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Abstract

In this work, we present a novel algorithm design methodology that finds the optimal
algorithm as a function of inequalities. Specifically, we restrict convergence analyses of algo-
rithms to use a prespecified subset of inequalities, rather than utilizing all true inequalities,
and find the optimal algorithm subject to this restriction. This methodology allows us to
design algorithms with certain desired characteristics. As concrete demonstrations of this
methodology, we find new state-of-the-art accelerated first-order gradient methods using
randomized coordinate updates and backtracking line searches.

1. Introduction

Nesterov’s seminal work presented the fast gradient method (FGM) with rate O(1/k2)
(Nesterov, 1983), and Nemirovsky and Yudin established a complexity lower bound matching
the rate up to a constant (Nemirovsky and Yudin, 1983). A rich line of research following these
footsteps flourished in the following decades, and FGM became the prototypical “optimal”
method. Recently, however, it was discovered that the Nesterov’s FGM can be improved
by a constant; the optimized gradient method (OGM) (Drori and Teboulle, 2014; Kim and
Fessler, 2016) outperforms FGM by a factor of 2. Furthermore, the prior complexity lower
bound was also improved by a constant factor to exactly match the rate of OGM (Drori,
2017). Thus, the search for the exact optimal first-order gradient is now complete, and OGM,
not FGM, emerges as the victor.

That FGM can be improved was, in our view, a surprising discovery, and it leads us
to ask the following questions. First, can we also improve the variants of Nesterov’s FGM
in related setups? FGM’s acceleration has been extended to utilize randomized coordinate
updates (Nesterov, 2012; Allen-Zhu et al., 2016; Nesterov and Stich, 2017) and backtracking
line searches (Beck and Teboulle, 2009). Second, is there some sense in which Nesterov’s
FGM is exactly optimal?
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In this work, we address these two questions by examining the inequalities used in
the analyses of the algorithms. We introduce the notion of A?-optimality, which defines
optimality of an algorithm conditioned on a set of inequalities. OGM is the A?-optimal
algorithm conditioned on all true inequalities and therefore is the exact optimal algorithm in
the classical sense. However, other algorithms become A?-optimal when conditioned on a
different restrictive subset of inequalities. By restricting convergence analyses of algorithms
to use only a prespecified subset of inequalities with good properties, rather than utilizing all
true inequalities, we obtain algorithms with better capacity for extensions. Specifically, we
obtain new algorithms utilizing randomized coordinate updates and backtracking linesearches
that improve upon the prior state-of-the-art rates. Moreover, we show that FGM is the
optimal algorithm roughly in the sense that it is the best algorithm that admits the use of
randomized coordinate updates and backtracking line searches.

Contributions. As the main contribution of this work, we present an algorithm design
methodology based on A?-optimality and the performance estimation problem (PEP) (Drori
and Teboulle, 2014; Taylor et al., 2017b) and demonstrate the strength of the methodology
by finding new A?-optimal algorithms that improve the state-of-the-art rates achieved by
variants of FGM. As a minor contribution, we establish the optimality of FGM in the following
sense: FGM is the A?-optimal algorithm that relies on a certain set of inequalities that are
amenable to both randomized coordinate updates and backtracking line searches.

1.1 Preliminaries and notations

In this section, we review standard definitions and set up the notation.

Problem setting and L-smoothness. For L > 0, f : Rn → R is L-smooth if f is
differentiable and

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn.

Throughout this paper, we consider the problem

minimize
x∈Rn

f(x)

with the following assumptions

(A1) f is convex

(A2) f is L-smooth

(A3) f has a minimizer (not necessarily unique)

(A4) inf
x∈Rn

f(x) > −∞.

We write x? to denote a minimizer of f if one exists and f? = inf
x∈Rn

f(x) for the optimal value.
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Fixed-step first-order algorithms (FSFO). The class of fixed-step first-order algo-
rithms (FSFO) has the following form: given a differentiable f , total iteration count N , and
starting point x0 ∈ Rd, the iterates are defined by

xi+1 = xi −
1

L

i∑
k=0

hi+1,k∇f(xk) (1)

for i = 0, 1, . . . , N − 1. The coefficients {hi,k}0≤k<i≤N may depend on N and prior in-
formation about the function f , such as the smoothness coefficient L, but are otherwise
predetermined. In particular, {hi,k}0≤k<i≤N may not depend on function values or gradients
observed throughout the algorithm. The classical algorithms such as FGM, OGM, and the
heavy-ball method are all FSFO.

Nesterov’s fast gradient method (FGM). The celebrated FGM is

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
θk
L
∇f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1,

where z0 = x0, θ0 = 1, and {θk}∞k=0 is defined as θk+1 =
1+
√

4θ2k+1

2 for k = 0, 1, . . . (Nesterov,
1983). FGM has the rate

f(yN )− f? ≤
2L ‖x0 − x?‖2

N2
+ o

(
1

N2

)
,

which is optimal up to a constant. Many extensions and variants of FGM have been presented,
including versions utilizing randomized coordinate updates (Lee and Sidford, 2013; Allen-Zhu
et al., 2016; Nesterov and Stich, 2017) and backtracking linesearches (Beck and Teboulle,
2009).

Optimized gradient method (OGM). Let N be the total iteration count. OGM (Drori
and Teboulle, 2014; Kim and Fessler, 2016) is

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
2θk
L
∇f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1,

for k = 0, 1, . . . , N − 2, where z0 = y0 = x0 and θk is the same as with FGM. Different from
FGM, OGM has what we refer to as the last-step modification

xN =

(
1− 1

θ̃N

)
yN +

1

θ̃N
zN ,
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where {θ̃k}∞k=1 is defined as θ̃k =
1+
√

8θ2k−1+1

2 . OGM exhibits the rate

f(xN )− f? ≤
L ‖x0 − x?‖2

N2
+ o

(
1

N2

)
,

which is faster than FGM by a factor of 2 and is in fact exactly optimal (Drori, 2017). This
remarkable discovery was made using a computer-assisted methodology, the performance
estimation problem (PEP) (Drori and Teboulle, 2014; Kim and Fessler, 2016). Variants
of OGM with randomized coordinate updates or backtracking linesearches had not been
discovered.

Optimized gradient method - Gradient norm (OGM-G). Let N be the total itera-
tion count. The method OGM-G has what we refer to as the first-step modification

y1 = x0 −
1

L
∇f(x0)

z1 = z0 −
1 + θ̃N

2L
∇f(x0)

x1 =
θ4N−1

θ̃4N
y1 +

(
1−

θ4N−1

θ̃4N

)
z1,

where z0 = y0 = x0 and {θk}∞k=0, {θ̃k}∞k=1 are defined as OGM. The remaining iterates of
OGM-G are defined as

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
θN−k+1

L
∇f(xk)

xk+1 =
θ4N−k−1
θ4N−k

yk+1 +

(
1−

θ4N−k−1
θ4N−k

)
zk+1,

for k = 1, 2, . . . , N − 1 (Kim and Fessler, 2021; Lee et al., 2021). Note that the indices of the
θ-coefficients are decreasing as the iteration count increases. Different to FGM and OGM,
the guarantee of OGM-G is on the gradient magnitude:

‖∇f(xN )‖2 ≤ O
(
L (f(x0)− f?)

N2

)
.

An important use of OGM-G is that when combined with FGM (or OGM), one can achieve
the rate (Nesterov et al., 2020, Remark 2.1)

‖∇f(xN )‖2 ≤ O
(
L2‖x0 − x?‖2

N4

)
.

Recently, analyses of OGM-G based on potential function approaches have been presented
(Lee et al., 2021; Diakonikolas and Wang, 2022).
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Coordinate-wise smoothness. We say f : Rn → R is coordinate-wise smooth with
parameters (L1, . . . , Ln) if it is differentiable and

‖∇if(x+ δei)−∇if(x)‖ ≤ Liδ (2)

for all x ∈ Rn, δ > 0, and i = 1, . . . , n, where ∇if = ∂f
∂xi
ei is the i-th partial derivative vector

and ei is the i-th unit vector for i = 1, . . . , n.

Fast gradient method - randomized coordinate updates (FGM-RC). There are
several randomized coordinate update variants of Nesterov’s FGM (Nesterov, 2012; Allen-Zhu
et al., 2016; Nesterov and Stich, 2017). We discuss the version of Allen-Zhu et al. (2016),
which we call FGM-RC, as it has the smallest (best) constant. Assume f : Rn → R is convex
and coordinate-wise smooth with parameters (L1, L2, . . . , Ln). FGM-RC is

Sample i(k) from {1, 2, . . . , n} with P(i(k) = t) =

√
Lt
S

yk+1 = xk −
1

Li(k)
∇i(k)∇f(xk)

zk+1 = zk −
k + 2

2S2

1

pi(k)
∇i(k)f(xk)

xk+1 =
k + 1

k + 3
yk+1 +

2

k + 3
zk+1

for k = 0, 1, . . . , where z0 = y0 = x0 , pt = P(i = t), and S =
∑n

k=1

√
Lk. FGM-RC exhibits

the rate

f(yN )− f? ≤
2S2 ‖x0 − x?‖2

(N + 1)2
.

While Allen-Zhu et al.’s FGM-RC uses convenient rational coefficients, their algorithm
can be slightly sharpened (through straightforward modifications of their presented analysis)
to use the θ-coefficients of Nesterov. We refer to this refinement as FGM-RC]:

Sample i(k) from {1, 2, . . . , n} with P(i(k) = t) =

√
Lt
S

yk+1 = xk −
1

Li(k)
∇i(k)f(xk)

zk+1 = zk −
θk
S2

1

pi(k)
∇i(k)f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1

for k = 0, 1, . . . , where z0 = y0 = x0 and S =
∑n

k=1

√
Lk. FGM-RC] exhibits the rate

f(yN )− f? ≤
S2 ‖x0 − x?‖2

2θ2N−1
.

Compared to first-order methods utilizing the full gradient, randomized coordinate
updates methods have a lower cost per iteration and can be significantly faster. In particular,
FGM-RC] can be significantly faster than FGM or OGM.
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Fast gradient method - backtracking linesearch (FGM-BL). Beck and Teboulle
(2009) provides a version of Nesterov’s FGM that uses backtracking linesearches (FGM-BL).
Define z0 = y0 = x0, η > 1, and L0 > 0. Consider the backtracking linesearch that finds the
smallest nonnegative integer ik such that with L̄ = ηikLk−1

f

(
xk −

1

L̄
∇f(xk)

)
≤ f(xk)−

1

2L̄
‖∇f(xk)‖2

holds, for each step k. In FGM-BL, we set Lk = ηikLk−1 and define

yk+1 = xk −
1

Lk
∇f(xk)

zk+1 = zk −
θk
Lk
∇f(xk)

xk+1 =

(
1− 1

θk+1

)
yk+1 +

1

θk+1
zk+1

for k = 0, 1, . . . . FGM-BL exhibits the rate

f(yN )− f? ≤
LN

2θ2N−1
‖x0 − x?‖2 .

The backtracking linesearch is useful when we do not know the smoothness parameter
L. FGM-BL obtains an estimate of L while making progress with the accelerated gradient
method.

Computer-assisted algorithm design. The performance estimation problem (PEP)
is a computer-assisted proof methodology that analyzes the worst-case performance of
optimization algorithms through semidefinite programs (Drori and Teboulle, 2014; Taylor
et al., 2017b,a). The use of the PEP has led to many discoveries that would have otherwise
been difficult without the assistance (Kim and Fessler, 2018a; Taylor et al., 2018; Taylor
and Bach, 2019; ?; De Klerk et al., 2020; Gu and Yang, 2020; Lieder, 2021; Ryu et al., 2020;
?; Kim, 2021; Yoon and Ryu, 2021). Notably, the algorithms OGM (Drori and Teboulle,
2014; Kim and Fessler, 2016, 2018b), OGM-G (Kim and Fessler, 2021), and ITEM (Taylor
and Drori, 2023) were obtained by using the PEP for the setup of minimizing a smooth
convex (possibly strongly convex) function. OGM and ITEM improve the rates of Nesterov’s
FGM by constants and have an exact matching complexity lower bound (Drori, 2017; Drori
and Taylor, 2022). The integral quadratic constraints (IQC) is another technique based on
control-theoretic notions for computer-assisted algorithm design (Lessard et al., 2016; Hu
and Lessard, 2017; Van Scoy et al., 2017; Fazlyab et al., 2018; Seidman et al., 2019; Zhang
et al., 2021). This work builds upon the PEP methodology.

1.2 Organization

This paper is organized as follows. Section 2 defines the notion of handy inequalities and
discusses how it will be utilized for designing accelerated algorithms with randomized coordi-
nate updates and backtracking linesearches. Section 3 defines the notion of A?-optimality.
Section 4 exhibits the main methodology of this work by using it to obtain an A?-optimal
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algorithm and a variant utilizing randomized coordinate updates. Section 5 presents several
other A?-optimal algorithms obtained with our algorithm design methodology. The proofs
of A?-optimality of the algorithms of Section 5 are deferred to Sections A and B of the
appendix.

As the proofs of A?-optimality require lengthy calculations, we provide Matlab scripts
verifying them. Specifically, the following scripts show that the derived analytical results
agree with the numerical solutions of the SDPs:
https://github.com/chanwoo-park-official/A-star-map/.

2. Handy inequalities for deriving variants of FSOM

In this section, we define the notion of handy inequalities. The definition captures the
empirical observation that the use of some inequalities makes the algorithm more amenable
to modifications (and are therefore “handy”) while other inequalities make the analysis brittle
and not amenable to modifications. In particular, FGM has extensions using randomized
coordinate updates and backtracking linesearches, as discussed in the preliminaries, while
such modifications seem difficult with OGM. By identifying the notion of handy inequalities,
we point out that the fault is in the inequalities being utilized.

2.1 Inequalities for smooth convex functions

In this section, we quickly review and name a few commonly used inequalities for smooth
convex functions.

If f : Rn → R is convex, L-smoothness is equivalent to

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1

2L
‖∇f(x)−∇f(y)‖2 (3)

for all x, y ∈ Rn. We call (3) the cocoercivity inequality on (x, y). As a particular case, when
y = x− 1

L∇f(x), the cocoercivity inequality on (x, y) becomes

f(x) ≥ f(y) +
1

2L
‖∇f(x)‖2 +

1

2L
‖∇f(y)‖2,

and dropping the last term leads to

f(x) ≥ f(y) +
1

2L
‖∇f(x)‖2 .

We call this the gradient-step inequality at x. Dropping 1
2L ‖∇f(x)−∇f(y)‖2 in (3), we get

f(x) ≥ f(y) + 〈∇f(y), x− y〉.

We call this the convexity inequality on (x, y). Note that the gradient-step or convexity
inequalities are weaker than the cocoercivity inequality in the sense that they were obtained
by dropping a nonnegative term from the cocercivity inequality.

If f : Rn → R is convex and coordinate-wise smooth with parameters (L1, . . . , Ln), then

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1

2Li
‖∇if(x)−∇if(y)‖2 (4)
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for all x, y ∈ Rn and i = 1, . . . , n. We call this the coordinate-wise cocoercivity inequality
on (x, y, i). As a particular case, when y = x− 1

Li
∇if(x), the coordinate-wise cocoercivity

inequality on (x, y, i) becomes

f(x) ≥ f(y) +
1

2Li
‖∇if(x)‖2 +

1

2Li
‖∇if(y)‖2.

Dropping the last term, we get

f(x) ≥ f(y) +
1

2Li
‖∇if(x)‖2 .

We call this the coordinate-wise gradient-step inequality at (x, i).

Proof of (4). While we suspect the coordinate-wise cocoercivity inequality to be commonly
known, we are unaware of a written proof to reference. We therefore quickly provide the
following proof.

Let g be convex, coordinate-wise smooth with parameters (L1, . . . , Ln), and y = x −
1
Li
∇ig(x). Then, we have

g? − g(x) ≤ g(y)− g(x)

=

∫ 1

t=0
〈∇g(x+ t(y − x)), y − x〉dt

= 〈∇g(x), y − x〉+

∫ 1

t=0
〈∇g(x+ t(y − x))−∇g(x), y − x〉dt

= 〈∇g(x), y − x〉+

∫ 1

t=0
(∇ig(x+ t(yi − xi)ei)−∇ig(x))(yi − xi)dt

≤ 〈∇g(x), y − x〉+

∫ 1

t=0
tLi(yi − xi)2dt = − 1

2Li
‖∇ig(x)‖2 .

For all y, the function f(x)− f(y)− 〈∇f(y), x− y〉 is convex and coordinate-wise smooth
with parameters (L1, . . . , Ln), as a function of x. Therefore, for all y, setting g(x) = f(x)−
f(y)− 〈∇f(y), x− y〉, we conclude

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ 1

2Li
‖∇if(x)−∇if(y)‖2 .

2.2 The inequalities of FGM and OGM

The analyses of FGM and OGM crucially differ in the inequalities they use. The common
convergence analysis of FGM defines the Lyapunov function

Uk = θ2k−1(f(yk)− f?) +
L

2
‖zk − x?‖2

and establishes the non-increasing property

Uk − Uk+1 = θ2k

(
f(xk)− f(yk+1)−

1

2L
‖∇f(xk)‖2

)
+ θ2k−1 (f(yk)− f(xk)− 〈∇f(xk), yk − xk〉)
+ θk (f? − f(xk)− 〈∇f(xk), x? − xk〉)
≥ 0.
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In contrast, the analysis of OGM defines the Lyapunov function

Uk =2θ2k

(
f(xk)− f? −

1

2L
‖∇f(xk)‖2

)
+
L

2
‖zk+1 − x?‖2

and establishes the non-increasing property

Uk − Uk+1

= 2θ2k

(
f(xk)− f(xk+1) + 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk)−∇f(xk+1)‖2

)
+ 2θk+1

(
f? − f(xk+1) + 〈∇f(xk+1), xk+1 − x?〉 −

1

2L
‖∇f(xk+1)‖2

)
≥ 0.

Note the difference in the inequalities being used; FGM uses gradient-step and convexity
inequalities, while OGM uses cocoercivity inequalities. The fact that OGM uses the stronger
cocoercivity inequalities partially explains why its guarantee is stronger than FGM’s guarantee.
These inequalities are all, of course, true inequalities, but the inequalities used by FGM
are much more amenable to obtaining variants using randomized coordinate updates and
backtracking line searches; the inequalities used by OGM do not have this property. In
Sections 2.3 and 2.4, we define inequalities that admit such variants to be algorithmically
handy.

2.3 Handy inequalities for randomized coordinate updates

We now discuss the notion of handy inequalities for randomized coordinate updates. Let us
examine the analysis of FGM-RC]. For k = 0, 1, . . . , define

Uk =
θ2k−1
S2

(f(yk)− f?) +
1

2
‖zk − x?‖2

and write Ei(k) for the expectation conditioned on information up to the k-th iteration. Then,

Uk − Uk+1 =
θ2k
S2

(
f(xk)− f(yk+1)−

1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)

+
θ2k−1
S2

(
f(yk)− f(xk)−

S√
Li(k)

〈∇i(k)f(xk), yk − xk〉

)

+
θk
S2

(
f? − f(xk)−

S√
Li(k)

〈∇i(k)f(xk), x? − xk〉

)
,

9
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and taking the conditional expectation Ei(k) gives us

Uk − Ei(k)Uk+1 = Ei(k)
[
θ2k
S2

(
f(xk)− f(yk+1)−

1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)]

+
θ2k−1
S2

(f(yk)− f(xk)− 〈∇f(xk), yk − xk〉)

+
θk
S2

(f? − f(xk)− 〈∇f(xk), x? − xk〉)

≥ 0.

Finally, taking the full expectation gives us

θ2k
S2

(E[f(yk+1)]− f?) ≤ EUk+1 ≤ · · · ≤ U0 ≤
1

2
‖x0 − x?‖2 .

We can interpret this convergence analysis as a direct modification of FGM’s analysis by
taking expectations of the inequalities. Utilizing the linearity of expectation to obtain the
convexity inequality and having the coordinate-wise gradient-step inequality holds almost
surely is crucial. The gradient-step inequality and the convexity inequality are handy for
randomized coordinate updates as this analysis of FGM-RC] demonstrates. The coordinate-
wise cocoercivity inequality on (x?, xk) is also handy as the term 1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2 is one

we can take the expectation of.
On the other hand, the cocoercivity inequalities on (yk, xk) or (xk, yk+1) do not seem to

be handy as the terms ‖∇i(k)f(xk)−∇f(yk)‖2 or ‖∇i(k)f(xk)−∇f(yk+1)‖2 are not easily
manipulated under expectations. For this reason, adapting OGM and its analysis to use
randomized coordinate updates seems difficult.

2.4 Handy inequalities for backtracking linesearch

Next, we discuss the notion of handy inequalities for backtracking linesearches. Let us examine
the analysis of FGM-BL. For k = 0, 1, . . . , define

Uk,L =
θ2k−1
L

(f(yk)− f?) +
1

2
‖zk − x?‖2 .

Then,

Uk,Lk+1
− Uk+1,Lk+1

=
1

Lk+1

(
θ2k

(
f(xk)− f(yk+1)−

1

2Lk+1
‖∇f(xk)‖2

)
+ θ2k−1 (f(yk)− f(xk)− 〈∇f(xk), yk − xk〉)

+ θk (f? − f(xk)− 〈∇f(xk), x? − xk〉)

)
≥ 0.

Note that the inequality f(xk) − f(yk+1) − 1
2Lk+1

‖∇f(xk)‖2 ≥ 0 is enforced by the back-
tracking linesearch. Finally, we conclude

θ2k
Lk+1

(f(yk+1)− f?) ≤ Uk+1,Lk+1
≤ Uk,Lk+1

≤ Uk,Lk
≤ · · · ≤ U0,L0 ≤

1

2
‖x0 − x?‖2 .
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We can interpret this convergence analysis as a direct modification of FGM’s analysis
with L replaced with Lk+1, an estimate of the unknown Lipschitz parameter L. The role of
the backtracking linesearch is to verify the inequality involving Lk.

For a linesearch to be implementable, it is critical that it relies on quantities that are
algorithmically observable. In the analysis of OGM, the inequalities

f(xk)− f(xk+1) + 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk)−∇f(xk+1)‖2 ≥ 0

f? − f(xk+1) + 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ≥ 0

are used. The first inequality involves algorithmically observable quantities and is therefore
handy for backtracking linesearches. However, the second is not handy as its verification
requires the knowledge of x?. The convexity inequality on (x?, xk+1) is handy as it does not
involve L and hence does not require verification through a linesearch.

To clarify, we define the notion of “handy inequalities” informally through examples. The
motivation is to avoid having certain problematic terms in the analysis. In the following
sections, we demonstrate cases where we succeed in generating algorithms with the desired
characteristic using the notion of handy inequalities.

3. Optimal algorithm map

In this section, we define the notion of A?-optimality, the notion of optimality conditioned
on a set of inequalities.

3.1 A?-optimality

Define oracles O = (O0,O1) to take as input a function and a point and return zero and
first-order information of the function, i.e., O0(f, x) = f(x) and O1(f, x) = ∇f(x). Define the
optimal oracle O? = (O?x,O?f ), which takes as input a function and returns an optimal point,
if one exists, and the optimal value, i.e., O?x(f) = x? ∈ arg min f and O?f (f) = f? = inf f .
The optimal oracle O? is used in the minimax formulation, but is, of course, not used in the
algorithms.

Let AN be the class of fixed-step first-order algorithms (FSFO) with N iterations, i.e., an
algorithm in AN may access O1 up to N times. To further specify our notation, a first-order
algorithm AN (x0, f) : Rk ×FL → Rk×N in AN generates the N iterates as follows:

x1 = AN,1(x0,O1(f, x0))

x2 = AN,2(x0,O1(f, x0),O1(f, x1))

...
xN = AN,N (x0,O1(f, x0), . . . ,O1(f, xN−1)),

where AN,i is defined for i ∈ {1, 2, . . . , N} as

AN,i(x0, g0, . . . , gi−1) = x0 − hi,0g0 − · · · − hi,i−1gi−1.

11
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Let P be a performance criterion that measures the performance of an algorithm A on a func-
tion f . To clarify, a performance criterion only depends on f(x?), {f(xi),∇f(xi)}Ni=0, x

?, {xi}Ni=0.
For example, the function-value suboptimality

P(AN (x0, f),O,O?) = f(xN )− f? = O0(f, xN )−O?f (f)

or the squared gradient magnitude

P(AN (x0, f),O,O?) = ‖∇f(xN )‖2 = ‖O1(f, xN )‖2

of the last iterate, xN are commonly used performance criteria.
Let C be an initial condition, a condition we impose or assume on the initial point x0. To

clarify, an initial condition only depends on f(x?), (f(x0),∇f(x0)), x
?, x0. For example, the

initial distance to a solution

C(x0,O,O?) = {‖x0 − x?‖ ≤ R} = {‖x0 −O?x(f)‖ ≤ R}

or function value suboptimality

C(x0,O,O?) = {f(x0)− f? ≤ R} = {O0(f, x0)−O?f (f) ≤ R}

are commonly used initial conditions.
Let I be an inequality collection, a set of inequalities the output of the oracles

O(f, x0), . . . ,O(f, xN ),O?(f) we assume satisfies. In prior work, convergence analyses were
permitted to use all true inequalities. Unique to our work, we consider analyses based on
a restricted inequality collection I; convergence proofs may use inequalities in I, a strict
subset of the true inequalities.

Define the rate (or risk) of an algorithm conditioned on I as

R(AN ,P, C, I) = sup
x0,f,O,O?

P(AN (x0, f),O,O?)

subject to xi = AN,i(x0, g0, . . . , gi−1), i ∈ {1, 2, . . . , N}
(x0, g0, f0, x?, f?) satisfies C(x0,O,O?)
{(xi, gi, fi)}Ni=0 and (x?, f?) satisfy I
(fi, gi) = O(f, xi), i ∈ {0, . . . , N}
(x?, f?) = O?(f).

Note that we impose constraints on f only through the output of the oracles O and O?.
Define the minimax optimal rate conditioned on I as

R?(AN ,P, C, I) = inf
AN∈AN

R(AN ,P, C, I). (5)

If this infimum is attained, write A?N to denote the optimal algorithm, and (with some
abuse of notation) say the algorithm is A?-optimal conditioned on I. Conversely, write
A?N (P, C, I) to denote the A?-optimal algorithm, and refer to this as the A?-map. (An
A?-optimal algorithm may or may not be unique.)

12
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3.2 Optimality of OGM

A series of work on OGM (Drori and Teboulle, 2014; Kim and Fessler, 2016; Drori, 2017)
established that OGM is the exact optimal first-order gradient method. Using our notation,
we can express these prior results as

OGM = A?N (f(xN )− f?, ‖x0 − x?‖ ≤ R, IL−smooth)

and

R∗ (AN , f(xN )− f?, ‖x0 − x?‖ ≤ R, IL−smooth) =
LR2

2θ̃2N
,

where

IL−smooth =

{
f(xi) ≥ f(xj)−〈∇f(xj), xj − xi〉+

1

2L
‖∇f(xi)−∇f(xj)‖2

}N
i,j=0⋃{

f? ≥ f(xk)−〈∇f(xk), xk − x?〉+
1

2L
‖∇f(xk)‖2

}N
k=0

.

3.3 Inequality collection selection

When considering A?-optimal algorithms, the choice of the inequality collection represents a
tradeoff. On one extreme, if the inequality collection is empty, the performance criterion is
the function-value suboptimality or the square gradient magnitude, and the initial condition
is the initial distance condition or the function value suboptimality condition (i.e., I = ∅,
P(AN ,O,O?) = O0(f, xn)−O?f (f) or ‖O1(f, xN )‖2, and C(x0,O,O?) = {‖x0 −O?x(f)‖ ≤
R} or {O0(f, x0)−O?f (f) ≤ R}), no convergence analysis can be done, and the “algorithm”
that does not move from the starting point is A?-optimal. On the other extreme, using all
true inequalities in the smooth convex minimization setup makes OGM A?-optimal. The
inequality collections that we consider in later sections include handy inequalities that have
the capacity to admit randomized coordinate updates or backtracking linesearches while
being sufficiently powerful to establish good rates.1

4. ORC-F (Optimized randomized coordinate updates - function value)

In this section, we present ORC-F[, an A?-optimal algorithm. We first state the theorem
precisely describing the A?-optimality result, while deferring the proof to the end of this
section. We then provide a direct Lyapunov analysis of ORC-F[ and modify this Lyapunov
analysis to obtain ORC-F, a randomized coordinate update version of ORC-F[.

1. As a relevant negative result, we tried but did not succeed in finding a randomized coordinate update
version of OGM-G. We tried to modify co-coercivity inequality to the randomized coordinate version. Proof
of the OGM-G uses co-coercivity inequality on (xk, xk+1). Since we choose a random direction for each
iterate, it is hard to utilize in ‖∇f(xk)−∇f(xk+1)‖2 term for different direction partial differentiation.
We considered several inequality collections that are handy for randomized coordinate updates, but the
A?-optimal algorithms conditioned on those inequality collections exhibited O(1/k) rates, i.e., the handy
inequalities we considered were not sufficiently powerful to establish the accelerated O(1/k2) rate of
OGM-G.

13
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4.1 Main results

Optimized randomized coordinate updates - function value[ (ORC-F[) is defined as

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
ϕk+1 − ϕk

L
∇f(xk)

xk+1 =
ϕk+1

ϕk+2
yk+1 +

(
1− ϕk+1

ϕk+2

)
zk+1

for k = 0, 1, . . . where y0 = z0 = x0, ϕ0 = 0, and the strictly increasing sequence {ϕk}∞k=0 is
defined by (2ϕk+1 − ϕk) = (ϕk+1 − ϕk)2 for k = 0, 1 . . . .

Theorem 1 (A?-optimality of ORC-F[) ORC-F[ is A?-optimal in the sense that

ORC-F[ = A?N
(
f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IORC-F[

)
and has the minimax optimal rate

R?
(
AN , f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IORC-F[

)
=

LR2

2ϕN+1

with respect to the inequalities

IORC-F[
=

{
f(xk) ≥ f(yk+1) +

1

2L
‖∇f(xk)‖2

}N
k=0⋃{

f(yk) ≥ f(xk) + 〈∇f(xk), yk − xk〉
}N
k=1⋃{

f? ≥ f(xk) + 〈∇f(xk), x? − xk〉+
1

2L
‖∇f(xk)‖2

}N
k=0

.

Note that the inequalities in IORC-F[
are handy for randomized coordinate updates. We defer

the proof of Theorem 1 to Section 4.3.
The following corollary is a consequence of Theorem 1, but we state it separately and

present a standalone proof so that we can modify it for the proof of Theorem 3.

Corollary 2 Assume (A1), (A2), and (A3). ORC-F[’s yk-sequence exhibits the rate

f(yk+1)− f? ≤
L ‖x0 − x?‖2

2ϕk+1

for k = 1, 2, . . . .

Proof For k = 0, 1, 2, . . . , define

Uk = ϕk(f(yk)− f?) +
L

2
‖zk − x?‖2 .

14
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Then we have

Uk − Uk+1 = ϕk(f(yk)− f?) +
L

2
‖zk − x?‖2 − ϕk+1(f(yk+1)− f?)−

L

2
‖zk+1 − x?‖2

= ϕk(f(yk)− f?)− ϕk+1(f(yk+1)− f?) +
L

2
〈zk − zk+1, zk + zk+1 − 2x?〉

= ϕk(f(yk)− f?)− ϕk+1(f(yk+1)− f?)

+
L

2

〈
ϕk+1 − ϕk

L
∇f(xk), 2zk −

ϕk+1 − ϕk
L

∇f(xk)− 2x?

〉
= ϕk+1

(
f(xk)− f(yk+1)−

1

2L
‖∇f(xk)‖2

)
+ ϕk (f(yk)− f(xk)− 〈∇f(xk), yk − xk〉)

+ (ϕk+1 − ϕk)
(
f? − f(xk)− 〈∇f(xk), x? − xk〉 −

1

2L
‖∇f(xk)‖2

)
+

2ϕk+1 − ϕk
2L

‖∇f(xk)‖2 + ϕk〈∇f(xk), yk − xk〉+ (ϕk+1 − ϕk)〈∇f(xk), x? − xk〉

− (ϕk+1 − ϕk)2

2L
‖∇f(xk)‖2 + (ϕk+1 − ϕk)〈∇f(xk), zk − x?〉.

Since

(ϕk+1 − ϕk)〈∇f(xk), zk − x?〉 = (ϕk+1 − ϕk)〈∇f(xk), zk − xk〉+ (ϕk+1 − ϕk)〈∇f(xk), xk − x?〉
= ϕk〈∇f(xk), xk − yk〉+ (ϕk+1 − ϕk)〈∇f(xk), xk − x?〉

and (2ϕk+1 − ϕk) = (ϕk+1 − ϕk)2, we get

Uk − Uk+1 = ϕk+1

(
f(xk)− f(yk+1)−

1

2L
‖∇f(xk)‖2

)
+ ϕk (f(yk)− f(xk)− 〈∇f(xk), yk − xk〉)

+ (ϕk+1 − ϕk)
(
f? − f(xk)− 〈∇f(xk), x? − xk〉 −

1

2L
‖∇f(xk)‖2

)
≥ 0.

We conclude ϕk+1(f(yk+1)− f?) ≤ Uk+1 ≤ · · · ≤ U−1 = L
2 ‖x0 − x?‖

2.

Note that the proof only utilized inequalities in IORC-F[
.

Randomized coordinate updates version. Assume f is a coordinate-wise smooth
function with parameters (L1, . . . , Ln). Define S =

∑n
i=1

√
Li. At iteration k, select the

coordinate i(k) with probability P(i(k) = t) =
√
Lt

S . Define optimized randomized coordinate
updates - function value (ORC-F), a randomized coordinate updates version of ORC-F[, as

yk+1 = xk −
1

Li(k)
∇i(k)f(xk)

zk+1 = zk −
ϕk+1 − ϕk
S
√
Li(k)

∇i(k)f(xk)

xk+1 =
ϕk+1

ϕk+2
yk+1 +

(
1− ϕk+1

ϕk+2

)
zk+1
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for k = 0, 1, . . . .

Theorem 3 Assume (A1) and (A3). Assume f is a coordinate-wise smooth function with
parameters (L1, . . . , Ln). Then ORC-F exhibits the rate as

E [f(yk+1)]− f? ≤
S2 ‖x0 − x?‖2

2ϕk+1

for k = 0, 1, . . . .

Proof For k = 0, 1, . . . , define

Uk =
ϕk
S2

(f(yk)− f?) +
1

2
‖zk − x?‖2

and define Ei(k) as the expectation conditioned on i(0), . . . , i(k − 1). Then, we have

Uk − Uk+1 =
ϕk
S2

(f(yk)− f?) +
1

2
‖zk − x?‖2 −

ϕk+1

S2
(f(yk+1)− f?)−

1

2
‖zk+1 − x?‖2

=
ϕk
S2

(f(yk)− f?)−
ϕk+1

S2
(f(yk+1)− f?) +

1

2
〈zk − zk+1, zk + zk+1 − 2x?〉

=
ϕk
S2

(f(yk)− f?)−
ϕk+1

S2
(f(yk+1)− f?)

+
1

2

〈
ϕk+1 − ϕk
S
√
Li(k)

∇i(k)f(xk), 2zk −
ϕk+1 − ϕk
S
√
Li(k)

∇i(k)f(xk)− 2x?

〉

=
(ϕk+1 − ϕk)

S2

(
f? − f(xk)−

S√
Li(k)

〈∇i(k)f(xk), x? − xk〉 −
1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)

+
ϕk
S2

(
f(yk)− f(xk)−

S√
Li(k)

〈∇i(k)f(xk), yk − xk〉

)

+
ϕk+1

S2

(
f(xk)− f(yk+1)−

1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)

+
2ϕk+1 − ϕk

2S2Li(k)

∥∥∇i(k)f(xk)
∥∥2 +

ϕk
S
√
Li(k)

〈∇i(k)f(xk), yk − xk〉+
ϕk+1 − ϕk
S
√
Li(k)

〈∇i(k)f(xk), x? − xk〉

− (ϕk+1 − ϕk)2

2S2Li(k)

∥∥∇i(k)f(xk)
∥∥2 +

ϕk+1 − ϕk
S
√
Li(k)

〈∇i(k)f(xk), zk − x?〉.

Since

ϕk+1 − ϕk
S
√
Li(k)

〈∇i(k)f(xk), zk − x?〉 =
ϕk+1 − ϕk
S
√
Li(k)

〈∇i(k)f(xk), zk − xk〉+
ϕk+1 − ϕk
S
√
Li(k)

〈∇i(k)f(xk), xk − x?〉

=
ϕk+1 − ϕk
S
√
Li(k)

〈∇i(k)f(xk), xk − x?〉+
ϕk

S
√
Li(k)

〈∇i(k)f(xk), xk − yk〉
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and (2ϕk+1 − ϕk) = (ϕk+1 − ϕk)2, we get

Uk − Uk+1 =
(ϕk+1 − ϕk)

S2

(
f? − f(xk)−

S√
Li(k)

〈∇i(k)f(xk), x? − xk〉 −
1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)

+
ϕk
S2

(
f(yk)− f(xk)−

S√
Li(k)

〈∇i(k)f(xk), yk − xk〉

)

+
ϕk+1

S2

(
f(xk)− f(yk+1)−

1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2) .

and taking the conditional expectation, we have

Uk − Ei(k)Uk+1 = Ei(k)
[

(ϕk+1 − ϕk)
S2

(
f? − f(xk)− 〈∇f(xk), x? − xk〉 −

1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)]

+
ϕk
S2

(f(yk)− f(xk)− 〈∇f(xk), yk − xk〉)

+ Ei(k)
[
ϕk+1

S2

(
f(xk)− f(yk+1)−

1

2Li(k)

∥∥∇i(k)f(xk)
∥∥2)]

≥ 0.

Taking the full expectation, we have EUk ≤ · · · ≤ U0, and we conclude the statement of the
theorem.

Discussion. ORC-F has the smallest (best) constant among the randomized coordinate
updates methods, to the best of our knowledge. In particular, ORC-F’s rate is slightly faster
than that of FGM-RC of Allen-Zhu et al. (2016) or FGM-RC] since θ2k ≤ ϕk+1 for k = 0, 1, . . . ,
which follows from induction. However, the improvement is small as the leading-term constant
is the same, i.e., θ2k/ϕk+1 → 1 as k →∞.

4.2 Brief review of Taylor et al. (2017b)

This section is closely follows Taylor et al. (2017b) with minor changes including different
in notation and the addition of some variables. Consider the underlying space Rd with
d ≥ N+2. The assumption that d is sufficiently large is made to obtain dimension-independent
results. See (Taylor et al., 2017b, Section 3.3) for further discussion of this matter. Denote
yk+1 = xk − 1

L∇f(xk) and y0 = x0. Define fi,0 = f(xi), fi,1 = f(yi), gi = ∇f(xi), and

G =


‖x0 − x?‖2 〈g0, x0 − x?〉 〈g1, x0 − x?〉 . . . 〈gN , x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2 〈g1, g0〉 . . . 〈gN , g0〉

...
...

...
. . .

...
〈gN , x0 − x?〉 〈gN , g0〉 〈gN , g1〉 . . . ‖gN‖2

 ,

F0 =


f0,0 − f?
f1,0 − f?

...
fN+1,0 − f?

 , F1 =


f0,1 − f?
f1,1 − f?

...
fN+1,1 − f?

 .

(6)
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Note that G � 0, F0 � 0, and F1 � 0, i.e., G is positive semidefinite and F0 and F1 are
elementwise nonnegative. Since d ≥ N + 2, given G and F0 � 0, we can take the Cholesky
factorization2of G to recover the triplet {(xi, gi, fi)}Ni=0. Define

xxx0 = e1 ∈ RN+2, gggi = ei+2 ∈ RN+2, fff i = ei+1 ∈ RN+2 (7)

for i = 0, 1, . . . , N , where ei are standard basis of RN+2 or RN+1. We define FSFO (1) with
(hi,j) and (si,j) as

xxxi+1 = xxxi −
i∑

k=0

hi+1,k

L
gggk

= xxx0 −
i∑

k=0

si+1,k

L
gggk

(8)

for i = 0, 1, . . . , N − 1. (Note that xxxi appears in the first expression while xxx0 appears in the
second.) With this new notation, we can write

fi,j − f? = fffᵀiFj , i = 0, 1, . . . , N + 1, j = 0, 1

〈gi, gj〉 = gggᵀiGgggj , i, j = 0, 1, . . . , N

‖xi − x?‖2 = xxxᵀiGxxxi, i = 0, 1, . . . , N

〈gi, xj − x?〉 = gggᵀiGxxxj , i, j = 0, 1, . . . , N.

This allows us to express the optimization of the algorithm as an optimization problem with
variables G,F0,F1.

Let FL be the class of L-smooth convex functions. Let I be an index set and consider
the set of triplets S = {(xi, gi, fi)}i∈I , where xi, gi ∈ Rd and fi ∈ R for all i ∈ I. We say S is
FL-interpolable if and only if there exists a function f ∈ FL that gi ∈ ∂f(xi) and f(xi) = fi
for all i ∈ I.

Fact 1 (Taylor et al., 2017b, Theorem 4) S is FL-interpolable if and only if

fi − fj − 〈gj , xi − xj〉 ≥
1

2L
‖gi − gj‖2 , ∀ i, j ∈ I.

4.2.1 Strong duality for the PEP

We propose a general PEP form. The original sdp-PEP of Taylor et al. (2017b) is

maximize
G,F0

bᵀF0 + Tr(CG)

subject to 0 ≥ (fff j − fff i)ᵀF0 + Tr(G((xxxi − xxxj)gggᵀj +
1

2L
(gggi − gggj)(gggi − gggj)ᵀ)) i, j ∈ {0, 1, . . . , N}

1 ≥ Tr(Gxxx0xxx
ᵀ
0)

0 � G,

2. Since G is not strictly positive definite, the “Cholesky factorization” is not unique. In fact, any factorization
of the form G = MMᵀ suffices. See (Taylor et al., 2017b, Section 3) for further discussion on this matter.
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for b ∈ RN+1 and C is a nonnegative definite matrix. For further details, refer to (Taylor
et al., 2017b, Theorem 5). This original sdp-PEP is induced by the FL-interpolable condition.
We extend this sdp-PEP to replace the constraints with relaxed inequalities. Our general
sdp-PEP is

maximize
G,F0,F1

bᵀ0F0 + bᵀ1F1 + Tr(CG)

subject to conditions corresponding to inequality collection I
1 ≥ Tr(Gxxx0xxx

ᵀ
0)

0 � G,

for b0, b1 ∈ RN+1 and C is a nonnegative definite matrix. Specific instances of this general
sdp-PEP are considered in subsequent section. We call the convex-dual problem of general
sdp-PEP as dual-sdp-PEP (Taylor et al., 2017b). Strong duality holds between the primal
and dual SDPs.

Fact 2 Assume the stepsizes of (8) satisfy sk,k−1 6= 0 for k = 1, . . . , N . In addition,
inequality collection corresponds to the algorithms in Sections 4.3, 5.1, and 5.2. Then, the
strong duality holds between general sdp-PEP and dual-sdp-PEP.

The formal proof Fact 2, which we omit for the sake of brevity, follows from the same
reasoning as that of (Taylor et al., 2017b, Theorem 5).

4.3 Proof of Theorem 1

In this section, we prove Theorem 1, i.e., A?-optimality of ORC-F[, using the PEP machinery.
To verify the lengthy calculations, we provide Matlab scripts verifying the analytical solution
of the SDP:
https://github.com/chanwoo-park-official/A-star-map/.
To obtain ORC-F as an A?-optimal algorithm, set f(yN+1)−f? to be the performance measure
and ‖x0 − x?‖ ≤ R to be the initial condition. Since the constraints and the objective of the
problem are homogeneous, we assume R = 1 without loss of generality. For the argument of
homogeneous, we refer to (Drori and Teboulle, 2014; Kim and Fessler, 2016; Taylor et al.,
2017b). We use the set of inequalities that are handy for randomized coordinate updates:

IORC-F[
=

{
fk,0 ≥ fk+1,1 +

1

2L
‖gk‖2

}N
k=0

⋃{
fk,1 ≥ fk,0 + 〈gk, yk − xk〉

}N
k=1⋃{

f? ≥ fk,0 + 〈gk, x? − xk〉+
1

2L
‖gk‖2

}N
k=0

.
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For calculating R(AN ,P, C, IORC-F[
) with fixed AN , define the PEP with IORC-F[

as

R(AN ,P, C, IORC-F[
)

=



maximize fN+1,1 −f?
subject to 1 ≥ ‖x0 − x?‖2

fk,0 ≥ fk+1,1 + 1
2L ‖gk‖

2 , k ∈ {0, 1, . . . , N}
fk,1 ≥ fk,0 + 〈gk, yk − xk〉, k ∈ {1, . . . , N}
f? ≥ fk,0 + 〈gk, x? − xk〉+ 1

2L ‖gk‖
2 , k ∈ {0, 1, . . . , N}

xk, yk are following the algorithm AN .


(9)

Using the notation of Section 4.2, we reformulate the problem of computing the risk
R(AN ,P, C, IORC-F[

) as the following SDP:

maximize
G,F0,F1

fffᵀN+1F1

subject to 1 ≥ xxxᵀ0Gxxx0

0 ≥ fffᵀk+1F1 − fffᵀkF0 +
1

2L
gggᵀkGgggk, k ∈ {0, 1, . . . , N}

0 ≥ fffᵀk(F0 − F1) + gggᵀkG(xxxk−1 − xxxk)−
1

L
gggᵀk−1Ggggk, k ∈ {1, 2, . . . , N}

0 ≥ fffᵀkF0 − gggᵀkGxxxk +
1

2L
gggᵀkGgggk, k ∈ {0, 1, . . . , N}

G < 0,F0 ≥ 0,F1 ≥ 0.

For above transformation, d ≥ N + 2 is used (Taylor et al., 2017b). The Lagrangian of the
optimization problem becomes

Λ(F0,F1,G,λλλ,βββ,ααα, τ)

= −fffᵀN+1F1 + τ(xxxᵀ0Gxxx0 − 1) +

N∑
k=0

αk

(
fffᵀk+1F1 − fffᵀkF0 +

1

2L
gggᵀkGgggk

)

+
N∑
k=1

λk

(
fffᵀk(F0 − F1) + gggᵀkG(xxxk−1 − xxxk)−

1

L
gggᵀk−1Ggggk

)

+

N∑
k=0

βk

(
fffᵀkF0 − gggᵀkGxxxk +

1

2L
gggᵀkGgggk

)
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with dual variables λλλ = (λ1, . . . , λN ) ∈ RN+ , βββ = (β0, . . . , βN ) ∈ RN+1
+ , ααα = (α0, . . . , αN ) ∈

RN+1
+ , and τ ≥ 0. Then the dual formulation of PEP problem is

maximize
(λλλ,βββ,ααα,τ)≥000

−τ

subject to 000 = −
N∑
k=0

αkfffk +
N∑
k=1

λkfffk +
N∑
k=0

βkfffk

000 = −fffN+1 −
N∑
k=1

λkfffk +

N∑
k=0

αkfffk+1

0 � S(λλλ,βββ,ααα, τ),

(10)

where S is defined as

S(λλλ,βββ,ααα, τ) = τxxx0xxx
ᵀ
0 +

N∑
k=0

(αk + βk)

(
1

2L
gggkggg

ᵀ
k

)
+

N∑
k=0

βk
2

(
−gggkxxxᵀk − xxxkggg

ᵀ
k

)
+

N∑
k=1

λk
2

(
gggk(xxxk−1 − xxxk)ᵀ + (xxxk−1 − xxxk)gggᵀk −

1

L
gggk−1ggg

ᵀ
k −

1

L
gggkggg

ᵀ
k−1

)
.

Using the strong duality result of Fact 2 and a continuity argument that we justify at the
end of this proof, we proceed with

arg min
hi,j

maximize
G,F0,F1

fffᵀN+1F1 = arg min
hi,j

minimize
(λλλ,βββ,ααα,τ)≥000

τ (11)

i.e., it is sufficient to obtain hi,j ’s argmin value of (10). We omitted (11)’s constraints for
ease of writing. Note that (10) finds the optimal proof for the algorithm. Minimizing (10)
with respect to (hi,j) corresponds to optimizing the algorithm:

minimize
hi,j

minimize
(λλλ,βββ,ααα,τ)≥000

τ (12)

subject to 000 = −
N∑
k=0

αkfffk +

N∑
k=1

λkfffk +

N∑
k=0

βkfffk (13)

000 = −fffN+1 −
N∑
k=1

λkfffk +

N∑
k=0

αkfffk+1 (14)

0 � S(λλλ,βββ,ααα, τ). (15)

We note that fff i is a standard unit vector mentioned in (7) (not a variable), we can write
(13) and (14) as βk = αk − λk = λk+1 − λk, k ∈ {1, . . . , N − 1}

β0 = α0 = λ1
βN = αN − λN = 1− λN .


(
αN = 1
αk = λk+1, k ∈ {0, 1, . . . , N − 1}

) (16)
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We consider (15) with (16) and FSFO’s hi,j . To be specific, we substitute ααα and βββ to λλλ
in S(λλλ,βββ,ααα, τ). To show the dependency of S to (hi,j) since xxxk are represented with (hi,j),
we will explicitly write S as S(λλλ, τ ; (hi,j)). Then, we get

S(λλλ, τ ; (hi,j)) = τxxx0xxx
ᵀ
0 +

λ1
2L
ggg0ggg

ᵀ
0 −

N−1∑
k=1

2λk − λk+1

2L
gggkggg

ᵀ
k +

2− 2λN
2L

gggNggg
ᵀ
N +

N∑
k=1

λk
2L

(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

+

N−1∑
k=1

k−1∑
t=0

λk
2

hk,t
L

+
λk+1 − λk

2

k∑
j=t+1

hj,t
L

(gggkgggᵀt + gggtggg
ᵀ
k

)

+
N−1∑
t=0

λN
2

hN,t
L

+
1− λN

2

N∑
j=t+1

hj,t
L

(gggNgggᵀt + gggtggg
ᵀ
N

)
−
N−1∑
k=1

λk+1 − λk
2

(
xxx0ggg

ᵀ
k + gggkxxx

ᵀ
0

)
− λ1

2
(xxx0ggg

ᵀ
0 + ggg0xxx

ᵀ
0)− 1− λN

2

(
xxx0ggg

ᵀ
N + gggNxxx

ᵀ
0

)
.

Using the fact that xxx0, gggi, fff i are unit vectors, we can represent S(λλλ, τ ; (hi,j)) with γγγ(λλλ) =
−Lβββ = −L(λ1, λ2 − λ1, . . . , 1− λN ) = (γ̂γγ(λλλ), γN (λλλ)) and τ ′ = 2Lτ as

S(λλλ, τ ′; (hi,j)) =
1

L

 1
2τ
′ 1

2γ̂γγ(λλλ)ᵀ 1
2γN (λλλ)

1
2γ̂γγ(λλλ) Q(λλλ; (hi,j)) q(λλλ; (hi,j))
1
2γN (λλλ) q(λλλ; (hi,j))

ᵀ 2−λN
2

 � 0.

Here, Q and q are defined as

Q(λλλ; (hi,j)) =
λ1
2
ggg′0ggg

′ᵀ
0 +

N−1∑
k=1

λk+1 − 2λk
2

ggg′kggg
′ᵀ
k +

N−1∑
k=1

λk
2

(ggg′k−1 − ggg′k)(ggg′k−1 − gggk)
′ᵀ +

λN
2
ggg′N−1ggg

′ᵀ
N−1

+

N−1∑
k=1

k−1∑
t=0

λk
2
hk,t +

λk+1 − λk
2

k∑
j=t+1

hj,t

(ggg′kggg′ᵀt + ggg′tggg
′ᵀ
k

)
and

q(λλλ; (hi,j)) = −λN
2
ggg′N−1 +

N−1∑
t=0

λN
2
hN,t +

1− λN
2

N∑
j=t+1

hj,t

ggg′t
=

N−2∑
t=0

λN
2
hN,t +

1− λN
2

N∑
j=t+1

hj,t

ggg′t +

(
1

2
hN,N−1 −

λN
2

)
ggg′N−1

where ggg′k = ek+1 ∈ RN+1. Note that (12) is equivalent to

minimize
hi,j

minimize
(λλλ,τ ′)≥000

τ ′ (17)

subject to

 1
2τ
′ 1

2γ̂γγ(λλλ)ᵀ 1
2γN (λλλ)

1
2γ̂γγ(λλλ) Q(λλλ; (hi,j)) q(λλλ; (hi,j))
1
2γN (λλλ) q(λλλ; (hi,j))

ᵀ 2−λN
2

 � 0
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and dividing this optimized value with 2L gives the optimized value of (12). Using Schur
complement (?), (we already know 0 ≤ λN ≤ 1 by (16)) (17) can be converted to the problem
as

minimize
hi,j

minimize
(λλλ,τ ′)≥000

τ ′ (18)

subject to

(
Q− 2qqᵀ

2−λN
1
2(γ̂γγ(λλλ)− 2qγN (λλλ)

2−λN )
1
2(γ̂γγ(λλλ)− 2qγN (λλλ)

2−λN )ᵀ 1
2(τ ′ − γN (λλλ)2

2−λN )

)
� 0. (19)

So far we simplified SDP. We will have three steps: finding variables that make (19)’s left
hand side zero, showing that the solution from the first step satisfies Karuch-Kuhn-Tucker
(KKT) condition, and finally showing that obtained algorithm is equivalent to ORC-F[.

Claim 1 There is a point that makes (19)’s left-hand side zero.

Proof Defining the positive sequence {ϕk}∞k=0 as

2ϕk+1 − ϕk = (ϕk+1 − ϕk)2

for k = 0, 1, . . . , ϕ0 = 0, and {ϕk}∞k=0 is a strictly increasing sequence. Defining {rk,t}k=1,2,...,N,t=0,...,k−1
as

rk,t = λkhk,t −
γk
L

k∑
j=t+1

hj,t.

Then, if ri,j is determined, (Drori and Teboulle, 2014, Theorem 3) indicates this uniquely
determine hi,j . We set (λk)

N
k=0 and (rN,k)

N−1
k=0 as

λk =
ϕk
ϕN+1

, k ∈ {0, 1, . . . , N}

rN,k =
(ϕk+1 − ϕk)(ϕN+1 − ϕN )

ϕN+1
, k ∈ {0, 1, . . . , N − 2}

rN,N−1 − λN =
(ϕN+1 − ϕN−1)(ϕN+1 − ϕN )

ϕN+1
.

(20)

Moreover, we set

rk,t =
1

ϕN+1
(ϕk+1 − ϕk)(ϕt+1 − ϕt), k ∈ {1, 2, . . . , N − 1}, t ∈ {0, 1, . . . , k − 2}

rk,k−1 − λk =
1

ϕN+1
(ϕk+1 − ϕk)(ϕk − ϕk−1), k ∈ {1, 2 . . . , N − 1}.

(21)
In addition, we set γ̂γγ as

γt =
γN

2− λN
rN,t, t ∈ {0, 1, . . . , N − 2}

γN−1 =
γN (rN,N−1 − λN )

2− λN
.
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Lastly, we set τ ′ as

τ ′ =
L2

ϕN+1
, (22)

and τ = L
2ϕN+1

. These variables make (19)’s left-hand side zero.

Claim 2 (20), (21) and (22) are an optimal solution of (18).

Proof Let we represent S with the variable (ri,j). We will denote this as A. To be specific,

A(λλλ,βββ,ααα, τ ′, (ri,j)) = S(λλλ,γγγ, τ ′; (hi,j)) =

 1
2τ
′ −L

2 β̂ββ
ᵀ

−L
2 βN

−L
2 β̂ββ

ᵀ
Q(λλλ; (ri,j)) q((ri,j))

−L
2 βN q((ri,j))

ᵀ 2−λN
2

 � 0.

Here, βββ = (β̂ββ
ᵀ
, βN )ᵀ,

Q(λλλ; (ri,j)) =
λ1
2
ggg0ggg

ᵀ
0 +

N−1∑
k=1

λk+1 − 2λk
2

gggkggg
ᵀ
k +

N−1∑
k=1

λk
2

(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

+
λN
2
gggN−1ggg

ᵀ
N−1 +

N−1∑
k=1

k−1∑
t=0

(rk,t
2

) (
gggkggg

ᵀ
t + gggtggg

ᵀ
k

)
,

and

q((ri,j)) =
N−1∑
t=0

rN,t
2
gggt −

λN
2
gggN−1.

Define a linear SDP relaxation of (17) as

minimize
ri,j

minimize
(λλλ,βββ,ααα,τ ′)≥000

τ ′

subject to A(λλλ,βββ,ααα, τ ′, (ri,j)) � 0.

B(λλλ,βββ,ααα, τ ′) =
(
λλλ,βββ,ααα, τ ′

)
≥ 0

C(λλλ,βββ,ααα) = (−α0 + β0,−α1 + λ1 + β1, . . . ,−αN + λN + βN ) = 0

D(λλλ,βββ,ααα) = (−λ1 + α0,−λ2 + α1, . . . ,−λN + αN−1, αN − 1) = 0.
(23)

(Drori and Teboulle, 2014, Theorem 3) indicates that if we prove the choice in the previous
claim satisfies KKT condition of (23), then this is also an optimal solution for the original
problem since (ri,j) uniquely determines hi,j . The Lagrangian of the minimization problem is

L(λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d)

=
1

2
τ ′ − tr

{
A(λλλ,βββ,ααα, τ ′, (ri,j))K

}
− bᵀB(λλλ,βββ,ααα, τ ′)− cᵀC(λλλ,βββ,ααα)− dᵀD(λλλ,βββ,ααα)
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and the KKT conditions of the minimization problems are

A(λλλ,βββ,ααα, τ ′; (ri,j)) � 0,B(λλλ,βββ,ααα, τ ′) ≥ 0,C(λλλ,βββ,ααα) = 0,D(λλλ,βββ,ααα) = 0,

∇(λλλ,βββ,ααα,τ ′,(ri,j))L(λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d) = 0,

K � 0,b ≥ 0,

tr
{
A(λλλ,βββ,ααα, τ ′, (ri,j))K

}
= 0,bᵀB(λλλ,βββ,ααα, τ ′) = 0,

where K is a symmetric matrix. Here, b = (u,v,w, s). We re-index K’s column and row
starting from -1 (so K’s rows and columns index are {−1, 0, 1. . . . , N}). Now, we will show
that there exist a dual optimal solution (K,b, c,d) that (λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d) satisfies
KKT condition, which proves a pair (λλλ,βββ,ααα, τ ′, (ri,j)) is an optimal solution for primal
problem. The stationary condition ∇(λλλ,βββ,ααα,τ ′,(ri,j))L(λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d) = 0 can be
rewritten as

∂L
∂λk

= −1

2
(2Kk−1,k−1 −Kk−1,k −Kk,k−1 −Kk,k)− uk − ck + dk−1 = 0, k ∈ {1, 2, . . . , N}

∂L
∂βk

=
L

2
(K−1,k +Kk,−1)− vk − ck = 0, k ∈ {0, 1, . . . , N}

∂L
∂αk

= −wk + ck − dk = 0, k ∈ {0, 1, . . . , N}

∂L
∂τ ′

=
1

2
− 1

2
K−1,−1 − s = 0

∂L
∂rk,t

= −1

2
(Kk,t +Kt,k) = 0, k ∈ {1, 2, . . . , N}, t ∈ {0, 1, . . . , k − 1}.

(24)
We already know that B(λλλ,βββ,ααα, τ ′) 6= 0, we can set b = 0. Then, (24) reduces to

Kk,t = 0, k ∈ {1, 2, . . . , N}, t ∈ {0, 1, . . . , k − 1}

− 1

2
(2Kk−1,k−1 −Kk,k)− ck + dk−1 = 0, k ∈ {1, 2, . . . , N}

LK−1,k − ck = 0, k ∈ {0, 1, . . . , N}
ck − dk = 0, k ∈ {0, 1, . . . , N}
K−1,−1 = 1.

Then, we have

K =


1 c0

L
c1
L . . .

cN−1

L
cN
L

c0
L K0,0 0 . . . 0 0
...

...
...

. . .
...

...
cN−1

L 0 0 . . . KN−1,N−1 0
cN
L 0 0 . . . 0 KN,N

 � 0
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and since tr {A(λλλ,βββ,ααα, τ ′, (ri,j))K} = 0 with A � 0, we can replace this condition by
A(λλλ,βββ,ααα, τ ′, (ri,j))K = 0. Then the KKT condition for the given (λλλ,βββ, τ ′, (ri,j)) reduces to

1

2
τ ′ − 1

2
βββᵀc = 0

1

2L
τ ′c− L

2
diag(K0,0, . . . ,KN−1,N−1,KN,N )βββ = 0

− 1

2
βββcᵀ +

(
Q q

qᵀ 2−λN
2

)
diag(K0,0, . . . ,KN−1,N−1,KN,N ) = 0.

By solving the equation, we have ci = (ϕi+1 − ϕi)Ki,i for i = 0, 1, . . . , N and we have
1 =

∑N
i=0

c2i
L2Ki,i

by the first above equation. Therefore, K � 0.

Claim 3 The obtained algorithm is ORC-F[.

Proof By calculating (hi,j) of ORC-F[, we can prove the equivalence of the obtained solution
and ORC-F[. Indeed, ORC-F[ is obtained by using (Lee et al., 2021)’s auxiliary sequences.
We will show that obtained (ĥi,j) satisfies

x0 −
k+1∑
i=1

i−1∑
j=0

ĥi.j
L
∇f(xj) =

ϕk+1

ϕk+2

x0 − k∑
i=1

i−1∑
j=0

ĥi,j
L
∇f(xj)−

1

L
∇f(xk)


+

(
1− ϕk+1

ϕk+2

)x0 − k∑
j=0

ϕj+1 − ϕj
L

∇f(xj)

 ,

which is re-written form of ORC-F[. Comparing ∇f(xj)’s each coefficient, we should prove

k+1∑
i=j+1

ĥi,j =
ϕk+1

ϕk+2

k∑
i=j+1

ĥi,j +

(
1− ϕk+1

ϕk+2

)
(ϕj+1 − ϕj) j ∈ {0, 1, . . . , k − 1}

ĥk+1,k =
ϕk+1

ϕk+2
+

(
1− ϕk+1

ϕk+2

)
(ϕk+1 − ϕk),

which is exactly equal to the recursive rule of (Drori and Teboulle, 2014, Theorem 3).

It now remains to justify (11). Write ‖(si,j)−(s′i,j)‖∞ ≤ ε if maxi,j |si,j−s′i,j | ≤ ε. Denote
the optimal value of (9) as p((si,j)), i.e.,

p((si,j)) = maximize
G,F0,F1

fffᵀN+1F1.

We show that p is a continuous function. If p is continuous, by Fact 2,

arg min
si,i−1

maximize
G,F0,F1

fffᵀN+1F1 = arg min
si,i−1 6=0

maximize
G,F0,F1

fffᵀN+1F1 = arg min
si,i−1 6=0

minimize
(λλλ,βββ,ααα,τ)≥000

τ.

Since our analytic solution for arg min(si,j) minimize(λλλ,βββ,ααα,τ)≥000 τ satisfies si,i−1 6= 0, the
strong duality claim (11) is justified.

Finally, we establish continuity of p((si,j)) with the following claim.

26



Optimal First-Order Algorithms as a Function of Inequalities

Claim 4 Assume ‖(si,j) − (s′i,j)‖∞ ≤ ε. Let {xi, yi}Ni=0 be points with the FSFO with co-
efficients (si,j) and {x′i, y′i}Ni=0 be points with the FSFO with coefficients (s′i,j). Assume
{(xi, yi, gi, fi,0, fi+1,1)}Ni=0 satisfies IORC. Assume ‖x0 − x?‖ ≤ R. Moreover, we can find
{(x′i, y′i, g′i, f ′i,0, f ′i+1,1)}Ni=0 = {(x′i, y′i, gi, fi,0 − i2

LCε, fi+1,1 − i2

LCε)}
N
i=0 that satisfies IORC,

where C = C({(si,j), R, L}) is a constant continuously depending only on ({(si,j), R, L}).

Proof A continuous function C only depending on {(si,j), R, L} bounds maxNi=0 ‖gi‖
2 ≤ C.

We first show that such a constant exists. Under the initial condition ‖x0 − x?‖2 ≤ R2,

1

4L
‖gk‖2 + L ‖xk − x?‖2 −

1

2L
‖gk‖2 ≥ 〈gk, xk − x?〉 −

1

2L
‖gk‖2

≥ f? − fk,0 − 〈gk, x? − xk〉 −
1

2L
‖gk‖2 ≥ 0,

where the first inequality follows from Young’s inequality, the second inequality follows from
the fact that f? is the optimal value, and the third inequality is the cocoercivity inequality on
(x?, yk). So L ‖xk − x?‖2 ≥ 1

4L ‖gk‖
2, and if ‖xk − x?‖2 is bounded by a continuous function

then ‖gk‖2 is also bounded by a continuous function. Inductively, if ‖g0‖ , . . . , ‖gk−1‖ are
bounded by a continuous function (‖gk‖ not included), then

‖xk − x?‖ =

∥∥∥∥∥x0 − x? −
k−1∑
i=0

sk,i
L
gi

∥∥∥∥∥
≤ ‖x0 − x?‖+

k−1∑
i=0

|sk,i|
L
‖gi‖

indicates that ‖xk − x?‖ is bounded by a continuous function. Chaining these arguments
inductively while making sure to check that the “continuous function” only depend on
{(si,j), R, L}, we conclude maxNi=0 ‖gi‖

2 ≤ C.
Without loss of generality, assume f? = f ′? = 0. Then, Γk,1 = fk,0 − fk+1,1 − 1

2L ‖gk‖
2 ≥ 0, k ∈ {0, 1, . . . , N}

Γk,2 = fk,1 − fk,0 − 〈gk, yk − xk〉 ≥ 0 k ∈ {1, . . . , N}
Γk,3 = −fk,0 − 〈gk, x? − xk〉 − 1

2L ‖gk‖
2 ≥ 0, k ∈ {0, 1, . . . , N}

 .

We will show f ′k,0 − f ′k+1,1 −
1
2L ‖g

′
k‖

2 ≥ 0, k ∈ {0, 1, . . . , N}
f ′k,1 − f ′k,0 − 〈g′k, y′k − x′k〉 ≥ 0 k ∈ {1, . . . , N}
−f ′k,0 − 〈g′k, x? − x′k〉 −

1
2L ‖g

′
k‖

2 ≥ 0, k ∈ {0, 1, . . . , N}

 .

This is equivalent to fk,0 − fk+1,1 − 1
2L ‖gk‖

2 ≥ 0, k ∈ {0, 1, . . . , N}
fk,1 − fk,0 + (2k−1)C

L ε− 〈gk, (y′k − x′k)− (yk − xk) + (yk − xk)〉 ≥ 0 k ∈ {1, . . . , N}
−fk,0 + k2

L Cε− 〈gk, (x? − xk) + (xk − x′k)〉 −
1
2L ‖gk‖

2 ≥ 0, k ∈ {0, 1, . . . , N}

 .
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This can be reduced as Γk,1 ≥ 0, k ∈ {0, 1, . . . , N}
Γk,2 + (2k−1)C

L ε− 〈gk, (y′k − x′k)− (yk − xk)〉 ≥ 0 k ∈ {1, . . . , N}
Γk,3 + k2

L Cε− 〈gk, (xk − x
′
k)〉 ≥ 0, k ∈ {0, 1, . . . , N}

 .

For the second one,

〈gk, (y′k − yk)− (x′k − xk)〉
= 〈gk, (x′k−1 − xk−1)− (x′k − xk)〉

= 〈gk,−
1

L

k−2∑
i=0

(s′k−1,i − sk−1,i)gi +
1

L

k−1∑
i=0

(s′k,i − sk,i)gi〉

≤ 1

L
‖gk‖

(
k−2∑
i=0

ε ‖gi‖+
k−1∑
i=0

ε ‖gi‖

)

≤ 2k − 1

L
Cε.

For the third one,

〈gk, (x′k − xk)〉 = 〈gk,−
1

L

k−1∑
i=0

(s′k,i − sk,i)gi〉 ≤
1

L
‖gk‖

(
k−1∑
i=0

ε ‖gi‖

)
≤ k

L
Cε,

which shows the claim.

Finally, we prove continuity of p((si,j)). For 0 < ε < 1, fix any (si,j) and (s′i,j) that
‖(si,j) − (s′i,j)‖∞ ≤ ε. Define A((si,j)) and A((s′i,j)) as the algorithms corresponding to
(si,j) and (s′i,j), respectively. For any {(xi, yi, gi, fi,0, fi+1,1)}Ni=0 generated by A((si,j)) and
satisfying IORC-F and ‖x0 − x?‖ ≤ R, there exists {(x′i, y′i, g′i, f ′i,0, f ′i+1,1)}Ni=0 generated
by A((s′i,j)) satisfying IORC-F and ‖x0 − x?‖ ≤ R, such that the performance measures
difference satisfies (fN+1,1 − f?) − (f ′N+1,1 − f ′?) = N2C((si,j), R, L)ε, where C depends
only on {(si,j), R, L}. Therefore, p((si,j)) − p((s′i,j)) ≤ N2C((si,j), R, L)ε. Conversely, for
{(x′i, y′i, g′i, f ′i,0, f ′i+1,1)}Ni=0 generated by A((s′i,j)) and satisfying IORC-F and ‖x0 − x?‖ ≤ R,
there exists {(xi, yi, gi, fi,0, fi+1,1)}Ni=0 generated by A((si,j)) and satisfying IORC-F and
‖x0 − x?‖ ≤ R, such that the performance measures difference satisfies (fN+1,1 − f?) −
(f ′N+1,1 − f ′?) = −N2C((s′i,j), R, L)ε. Therefore, p((s′i,j)) − p((si,j)) ≤ N2C((s′i,j), R, L)ε.
Since C is a continuous function of (s′i,j), we conclude |p((s′i,j))− p((si,j))| → 0 as ε→ 0.

To summarize, the algorithm’s performance criterion f(yN+1)− f? is bounded as

f(yN+1)− f? ≤
L

2ϕN+1
‖x0 − x?‖2 .

Overall, we showed that ORC-F[ is A?-optimal in the sense that IORC-F[

ORC-F[ = A?N (f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IORC-F[
).
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Furthermore,

R(ORC-F[,f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IORC-F[
)

= R?(AN , f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IORC-F[
) =

LR2

2ϕN+1
.

5. Other results

We also have two more A?-optimal algorithms; OBL-F[ and FGM, which will be explained
in this section. Moreover, we give a conjecture about one A?-optimal algorithm; OBL-G[.

5.1 OBL-F

Optimized backtracking linesearch - function value[ (OBL-F[) is defined as

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
k + 1

L
∇f(xk)

xk+1 =

(
1− 2

k + 3

)
yk+1 +

2

k + 3
zk+1

for k = 0, 1, . . . where y0 = z0 = x0. The last-step modification for OBL-F[ on secondary
sequence is written as

x̃k =
1√

k(k+1)
2 + 1

(√
k(k + 1)

2
yk + zk

)

where k = 0, 1, . . . .

Theorem 4 (A?-optimality of OBL-F[) OBL-F[ is A?-optimal in the sense that

OBL-F[ = A?N (f(xN )− f?, ‖x0 − x?‖ ≤ R, IOBL-F[
)

and has the minimax optimal rate

R?(AN , f(xN )− f?, ‖x0 − x?‖ ≤ R, IOBL-F[
) =

LR2

k(k + 1) +
√

2k(k + 1)

with respect to the inequalities

IOBL-F[
=

{
f(xk−1) ≥ f(xk) + 〈∇f(xk), xk−1 − xk〉+

1

2L
‖∇f(xk−1)−∇f(xk)‖2

}N
k=1⋃{

f? ≥ f(xk) + 〈∇f(xk), x? − xk〉
}N
k=0

.

Note that the inequalities in IOBL-F[
are handy for backtracking linesearches. We defer the

proof of Theorem 4 to Appendix B.
The following corollary is a consequence of Theorem 4, but we state it separately and

present a standalone proof so that we can modify it for the proof of Theorem 6.
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Corollary 5 Assume (A1), (A2), and (A3). OBL-F[’s x̃k-sequence and yk-sequence exhibit
the rate

f(x̃k)− f? ≤
L ‖x0 − x?‖2

k(k + 1) +
√

2k(k + 1)

and

f(yk+1)− f? ≤
L ‖x0 − x?‖2

(k + 1)(k + 2)

for k = 1, 2, . . . .

Proof Let x−1 = x0. For k = −1, 0, 1, . . . , define

Uk =
(k + 1)(k + 2)

2

(
f(xk)− f? −

1

2L
‖∇f(xk)‖2

)
+
L

2
‖zk+1 − x?‖2

and

Ũk =

(√
k(k + 1)

2
+
k(k + 1)

2

)
(f(x̃k)− f?) +

L

2

∥∥∥∥zk − 1

L

k(k + 1)

2
∇f(x̃k)− x?

∥∥∥∥2 .
Then we have Uk+1

(∗)
≤ Uk and Ũk ≤ Uk−1, which implies(√

k(k + 1)

2
+
k(k + 1)

2

)
(f(x̃k)− f?) ≤ Ũk ≤ Uk−1 ≤ · · · ≤ U−1 =

L

2
‖x0 − x?‖2

and
(k + 1)(k + 2)

2
(f(yk+1)− f?) ≤ Uk ≤ Uk−1 ≤ · · · ≤ U−1 =

L

2
‖x0 − x?‖2 .

To complete the proof, it remains to justify the (*) part. We defer the calculations to
Appendix A.1.

Note that the proof only utilized inequalities in IOBL-F[
. The Lyapunov function in this proof

was inspired by the Lyapunov function used in the analysis of OGM in (Park et al., 2023).

Backtracking linesearch version. Define optimized backtracking linesearch - function
value (OBL-F), a line backtracking version of OBL-F[, as follows. Initialize L0 and η > 1.
For k = 0, 1, . . . , we define xk+1, yk+1, zk+1 as

yk+1 = xk −
1

Lk+1
∇f(xk)

zk+1 = zk −
k + 1

Lk+1
∇f(xk)

xk+1 =

(
1− 2

k + 3

)
yk+1 +

2

k + 3
zk+1

with Lk+1 = ηik+1Lk where y0 = z0 = x0. The backtracking linesearch finds the smallest ik+1

such that(
f(xk)− f(xk+1)−

1

2Lk+1
‖∇f(xk)−∇f(xk+1)‖2 + 〈∇f(xk+1), xk+1 − xk〉

)
≥ 0.
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Theorem 6 Assume (A1), (A2), and (A3). OBL-F exhibits the rate as

f(yN+1)− f? ≤
LN

(N + 1)(N + 2)

(
‖x0 − x?‖2 +

∑
k∈K

(k + 1)(k + 2)

2

(
1

L2
k

− 1

L2
k+1

)
‖∇f(xk+1)‖2

)
.

Proof Let x−1 = x0. For k = −1, 0, 1, . . . , define

Uk =
(k + 1)(k + 2)

2Lk

(
f(xk)− f? −

1

2Lk
‖∇f(xk)‖2

)
+

1

2
‖zk+1 − x?‖2 .

Then we have

Uk − Uk+1

(∗)
≥ (k + 1)(k + 2)

4

(
1

L2
k+1

− 1

L2
k

)
‖∇f(xk)‖2 .

If LN ≥ L which L is smoothness constant of L, then if we set yN+1 as gradient 1/LN -step
of xN (i.e. yN+1 = xN − 1

LN
xN ). We define K as the set of having smooth factor-jump, then

by the above relationship, we have

1

2
‖x0 − x?‖2

≥ (N + 1)(N + 2)

2LN

(
f(xN )− f? −

1

2LN
‖∇f(xN )‖2

)
+
∑
k∈K

(k + 1)(k + 2)

4

(
1

L2
k+1

− 1

L2
k

)
‖∇f(xk)‖2

≥ (N + 1)(N + 2)

2LN
(f(yN+1)− f?) +

∑
k∈K

(k + 1)(k + 2)

4

(
1

L2
k+1

− 1

L2
k

)
‖∇f(xk)‖2

which indicates

f(yN+1)− f? ≤
LN

(N + 1)(N + 2)

(
‖x0 − x?‖2 +

∑
k∈K

(k + 1)(k + 2)

2

(
1

L2
k

− 1

L2
k+1

)
‖∇f(xk)‖2

)
.

Note that K would be a sparse set (informally) that is subset of {1, 2, . . . , N}. The justifica-
tion of (∗) is deferred to Appendix A.2.

Discussion. The rates of OGM, OGM-simple (Park et al., 2023), OBL-F[, and OBL-F all
have the same leading-term constants, i.e. the limit of convergence rate’s ratio when k →∞
is 1. We clarify that although OBL-F[ and OGM-simple (Park et al., 2023) are similar in
their forms, the two algorithms are distinct.

5.2 A?-optimality of FGM

A question that motivated this work was whether FGM is an exactly optimal algorithm
in some sense. Here, we provide the answer that FGM is A?-optimal conditioned on a set
of inequalities that are handy for both randomized coordinate updates and backtracking
linesearches. Indeed FGM does admit the variants FGM-RC] and FGM-BL as discussed in
Section 1.1.
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Theorem 7 (A?-optimality of FGM) Nesterov’s FGM is A?-optimal in the sense that

FGM = A?N (f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IFGM)

and has the minimax optimal rate

R?(AN , f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IFGM) =
LR2

2θ2N

with respect to the inequalities

IFGM =

{
f(xk) ≥ f(yk+1) +

1

2L
‖∇f(xk)‖2

}N
k=0

⋃{
f(yk) ≥ f(xk) + 〈∇f(xk), yk − xk〉

}N
k=1⋃{

f? ≥ f(xk) + 〈∇f(xk), x? − xk〉
}N
k=0

.

We defer the proof of Theorem 7 to Section B.

5.3 OBL-G

Optimized backtracking linesearch - gradient norm[ (OBL-G[) is defined as

yk+1 = xk −
1

L
∇f(xk)

zk+1 = zk −
1

L

N − k + 1

2
∇f(xk)

xk+1 =
N − k − 2

N − k + 2
yk+1 +

4

N − k + 2
zk+1

for k = 1, 2, . . . , N − 1 where y0 = z0 = x0, and

y1 = x0 −
1

L
∇f(x0)

z1 = z0 −
1

L

1 +

√
N(N+1)

2

2
∇f(xk)

x1 =
N − 2

N + 2
yk+1 +

4

N + 2
zk+1.

The PEP characterizing OBL-G[ turns out to be bi-convex (hence non-convex) and this
non-convexity prevents us from establishing A?-optimality of OBL-G[. This non-convexity
was also present in the prior work of OGM-G by Kim and Fessler (2021), as we further
discuss in Section 5.3.1. Nevertheless, numerical evidence indicates that OBL-G[ is likely
A?-optimal, so we state the following claim as a conjecture.

Conjecture 8 (A?-optimality of OBL-G[) OBL-G[ is A?-optimal in the sense that

OBL-G[ = A?N (‖∇f(xN )‖2 , f(x0)− f? ≤
1

2
LR2, IOBL-G[

)
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and has the minimax optimal rate

R?(AN , ‖∇f(xN )‖2 , f(x0)− f? ≤
1

2
LR2, IOBL-G[

) = 2L2R2 N2 +N −
√

2N(N + 1)

N2(N + 1)2 − 2
√

2N(N + 1)

with respect to the inequalities

IOBL-G[
=

{
f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk+1 − xk〉+

1

2L
‖∇f(xk)−∇f(xk+1)‖2

}N−1
k=0⋃

{f(xN ) ≥ f(xk) + 〈∇f(xk), xk − xN 〉}Nk=0⋃{
f(xN ) ≥ f? +

1

2L
‖∇f(xN )‖2

}
,

Note that the inequalities in IOBL-G[
are handy for backtracking linesearches.

Since Conjecture 8 is just a conjecture, the following convergence rate of OBL-G[ must
be established as a standalone result.3 Again, we will modify this proof later for the proof of
Theorem 10.

Theorem 9 Assume (A1) (A2), and (A4). OBL-G[’s xk-sequence exhibits the rate

‖∇f(xN )‖2 ≤ 4L
N2 +N −

√
2N(N + 1)

N2(N + 1)2 − 2
√

2N(N + 1)
(f(x0)− f?) ≤

4L

N2
(f(x0)− f?).

Proof For k = 1, 2 . . . , N − 1, define

Uk =
1

(N − k + 1)(N − k + 2)

(
1

2L
‖∇f(xk)‖2 + f(xk)− f(xN )− 〈∇f(xk), xk − yk〉

)
+

4L

(N − k)(N − k + 1)(N − k + 2)(N − k + 3)
〈zk − yk, zk − xN 〉.

and

UN =
1

4L
‖∇f(xN )‖2 , U0 =

N(N + 1)−
√

2N(N + 1)

(N − 1)N(N + 1)(N + 2)
(f(x0)− f(xN )) .

Then, we have Uk
(∗)
≥ Uk+1, which implies

1

4L
‖∇f(xN )‖2 = UN ≤ · · · ≤ U0 =

N(N + 1)−
√

2N(N + 1)

(N − 1)N(N + 1)(N + 2)
(f(x0)− f(xN ))

≤
N(N + 1)−

√
2N(N + 1)

(N − 1)N(N + 1)(N + 2)

(
f(x0)− f(x?)−

1

2L
‖∇f(xN )‖2

)
.

To complete the proof, it remains to justify the (*) part. We defer the calculations to
Appendix A.3.

Note that the proof only utilized inequalities in IOBL-G[
. The Lyapunov function in this

proof was inspired by the Lyapunov function used in the analysis of OGM-G in (Lee et al.,
2021).

3. This conjecture was recently resolved on page 7 of (Kim et al., 2023), employing the concept of H-duality.
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Backtracking linesearch version. Define optimized backtracking linesearch - gradient
norm (OBL-G), a line backtracking version of OBL-G[, as follows. Initialize L0 and η > 1.
For k = 1, 2, . . . , 0 we define xk+1, yk+1, zk+1 as

yk+1 = xk −
1

Lk+1
∇f(xk)

zk+1 = zk −
1

Lk+1

N − k + 1

2
∇f(xk)

xk+1 =
N − k − 2

N − k + 2
yk+1 +

4

N − k + 2
zk+1

and

y1 = x0 −
1

L1
∇f(x0)

z1 = z0 −
1

L1

1 +

√
N(N+1)

2

2
∇f(xk)

x1 =
N − 2

N + 2
y1 +

4

N + 2
z1.

with Lk+1 = ηik+1Lk where y0 = z0 = x0. The backtracking linesearch finds the smallest ik+1

such that(
f(xk)− f(xk+1)−

1

2Lk+1
‖∇f(xk)−∇f(xk+1)‖2 + 〈∇f(xk+1), xk+1 − xk〉

)
≥ 0.

Theorem 10 Assume (A1), (A2), and (A4). OBL-G exhibits the rate as

1

4L2
N

‖∇f(xN )‖2

≤ −
∑
k∈I

1

(N − k)(N − k + 1)

(
1

Lk
− 1

Lk+1

)(
f(xk)−

1

2

(
1

Lk
+

1

Lk+1

)
‖∇f(xk)‖2 − f(xN )

)
+

1

(N + 1)2
(f(x0)− f(xN )) .

Proof Let x−1 = x0. For k = 1, 2 . . . , N − 1, define

Uk =
1

(N − k + 1)(N − k + 2)Lk

(
1

2Lk
‖∇f(xk)‖2 + f(xk)− f(xN )− 〈∇f(xk), xk − yk〉

)
+

4

(N − k)(N − k + 1)(N − k + 2)(N − k + 3)
〈zk − yk, zk − xN 〉

and

UN =
1

4L2
N

‖∇f(xN )‖2 , U0 =
1

L0

N(N + 1)−
√

2N(N + 1)

(N − 1)N(N + 1)(N + 2)
(f(x0)− f(xN )) .
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Then, we have

Uk − Uk+1

(∗)
≥ 1

(N − k)(N − k + 1)

(
1

Lk
− 1

Lk+1

)(
f(xk)−

1

2

(
1

Lk
+

1

Lk+1

)
‖∇f(xk)‖2 − f(xN )

)
,

which indicates

1

4L2
N

‖∇f(xN )‖2 +
∑
k∈K

1

(N − k)(N − k + 1)

(
1

Lk
− 1

Lk+1

)(
f(xk)−

1

2

(
1

Lk
+

1

Lk+1

)
‖∇f(xk)‖2 − f(xN )

)

≤ · · · ≤ 1

L0

N(N + 1)−
√

2N(N + 1)

(N − 1)N(N + 1)(N + 2)
(f(x0)− f(xN )) .

where K is defined as the set of having smooth factor-jump. Note that K would be a
sparse set (informally) that is a subset of {1, 2, . . . , N}. The justification of (∗) is deferred to
Appendix A.4.

5.3.1 Discussion

The prior PEP formulations of OGM-G by Kim and Fessler (2021) and of APPM by Kim
(2021) share the bi-convex structure we encounter with OBL-G[. APPM is an accelerated
algorithm for reducing the magnitude of the output of a maximal monotone operator, and
the bi-convexity seems to arise from using the squared gradient magnitude, rather than the
function-value suboptimality, as the performance measure. Both OGM-G and APPM were
obtained by numerically solving the bi-convex PEP.

More specifically, Kim and Fessler obtained OGM-G by solving a PEP formulation using
the inequalities

IOGM-G =

{
f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk+1 − xk〉+

1

2L
‖∇f(xk)−∇f(xk+1)‖2

}N−1
k=0⋃{

f(xN ) ≥ f(xk) + 〈∇f(xk), xk − xN 〉+
1

2L
‖∇f(xk)−∇f(xN )‖2

}N
k=0⋃{

f(xN ) ≥ f? +
1

2L
‖∇f(xN )‖2

}
.

When the bi-convex optimization problem was solved through alternating minimization,
the iterates would converge to OGM-, from many different starting points. Based on this
numerical evidence, we presume OGM-G is A?-optimal, i.e.,

OGM-G
?
= A?N (‖∇f(xN )‖2 , f(x0)− f? ≤

1

2
LR2, IOGM-G).

Kim and Fessler (2021) did prove

R?(‖∇f(xN )‖2 , f(x0)− f? ≤
1

2
LR2, IOGM-G)

≤ R(OGM-G, ‖∇f(xN )‖2 , f(x0)− f? ≤
1

2
LR2, IOGM-G) =

L2R2

θ̃2N
,
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so the conjecture is that the inequality holds with equality. Our numerical experiments for
finding OBL-G[ exhibit this same behavior, so we conjecture that OBL-G[ is also A?-optimal.

The rates of OGM-G and OBL-G[ have the same leading-term constants, i.e. the limit of
convergence rate’s ratio when k →∞ is 1. Moreover, OBL-G[ turns out to be a “memory-
saving algorithm” in the sense of (Zhou et al., 2022), i.e., the coefficients of the algorithm
have a non-inductive form and therefore do not need to be pre-computed. We clarify that
although OBL-G[ and M-OGM-G (Zhou et al., 2022) are similar in their forms, the two
algorithms are distinct. In fact, the rate OBL-G[ has a leading-term constant that is smaller
(better) by a factor of 2 compared to that of M-OGM-G (Zhou et al., 2022).

6. Conclusion

In this work, we presented an algorithm design methodology based on the notion of A?-
optimality and handy inequalities. We demonstrated the effectiveness of this methodology by
finding new algorithms utilizing randomized coordinate updates and backtracking linesearches
that improve upon the prior state-of-the-art rates.

By making the dependence on inequalities explicit, the notion of A?-optimality provides
a more fine-grained understanding of the optimality algorithms, and we expect this idea to
be broadly applicable to the analysis and design of optimization algorithms. Investigating
A?-optimal algorithms for setups with stochastic gradients (Taylor and Bach, 2019) and
monotone operators and splitting methods (Bauschke and Combettes, 2011; Ryu and Boyd,
2016; Ryu et al., 2020; Ryu and Yin, 2022) are interesting directions of future work.
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Appendix A. Deferred calculations

A.1 Missing part of Corollary 5

For Uk, we have

Uk − Uk+1

=
(k + 1)(k + 2)

2

(
f(xk)− f? −

1

2L
‖∇f(xk)‖2

)
− (k + 2)(k + 3)

2

(
f(xk+1)− f? −

1

2L
‖∇f(xk+1)‖2

)
+
L

2
‖zk+1 − x?‖2 −

L

2
‖zk+2 − x?‖2

=
(k + 1)(k + 2)

2

(
f(xk)− f? −

1

2L
‖∇f(xk)‖2

)
− (k + 2)(k + 3)

2

(
f(xk+1)− f? −

1

2L
‖∇f(xk+1)‖2

)
− 〈(k + 2)∇f(xk+1), x? − zk+1〉 −

(k + 2)2

2L
‖∇f(xk+1)‖2

=
(k + 1)(k + 2)

2

(
f(xk)− f? −

1

2L
‖∇f(xk)‖2

)
− (k + 2)(k + 3)

2

(
f(xk+1)− f? +

1

2L
‖∇f(xk+1)‖2

)
− 〈(k + 2)∇f(xk+1), x? − zk+1〉+

k + 2

2L
‖∇f(xk+1)‖2

=
(k + 1)(k + 2)

2

(
f(xk)− f(xk+1)−

1

2L
‖∇f(xk)‖2 −

1

2L
‖∇f(xk+1)‖2

)
− (k + 2)

(
f(xk+1)− f? +

1

2L
‖∇f(xk+1)‖2

)
− 〈(k + 2)∇f(xk+1), x? − zk+1〉+

k + 2

2L
‖∇f(xk+1)‖2

=
(k + 1)(k + 2)

2

(
f(xk)− f(xk+1)−

1

2L
‖∇f(xk)‖2 −

1

2L
‖∇f(xk+1)‖2

)
− (k + 2) (f(xk+1)− f?)
− 〈(k + 2)∇f(xk+1), x? − xk+1〉 − 〈(k + 2)∇f(xk+1), xk+1 − zk+1〉

=
(k + 1)(k + 2)

2

(
f(xk)− f(xk+1)−

1

2L
‖∇f(xk)−∇f(xk+1)‖2 + 〈∇f(xk+1), xk+1 − xk〉

)
+ (k + 2) (f? − f(xk+1)− 〈∇f(xk+1), x? − xk+1〉)

≥ 0

which completes the proof of Corollary 5.
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A.2 Missing part of Theorem 6

For Uk, we have

Uk − Uk+1

=
(k + 1)(k + 2)

2Lk

(
f(xk)− f? −

1

2Lk
‖∇f(xk)‖2

)
− (k + 2)(k + 3)

2Lk+1

(
f(xk+1)− f? −

1

2Lk+1
‖∇f(xk+1)‖2

)
+

1

2
‖zk+1 − x?‖2 −

1

2
‖zk+2 − x?‖2

=
(k + 1)(k + 2)

2Lk

(
f(xk)− f? −

1

2Lk
‖∇f(xk)‖2

)
− (k + 2)(k + 3)

2Lk+1
(f(xk+1)− f?)

− 1

Lk+1
〈(k + 2)∇f(xk+1), x? − zk+1〉 −

(k + 2)2

2L2
k+1

‖∇f(xk+1)‖2 +
(k + 2)(k + 3)

4L2
k+1

‖∇f(xk+1)‖2

=
(k + 1)(k + 2)

2Lk+1

(
f(xk)− f(xk+1)−

1

2Lk
‖∇f(xk)‖2

)
+

(
(k + 1)(k + 2)

2Lk
− (k + 1)(k + 2)

2Lk+1

)(
f(xk)− f? −

1

2Lk
‖∇f(xk)‖2

)
− 1

Lk+1
〈(k + 2)∇f(xk+1), x? − zk+1〉 −

(k + 2)2

2L2
k+1

‖∇f(xk+1)‖2 +
(k + 2)(k + 3)

4L2
k+1

‖∇f(xk+1)‖2

− k + 2

Lk+1
(f(xk+1)− f?)

=
(k + 1)(k + 2)

2Lk+1

(
f(xk)− f(xk+1)−

1

2Lk
‖∇f(xk)‖2

)
+

(k + 2)

Lk+1
(f? − f(xk+1))−

(k + 2)2

2L2
k+1

‖∇f(xk+1)‖2 +
(k + 2)(k + 3)

4L2
k+1

‖∇f(xk+1)‖2

− 1

Lk+1
〈(k + 2)∇f(xk+1), x? − xk+1〉 −

1

Lk+1
〈(k + 2)∇f(xk+1), xk+1 − zk+1〉

+

(
(k + 1)(k + 2)

2Lk
− (k + 1)(k + 2)

2Lk+1

)(
f(xk)− f? −

1

2Lk
‖∇f(xk)‖2

)
=

(k + 1)(k + 2)

2Lk+1

(
f(xk)− f(xk+1)− 〈∇f(xk+1), xk − xk+1〉 −

1

2Lk+1
‖∇f(xk)−∇f(xk+1)‖2

)
+

(k + 1)(k + 2)

2Lk+1

(
−(

1

2Lk
− 1

2Lk+1
) ‖∇f(xk)‖2 +

1

2Lk+1
‖∇f(xk+1)‖2

)
+

(k + 2)(k + 3)

4L2
k+1

‖∇f(xk+1)‖2

+
(k + 2)

Lk+1
(f? − f(xk+1)− 〈∇f(xk+1), x? − xk+1〉)−

(k + 2)2

2L2
k+1

‖∇f(xk+1)‖2

+

(
(k + 1)(k + 2)

2Lk
− (k + 1)(k + 2)

2Lk+1

)(
f(xk)− f? −

1

2Lk
‖∇f(xk)‖2

)
≥ (k + 1)(k + 2)

2Lk+1

(
−(

1

2Lk
− 1

2Lk+1
) ‖∇f(xk)‖2 +

1

2Lk+1
‖∇f(xk+1)‖2

)
− (k + 2)2

2L2
k+1

‖∇f(xk+1)‖2 +
(k + 2)(k + 3)

4L2
k+1

‖∇f(xk+1)‖2
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+

(
(k + 1)(k + 2)

2Lk
− (k + 1)(k + 2)

2Lk+1

)(
− 1

2Lk
‖∇f(xk)‖2

)
=

(k + 1)(k + 2)

4

(
1

L2
k+1

− 1

L2
k

)
‖∇f(xk)‖2

which completes the proof of Theorem 6.
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A.3 Missing part of Theorem 9

For k = 1, 2, . . . , N − 2, we have

4L

(N − k)(N − k + 1)(N − k + 2)(N − k + 3)
〈zk − yk, zk − xN 〉

− 4L

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)
〈zk+1 − yk+1, zk+1 − xN 〉

=
4L

(N − k)(N − k + 1)(N − k + 2)

(〈
1

N − k + 3
(zk − yk) , zk − xN

〉

−
〈

1

N − k − 1
(zk+1 − yk+1) , zk+1 − xN

〉)

=
4L

(N − k)(N − k + 1)(N − k + 2)

(〈
1

N − k + 3
(zk − yk) , zk − xN

〉

−
〈

1

N − k − 1
(zk+1 − yk+1) , zk −

1

L

N − k + 1

2
∇f(xk)− xN

〉)

=
4L

(N − k)(N − k + 1)(N − k + 2)

(〈
1

N − k − 1
(zk − xk) , zk − xN

〉

−
〈

1

N − k − 1
(zk+1 − yk+1) , zk −

1

L

N − k + 1

2
∇f(xk)− xN

〉)

=
4L

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)

(
〈zk − xk, zk − xN 〉

−
〈
zk − xk −

1

L

N − k − 1

2
∇f(xk), zk − xN −

1

L

N − k + 1

2
∇f(xk)

〉)
=

4

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)
×〈

∇f(xk), (N − k)zk −
N − k − 1

2
xN −

N − k + 1

2
xk −

1

L

N − k − 1

2

N − k + 1

2
∇f(xk)

〉
=

4

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)
×〈

∇f(xk), (N − k)(zk − xk) +
N − k − 1

2
(xk − xN )− 1

L

N − k − 1

2

N − k + 1

2
∇f(xk)

〉
=

4

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)
×〈

∇f(xk),
(N − k)(N − k − 1)

4
(xk − yk) +

N − k − 1

2
(xk − xN )− 1

L

N − k − 1

2

N − k + 1

2
∇f(xk)

〉
.
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Therefore, for Uk, we have

Uk − Uk+1

=
1

(N − k + 1)(N − k + 2)

(
1

2L
‖∇f(xk)‖2 + f(xk)− f(xN )− 〈∇f(xk), xk − yk〉

)
− 1

(N − k)(N − k + 1)

(
1

2L
‖∇f(xk+1)‖2 + f(xk+1)− f(xN )− 〈∇f(xk+1), xk+1 − yk+1〉

)
+

4

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)
×〈

∇f(xk),
(N − k)(N − k − 1)

4
(xk − yk) +

N − k − 1

2
(xk − xN )− 1

L

N − k − 1

2

N − k + 1

2
∇f(xk)

〉
=

1

(N − k)(N − k + 1)

(
f(xk)− f(xk+1) + 〈∇f(xk+1), xk+1 − yk+1〉 −

1

2L
‖∇f(xk)‖2 −

1

2L
‖∇f(xk+1)‖2

)
+

2

(N − k)(N − k + 1)(N − k + 2)
(f(xN )− f(xk) + 〈∇f(xk), xk − xN 〉) ,

which completes the proof of Theorem 9.

A.4 Missing part of Theorem 10

For Uk, we have

Uk − Uk+1

=
1

(N − k + 1)(N − k + 2)Lk

(
1

2Lk
‖∇f(xk)‖2 + f(xk)− f(xN )− 〈∇f(xk), xk − yk〉

)
− 1

(N − k)(N − k + 1)Lk+1

(
1

2Lk+1
‖∇f(xk+1)‖2 + f(xk+1)− f(xN )− 〈∇f(xk+1), xk+1 − yk+1〉

)
+

4

(N − k − 1)(N − k)(N − k + 1)(N − k + 2)Lk
×〈

∇f(xk),
(N − k)(N − k − 1)

4
(xk − yk) +

N − k − 1

2
(xk − xN )− 1

Lk

N − k − 1

2

N − k + 1

2
∇f(xk)

〉
.

=
1

(N − k)(N − k + 1)Lk+1

(
f(xk)− f(xk+1) + 〈∇f(xk+1), xk+1 − yk+1〉

− 1

2Lk+1
‖∇f(xk)‖2 −

1

2Lk+1
‖∇f(xk+1)‖2

)
+

2

(N − k)(N − k + 1)(N − k + 2)Lk
(f(xN )− f(xk) + 〈∇f(xk), xk − xN 〉)

+
1

(N − k)(N − k + 1)

(
1

Lk
− 1

Lk+1

)(
f(xk)−

1

2

(
1

Lk
+

1

Lk+1

)
‖∇f(xk)‖2 − f(xN )

)
≥ 1

(N − k)(N − k + 1)

(
1

Lk
− 1

Lk+1

)(
f(xk)−

1

2

(
1

Lk
+

1

Lk+1

)
‖∇f(xk)‖2 − f(xN )

)
,

which completes the proof of Theorem 10.
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Appendix B. Proofs of A?-optimality

In this section, we prove Theorems 4 and 7, and discuss Conjecture 8 using the PEP machinery.
Again, to verify the lengthy calculations, we provide Matlab scripts verifying the analytical
solutions of the SDPs: https://github.com/chanwoo-park-official/A-star-map/.

B.1 Proof of A?-optimality of OBL-F[

To obtain OBL-F as an A?-optimal algorithm, set f(xN )− f? to be the performance measure
and ‖x0 − x?‖ ≤ R to be the initial condition. Since the constraints and the objective of the
problem are homogenous, we assume R = 1 without loss of generality. For the argument of
homogeneous, we refer to (Drori and Teboulle, 2014; Kim and Fessler, 2016; Taylor et al.,
2017b). We use the set of inequalities that are handy for backtracking linesearches:

IOBL-F[
=

{
fk−1,0 ≥ fk,0 + 〈gk, xk−1 − xk〉+

1

2L
‖gk−1 − gk‖2

}N
k=1⋃{

f? ≥ fk,0 + 〈gk, x? − xk〉
}N
k=0

.

For calculating R(AN ,P, C, IOBL-F[
) with fixed AN , define the PEP with

R(AN ,P, C, IOBL-F[
)

=


maximize fN,0 − f?
subject to 1 ≥ ‖x0 − x?‖2

fk−1,0 ≥ fk,0 + 〈gk, xk−1 − xk〉+ 1
2L ‖gk−1 − gk‖

2 , k ∈ {1, 2, . . . , N}
f? ≥ fk,0 + 〈gk, x? − xk〉, k ∈ {0, 1, . . . , N}
xk is following the algorithm AN .


Using the notation of Section 4.2, we reformulate the problem of computing the risk
R(AN ,P, C, IOBL-F[

) as the following SDP:

maximize
G,F0

fffᵀNF0

subject to 1 ≥ xxxᵀ0Gxxx0

0 ≥ (fffk − fffk−1)ᵀF0 + gggᵀkG(xxxk−1 − xxxk) +
1

2L
(gggk−1 − gggk)ᵀG(gggk−1 − gggk), k ∈ {1, 2, . . . , N}

0 ≥ fffᵀkF0 − gggᵀkGxxxk, k ∈ {0, 1, . . . , N}.
G � 0,F0 ≥ 0

For above transformation, d ≥ N + 2 is used (Taylor et al., 2017b). The Lagrangian of the
optimization problem becomes

Λ(F0,G,λλλ,βββ, τ)

= −fffᵀNF0 + τ(xxxᵀ0Gxxx0 − 1) +

N∑
k=0

βk
(
fffᵀkF0 − gggᵀkGxxxk

)
+

N∑
k=1

λk

(
(fffk − fffk−1)ᵀF0 + gggᵀkG(xxxk−1 − xxxk) +

1

2L
(gggk−1 − gggk)ᵀG(gggk−1 − gggk)

)
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with dual variables λλλ = (λ1, . . . , λN ) ∈ RN+ , βββ = (β0, . . . , βN ) ∈ RN+1
+ , and τ ≥ 0.

Then the dual formulation of PEP problem is

maximize
(λλλ,βββ,τ)≥000

−τ

subject to 000 = −fffN +
N∑
k=1

λk(fffk − fffk−1) +
N∑
k=0

βkfffk

0 � S(λλλ,βββ, τ),

(25)

where S is defined as

S(λλλ,βββ, τ) = τxxx0xxx
ᵀ
0 +

N∑
k=0

βk
2

(
−gggkxxxᵀk − xxxkggg

ᵀ
k

)
+

N∑
k=1

λk
2

(
gggk(xxxk−1 − xxxk)ᵀ + (xxxk−1 − xxxk)gggᵀk +

1

L
(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

)
.

We have a strong duality argument

arg min
si,j

maximize
G,F0

fffᵀN+1F0 = arg min
hi,j

minimize
(λλλ,βββ,τ)≥000

τ,

as ORC-F’s optimality proof. Remind that (25) finds the “best” proof for the algorithm. Now
we investigate the optimization step for algorithm. The last part is minimizing (25) with
stepsize, i.e.

minimize
hi,j

maximize
(λλλ,βββ,,τ)≥000

τ (26)

subject to 000 = −fffN +
N∑
k=1

λk(fffk − fffk−1) +
N∑
k=0

βkfffk (27)

0 � S(λλλ,βββ, τ). (28)

We note that fff i is a standard unit vector mentioned in (7) (not a variable), we can write
(27) as  βk = λk+1 − λk, k ∈ {1, . . . , N − 1}

β0 = λ1
βN = 1− λN .

 (29)

We consider (28) with (29) and FSFO’s hi,j . To be specific, we substitute βββ to λλλ in S(λλλ,βββ, τ).
To show the dependency of S to (hi,j) since xxxk are represented with (hi,j), we will explicitly
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write S as S(λλλ, τ ; (hi,j)). Then, we get

S(λλλ, τ ; (hi,j)) = τxxx0xxx
ᵀ
0 +

N∑
k=1

λk
2L

(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

+
N−1∑
k=1

k−1∑
t=0

λk
2

hk,t
L

+
λk+1 − λk

2

k∑
j=t+1

hj,t
L

(gggkgggᵀt + gggtggg
ᵀ
k

)

+
N−1∑
t=0

λN
2

hN,t
L

+
1− λN

2

N∑
j=t+1

hj,t
L

(gggNgggᵀt + gggtggg
ᵀ
N

)
−
N−1∑
k=1

λk+1 − λk
2

(
xxx0ggg

ᵀ
k + gggkxxx

ᵀ
0

)
− λ1

2
(xxx0ggg

ᵀ
0 + ggg0xxx

ᵀ
0)− 1− λN

2

(
xxx0ggg

ᵀ
N + gggNxxx

ᵀ
0

)
.

Using the fact that xxx0, gggi, fff i are unit vectors, we can represent S(λλλ, τ ; (hi,j)) with γγγ(λλλ) =
−Lβββ = −L(λ1, λ2 − λ1, . . . , 1− λN ) = (γ̂γγ(λλλ), γN (λλλ)) and τ ′ = 2Lτ as

S(λλλ, τ ′; (hi,j)) =
1

L

 1
2τ
′ 1

2γ̂γγ(λλλ)ᵀ 1
2γN (λλλ)

1
2γ̂γγ(λλλ) Q(λλλ; (hi,j)) q(λλλ; (hi,j))
1
2γN (λλλ) q(λλλ; (hi,j))

ᵀ λN
2

 � 0.

Here, Q and q are defined as

Q(λλλ; (hi,j)) =

N−1∑
k=1

λk
2

(ggg′k−1 − ggg′k)(ggg′k−1 − ggg′k)ᵀ +
λN
2
ggg′N−1ggg

′ᵀ
N−1

+

N−1∑
k=1

k−1∑
t=0

λk
2
hk,t +

λk+1 − λk
2

k∑
j=t+1

hj,t

(ggg′kggg′ᵀt + ggg′tggg
′ᵀ
k

)
and

q(λλλ; (hi,j)) = −λN
2
ggg′N−1 +

N−1∑
t=0

λN
2
hN,t +

1− λN
2

N∑
j=t+1

hj,t

ggg′t
=

N−2∑
t=0

λN
2
hN,t +

1− λN
2

N∑
j=t+1

hj,t

ggg′t +

(
1

2
hN,N−1 −

λN
2

)
ggg′N−1.

where ggg′k = ek+1 ∈ RN+1. Note that (26) is equivalent to

minimize
hi,j

minimize
(λλλ,τ ′)≥000

τ ′ (30)

subject to

 1
2τ
′ 1

2γ̂γγ(λλλ)ᵀ 1
2γN (λλλ)

1
2γ̂γγ(λλλ) Q(λλλ; (hi,j)) q(λλλ; (hi,j))
1
2γN (λλλ) q(λλλ; (hi,j))

ᵀ λN
2

 � 0
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and dividing this optimized value with 2L gives the optimized value of (26). Using Schur
complement (?), (30) can be converted to the problem as

minimize
hi,j

minimize
(λλλ,τ ′)≥000

τ ′ (31)

subject to

(
Q− 2qqᵀ

λN
1
2(γ̂γγ(λλλ)− 2qγN (λλλ)

λN
)

1
2(γ̂γγ(λλλ)− 2qγN (λλλ)

λN
)ᵀ 1

2(τ ′ − γN (λλλ)2

λN
)

)
� 0. (32)

So far we simplified SDP. We will have three steps: finding variables that make (32)’s left
hand side zero, showing that the solution from the first step satisfies KKT condition, and
finally showing that obtained algorithm is equivalent to OBL-F[.

Claim 5 There is a point that makes (32)’s left-hand side zero.

Proof Defining {rk,t}k=1,2,...,N,t=0,...,k−1 as

rk,t = λkhk,t −
γk
L

k∑
j=t+1

hj,t.

Then, if ri,j is determined, (Drori and Teboulle, 2014, Theorem 5.1) indicates this uniquely
determine hi,j . We set sN = N(N+1)

2 , T = 1
sN+

√
sN

, and set (λk)
N
k=0 and (rN,k)

N−1
k=0 as

λk =
k(k + 1)

2
T, k ∈ {1, 2, . . . , N}

rN,k =
k + 1
√
sN + 1

, k ∈ {0, 2, . . . , N − 2}

rN,N−1 − λN =
N

√
sN + 1

.

(33)

Moreover, we set

rk,t =
(k + 1)(t+ 1)

sN +
√
sN

, k ∈ {1, 2, . . . , N − 1}, t ∈ {0, 1, . . . , k − 2}

rk,k−1 =
k(k + 1) + sN
sN +

√
sN

, k ∈ {1, 2 . . . , N − 1}.
(34)

In addition, we set γ̂γγ as

γt =
γN
λN

rN,t, t ∈ {0, 1, . . . , N − 2}

γN−1 =
γN (rN,N−1 − λN )

λN
.

Lastly, we set τ ′ as

τ ′ =
L2

sN +
√
sN

, (35)

and τ = L
2(sN+

√
sN ) = L

N(N+1)+
√

2N(N+1)
. These variables make (32)’s left-hand side zero.
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Claim 6 (33), (34) and (35) are an optimal solution of (31).

Proof Let we represent S with the variable (ri,j). We will denote this as A. To be specific,

A(λλλ,βββ, τ ′, (ri,j)) = S(λλλ,γγγ, τ ′; (hi,j)) =

 1
2τ
′ −L

2 β̂ββ
ᵀ

−L
2 βN

−L
2 β̂ββ

ᵀ
Q(λλλ; (ri,j)) q((ri,j))

−L
2 βN q((ri,j))

ᵀ λN
2

 � 0.

Here, βββ = (β̂ββ
ᵀ
, βN )ᵀ,

Q(λλλ; (ri,j)) =
N−1∑
k=1

λk
2

(gggk−1 − gggk)(gggk−1 − gggk)ᵀ +
λN
2
gggN−1ggg

ᵀ
N−1 +

N−1∑
k=1

k−1∑
t=0

rk,t
2

(
gggkggg

ᵀ
t + gggtggg

ᵀ
k

)
and

q((ri,j)) =

N−1∑
t=0

rN,t
2
gggt −

λN
2
gggN−1.

Define a linear SDP relaxation of (30) as

minimize
ri,j

minimize
(λλλ,βββ,τ ′)≥000

τ ′

subject to A(λλλ,βββ, τ ′, (ri,j)) � 0.

B(λλλ,βββ, τ ′) =
(
λλλ,βββ, τ ′

)
≥ 0

C(λλλ,βββ) = (−λ1 + β0, λ1 − λ2 + β1, . . . , λN−1 − λN + βN−1,−1 + λN + βN ) = 0.
(36)

(Drori and Teboulle, 2014, Theorem 3) indicates that if we prove the choice in the previous
claim satisfies KKT condition of (36), then this is also an optimal solution for the original
problem since (ri,j) uniquely determines hi,j . The Lagrangian of the minimization problem is

L(λλλ,βββ, τ ′, (ri,j),K,b, c) =
1

2
τ ′ − tr

{
A(λλλ,βββ, τ ′, (ri,j))K

}
− bᵀB(λλλ,βββ, τ ′)− cᵀC(λλλ,βββ)

and the KKT conditions of the minimization problems are

A(λλλ,βββ, τ ′; (ri,j)) � 0,B(λλλ,βββ, τ ′) ≥ 0,C(λλλ,βββ) = 0,

∇(λλλ,βββ,τ ′,(ri,j))L(λλλ,βββ, τ ′, (ri,j),K,b, c) = 0,

K � 0,b ≥ 0,

tr
{
A(λλλ,βββ, τ ′, (ri,j))K

}
= 0,bᵀB(λλλ,βββ, τ ′) = 0,

where K is a symmetric matrix. Here, b = (u,v, s). We re-index K’s column and row starting
from -1 (so K’s rows and columns index are {−1, 0, 1. . . . , N}). Now, we will show that there
exist a dual optimal solution (K,b, c) that (λλλ,βββ, τ ′, (ri,j),K,b, c) satisfies KKT condition,
which proves a pair (λλλ,βββ, τ ′, (ri,j)) is an optimal solution for primal problem. The stationary
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condition ∇(λλλ,βββ,τ ′,(ri,j))L(λλλ,βββ, τ ′, (ri,j),K,b, c) = 0 can be rewritten as

∂L
∂λk

= −1

2
(Kk−1,k−1 −Kk−1,k −Kk,k−1 +Kk,k)− uk + ck−1 − ck = 0, k ∈ {1, 2, . . . , N}

∂L
∂βk

=
L

2
(K−1,k +Kk,−1)− vk − ck = 0, k ∈ {0, 1, . . . , N}

∂L
∂τ ′

=
1

2
− 1

2
K−1,−1 − s = 0

∂L
∂rk,t

= −1

2
(Kk,t +Kt,k) = 0, k ∈ {1, 2, . . . , N}, t ∈ {0, 1, . . . , k − 1}.

(37)
We already know that B(λλλ,βββ, τ ′) 6= 0, we can set b = 0. Then, (37) reduces to

Kk,t = 0, k ∈ {1, 2, . . . , N, t = 0, 1, . . . , k − 1}

− 1

2
(Kk−1,k−1 +Kk,k) + ck−1 − ck = 0, k ∈ {1, 2, . . . , N}

LK−1,k − ck = 0, k ∈ {0, 1, . . . , N}
K−1,−1 = 1.

Then, we have

K =


1 c0

L
c1
L . . .

cN−1

L
cN
L

c0
L K0,0 0 . . . 0 0
...

...
...

. . .
...

...
cN−1

L 0 0 . . . KN−1,N−1 0
cN
L 0 0 . . . 0 KN,N

 � 0

and since tr {A(λλλ,βββ, τ ′, (ri,j))K} = 0 with A � 0, we can replace this condition by
A(λλλ,βββ, τ ′, (ri,j))K = 0. Then the KKT condition for the given (λλλ,βββ, τ ′, (ri,j)) reduces
to

1

2
τ ′ − 1

2
βββᵀc = 0

1

2L
τ ′c− L

2
diag(K0,0, . . . ,KN−1,N−1,KN,N )βββ = 0

− βββcᵀ +

(
Q q
qᵀ 1

2λN

)
diag(K0,0, . . . ,KN−1,N−1,KN,N ) = 0.

This clearly indicates that KN,N > 0 and ci are all determined as positive, and K � 0.

Claim 7 The obtained algorithm is OBL-F[.

Proof By calculating (hi,j) of OBL-F[, we can prove the equivalence of the obtained solution
and OBL-F[. Indeed, OBL-F[ is obtained by using (Lee et al., 2021)’s auxiliary sequences.
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Except the last step of OBL-F[, we will show that obtained (ĥi,j) satisfies

x0 −
k+1∑
i=1

i−1∑
j=0

ĥi.j
L
∇f(xj) =

(
1− 2

k + 3

)x0 − k∑
i=1

i−1∑
j=0

ĥi,j
L
∇f(xj)−

1

L
∇f(xk)


+

2

k + 3

x0 − k∑
j=0

j + 1

L
∇f(xj)

 ,

which is re-written form of OBL-F[. Comparing ∇f(xj)’s each coefficient, we should prove

k+1∑
i=j+1

ĥi,j =

(
1− 2

k + 3

) k∑
i=j+1

ĥi,j +
2

k + 3
(j + 1) j ∈ {0, 1, . . . , k − 1}

ĥk+1,k =

(
1− 2

k + 3

)
+

2

k + 3
(k + 1),

which is exactly equal to the recursive rule of (Drori and Teboulle, 2014, Theorem 3). The
last step of OBL-F[ can be analyzed similarly.

In sum, the algorithm’s performance criterion f(xN )− f? is bounded as

f(xN )− f? ≤
L

N(N + 1) +
√

2N(N + 1)
‖x0 − x?‖2 .

Overall, we showed that OBL-F[ is the “best” algorithm under IOBL-F[
.

OBL-F[ = A?N (f(xN )− f?, ‖x0 − x?‖ ≤ R, IOBL-F[
)

and

R(OBL-F[, f(xN )− f?, ‖x0 − x?‖ ≤ R, IOBL-F[
)

= R∗(AN , f(xN )− f?, ‖x0 − x?‖ ≤ R, IOBL-F[
)

=
LR2

N(N + 1) +
√

2N(N + 1)

hold.

B.2 Proof of A?-optimality of FGM

To obtain FGM as an A?-optimal algorithm, set f(yN+1)−f? to be the performance measure
and ‖x0 − x?‖ ≤ R to be the initial condition. Since the constraints and the objective of the
problem are homogenous, we assume R = 1 without loss of generality. For the argument of
homogeneous, we refer to (Drori and Teboulle, 2014; Kim and Fessler, 2016; Taylor et al.,
2017b). We use the set of inequalities that are handy for randomized coordinate updates and
backtracking linesearches:

IFGM =

{
fk,0 ≥ fk+1,1 +

1

2L
‖gk‖2

}N
k=0

⋃{
fk,1 ≥ fk,0 + 〈gk, yk − xk〉

}N
k=1⋃{

f? ≥ fk,0 + 〈gk, x? − xk〉
}N
k=0

.
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For calculating R(AN ,P, C, IFGM) with fixed AN , define the PEP with IFGM as

R(AN ,P, C, IFGM) =



maximize fN+1,1 −f?
subject to 1 ≥ ‖x0 − x?‖2

fk,0 ≥ fk+1,1 + 1
2L ‖gk‖

2 , k ∈ {0, 1, . . . , N}
fk,1 ≥ fk,0 + 〈gk, yk − xk〉, k ∈ {1, . . . , N}
f? ≥ fk,0 + 〈gk, x? − xk〉, k ∈ {0, 1, . . . , N}
xk, yk are following the algorithm AN .


Using the notation of Section 4.2, we reformulate the problem of computing the risk
R(AN ,P, C, IFGM) as the following SDP:

maximize
G,F0,F1

fffᵀN+1F1

subject to 1 ≥ xxxᵀ0Gxxx0

0 ≥ fffᵀk+1F1 − fffᵀkF0 +
1

2L
gggᵀkGgggk, k ∈ {0, 1, . . . , N}

0 ≥ fffᵀk(F0 − F1) + gggᵀkG(xxxk−1 − xxxk)−
1

L
gggᵀk−1Ggggk, k ∈ {1, 2, . . . , N}

0 ≥ fffᵀkF0 − gggᵀkGxxxk, k ∈ {0, 1, . . . , N}.
G � 0,F0 ≥ 0,F1 ≥ 0.

For above transformation, d ≥ N + 2 is used (Taylor et al., 2017b). The Lagrangian of the
optimization problem becomes

Λ(F0,F1,G,λλλ,βββ,ααα, τ)

= −fffᵀN+1F1 + τ(xxxᵀ0Gxxx0 − 1) +
N∑
k=0

αk

(
fffᵀk+1F1 − fffᵀkF0 +

1

2L
gggᵀkGgggk

)

+

N∑
k=1

λk

(
fffᵀk(F0 − F1) + gggᵀkG(xxxk−1 − xxxk)−

1

L
gggᵀk−1Ggggk

)

+
N∑
k=0

βk
(
fffᵀkF0 − gggᵀkGxxxk

)
with dual variables λλλ = (λ1, . . . , λN ) ∈ RN+ , βββ = (β0, . . . , βN ) ∈ RN+1

+ , ααα = (α0, . . . , αN ) ∈
RN+1
+ , and τ ≥ 0. Then the dual formulation of PEP problem is

maximize
(λλλ,βββ,ααα,τ)≥000

−τ

subject to 000 = −
N∑
k=0

αkfffk +
N∑
k=1

λkfffk +
N∑
k=0

βkfffk

000 = −fffN+1 −
N∑
k=1

λkfffk +

N∑
k=0

αkfffk+1

0 � S(λλλ,βββ,ααα, τ),

(38)
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where S is defined as

S(λλλ,βββ,ααα, τ) = τxxx0xxx
ᵀ
0 +

N∑
k=0

αk

(
1

2L
gggkggg

ᵀ
k

)
+

N∑
k=0

βk
2

(
−gggkxxxᵀk − xxxkggg

ᵀ
k

)
+

N∑
k=1

λk
2

(
gggk(xxxk−1 − xxxk)ᵀ + (xxxk−1 − xxxk)gggᵀk −

1

L
gggk−1ggg

ᵀ
k −

1

L
gggkggg

ᵀ
k−1

)
.

We have a strong duality argument

arg min
hi,j

maximize
G,F0,F1

fffᵀN+1F1 = arg min
hi,j

minimize
(λλλ,βββ,ααα,τ)≥000

τ,

as ORC-F’s optimality proof. Remind that (38) finds the “best” proof for the algorithm. Now
we investigate the optimization step for algorithm. The last part is minimizing (38) with
stepsize, i.e.

minimize
hi,j

minimize
(λλλ,βββ,ααα,τ)≥000

τ (39)

subject to 000 = −
N∑
k=0

αkfffk +
N∑
k=1

λkfffk +
N∑
k=0

βkfffk (40)

000 = −fffN+1 −
N∑
k=1

λkfffk +

N∑
k=0

αkfffk+1 (41)

0 � S(λλλ,βββ,ααα, τ). (42)

We note that fff i is a standard unit vector mentioned in (7) (not a variable), we can write
(40) and (41) as

 βk = αk − λk = λk+1 − λk, k ∈ {1, . . . , N − 1}
β0 = α0 = λ1
βN = αN − λN = 1− λN .


(
αN = 1
αk = λk+1, k ∈ {0, 1, . . . , N − 1}

) (43)

We consider (42) with (43) and FSFO’s hi,j . To be specific, we substitute ααα and βββ to λλλ in
S(λλλ,βββ,ααα, τ). To show the dependency of S to (hi,j) since xxxk are represented with (hi,j), we
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will explicitly write S as S(λλλ, τ ; (hi,j)). Then, we get

S(λλλ, τ ; (hi,j)) = τxxx0xxx
ᵀ
0 −

N∑
k=1

λk
2L
gggkggg

ᵀ
k +

1

2L
gggNggg

ᵀ
N +

N∑
k=1

λk
2L

(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

+

N−1∑
k=1

k−1∑
t=0

λk
2

hk,t
L

+
λk+1 − λk

2

k∑
j=t+1

hj,t
L

(gggkgggᵀt + gggtggg
ᵀ
k

)

+
N−1∑
t=0

λN
2

hN,t
L

+
1− λN

2

N∑
j=t+1

hj,t
L

(gggNgggᵀt + gggtggg
ᵀ
N

)
−
N−1∑
k=1

λk+1 − λk
2

(
xxx0ggg

ᵀ
k + gggkxxx

ᵀ
0

)
− λ1

2
(xxx0ggg

ᵀ
0 + ggg0xxx

ᵀ
0)− 1− λN

2

(
xxx0ggg

ᵀ
N + gggNxxx

ᵀ
0

)
.

Using the fact that xxx0, gggi, fff i are unit vectors, we can represent S(λλλ, τ ; (hi,j)) with γγγ(λλλ) =
−Lβββ = −L(λ1, λ2 − λ1, . . . , 1− λN ) = (γ̂γγ(λλλ), γN (λλλ)) and τ ′ = 2Lτ as

S(λλλ, τ ′; (hi,j)) =
1

L

 1
2τ
′ 1

2γ̂γγ(λλλ)ᵀ 1
2γN (λλλ)

1
2γ̂γγ(λλλ) Q(λλλ; (hi,j)) q(λλλ; (hi,j))
1
2γN (λλλ) q(λλλ; (hi,j))

ᵀ 1
2

 � 0.

Here, Q and q are defined as

Q(λλλ; (hi,j)) =−
N−1∑
k=1

λk
2
ggg′kggg

′ᵀ
k +

N−1∑
k=1

λk
2

(ggg′k−1 − ggg′k)(ggg′k−1 − ggg′k)ᵀ +
λN
2
ggg′N−1ggg

′ᵀ
N−1

+

N−1∑
k=1

k−1∑
t=0

λk
2
hk,t +

λk+1 − λk
2

k∑
j=t+1

hj,t

(ggg′kggg′ᵀt + ggg′tggg
′ᵀ
k

)
and

q(λλλ; (hi,j)) = −λN
2
ggg′N−1 +

N−1∑
t=0

λN
2
hN,t +

1− λN
2

N∑
j=t+1

hj,t

ggg′t
=

N−2∑
t=0

λN
2
hN,t +

1− λN
2

N∑
j=t+1

hj,t

ggg′t +

(
1

2
hN,N−1 −

λN
2

)
ggg′N−1.

where ggg′k = ek+1 ∈ RN+1. Note that (39) is equivalent to

minimize
hi,j

minimize
(λλλ,τ ′)≥000

τ ′ (44)

subject to

 1
2τ
′ 1

2γ̂γγ(λλλ)ᵀ 1
2γN (λλλ)

1
2γ̂γγ(λλλ) Q(λλλ; (hi,j)) q(λλλ; (hi,j))
1
2γN (λλλ) q(λλλ; (hi,j))

ᵀ 1
2

 � 0
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and dividing this optimized value with 2L gives the optimized value of (39). Using Schur
complement (?), (44) can be converted to the problem as

minimize
hi,j

minimize
(λλλ,τ ′)≥000

τ ′ (45)

subject to
(

Q− 2qqᵀ 1
2(γ̂γγ(λλλ)− 2qγN (λλλ))

1
2(γ̂γγ(λλλ)− 2qγN (λλλ))ᵀ 1

2(τ ′ − γN (λλλ)2)

)
� 0. (46)

So far we simplified SDP. We will have three steps: finding variables that make (46)’s left
hand side zero, showing that the solution from the first step satisfies KKT condition, and
finally showing that obtained algorithm is equivalent to FGM.

Claim 8 There is a point that makes (46)’s left-hand side zero.

Proof Defining {rk,t}k=1,2,...,N,t=0,...,k−1 as

rk,t = λkhk,t −
γk
L

k∑
j=t+1

hj,t.

Then, if ri,j is determined, (Drori and Teboulle, 2014, Theorem 5.1) indicates this uniquely
determine hi,j . We set (λk)

N
k=0 and (rN,k)

N−1
k=0 as

λk =
θ2k−1
θ2N

, k ∈ {1, 2, . . . , N}

rN,k =
θk
θN

, k ∈ {0, 1, . . . , N − 2}

rN,N−1 − λN =
θN−1
θN

.

(47)

Moreover, we set

rk,t =
θk−1θt−1
θ2N

, k ∈ {1, 2, . . . , N − 1}, t ∈ {0, 1, . . . , k − 2}

rk,k−1 =
θk−1θk−2

θ2N
+
θ2k−1
θ2N

, k ∈ {1, 2 . . . , N − 1}.
(48)

In addition, we set γ̂γγ as

γt = γNrN,t, t ∈ {0, 1, . . . , N − 2}
γN−1 = γN (rN,N−1 − λN )

γN = L(1− λN ).

Lastly, we set τ ′ as

τ ′ =
L2

θ2N
, (49)

and τ = L
2θ2N

. These variables make (46)’s left-hand side zero.
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Claim 9 (47), (48) and (49) are an optimal solution of (45).

Proof Let we represent S with the variable (ri,j). We will denote this as A. To be specific,

A(λλλ,βββ,ααα, τ ′, (ri,j)) = S(λλλ,γγγ, τ ′; (hi,j)) =

 1
2τ
′ −L

2 β̂ββ
ᵀ

−L
2 βN

−L
2 β̂ββ

ᵀ
Q(λλλ; (ri,j)) q((ri,j))

−L
2 βN q((ri,j))

ᵀ 1
2

 � 0.

Here, βββ = (β̂ββ
ᵀ
, βN )ᵀ,

Q(λλλ; (ri,j))−
N−1∑
k=1

λk
2
gggkggg

ᵀ
k +

N−1∑
k=1

λk
2

(gggk−1 − gggk)(gggk−1 − gggk)ᵀ +
λN
2
gggN−1ggg

ᵀ
N−1 +

N−1∑
k=1

k−1∑
t=0

rk,t
2

(
gggkggg

ᵀ
t + gggtggg

ᵀ
k

)
and

q((ri,j)) =

N−1∑
t=0

rN,t
2
gggt −

λN
2
gggN−1.

Define a linear SDP relaxation of (44) as

minimize
ri,j

minimize
(λλλ,βββ,ααα,τ ′)≥000

τ ′

subject to A(λλλ,βββ,ααα, τ ′, (ri,j)) � 0.

B(λλλ,βββ,ααα, τ ′) =
(
λλλ,βββ,ααα, τ ′

)
≥ 0

C(λλλ,βββ,ααα) = (−α0 + β0,−α1 + λ1 + β1, . . . ,−αN + λN + βN ) = 0

D(λλλ,βββ,ααα) = (−λ1 + α0,−λ2 + α1, . . . ,−λN + αN−1, αN − 1) = 0.
(50)

(Drori and Teboulle, 2014, Theorem 3) indicates that if we prove the choice in the previous
claim satisfies KKT condition of (50), then this is also an optimal solution for the original
problem. The Lagrangian of the minimization problem is

L(λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d)

=
1

2
τ ′ − tr

{
A(λλλ,βββ,ααα, τ ′, (ri,j))K

}
− bᵀB(λλλ,βββ,ααα, τ ′)− cᵀC(λλλ,βββ,ααα)− dᵀD(λλλ,βββ,ααα)

and the KKT conditions of the minimization problems are

A(λλλ,βββ,ααα, τ ′; (ri,j)) � 0,B(λλλ,βββ,ααα, τ ′) ≥ 0,C(λλλ,βββ,ααα) = 0,D(λλλ,βββ,ααα) = 0,

∇(λλλ,βββ,ααα,τ ′,(ri,j))L(λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d) = 0,

K � 0,b ≥ 0,

tr
{
A(λλλ,βββ,ααα, τ ′, (ri,j))K

}
= 0,bᵀB(λλλ,βββ,ααα, τ ′) = 0,

where K is a symmetric matrix. Here, b = (u,v,w, s). We re-index K’s column and row
starting from -1 (so K’s rows and columns index are {−1, 0, 1. . . . , N}). Now, we will show
that there exist a dual optimal solution (K,b, c,d) that (λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d) satisfies
KKT condition, which proves a pair (λλλ,βββ,ααα, τ ′, (ri,j)) is an optimal solution for primal
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problem. The stationary condition ∇(λλλ,βββ,ααα,τ ′,(ri,j))L(λλλ,βββ,ααα, τ ′, (ri,j),K,b, c,d) = 0 can be
rewritten as

∂L
∂λk

= −1

2
(Kk−1,k−1 −Kk−1,k −Kk,k−1)− uk − ck + dk−1 = 0, k ∈ {1, 2, . . . , N}

∂L
∂βk

=
L

2
(K−1,k +Kk,−1)− vk − ck = 0, k ∈ {0, 1, . . . , N}

∂L
∂αk

= −wk + ck − dk = 0, k ∈ {0, 1, . . . , N}

∂L
∂τ ′

=
1

2
− 1

2
K−1,−1 − s = 0

∂L
∂rk,t

= −1

2
(Kk,t +Kt,k) = 0, k ∈ {1, 2, . . . , N}, t ∈ {0, 1, . . . , k − 1}.

(51)
We already know that B(λλλ,βββ,ααα, τ ′) 6= 0, we can set b = 0. Then, (51) reduces to

Kk,t = 0, k ∈ {1, 2, . . . , N}, t ∈ {0, 1, . . . , k − 1}

− 1

2
Kk−1,k−1 − ck + dk−1 = 0, k ∈ {1, 2, . . . , N}

LK−1,k − ck = 0, k ∈ {0, 1, . . . , N}
ck − dk = 0, k ∈ {0, 1, . . . , N}
K−1,−1 = 1.

Then, we have

K =


1 c0

L
c1
L . . .

cN−1

L
cN
L

c0
L 2c0 − 2c1 0 . . . 0 0
...

...
...

. . .
...

...
cN−1

L 0 0 . . . 2cN−1 − 2cN 0
cN
L 0 0 . . . 0 KN,N

 � 0

and since tr {A(λλλ,βββ,ααα, τ ′, (ri,j))K} = 0 with A � 0, we can replace this condition by
A(λλλ,βββ,ααα, τ ′, (ri,j))K = 0. Then the KKT condition for the given (λλλ,βββ,ααα, τ ′, (ri,j)) reduces
to

1

2
τ ′ − 1

2
βββᵀc = 0

1

2L
τ ′c− L

2
diag(2c0 − 2c1, . . . , 2cN−1 − 2cN ,KN,N )βββ = 0

− βββcᵀ +

(
Q q
qᵀ 1

2

)
diag(2c0 − 2c1, . . . , 2cN−1 − 2cN ,KN,N ) = 0

and this is equivalent to
N∑
i=0

θici = L2

ci = (2ci − 2ci+1)θi for i = 0, 1, . . . , N − 1

cN = KN,NθN .
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This clearly indicates that KN,N > 0 and ci are all determined as positive, and

K =


1 c0

L
c1
L . . .

cN−1

L
cN
L

c0
L

c0
θ0

0 . . . 0 0
...

...
...

. . .
...

...
cN−1

L 0 0 . . .
cN−1

θN−1
0

cN
L 0 0 . . . 0 cN

θN

 � 0

since
∑N

i=0 θici = L2.

Claim 10 The obtained algorithm is FGM.

Proof By calculating (hi,j) of FGM, we can prove the equivalence of the obtained solution
and FGM. Indeed, FGM is obtained by using (Lee et al., 2021)’s auxiliary sequences. We
will show that obtained (ĥi,j) satisfies

x0 −
k+1∑
i=1

i−1∑
j=0

ĥi.j
L
∇f(xj) =

(
1− 1

θk+1

)x0 − k∑
i=1

i−1∑
j=0

ĥi,j
L
∇f(xj)−

1

L
∇f(xk)


+

1

θk+1

x0 − k∑
j=0

θj
L
∇f(xj)

 ,

which is re-written form of FGM. Comparing ∇f(xj)’s each coefficient, we should prove
k+1∑
i=j+1

ĥi,j =

(
1− 1

θk+1

) k∑
i=j+1

ĥi,j +
1

θk+1
θj j ∈ {0, 1, . . . , k − 1}

ĥk+1,k =

(
1− 1

θk+1

)
+

1

θk+1
θk,

which is exactly equal to the recursive rule of (Drori and Teboulle, 2014, Theorem 3).

In sum, the algorithm’s performance criterion f(yN+1)− f? is bounded as

f(yN+1)− f? ≤
L

2θ2N
‖x0 − x?‖2 .

Overall, we showed that FGM is the “best” algorithm under IFGM.

FGM = A?N (f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IFGM)

and

R(FGM, f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IFGM)

= R∗(f(yN+1)− f?, ‖x0 − x?‖ ≤ R, IFGM)

=
LR2

2θ2N

hold.
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B.3 Conjecture of A?-optimality of OBL-G[

We give a conjecture for A?-optimality of OBL-G[. Set ‖∇f(xN )‖2 to be the performance
measure and f(x0)− f? ≤ 1

2LR
2 to be the initial condition. We use the set of inequalities

that are handy for backtracking linesearches. Since the constraints and the objective of the
problem are homogenous, we assume R = 1 without loss of generality. For the argument of
homogeneous, we refer to(Drori and Teboulle, 2014; Kim and Fessler, 2016; Taylor et al.,
2017b). We use the set of inequalities that are handy for backtracking linesearches:

IOBL-G[
=

{
fk−1,0 ≥ fk,0 + 〈gk, xk−1 − xk〉+

1

2L
‖gk−1,0 − gk‖2

}N
k=1⋃{

fN,0 ≥ fk,0 + 〈gk, xN − xk〉
}N−1
k=0

⋃{
fN,0 ≥ f? +

1

2
‖gN,0‖2

}
.

For calculating R(AN ,P, C, IOBL-G[
) with fixed AN , define the PEP with IOBL-G[

as

R(AN ,P, C, IOBL-G[
)

=



maximize ‖gN‖2
subject to 0 ≥ f0,0 − 1

2L

fk−1,0 ≥ fk,0 + 〈gk, xk−1 − xk〉+ 1
2L ‖gk−1 − gk‖

2 , k ∈ {1, 2, . . . , N}
fN,0 ≥ fk,0 + 〈gk, xN − xk〉, k ∈ {0, 1, . . . , N − 1}
fN,0 ≥ f? + 1

2L ‖gN‖
2

xk is following the algorithm AN .



Using the notation of Section 4.2, we reformulate the problem of computing the risk
R(AN ,P, C, IOBL-G[

) as the following SDP:

maximize
G,F0

gggᵀNGgggN

subject to 0 ≥ fffᵀ0F0 −
1

2
L

0 ≥ (fffk − fffk−1)ᵀF0 + gggᵀkG(xxxk−1 − xxxk) +
1

2L
(gggk−1 − gggk)ᵀG(gggk−1 − gggk), k ∈ {1, 2, . . . , N}

0 ≥ (fffᵀk − fffN )ᵀF0 + gggᵀkGxxxN − ggg
ᵀ
kGxxxk, k ∈ {0, 1, . . . , N − 1}

0 ≥ −fffᵀNF0 +
1

2L
gggᵀNGgggN

G � 0,F0 ≥ 0.

59



Park and Ryu

For above transformation, d ≥ N + 2 is used (Taylor et al., 2017b). The Lagrangian of the
optimization problem becomes

Λ(F0,G,λλλ,βββ, τ, c)

= −gggᵀNGgggN + τ

(
fffᵀ0F0 −

1

2
L

)
+ c

(
−fffᵀNF0 +

1

2L
gggᵀNGgggN

)
+

N∑
k=1

λk

(
(fffk − fffk−1)ᵀF0 + gggᵀkG(xxxk−1 − xxxk) +

1

2L
(gggk−1 − gggk)ᵀG(gggk−1 − gggk)

)

+

N−1∑
k=0

βk
(
(fffk − fffN )ᵀF0 + gggᵀkGxxxN − ggg

ᵀ
kGxxxk

)
.

with dual variables λλλ = (λ1, . . . , λN ) ∈ RN+ , βββ = (β0, . . . , βN−1) ∈ RN+ , and τ, c ≥ 0.
Then the dual formulation of PEP problem is

maximize
(λλλ,βββ,τ,c)≥000

−1

2
Lτ

subject to 000 = τfff0 − cfffN +
N∑
k=1

λk(fffk − fffk−1) +
N−1∑
k=0

βk(fffk − fffN )

0 � S(λλλ,βββ, c),

(52)

where S is defined as

S(λλλ,βββ, c) = −gggNgggᵀN +
c

2L
gggNggg

ᵀ
N +

N∑
k=1

λk
2

(
gggk(xxxk−1 − xxxk)ᵀ + (xxxk−1 − xxxk)gggᵀk +

1

L
(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

)

+

N∑
k=0

βk
2

(
gggkxxx

ᵀ
N + xxxNggg

ᵀ
k − gggkxxx

ᵀ
k − xxxkggg

ᵀ
k

)
.

We have a strong duality argument

arg min
hi,j

maximize
G,F0

gggᵀNGgggN = arg min
hi,j

minimize
(λλλ,βββ,τ,c)≥000

1

2
Lτ,

as ORC-F’s optimality proof. Remind that (52) finds the “best” proof for the algorithm. Now
we investigate the optimization step for algorithm. The last part is minimizing (52) with
stepsize, i.e.

minimize
hi,j

minimize
(λλλ,βββ,τ,c)≥000

τ (53)

subject to 000 = τfff0 − cfffN +

N∑
k=1

λk(fffk − fffk−1) +

N−1∑
k=0

βk(fffk − fffN ) (54)

0 � S(λλλ,βββ, c). (55)
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We note that fff i is a standard unit vector mentioned in (7) (not a variable), we can write
(54) as  τ − λ1 + β0 = 0

λk − λk+1 + βk = 0, k ∈ {1, . . . , N − 1}
−c+ λN −

∑N−1
k=0 βk = 0.

 (56)

We consider (55) with (56) and FSFO’s hi,j . To be specific, we represent the dependency of
S to (hi,j) since xxxk are represented with (hi,j). Then, we get

S(λλλ,βββ, c; (hi,j)) = −gggNgggᵀN +
c

2L
gggNggg

ᵀ
N

+
N∑
k=1

λk
2

(
gggk

(
k−1∑
t=0

hk,t
L
gggt

)ᵀ

+

(
k−1∑
t=0

hk,t
L
gggt

)
gggᵀk +

1

L
(gggk−1 − gggk)(gggk−1 − gggk)ᵀ

)

+

N−1∑
k=0

βk
2

−
 N∑
j=k+1

j−1∑
t=0

hj,t
L
gggt

gggᵀk − gggk
 N∑
j=k+1

j−1∑
t=0

hj,t
L
gggt

ᵀ .

(57)

Claim 11 There is a point that makes (57)’s right-hand side as zero.

Proof By calculating 2LS(λλλ,βββ, c; (hi,j))’s gggiggg
ᵀ
j coefficients, we have

λ1 − 2β0

N∑
l=1

hl,0

λi + λi+1 − 2βi

N∑
l=i+1

hl,i, i ∈ {1, 2, . . . , N − 1}

λN + c− 2L

λi(hi,i−1 − 1)− βi
N∑

l=i+1

hl,i−1 − βi−1
N∑

l=i+1

hl,i, i ∈ {1, 2, . . . , N − 1}

λN (hN,N−1 − 1)

λihi,j − βi
N∑

l=i+1

hl,j − βj
N∑

l=i+1

hl,i, i ∈ {2, 3, . . . , N − 1}, j ∈ {0, 1, . . . , i− 2}

λNhN,j , j ∈ {0, 1, . . . , N − 2}.

(58)

For finding a solution of S = 0, we will set λi as

λN−k+1 =
1

k(k + 1)
λ.
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(56) can be written as

τ − 1

N(N + 1)
λ+ β0 = 0

1

(N − k + 1)(N − k + 2)
λ− 1

(N − k)(N − k + 1)
λ+ βk = 0, k ∈ {1, . . . , N − 1},

− c+
1

2
λ−

N−1∑
k=0

βk = 0.

Therefore, we have

βk =
2

(N − k)(N − k + 1)(N − k + 2)
λ, k ∈ {1, 2, . . . , N − 1}

β0 =
1

N(N + 1)
λ− τ = β̂0λ

c = τ.

(59)
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Then, with (58) and (59), we get

0 =
1

N(N + 1)
λ− 2β̂0λ

N∑
l=1

hl,0

0 =
2

(N − i)(N − i+ 2)
λ− 4

(N − i)(N − i+ 1)(N − i+ 2)
λ

N∑
l=i+1

hl,i, i ∈ {1, 2, . . . , N − 1}

0 =
1

2
λ+ τ − 2L

0 =
1

(N − i+ 1)(N − i+ 2)
λ(hi,i−1 − 1)− 2

(N − i)(N − i+ 1)(N − i+ 2)
λ

N∑
l=i+1

hl,i−1

− 2

(N − i+ 1)(N − i+ 2)(N − i+ 3)
λ

N∑
l=i+1

hl,i, i ∈ {2, . . . , N − 1}

0 =
1

N(N + 1)
λ(h1,0 − 1)− 2

(N − 1)N(N + 1)
λ

N∑
l=2

hl,0 − β̂0λ
N∑
l=2

hl,1

0 =
1

2
λ(hN,N−1 − 1)

0 =
1

(N − i+ 1)(N − i+ 2)
λhi,j −

2

(N − i)(N − i+ 1)(N − i+ 2)
λ

N∑
l=i+1

hl,j

− 2

(N − j)(N − j + 1)(N − j + 2)
λ

N∑
l=i+1

hl,i, i ∈ {2, 3, . . . , N − 1}, j ∈ {1, . . . , i− 2}

0 =
1

(N − i+ 1)(N − i+ 2)
λhi,0 −

2

(N − i)(N − i+ 1)(N − i+ 2)
λ

N∑
l=i+1

hl,0

− β̂0λ
N∑

l=i+1

hl,i, i ∈ {2, 3, . . . , N − 1}

0 =
1

2
λhN,j .

(60)
Last equation indicates hN,j = 0 for all j = 0, 1, . . . , N −2, and by fifth equation, hN,N−1 = 1
also holds. By first and second equation, we have

N∑
l=1

hl,0 =
1

2β̂0N(N + 1)

N∑
l=i+1

hl,i =
N − i+ 1

2
, i ∈ {1, 2, . . . , N − 1}.

(61)
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Since, (60)’s forth equation is equivalent to

0 = (hi,i−1 − 1)− 2

N − i

N∑
l=i+1

hl,i−1 −
2

N − i+ 3

N∑
l=i+1

hl,i, i ∈ {2, . . . , N − 1}

0 =
1

N(N + 1)
λ(h1,0 − 1)− 2

(N − 1)N(N + 1)
λ

N∑
l=2

hl,0 − β̂0λ
N∑
l=2

hl,1.

(62)

Combining with (61) and , we have

0 = (hi,i−1 − 1)− 2

N − i

(
N − i+ 2

2
− hi,i−1

)
− 2

N − i+ 3

N − i+ 1

2

for i = 2, 3, . . . , N − 1 and

0 = (h1,0 − 1)− 2

N − 1

(
1

2β̂0N(N + 1)
− h1,0

)
− β̂0N(N + 1)

N

2
.

Therefore, we have

h1,0 =
N − 1

N + 1
+

1

N(N + 1)2β̂0
+
N2(N − 1)

2
β̂0

hi,i−1 =
3(N − i+ 1)

N − i+ 3
.

(63)

With (63), (60)’s seventh equation is equivalent to

0 =
1

(N − i+ 1)(N − i+ 2)
hi,j −

2

(N − i)(N − i+ 1)(N − i+ 2)

N∑
l=i+1

hl,j −
N − i+ 1

(N − j)(N − j + 1)(N − j + 2)

(64)

for i = 2, 3, . . . , N − 1 and j = 1, . . . , i− 2. For i = 1, 2, . . . N − 2, and j = 1, . . . , i− 1, we
have

0 =
1

(N − i)(N − i+ 1)
hi+1,j −

2

(N − i− 1)(N − i)(N − i+ 1)

N∑
l=i+2

hl,j −
N − i

(N − j)(N − j + 1)(N − j + 2)
.

(65)

With (N − i+ 2)(64) − (N − i− 1)(65), we have

0 =
1

N − i+ 1
hi,j −

1

N − i
hi+1,j −

4(N − i) + 2

(N − j)(N − j + 1)(N − j + 2)
(66)

for i = 2, 3, . . . , N − 2 and j = 1, . . . , i− 2, and putting i = N − 1 in (64),

hN−1,j =
12

(N − j)(N − j + 1)(N − j + 2)
(67)
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for j = 1, . . . , N − 2. (60)’s eighth equation is equivalent to

β̂0
N − i+ 1

2
=

1

(N − i+ 1)(N − i+ 2)
hi,0 −

2

(N − i)(N − i+ 1)(N − i+ 2)

N∑
l=i+1

hl,0

(68)

for i = 2, 3, . . . , N − 1. For i = 1, 2, . . . , N − 2, we have

β̂0
N − i

2
=

1

(N − i)(N − i+ 1)
hi+1,0 −

2

(N − i− 1)(N − i)(N − i+ 1)

N∑
l=i+2

hl,0 (69)

With (N − i+ 2)(68) − (N − i− 1)(69), we have

β̂0(2(N − i) + 1) =
1

N − i+ 1
hi,0 −

1

N − i
hi+1,0

for i = 2, 3, . . . , N − 2, which indicates

hi,0 =

(
1

N − 1
h2,0 − β̂0(i− 2)(2N − i)

)
(N − i+ 1) (70)

for i = 3, . . . , N − 1. Putting i = 2 in (68) and using (70), we have

h2,0 =
2

N − 2

N∑
l=3

hl,0 + β̂0
N(N − 1)2

2

=
(N − 3)N

(N − 2)(N − 1)
h2,0 − β̂0

(N − 3)N(N + 1)

2
+ β̂0

N(N − 1)2

2

which indicates h2,0 = N(N − 1)(N − 2)β̂0. With (70),

hi,0 = (N(N − 2)− (i− 2)(2N − i)) (N − i+ 1)β̂0

for i = 2, . . . , N − 1. Moreover, by (61), we have

N∑
i=1

hi,0 = h1,0 +

N∑
i=2

hi,0

=
N − 1

N + 1
+

1

N(N + 1)2β̂0
+
N2(N − 1)

2
β̂0 +

(N − 2)(N − 1)N(N + 1)

4
β̂0

=
1

2β̂0N(N + 1)

which indicates β̂0 =
2

(√
N(N+1)

2
−1
)

(N−1)N(N+1)(N+2) , and all hi,0 is determined. Using (66) and (67), we
can also derive

hi,j =
2(N − i)(N − i+ 1)(N − i+ 2)

(N − j)(N − j + 1)(N − j + 2)
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for i = 2, . . . , N and j = 1, . . . , i− 2. In sum,

H =



N+
√

2N(N+1)

N+2

(N − 2)(N − 1)Nβ̂0
3(N−1)
N+1

(N − 3)(N − 2)(N − 1)β̂0
2(N−3)(N−2)(N−1)
(N−1)(N)(N+1)

3(N−2)
N

...
...

...
. . .

1 ∗ 2 ∗ 3β̂0
2∗1∗2∗3

(N−1)(N)(N+1)
2∗1∗2∗3

(N−2)(N−1)(N) . . . 3∗2
4

0 0 0 . . . 0 3∗1
3


satisfies S = 0 with τ, β̂0, λ obtained above.

Since there cannot find the relationship similar to (Drori and Teboulle, 2014, Theorem 3), we
cannot find the optimality of OBL-G[. However, (53) is bi-convex over (hi,j) and (λλλ,βββ, τ, c),
so far each given N we numerically solved and suspect that obtained solution in the previous
claim is the solution for (53).

Claim 12 The obtained algorithm has the same (hi,j) with OBL-G[.

Proof By calculating (hi,j) of OBL-G[, we can prove the equivalence of the obtained solution
and OBL-G[. Indeed, OBL-G[ is obtained by using (Lee et al., 2021)’s auxiliary sequences.
We will show that obtained (ĥi,j) satisfies

x0 −
k+1∑
i=1

i−1∑
j=0

ĥi.j
L
∇f(xj) =

N − k − 2

N − k + 2

x0 − k∑
i=1

i−1∑
j=0

ĥi,j
L
∇f(xj)−

1

L
∇f(xk)


+

4

N − k + 2

x0 − k∑
j=0

N − k + 1

2L
∇f(xj)

 ,

which is re-written form of OBL-G[. Comparing ∇f(xj)’s each coefficient, we should prove

k+1∑
i=j+1

ĥi,j =
N − k − 2

N − k + 2

k∑
i=j+1

ĥi,j +
4

N − k + 2

N − j + 1

2
j ∈ {0, 1, . . . , k − 1}

ĥk+1,k =
N − k − 2

N − k + 2
+

4

N − k + 2

N − k + 1

2
,

which can be easily checked with the matrix H.
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