511, 2009.
[abs] [pdf]

MCMC Methods for Bayesian Mixtures of Copulas
Ricardo Silva, Robert Gramacy ; 5:512-519, 2009.
[abs] [pdf]

Factorial Mixture of Gaussians and the Marginal Independence Model
Ricardo Silva, Zoubin Ghahramani ; 5:520-527, 2009.
[abs] [pdf]

Tractable Bayesian Inference of Time-Series Dependence Structure
Michael Siracusa, John Fisher III ; 5:528-535, 2009.
[abs] [pdf]

Relative Novelty Detection
Alex Smola, Le Song, Choon Hui Teo ; 5:536-543, 2009.
[abs] [pdf]

Tree Block Coordinate Descent for MAP in Graphical Models
David Sontag, Tommi Jaakkola ; 5:544-551, 2009.
[abs] [pdf]

The Block Diagonal Infinite Hidden Markov Model
Thomas Stepleton, Zoubin Ghahramani, Geoffrey Gordon, Tai-Sing Lee ; 5:552-559, 2009.
[abs] [pdf]

Variable Metric Stochastic Approximation Theory
Peter Sunehag, Jochen Trumpf, S.V.N. Vishwanathan, Nicol Schraudolph ; 5:560-566, 2009.
[abs] [pdf]

Variational Learning of Inducing Variables in Sparse Gaussian Processes
Michalis Titsias ; 5:567-574, 2009.
[abs] [pdf]

Non-Negative Semi-Supervised Learning
Changhu Wang, Shuicheng Yan, Lei Zhang, Hongjiang Zhang ; 5:575-582, 2009.
[abs] [pdf]

Markov Topic Models
Chong Wang, Bo Thiesson, Chris Meek, David Blei ; 5:583-590, 2009.
[abs] [pdf]

An Information Geometry Approach for Distance Metric Learning
Shijun Wang, Rong Jin ; 5:591-598, 2009.
[abs] [pdf]

Large-Margin Structured Prediction via Linear Programming
Zhuoran Wang, John Shawe-Taylor ; 5:599-606, 2009.
[abs] [pdf]

A Hierarchical Nonparametric Bayesian Approach to Statistical Language Model Domain Adaptation
Frank Wood, Yee Whye Teh ; 5:607-614, 2009.
[abs] [pdf]

Speed and Sparsity of Regularized Boosting
Yongxin Xi, Zhen Xiang, Peter Ramadge, Robert Schapire ; 5:615-622, 2009.
[abs] [pdf]

Tree-Based Inference for Dirichlet Process Mixtures
Yang Xu, Katherine Heller, Zoubin Ghahramani ; 5:623-630, 2009.
[abs] [pdf]

Dual Temporal Difference Learning
Min Yang, Yuxi Li, Dale Schuurmans ; 5:631-638, 2009.
[abs] [pdf]

Active Sensing
Shipeng Yu, Balaji Krishnapuram, Romer Rosales, R. Bharat Rao ; 5:639-646, 2009.
[abs] [pdf]

Coherence Functions for Multicategory Margin-based Classification Methods
zhihua zhang, Michael Jordan, Wu-Jun Li, Dit-Yan Yeung ; 5:647-654, 2009.
[abs] [pdf]

Latent Variable Models for Dimensionality Reduction
zhihua zhang, Michael Jordan ; 5:655-662, 2009.
[abs] [pdf]

Reversible Jump MCMC for Non-Negative Matrix Factorization
Mingjun Zhong, Mark Girolami ; 5:663-670, 2009.
[abs] [pdf]




Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Page last modified on Fri Apr 3 20:30:46 BST 2009.

webmasterjmlr.org Copyright @ JMLR 2000. All rights reserved.