Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Login



RSS Feed

Chained Gaussian Processes

Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1431–1440, 2016

Abstract

Gaussian process models are flexible, Bayesian non-parametric approaches to regression. Properties of multivariate Gaussians mean that they can be combined linearly in the manner of additive models and via a link function (like in generalized linear models) to handle non-Gaussian data. However, the link function formalism is restrictive, link functions are always invertible and must convert a parameter of interest to an linear combination of the underlying processes. There are many likelihoods and models where a non-linear combination is more appropriate. We term these more general models “Chained Gaussian Processes”: the transformation of the GPs to the likelihood parameters will not generally be invertible, and that implies that linearisation would only be possible with multiple (localized) links, i.e a chain. We develop an approximate inference procedure for Chained GPs that is scalable and applicable to any factorized likelihood. We demonstrate the approximation on a range of likelihood functions.

Related Material