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Abstract

Random forests are a popular class of algorithms used for regression and classification.
The algorithm introduced by Breiman in 2001 and many of its variants are ensembles
of randomized decision trees built from axis-aligned partitions of the feature space. One
such variant, called Mondrian forests, was proposed to handle the online setting and is the
first class of random forests for which minimax optimal rates were obtained in arbitrary
dimension. However, the restriction to axis-aligned splits fails to capture dependencies
between features, and random forests that use oblique splits have shown improved empirical
performance for many tasks. This work shows that a large class of random forests with
general split directions also achieve minimax optimal rates in arbitrary dimension. This
class includes STIT forests, a generalization of Mondrian forests to arbitrary split directions,
and random forests derived from Poisson hyperplane tessellations. These are the first results
showing that random forest variants with oblique splits can obtain minimax optimality in
arbitrary dimension. Our proof technique relies on the novel application of the theory of
stationary random tessellations in stochastic geometry to statistical learning theory.

Keywords: random forest regression, Mondrian process, STIT tessellation, Poisson hy-
perplane tessellation, minimax risk bound

1. Introduction

Random forests are ensembles of randomized decision trees popularized by Breiman (2001)
and are broadly applicable in classification and regression tasks (Fernández-Delgado et al.,
2014; Chen and Ishwaran, 2012). Despite their empirical success and widespread use, statis-
tical learning theorems have been notoriously difficult to obtain in dimensions D ≥ 2 (Biau
and Scornet, 2016). There has been significant progress towards understanding the asymp-
totic behavior of the original algorithm proposed by Breiman (2001) (Scornet et al., 2015;
Wager and Athey, 2015, 2018; Mentch and Hooker, 2016; Chien-Ming Chi and Lv, 2022;
Klusowski and Tian, 2022), but much of the theory is still limited by strong assumptions
and suboptimal rates. Some of the main difficulties in obtaining theoretical guarantees for
this algorithm and its variants result from the complex dependence between the partition-
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ing process generating the tree and the underlying data set. In response, another line of
research considers simplified and stylized versions of random forests. In particular, purely
random forests (Biau et al., 2008; Arlot and Genuer, 2014) are models built from random-
ized hierarchical partitions of the input space that are independent of the data and are
thus more amenable to theoretical analysis. Recently, Mourtada et al. (2020) obtained the
first minimax optimal rates in arbitrary dimension for a particular class of purely random
forests. Specifically, they proved that Mondrian forests (Lakshminarayanan et al., 2014,
2016) attain optimal rates for a properly tuned complexity parameter growing with the
amount of data.

Mondrian forests are purely random forests based on the Mondrian process, a recur-
sive random partition of RD by axis-aligned cuts introduced by Roy and Teh (2008). This
stochastic process enjoys an efficient Markov construction and the following self-consistency
property: a sample of a Mondrian process in some domain W1 ⊂ RD has the same distri-
bution as sampling a Mondrian process on a larger domain W2 such that W1 ⊂ W2 and
intersecting with W1. These properties ensure the amenability of Mondrian forests to the
online setting (Lakshminarayanan et al., 2014, 2016; Wang et al., 2018), where data ar-
rives in a streaming manner, and the estimator is updated over time. This contrasts with
Breiman’s random forest algorithm and many of its variants which are restricted to the
batch setting, where the entire data set is used at once to build the model. In addition to
this practical advantage, the results of Mourtada et al. (2020) mentioned above highlight
the theoretical advantages of Mondrian forests resulting from its construction.

One key limitation of the Mondrian forest and Breiman’s original random forest algo-
rithm comes from the constraint that only one feature of the input is used each time the
data within a tree node is divided. While computationally efficient, these axis-aligned splits
cannot capture dependencies between features and may produce complex step-wise decision
boundaries that lead to high variance and overfitting. In practice, this places a large burden
on the feature selection and representation process. To address these concerns, Breiman
(2001) proposed a variant called Forest-RC that increases the expressiveness of the model
by allowing splits using linear combinations of features, and it was shown to achieve im-
proved empirical performance over the axis-aligned version. Many other models of random
forests using oblique splits have subsequently been proposed (Menze et al., 2011; Blaser
and Fryzlewicz, 2016; Fan et al., 2018; Ge et al., 2019; Rainforth and Wood, 2015). To
mitigate the increased computational cost of using linear combinations of features, Tomita
et al. (2020) studied random forests with oblique splits from sparse projections using only a
small subset of features. However, oblique splits increase the already difficult task of prov-
ing theoretical guarantees for random forest algorithms, and theory justifying the empirical
performance of these variants is extremely limited. Existing guarantees restricted to the
setting of axis-aligned splits are not easily generalized to oblique splits, illuminating a need
for a more flexible theoretical framework.

To the best of our knowledge, this paper gives the first results on minimax optimality
for a large class of purely random forests that are defined for all dimensions and allow
for general splits using linear combinations of features. In particular, we show that STIT
forests, a significant generalization of Mondrian forests, also attain the minimax rates dis-
covered in Mourtada et al. (2020). STIT forests are derived from the stable under iteration
(STIT) processes introduced by Nagel and Weiss (2003, 2005), and these stochastic pro-
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cesses all enjoy the self-consistency and online construction that underpin the popularity
of the Mondrian forest in practice. The family of STIT processes is indexed by probability
distributions on the unit sphere describing the distribution of directions of the hyperplane
cuts in the random partition, and the Mondrian process corresponds to a STIT process
where this directional distribution is the discrete uniform measure on the coordinate vec-
tors. Subsequent generalizations of the Mondrian process to oblique cuts (Fan et al., 2018;
Ge et al., 2019) are also special cases of STIT processes. The freedom in the choice of the
directional distribution for the splits brings greater flexibility in building machine learning
models. For example, while the Mondrian process can only be used to approximate the
Laplace kernel (Lakshminarayanan et al., 2016), STIT processes produce random features
that approximate a much broader class of kernels (O’Reilly and Tran, 2022). Improved em-
pirical performance of STIT forests built from STIT processes with a uniform directional
distribution over Mondrian forests was also shown by Ge et al. (2019) through a classifi-
cation task and simulation study. Additionally, O’Reilly and Tran (2022) observed that a
STIT process in RD with discrete directional distribution having N ≥ D support vectors
can be simulated by lifting to a subspace of RN and running a Mondrian process. This ob-
servation can mitigate computational costs of the oblique splits and gives an interpretation
of a STIT forest as implicitly generating a Mondrian forest in a higher dimensional feature
space.

A significant contribution of our work lies in the proof technique, as our approach relies
on theorems in stochastic geometry that have not previously been used in statistical learning
theory. In extending the theory for the Mondrian to STIT forests, a fundamental difficulty
is the geometry of the cells of the partitions. The Mondrian process generates axis-aligned
rectangular cells, and the distribution of the cell that a given input is contained in can be
characterized precisely from the construction. In contrast, STIT processes divide the input
space into more general and complex convex polytopes. The theory of random tessellations
in stochastic geometry provides a flexible and robust theoretical framework that enables us
to handle these more general cell geometries. In particular, we crucially exploit the self-
consistency property and the stationarity of the corresponding STIT tessellation on RD to
obtain risk bounds for STIT forest estimators that depend on the distribution of a single
random polytope, called the typical cell of the random tessellation.

Additionally, our proof technique allows us to incorporate an assumption of intrinsic
low-dimensionality on the input data, improving convergence rates in high-dimensional
feature space. A well-known challenge in developing statistical learning guarantees for
nonparametric regression is the curse of dimensionality, where, for instance, one needs
O(ε−D) number of samples to estimate general Lipschitz functions on RD with ε accuracy.
Indeed, the minimax optimal rates for Mondrian forests in Mourtada et al. (2020) depend
on the ambient dimension of the input data and become very slow in the presence of high-
dimensional feature space, even though empirically random forests perform well in such
regimes (Chen and Ishwaran, 2012; Fernández-Delgado et al., 2014; Tomita et al., 2020).
One approach to justifying such performance is to make additional structural assumptions
on the input data source to attain improved convergence rates, as in the results of Kpotufe
and Dasgupta (2012). For STIT forests, the theory of stationary hyperplane processes in
stochastic geometry provides insight yielding optimal rates that also adapt to a notion of
intrinsic dimensionality of the input.
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Specifically, our first main result (see Theorem 6) gives an upper bound on the quadratic
risk of a STIT forest regression estimator of a β-Hölder continuous function for β ∈ (0, 1].
The theorem implies that any STIT forest with optimally tuned complexity parameter
achieves the minimax rate for this function class, and the choice of the directional distri-
bution of the splits appears in the constant terms of the upper bound. Our proof method
gives geometric interpretations to these constants in terms of moments of the diameter of
the cell of the associated STIT tessellation containing the origin and the expected mixed
volumes between the support of the input and a random polytope called the typical cell.
This precise geometry enables us to obtain rates in terms of the intrinsic dimension of the
input defined by the dimension of the subspace of RD on which the input data is supported.
In the particular case of the Mondrian forest, the typical cell is the Minkowski sum of i.i.d.
centered line segments parallel to the axes with exponential length. Taking the support
of the input to be [0, 1]D recovers Theorem 2 in Mourtada et al. (2020), see Example 5
for details. Our second main result (see Theorem 8) significantly generalizes Theorem 3 in
Mourtada et al. (2020), where additional smoothness assumptions are made on f . We show
that any STIT forest estimator achieves the minimax rate for the class of (1 + β)-Hölder
functions for β ∈ (0, 1] for both a large enough number of trees in the forest and an opti-
mally tuned complexity parameter. As was the case for Mondrian forests, an improved rate
for STIT forests over STIT trees is due to large enough forests having a smaller bias than
single trees for smooth regression functions.

Finally, our proof technique also takes us beyond the class of STIT forests. Any random
partition of the input space can be used to define a random tree estimator and subsequently
a random forest estimator. Since the upper bounds we obtain on the convergence rates are
explicitly derived in terms of geometric properties of the typical cell of the random partition,
it can readily be applied to any random forest obtained from a stationary random tessellation
of RD. Our last main result (see Theorem 11) demonstrates this principle. It states that
a random forest derived from a Poisson hyperplane process achieves identical convergence
rates as a STIT forest with the same directional distribution and complexity parameter and
thus is also minimax optimal.

1.1 Organization

Section 2 collects background on STIT processes, Poisson hyperplane processes, and essen-
tial results in stochastic geometry needed for our proofs. Section 4 states and proves our
three main results, Theorems 6, 8, and 11. Section 6 concludes with a discussion and open
problems.

2. Preliminaries

We recall here the key concepts from stochastic geometry needed for our paper, including
random tessellations, stationarity, the zero cell, and the typical cell. We recommend the
book by Schneider and Weil (2008, Chapter 10) for additional background.

A tessellation is a locally finite random partition of RD into compact and convex poly-
topes. It can be viewed as the collection of polytopes, or cells, of the tessellation or as the
union of their boundaries. In this paper, we view tessellations as the collection of cells, but
we will also discuss the union of cell boundaries to establish relevant definitions. Formally,
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we define a random tessellation as a point process of cells P = {Ci}i∈Z taking values in the
space K of non-empty compact and convex polytopes that satisfy the following:

• for all compact K ⊂ RD, a finite number of Ci’s have non-empty intersection with K;

• for all i 6= j, int(Ci) ∩ int(Cj) = ∅;

•
⋃
i∈Z
Ci = RD.

A random tessellation P = {Ci}i∈Z is stationary if its distribution is invariant under trans-

lations. That is, for all x ∈ RD, {Ci + x}i∈Z
d
= {Ci}i∈Z, where ‘

d
=’ denotes equality in

distribution. A consequence of the definition of a random tessellation is that for all i,
volD(∂Ci) = 0. This fact, along with stationarity, implies that every x ∈ RD almost surely
belongs to a unique cell of the tessellation, which will be denoted Zx. The zero cell of
P, denoted by Z0, is defined as the unique cell of the tessellation containing the origin.

Stationary also implies that Z0
d
= Zx − x.

An important random object related to a stationary random tessellation P is the typical
cell. To define this, consider first a center function c : K → RD such that c(K+x) = c(K)+x
for all x ∈ RD. Examples include the centroid or the center of the smallest ball containingK.
We can then decompose P into a stationary marked point process {(c(Cj), Cj − c(Cj))}j∈Z
consisting of a ground point process in RD of cell centers and elements from K0 := {K ∈
K : c(K) = 0} attached to each center. Following Schneider and Weil (2008, Section 4.1),
there exists a random polytope Z in K0 such that for any non-negative measurable function
f on K,

E

[∑
C∈P

f(C)

]
=

1

E[volD(Z)]
E
[∫

RD
f(Z + y)dy

]
. (1)

The random polytope Z is called the typical cell of P. Its distribution can be understood
as the limiting distribution of a cell chosen uniformly at random from a large ball, centered
at the origin using the center function c, as the radius of the ball grows to infinity. The
relation (1) also implies that the distribution of the centered zero cell Z0 − c(Z0) has the
same distribution as the volume-weighted typical cell, i.e.

E[f(Z0 − c(Z0))] =
1

E[volD(Z)]
E [volD(Z)f(Z)] .

For a random tessellation P in RD, we will denote by Y the union of cell boundaries,
which forms a d − 1-surface process in RD (Schneider and Weil, 2008, Section 4.5). For
the stationary surface process Y corresponding to a stationary random tessellation, we can
define a directional distribution φ on SD−1 characterizing the ‘rose of directions’ for the
D − 1-dimensional facets generating the cell boundaries. We will say P has directional
distribution φ if Y has directional distribution φ.

2.1 STIT Tessellations

For two random tessellations P1 and P2, denote the union of their cell boundaries by Y1

and Y2, respectively. Associate to each cell c in P1 an independent copy Y2(c) of Y2 and
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assume the family {Y2(c) : c ∈ P1} is independent of P1. Then, the iteration of Y1 and Y2

is defined as

Y1 � Y2 := Y1 ∪
⋃
c∈P1

(Y2(c) ∩ c) .

That is, each cell c of the frame tessellation P1 is subdivided by the cells of Y2(c) ∩ c.
A random tessellation P is called stable under iteration, or STIT, if for the union of cell
boundaries Y, for all n ∈ N,

Y d
= n(Y � · · ·� Y︸ ︷︷ ︸

n times

), (2)

where nY := {nx : x ∈ Y} is the dilation of Y by the factor n.
A STIT process is a stochastic process {Y(λ) : λ > 0} of random tessellation cell

boundaries in RD with the following properties:

(i) Stationarity: Y(λ) + x
d
= Y(λ) for all x ∈ RD;

(ii) Markov Property: Y(λ1 + λ2)
d
= Y(λ1)� Y(λ2) for all λ1, λ2 > 0;

(iii) STIT: for all λ > 0 and n ∈ N, (2) holds for Y(λ).

We will call the parameter λ > 0 the lifetime of the process. A consequence of property

(iii) is that STIT processes have the following scaling property: for all λ > 0, Y(1)
d
= λY(λ)

(Nagel and Weiss, 2005, Lemma 5). Intuitively, this property says that one can swap time
for space. If we fix a compact observation window W ⊂ RD, then {Y(λ) ∩W : λ > 0} is
a stochastic process of random tessellation cell boundaries in W , which we think of as a
visualization of Y(λ) through the window W . Now, one can fix λ and ‘zoom out’ on Y(λ)
by mapping Y(λ)∩W 7→ 1

2Y(λ)∩W , or one can run the STIT process for twice as long by
mapping Y(λ)∩W 7→ Y(2λ)∩W . The scaling property says these two operations give the
same random tessellation in W in distribution.

For a lifetime λ > 0, let P(λ) denote the STIT tessellation of RD with cell boundaries
given by a STIT process Y(λ). Denote the zero cell of P(λ) by Zλ0 and the typical cell
by Zλ. The scaling property implies the following important facts that we will use in the
remainder of the paper: for all λ > 0,

Z0
d
= λZλ0 and Z

d
= λZλ, (3)

where Z0 := Z1
0 and Z := Z1 are the zero cell and typical cell of P(1).

While seemingly abstract, it was proved by Nagel and Weiss (2005) that the local STIT
process {Y(λ)∩W : λ > 0} restricted to a fixed compact and convex window W ⊂ RD can
be simulated through a Markov process that generates a hierarchical partition of W over
time. A special case of this construction was rediscovered by Roy and Teh (2008), which
led to the Mondrian process.

Formally, let φ be an even probability measure on the unit sphere SD−1 with support
containing d linearly independent directions. Then define Λ to be the stationary and locally
finite measure on the space of hyperplanes in RD, denoted HD, such that

Λ(A) :=

∫
R

∫
SD−1

1{H(u,t)∈A}φ(du)dt, A ∈ B(HD),
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where H(u, t) := {x ∈ RD : 〈x, u〉 = t}. The space HD of hyperplanes is equipped with
the hit-miss topology, which contains compact subsets of the following form: for compact
W ⊂ RD,

[W ] := {H ∈ HD : H ∩W 6= ∅}.

Now, fix a lifetime λ > 0 and consider the following procedure to construct a random
partition Y(λ,W, φ) of W .

1. Draw δ ∼ Exp(Λ([W ]), where

Λ([W ]) =

∫
R

∫
SD−1

1{H(u,t)∩W 6=∅}dφ(u)dt =

∫
SD−1

(h(W,u) + h(W,−u)) dφ(u),

and h(W,u) := supx∈W 〈u, x〉 is the support function of W .

2. If δ > λ, stop. Else, at time δ, generate a random hyperplane H(U, T ) where the
direction U is drawn from the distribution

dΦ(u) :=
h(W,u) + h(W,−u)

Λ([W ])
dφ(u), u ∈ SD−1,

and conditioned on U , T is drawn uniformly on the interval from −h(W,−U) to
h(W,U). Split the window W into two cells W1 and W2 with H(U, T ).

3. Repeat steps (1) and (2) in each sub-window W1 and W2 independently with new
lifetime parameter λ− δ until the lifetime expires.

In Figure 1, we show samples of the partition generated from a STIT process in the
centered unit square [−0.5, 0.5]2 using the above procedure over increasing lifetime λ. In
this example, the directional distribution is uniform over the three directions e1 := (1, 0),
e2 := (0, 1), u := (1/

√
2, 1/
√

2), and their reflections over the origin.

Figure 1: An example STIT process with three directions. When the process within a
cell W begins, an independent exponential clock with mean Λ([W ]) is started.
When the clock rings, the cell is cut by a random hyperplane conditioned to hit
this cell as in step 2 above. In this simulation, we start with the unit square
W = [−0.5, 0.5]2 and run the process until the lifetime λ = 9. The first three
figures show the resulting partition after the first three cuts are made, and the
last figure shows the final STIT tessellation at time λ = 9.
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Theorem 1 in Nagel and Weiss (2005) shows the existence of a STIT tessellation process

Y(λ) on RD such that Y(λ) ∩ W d
= Y(λ,W, φ). Conversely, for any stationary random

tessellation in RD with cell boundaries Y satisfying (2) with directional distribution φ,

Corollary 2 in Nagel and Weiss (2005) shows that there exists λ > 0 such that Y ∩W d
=

Y(λ,W, φ) for all compact W ⊂ RD. Together, these results imply that the class of STIT
tessellations is the most general class of stationary random tessellations with the hierarchical
construction that underpins the computational benefits of the Mondrian process (Roy and
Teh, 2008; Lakshminarayanan et al., 2014, 2016).

Example 1 (The Mondrian process as a special case of STIT processes) If φ is the
uniform distribution over the positive and negative standard basis vectors, i.e.

φ =
1

2D

D∑
i=1

(δei + δ−ei), (4)

then the resulting STIT process Y(λ,W, φ) is the Mondrian process (Roy and Teh, 2008).
See Figure 2(b) for a simulation.

Example 2 (Isotropic STIT process) If φ is the uniform distribution over SD−1, then
the distribution of the corresponding STIT tessellation is invariant with respect to rotations
about the origin. This model is called the isotropic STIT process. See Figure 2(a) for a
simulation.

2.2 Poisson Hyperplane Tessellations

We now define another class of stationary random tessellations in RD and describe its
relationship to the class of STIT tessellations. A stationary Poisson hyperplane process X
is a stationary Poisson point process on the space of affine hyperplanes HD in RD with first
moment measure

Θ(·) := E[X(·)] = λ

∫
R

∫
SD−1

1{H(u,t)∈·}dφ(u)dt,

for some constant λ > 0 called the intensity, and an even probability measure φ on SD−1

called the spherical directional distribution (Schneider and Weil, 2008, Chapter 4.4). The
following procedure generates a sample from X on a compact window W :

1. Sample N ∼ Poisson(Θ([W ])), where

Θ([W ]) = λ

∫
R

∫
SD−1

1{H(u,t)∩W 6=∅}dφ(u)dt = λ

∫
SD−1

(h(W,u) + h(W,−u)) dφ(u).

2. Conditioned on N = n, generate n i.i.d. random hyperplanes {H(Ui, Ti)}ni=1, where
for each i, Ui has probability distribution

dΦ(u) :=
λ(h(W,u) + h(W,−u))

Θ([W ])
dφ(u), u ∈ SD−1,

and conditioned on Ui, Ti is uniform in the interval from −h(W,−Ui) to h(W,Ui).
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(a) Isotropic STIT process (b) Axis-aligned STIT (aka Mondrian)
process

(c) Isotropic Poisson hyperplane process (d) Axis-aligned (aka Manhattan) Pois-
son hyperplane process

Figure 2: A simulation of STIT processes (top) vs. Poisson hyperplane processes (bottom)
up to time λ = 10, with φ being the continuous uniform measure on the unit
circle in (a) and (c), and the discrete uniform measure on the standard coordinate
vectors in (b) and (d). Though the pairs (a,c) and (b,d) are globally different
tessellations, it was observed in Nagel and Weiss (2005) (see also Schreiber and
Thäle, 2013, Corollary 1) that the typical cell Z of these two tessellations have
identical distribution. This fact is key to the proof of Theorem 11, which says
that random forests based on (a) and (c) or random forests based on (b) and (d)
achieve the same minimax rates.
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Poisson hyperplane processes induce random tessellations on RD called Poisson hyper-
plane tessellations that are globally different than STIT tessellations (cf. Figure 2). In
particular, a Poisson hyperplane tessellation is face-to-face, meaning that the intersection
of two cells is either empty, or is a face of both cells. This is not the case for a STIT
tessellation. For example, a vertex of a cell in a STIT tessellation can be an interior point
of the facet of a neighbor cell. However, the typical cell of a STIT tessellation with lifetime
λ and directional distribution φ has the same distribution as the typical cell of a station-
ary Poisson hyperplane tessellation with intensity λ and the same directional distribution
(Schreiber and Thäle, 2013, Corollary 1). By Theorem 10.4.1 in Schneider and Weil (2008),
the typical cell determines the distribution of the zero cell, and so the zero cell of a STIT
tessellation and a stationary Poisson hyperplane tessellation with corresponding parameters
are also equal in distribution.

3. Parameters of STIT and Poisson Hyperplane Tessellation Cells

In this section, we generalize the results in Section 4 of Mourtada et al. (2020) on the
diameter of the zero cell and the number of cells hitting a compact and convex domain.
These observations show that STIT processes and stationary Poisson hyperplane processes
produce partitions on a domain of unit volume that contain O(λd) cells of diameter O(1/λ),
which is on the order of the 1/λ-covering number for such a domain. Both bounds depend
on an important parameter called the associated zonoid (Schneider and Weil, 2008, p.156).
If the random tessellation has directional distribution φ and lifetime/intensity λ, this is
defined as the convex body Πλ in RD with support function

h(Πλ, v) =
λ

2
Λ([[0, v]]) =

λ

2

∫
SD−1

|〈u, v〉|dφ(u), v ∈ SD−1. (5)

We will denote by Π the associated zonoid of the process for lifetime/intensity λ = 1 and
refer to this parameter that depends only on the directional distribution as the normalized
associated zonoid of the random tessellation. In particular, note that Πλ = λΠ. We also
recall (Schneider and Weil, 2008, equations 10.4 and 10.44) that

E[volD(Z)] =
1

volD(Π)
. (6)

For the Mondrian (see Example 1) or axis-aligned Poisson hyperplane process, we can
combine (4) and (5) to see that the support function of Π is given by

h(Π, v) =
1

D

D∑
i=1

|〈ei, v〉| =
1

D
‖v‖1, u ∈ RD.

Thus the associated zonoid is the `∞ ball Π = {x ∈ RD : ‖x‖∞ ≤ 1
D}.

For the isotropic STIT (see Example 2) or isotropic Poisson hyperplane process, we let
φ in (5) be the uniform distribution σ on the unit sphere to obtain

h(Π, v) =
1

2

∫
SD−1

|〈u, v〉|dσ(u) =
‖v‖2

2

∫
SD−1

|un|dσ(u) = cD‖v‖2,
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where cD :=
Γ(D2 )

2
√
πΓ(D+1

2 )
. Thus the associated zonoid Π is an `2 ball centered at the origin

with radius cD.
The associated zonoid can also be used to understand the distribution of the intersection

of a STIT or Poisson hyperplane tessellation in RD with a linear subspace S. We will
repeatedly use the following important fact in the remainder of the paper.

Fact 1 (Schneider and Weil, 2008) Let P be a STIT (or stationary Poisson hyperplane)
tessellation in RD with associated zonoid Π and let S be a linear subspace of RD. The
intersection P ∩ S is a STIT (or stationary Poisson hyperplane) tessellation in S with
associated zonoid given by the orthogonal projection PSΠ of Π onto the subspace S.

In the following, let P(λ) denote a STIT tessellation in RD with lifetime λ ∈ (0,∞) and
normalized associated zonoid Π.

3.1 Diameter of Zero Cell

The precise distribution of the diameter of the zero cell of P(λ) with a general directional
distribution remains an open question in stochastic geometry. However, we will provide an
upper bound on the moments that is sufficient for proving the subsequent results.

Lemma 2 Let Zλ0 denote the zero cell of P(λ) in RD and let S be a linear subspace of RD.
Then, for all k > 0, there exists a constant c := c(k,Π) depending only on k and Π such
that

E[diam(Zλ0 ∩ S)k] ≤ cλ−khmin(PSΠ)−k,

where hmin(PSΠ) := minu∈SD−1∩S h(PSΠ, u).

Proof We first note that by Fact 1 and (3), the random polytope Zλ0 ∩ S has the same
distribution as λ−1Z0,S , where Z0,S is the zero cell of the STIT tessellation in S with
associated zonoid PSΠ. Next, it follows from Section 8 of Hug and Schneider (2007) that
for fixed r > 0 and τ ∈ (0, 1), there exists a constant cr = cr(τ,Π) such that for all a > r,

P(diam(Z0,S) ≥ a) ≤ cre−τahmin(PSΠ). (7)

The moments of the diameter then satisfy

E[diam(Z0,S)k] =

∫ ∞
0

ktk−1P(diam(Z0,S) ≥ t)dt

≤
∫ r

0
ktk−1dt+ kcr

∫ ∞
r

tk−1e−τthmin(PSΠ)dt

= rk +
kcr

(τhmin(PSΠ))k

∫ ∞
0

yk−1e−ydy ≤ rk +
crΓ(k + 1)

τkhmin(PSΠ)k
.

Letting τ = 2−1/k and r = (Γ(k+1))1/k

τhmin(PSΠ) gives

E[diam(Z0,S)k] ≤ 2(1 + cr)Γ(k + 1)

hmin(PSΠ)k
,

11
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and by (3),

E[diam(Zλ0 )k] =
1

λk
E[diam(Z0,S)k] ≤ c(k,Π)

λkhmin(PSΠ)k
,

where c(k,Π) := 2(1 + cr)Γ(k + 1) for the chosen r = r(k,Π).

Remark 3 For the isotropic model as in Example 2, the normalized associated zonoid is
the ball cDB

D, and hmin(Π) = cD. In fact, hmin(Π) is maximal in the isotropic case because
for any other φ and Π defined by (5), there will be a direction v for which h(Π, v) ≤∫
SD−1 h(Π, u)dσD−1(u) = cD, where σD−1 is the uniform distribution on SD−1. Thus, the

exponential rate of the tail bound (7) is maximal for the isotropic STIT tessellation.

3.2 Number of Cells in a Compact Domain

The following upper bound on the number of cells of P(λ) that intersect a compact and
convex subset of RD follows from equation (1).

Lemma 4 Let K be a compact and convex set contained in a d-dimensional subspace S of
RD. Let Nλ(K) be the number of cells of P(λ) that intersect K. Then,

E[Nλ(K)] = vold(PSΠ)
d∑

k=0

(
d

k

)
λkE[V (K[k], ZS [d− k])],

where ZS is the typical cell of the STIT tessellation in S with associated zonoid PSΠ and
E[V (K[k], Z[r − k])] := E[V (K, . . . ,K︸ ︷︷ ︸

k

, Z, . . . , Z︸ ︷︷ ︸
r−k

)].

The mixed volume V (K1, . . . ,Kd) of a collection of convex bodies K1, . . . ,Kd is non-
negative, translation-invariant, multilinear, and symmetric in its arguments (Schneider,
2013, Section 5.1). For k ∈ N, let Bk denote the unit ball in Rk, and define κk := volk(B

k).
The intrinsic volumes of a convex body K ⊂ Rd are defined for j = 0, . . . , d by

Vj(K) :=

(
d
j

)
κd−j

V (K[j], Bd[d− j]).

The case j = d is the usual volume, i.e. Vd = vold. If K ⊂ Rd has dimension j < d, the
normalization ensures Vj(K) is the usual j-dimensional volume volj(K).

Example 3 If K = RBd, a ball of radius R in Rd, then

E[Nλ(RBd)] = vold(Π)

d∑
k=0

(
d

k

)
λkRkE[V (Bd[k], Z[d− k])]

= vold(Π)

d∑
k=0

λkRkκkE[Vd−k(Z)].

12
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By (10.3) and Theorem 10.3.3 in Schneider and Weil (2008), EVd−k(Z) = Vk(Π)
vold(Π) . Thus,

E[Nλ(RBd)] =

d∑
k=0

(λR)kκkVk(Π). (8)

Example 4 For the isotropic STIT (see Example 2) and any convex body K ⊂ RD, Propo-
sition 3 in Schreiber and Thäle (2011) gives

E[Nλ(K)] =
D∑
k=0

 k∏
j=1

γj

 λk

k!
Vk(K),

where the constant γj is defined as γj :=
Γ( j+1

2
)Γ(D

2
)

Γ( j
2

)Γ(D+1
2

)
.

Example 5 Suppose K = [0, 1]D and Z is the typical cell of a STIT tessellation with
directional distribution φ = 1

2D

∑D
i=1(δei + δ−ei) and lifetime parameter D. This set-

ting corresponds with the Mondrian process in Mourtada et al. (2020). Then, h(Z, u) =
Ti
2

∑D
i=1 |〈u, ei〉|, where T1, . . . Td are i.i.d. exponential random variables with unit mean.

By the formula for mixed volumes of zonoids from Schneider and Weil (2008, p. 614),

V (K[k], Z[d− k])
d
=

D∏
i=1

Ti,

and E[V (K[k], Z[d− k])] = 1. Lemma 4 then implies

E[Nλ([0, 1]D)] =

D∑
k=0

(
d

k

)
λk = (1 + λ)D,

which recovers Proposition 2 in Mourtada et al. (2020).

Proof (of Lemma 4) Let Zλ denote the typical cell of P(λ). We first note that by Fact 1
and (3), the random polytope Zλ ∩ S has the same distribution as λ−1ZS , where ZS is as
defined in the Lemma. Then, applying (1) with the indicator function f(·) = 1{·∩K 6=∅} and
(6) gives that the expected number of cells of P(λ) intersecting K ⊂ S satisfies

E[Nλ(K)] = E

 ∑
C∈P(λ)

1{C∩K 6=∅}

 = E

 ∑
C∈P(λ)∩S

1{C∩K 6=∅}


=

λd

E[vold(ZS)]
E
[∫
S

1{λ−1ZS+y∩K 6=∅}dy

]
= λdvold(PSΠ)E[vold(K − λ−1ZS)]

= λdvold(PSΠ)
d∑

k=0

(
d

k

)
E[V (K[k],−λ−1ZS [d− k])].

13
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The last equality follows from Steiner’s formula; see equation (14.20) in Schneider and Weil
(2008). The third equality follows from the fact that λ−1ZS + y ∩ K 6= ∅ if and only if

y ∈ K − λ−1ZS . By the scaling property of mixed volumes and the fact that Z
d
= −Z,

E[V (K[k],−λ−1ZS [d− k])] = λ−(d−k)E[V (K[k], ZS [d− k])].

Thus,

E[Nλ(K)] = vold(PSΠ)
d∑

k=0

(
d

k

)
λkE[V (K[k], ZS [d− k])].

4. Main Results

Fix a non-empty compact and convex D-dimensional domain W ⊂ RD, and consider the
following regression setting. The data set Dn := {(X1, Y1), . . . , (Xn, Yn)} consists of n i.i.d.
samples from a random pair (X,Y ) ∈ W × R such that E[Y 2] < ∞. Let µ denote the
unknown distribution of X and

Y = f(X) + ε,

where f(X) = E[Y |X] is the conditional expectation of Y given X and ε is noise such that
E[ε|X] = 0 and Var(ε|X) = σ2 <∞ almost surely.

Let P be a random tessellation of W . The regression tree estimator based on P is

f̂n(x,P) :=

n∑
i=1

1{Xi∈Zx}

Nn(x)
Yi, (9)

where Zx is the cell of P that contains x and Nn(x) :=
∑n

i=1 1{Xi∈Zx} is the number of

points in Zx. If Nn(x) = 0, then it is assumed that f̂n(x,P) = 0. The random forest
estimator based on P is defined by averaging M i.i.d. copies of the tree estimator, i.e.

f̂n,M (x) :=
1

M

M∑
m=1

f̂n(x,Pm), (10)

where P1, . . . ,PM are M i.i.d. copies of P.

We define the STIT regression tree estimator f̂λ,n and the STIT regression forest estima-

tor f̂λ,n,M as in (9) and (10) respectively, where P := P(λ) ∩W is the random tessellation
on W generated by a STIT tessellation P(λ) with lifetime parameter λ and normalized
associated zonoid Π. The quality of the estimator f̂λ,n,M is measured by the quadratic risk

R(f̂λ,n,M ) := E[(f̂λ,n,M (X)− f(X))2].

We now define the function classes we will consider in our results. For k ∈ N, β ∈ (0, 1],
and L > 0, define the (k + β)-Hölder ball of norm L, denoted by Ck,β(L) = Ck,β(W,L), to

14
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be the set of all k times differentiable functions f : W → R such that for all multi-indices
α with |α| ≤ k,

‖Dαf(x)−Dαf(y)‖ ≤ L‖x− y‖β and ‖Dαf(x)‖ ≤ L,

for all x, y ∈ W . The minimax rate for the class Ck,β(L) is n−2(k+β)/(2(k+β)+D) (Györfi
et al., 2002, Theorem 3.2).

Our main results show that for an appropriate choice of lifetime λ, STIT forest estimators
achieve the minimax rate of convergence for the function classes C0,β(L) and C1,β(L). The
rates are also adaptive to the intrinsic dimension of the input data, defined as follows.

Definition 5 The input X has intrinsic dimension d if the support of its distribution µ is
contained in an d-dimensional linear subspace S of RD.

We now state our first main result.

Theorem 6 Assume X has intrinsic dimension d and f ∈ C0,β(L) for β ∈ (0, 1] and L > 0.
Then,

R(f̂λ,n,M ) ≤
Lcβ,PSΠ

λ2βhmin(PSΠ)2β

+
(5‖f‖2∞ + 2σ2)vold(PSΠ)

n

d∑
k=0

(
d

k

)
λkE [V (WS [k], ZS [d− k])] , (11)

where WS := W ∩S and ZS is the typical cell of the STIT tessellation in S with associated
zonoid PSΠ. If diam(W ) ≤ 2R, then

R(f̂λ,n,M ) ≤
Lcβ,PSΠ

λ2βhmin(PSΠ)2β
+

(5‖f‖2∞ + 2σ2)

n

d∑
k=0

λkRkκkVk (PSΠ) . (12)

Corollary 7 In the setting of Theorem 6, letting λn ∼ L2/(d+2β)n1/(d+2β) as n→∞ yields

R(f̂λ,n,M ) = O
(
L2d/(d+2β)n−2β/(d+2β)

)
, (13)

which is the minimax rate for the class C0,β(L) on Rd.

The minimax rate above holds even for STIT tree estimators. To see the advantage of
averaging multiple trees in a random forest estimator, the following result assumes addi-
tional smoothness on the function f . In this case, the minimax rate is only achieved when
the forest size M is large enough.

Theorem 8 Assume X has intrinsic dimension d and the distribution µ of X has a positive
and Lipschitz density with respect to the Lebesgue measure on its d-dimensional convex
support K. Let r(K) denote the inradius of K and define Kε := {x ∈ K : d(x, ∂K) ≥ ε}.
Assume f ∈ C1,β(L) for β ∈ (0, 1] and L > 0. Then, for ε ∈ (0, r(K)),

E[(f̂λ,n,M (X)− f(X))2|X ∈ Kε] ≤ O
(

L2

λ2M
+

L2

λ2β+2
+
λd

n

)
.
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In the unconditional case when ε = 0,

E[(f̂λ,n,M (X)− f(X))2] ≤ O
(

L2

λ2M
+

L2

λmin{3,2β+2)}
+
λd

n

)
.

Corollary 9 In the setting of Theorem 8, choosing

λn ∼ L2/(d+2β+2)n1/(d+2β+2) and Mn & L
4β/(d+2β+2)n2β/(d+2β+2)

as n→∞ implies

E[(f̂λ,n,M (X)− f(X))2|X ∈ Kε] = O
(
L2d/(d+2β+2)n−(2β+2)/(d+2β+2)

)
, (14)

which is the minimax rate for the class C1,β(L) on Rd. In the unconditional case when
ε = 0, the rate (14) is obtained when β ≤ 1/2. When β > 1/2, choosing

λn ∼ L2/(d+3)n1/(d+3) and Mn & L
4/(d+3)n2/(d+3)

as n→∞ implies

E[(f̂λ,n,M (X)− f(X))2] = O
(
L2d/(d+3)n−3/(d+3)

)
.

Remark 10 Specialized to the case of the Mondrian, our rates are an improvement over
the results of Mourtada et al. (2020), where no notion of the low dimensionality of the
input was considered. However, note that the rates are obtained through optimal choices of
λ and M that depend on d and β. In practice, the intrinsic dimension of the input and the
regularity of f are not known a priori, and it is an open problem to find an adaptive way
of choosing the lifetime parameter λ such that the random forest estimator achieves these
optimal rates without this prior knowledge.

The upper bounds on the risk in Theorem 6 and 8 only rely on statistics of the typical
cell and the zero cell of the STIT tessellation P(λ). Since these values are identical for a
STIT and a stationary Poisson hyperplane tessellation with matching parameters, it follows
that regression estimators based on stationary Poisson hyperplane processes have identical
risk bounds. We state this formally as follows.

Theorem 11 Let f̂λ,n,M be the random forest estimator defined as in (10) using M i.i.d.
random tessellations induced by a stationary Poisson hyperplane process with intensity λ
and normalized associated zonoid Π. Then, the minimax optimal convergence rates (13)
and (14) for the risk of f̂λ,n,M hold in each corresponding setting.

Remark 12 While the rates in Corollaries 7 and 9 depend only on the intrinsic dimension
of X, the ambient dimension D appears in the upper bounds of Theorems 6 and 8 through
the constants. To clarify the dependence on D, we insert λ = L1/(d+2β)n1/(d+2β) into (12)
to obtain

R(f̂λ,n,M ) ≤
(

cβ,PSΠ

hmin(PSΠ)2β
+ (5‖f‖2∞ + 2σ2)Rdκdvold (PSΠ)

)
L

d
d+2β n

−2β
d+2β + o

(
n
−2β
d+2β

)
.
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Since the leading order constant involves geometric properties of PSΠ, the order with respect
to D will depend on the subspace S and the shape of Π. We first note that the constant
vold(PSΠ) has a uniform upper bound that does not depend on D. Indeed, since h(Π, u) ≤ 1
for all u ∈ SD−1, vold(PSΠ) ≤ κd for any subspace S of dimension d. However, the constant
hmin(PSΠ)−2β could grow faster with D if the subspace S lies in “bad” directions with respect
to Π. This observation highlights a potential downside of using axis-aligned splits. Indeed,
for the Mondrian (see Example 1), the associated zonoid is Π = 1

D [−1, 1]D and if S =
span(1), then hmin(PSΠ)−2β = O(Dβ). However, if S = span(e1), then hmin(PSΠ)−2β =
O(D2β). Without further knowledge of the subspace one can instead choose an isotropic
STIT (see Example 2), where the associated zonoid is Π = cDB

D and hmin(PSΠ)−2β =
O(Dβ) for any subspace S. Unfortunately, due to the unknown dependence of the constant
cβ,PSΠ on D, we cannot currently make this analysis more precise. We leave for future work
a more thorough study of the statistical advantages of oblique splits; see Section 6.

4.1 Rates for Binary Classification

We next show that we can extend all of the above results to binary classification as was
done for Mondrian random forests in Section 5.5 of Mourtada et al. (2020). In this setting,
we assume the data are i.i.d. samples from a random pair (X,Y ) ∈ W × {0, 1}. We then
define the function η(x) := P(Y = 1|X = x) and the optimal classifier g(x) := 1{η(x)≥1/2}.
The STIT (or Poisson hyperplane) forest classifier ĝλ,n,M is defined by

ĝλ,n,M (x) := 1{η̂λ,n,M (x)≥1/2}, x ∈W,

where η̂λ,n,M (x) is the STIT (or Poisson hyperplane) forest estimator of η as defined in the
previous section. The risk of ĝλ,n,M is given by the classification error

L(ĝλ,n,M ) := P(ĝλ,n,M (X) 6= Y ).

To evaluate the classification estimator, we compare L(ĝλ,n,M ) to the Bayes risk L(g) :=
P(g(X) 6= Y ) and consider the difference

R(ĝλ,n,M ) := L(ĝλ,n,M )− L(g).

A general theorem (Devroye et al., 1996, Theorem 6.5) shows that R(ĝλ,n,M ) is controlled
by the square root of the risk of the regression estimator η̂λ,n,M and immediately implies
the following Corollary of Theorem 6.

Corollary 13 Assume X has intrinsic dimension d and η ∈ C0,β(L) for β ∈ (0, 1] and
L > 0. Then, letting λn ∼ n1/(d+2β) as n→∞ yields

R(ĝλn,n,M ) = o
(
n−β/(d+2β)

)
.

We similarly obtain the following Corollary of Theorem 8 showing that we can obtain a
faster rate with forest estimators than with single trees.

Corollary 14 Assume X has intrinsic dimension d and the distribution µ of X has a
positive and Lipschitz density with respect to Lebesgue measure on its d-dimensional convex
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support K. Let r(K) denote the inradius of K and define Kε := {x ∈ K : d(x, ∂K) ≥ ε}.
Assume η ∈ C1,β(L) for β ∈ (0, 1] and L > 0. Then, for ε ∈ (0, r(K)), choosing

λn ∼ n1/(d+2β+2) and Mn & n
2β/(d+2β+2)

as n→∞ implies

P (ĝλn,n,Mn(X) 6= Y |X ∈ Kε)− P (g(X) 6= Y |X ∈ Kε) = o
(
n−(β+1)/(d+2β+2)

)
.

5. Proofs

To prove the above results, we begin with the following bias-variance decomposition of the
risk of a tree estimator presented by Arlot and Genuer (2014). A subtle difference between
their setting and ours is that they view the partition as a finite partitioning of [0, 1]d, and
here we consider the partition to be a stationary STIT tessellation on Rd which we view
through the compact and convex window W that contains the support of µ. First, let Zλx
denote the cell of P(λ) that contains the vector x ∈ Rd, and define

f̄λ(x) := EX [f(X)|X ∈ Zλx ], x ∈W.

Conditioned on P(λ), this is the orthogonal projection of f ∈ L2(W,µ) onto the subspace
of functions that are constant within the cells of P(λ) ∩W .

Conditioned additionally on the data Dn, the random tree estimator f̂λ,n is in this

subspace of piecewise functions, and hence EX [(f(X) − f̄λ(X))f̂λ,n(X)] = 0. Thus, given
P(λ) and Dn,

EX [(f(X)− f̂λ,n(X))2] = EX [(f(X)− f̄λ(X) + f̄λ(X)− f̂λ,n(X))2]

= EX [(f(X)− f̄λ(X))2] + EX [(f̄λ(X)− f̂λ,n(X))2].

Taking the expectation over P(λ) and Dn gives the following decomposition of the risk:

R(f̂λ,n) := E[(f(X)− f̂λ,n(X))2] = E[(f(X)− f̄λ(X))2] + E[(f̄λ(X)− f̂λ,n(X))2]. (15)

The first term measures how far away f is from the closest function in the hypothesis class
that the estimators lie in and is called the approximation error or bias. The second term
measures the estimation error, or variance, coming from the fact that we build the estimator
from only a finite number of samples. As in the results of Mourtada et al. (2020), the bias
and variance depend on the geometric properties of the cells of the tessellations from which
the estimator is built. In particular, the bias is controlled by moments of the diameter of
the zero cell, and the variance is controlled by the expected number of cells that have a non-
empty intersection with the support of µ. Lemmas 2 and 4 provide the needed bounds, and
choosing an optimal lifetime λ depending on the number of samples and Lipschitz constant
gives the results.

5.1 Variance Bound

In the following, we see that the variance term can be controlled by the expected number
of cells of the tessellation that intersect the support of µ.
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Lemma 15 Let Nλ(K) be the number of cells of P(λ) that have a non-empty intersection
with a bounded subset K ⊂ RD. Then,

E
[
(f̄λ(X)− f̂λ,n(X))2

]
≤ 5‖f‖2∞ + 2σ2

n
E[Nλ(supp(µ))].

The proof follows the ideas of Arlot and Genuer (2014, Proposition 2) which relies
crucially on a result of Arlot (2008, Proposition 1). For completeness and clarity, a proof
of this lemma appears below.

Proof We first condition on P(λ) and compute the variance of the tree estimator corre-
sponding to a fixed tessellation. Note that the assumption Dn and P(λ) are independent
allows us to take these expectations separately. Also, recall that if no points of {X1, . . . , Xn}
fall in Zλx , then f̂λ,n(x) = 0. For each C ∈ P(λ), let Nn(C) =

∑n
i=1 1{Xi∈C} be the number

of covariates inside C and let pλ,C := PX(X ∈ C). Then,

EDn,X
[
(f̄λ(X)− f̂λ,n(X))2

]
=

∫
Rd

∑
C∈P(λ)

1{x∈C}EDn

[(
EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

Nn(C)

)2
]

dµ(x)

=
∑

C∈P(λ):C∩supp(µ)6=∅

pλ,CEDn

[(
EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

Nn(C)

)2
]
.

The expectation in the sum satisfies

EDn

[(
EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

Nn(C)

)2
]

=
n∑
k=1

P(Nn(C) = k)EDn

[(
EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

k

)2 ∣∣∣∣Nn(C) = k

]
+ P(Nn(C) = 0)EX [f(X)|X ∈ C]2.
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By the assumptions on the noise, the conditional expectation in the sum satisfies

EDn

[(
EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

k

)2 ∣∣∣∣Nn(C) = k

]

= k−2EDn

(kEX [f(X)|X ∈ C]−
n∑
i=1

(f(Xi) + εi)1{Xi∈C}

)2 ∣∣∣∣Nn(C) = k


= k−2

∑
i1<···<ik

P(Xi1 , . . . , Xik ∈ C| Nn(C) = k)

· EDn

kEX [f(X)|X ∈ C]−
k∑
j=1

f(Xij )−
k∑
j=1

εij

2 ∣∣∣∣Nn(C) = k,Xi1 , . . . , Xik ∈ C


= k−2EDn

(kEX [f(X)|X ∈ C]−
k∑
i=1

f(Xi)−
k∑
i=1

εi

)2 ∣∣∣∣X1, . . . , Xk ∈ C


= k−2EDn

(kEX [f(X)|X ∈ C]−
k∑
i=1

f(Xi)

)2 ∣∣∣∣X1, . . . , Xk ∈ C

+ k−1σ2,

and by the independence of the Xi’s, the expectation in the first term simplifies to

EDn

(kEX [f(X)|X ∈ C]−
k∑
i=1

f(Xi)

)2 ∣∣∣∣X1, . . . , Xk ∈ C


= k2EX [f(X)|X ∈ C]2 − 2k2EX [f(X)|X ∈ C]2

+ EDn

 k∑
i,j=1

f(Xi)f(Xj)

∣∣∣∣X1, . . . , Xk ∈ C


= kEX [f(X)2|X ∈ C] + (k2 − k)EX [f(X)|X ∈ C]2 − k2EX [f(X)|X ∈ C]2

= k(EX [f(X)2|X ∈ C]− EX [f(X)|X ∈ C]2).
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Thus,

EDn

[(
EX [f(X)|X ∈ C]−

∑n
i=1 Yi1{Xi∈C}

Nn(C)

)2
]

=
n∑
k=1

P(Nn(C) = k)k−1
(
EX [f(X)2|X ∈ C]− EX [f(X)|X ∈ C]2 + σ2

)
+ P(Nn(C) = 0)EX [f(X)|X ∈ C]2

=
(
EX [f(X)2|X ∈ C]− EX [f(X)|X ∈ C]2 + σ2

) n∑
k=1

(
n

k

)
pkλ,C(1− pλ,C)n−kk−1

+ EX [f(X)|X ∈ C]2(1− pλ,C)n

≤
(
2‖f‖2∞ + σ2

) n∑
k=1

(
n

k

)
pkλ,C(1− pλ,C)n−kk−1 + ‖f‖2∞(1− pλ,C)n.

Now, note that for B ∼ Binomial(n, pλ,C),

n∑
k=1

(
n

k

)
npk+1

λ,C (1− pλ,C)n−kk−1 = E[B]E[B−11{B>0}],

and E[B]E[B−11{B>0}] ≤
2npλ,C

(n+1)pλ,C
≤ 2 (Györfi et al., 2002, Lemma 4.1). Also, the upper

bounds 1− x ≤ e−x and xe−x ≤ e−1 for all x ≥ 0 imply

npλ,C(1− pλ,C)n ≤ e−1 ≤ 1.

Thus,

EDn,X
[
(f̄λ(X)− f̂λ,n(X))2

]
≤ 1

n

∑
C∈P(λ):

C∩supp(µ) 6=∅

(
2‖f‖2∞ + σ2

) n∑
k=1

(
n

k

)
npk+1

λ,C (1− pλ,C)n−kk−1

+
‖f‖2∞
n

∑
C∈P(λ):

C∩supp(µ) 6=∅

npλ,C(1− pλ,C)n

≤ 5‖f‖2∞ + 2σ2

n
Nλ(supp(µ)).

Taking the expectation with respect to P(λ) completes the proof.

5.2 Proof of Theorem 6 and Corollary 7

Following the proof of Theorem 2 by Mourtada et al. (2020), we first use Jensen’s inequality
to reduce the risk of f̂λ,n,M to that of a single Mondrian tree estimator f̂λ,n := f̂λ,n,1. Using

the bias-variance decomposition (15), the risk of f̂λ,n is given by

R(f̂λ,n) = E[(f(X)− f̂λ,n(X))2] = E[(f(X)− f̄λ(X))2] + E[(f̄(X)− f̂λ,n(X))2]. (16)
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We first consider the bias term. For x ∈ supp(µ), by the assumption on f ,

|f(x)− f̄λ(x)| ≤ 1

µ(Zλx )

∫
Zλx

|f(x)− f(z)|µ(dz)

≤ 1

µ(Zλx )

∫
Zλx

L‖x− z‖βµ(dz) ≤ Ldiam(Zλx ∩ supp(µ))β.

Recall that the assumption X has intrinsic dimension d means there exists a d-dimensional
linear subspace S ⊆ Rd such that supp(µ) ⊂ S. Then by Lemma 2,

E[(f(X)− f̄λ(X))2] ≤ LE[diam(Zλx ∩ S)2β] ≤
Lcβ,PSΠ

λ2βhmin(PSΠ)2β
. (17)

For the variance bound, Lemma 15 implies

E[(f̄λ(X)− f̂λ,n(X))2] ≤ 5‖f‖2∞ + 2σ2

n
E[Nλ (supp(µ))] ≤ 5‖f‖2∞ + 2σ2

n
E[Nλ (W ∩ S)].

Let WS := W ∩ S. Finally by Lemma 4,

E[Nλ (WS)] = vold(PSΠ)
d∑

k=0

(
d

k

)
λkE[V (WS [k], ZS [d− k])].

Then,

E[(f̄λ(X)− f̂λ,n(X))2] ≤ (5‖f‖2∞ + 2σ2)vold(PSΠ)

n

d∑
k=0

(
d

k

)
λkE[V (WS [k], ZS [d− k])].

(18)

Combining equations (17) and (18) gives the first claim. To prove (12), we note that if
diam(W ) ≤ 2R, then E[Nλ (supp(µ))] ≤ E[Nλ

(
RBD ∩ S

)
], and the bound follows from the

same argument used in Example 3 to obtain (8).
Finally, letting λ = λn ∼ L2/(d+2β)n1/(d+2β) as n→∞ proves Corollary 7.

5.3 Proof of Theorem 8 and Corollary 9

We first need the following technical lemma.

Lemma 16 Let Zλx be the cell of P(λ) containing the point x ∈ RD. Assume x ∈ S ⊆ RD
for a linear subspace S of dimension d. Then,∫

S
(z − x)E

[
1{z∈Zλx }

vold(Zλx ∩ S)

]
dz = 0.

Proof By the stationarity of P(λ) and a change of variable, for x ∈ S,∫
S

(z − x)E
[

1{z∈Zλx }

vold(Zλx ∩ S)

]
dz =

∫
S
yE
[ 1{y∈Zλ0 }

vold(Z
λ
0 ∩ S)

]
dy.
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Then, for y ∈ S, Fact 1 and (1) imply

E
[ 1{y∈Zλ0 }

vold(Z
λ
0 ∩ S)

]
= E

[ 1{y∈Zλ0 ∩S}

vold(Z
λ
0 ∩ S)

]
=

1

E[vold(Z
λ
S)]

E
[

vold(Z
λ
S ∩ ZλS − y)

vold(Z
λ
S)

]
,

where ZλS is the typical cell of P(λ) ∩ S. By the fact that volume is translation invariant,

E
[

vold(Z
λ
S ∩ ZλS + y)

vold(Z
λ
S ∩ S)

]
= E

[
vold(Z

λ
S − y ∩ ZλS)

vold(Z
λ
S)

]
.

Thus the integrand yE
[

1{y∈Zλ0 }

vold(Zλ0 ∩S)

]
is an odd function, and the integral is zero.

Proof (of Theorem 8 and Corollary 9) Similarly to the proof of Theorem 3 by Mourtada
et al. (2020), define for each m and x ∈ S,

f̄
(m)
λ (x) := EX [f(X)|X ∈ Zλ,(m)

x ],

and let f̄λ,M (x) = 1
M

∑M
m=1 f̄

(m)
λ (x). Also define

f̃λ(x) := E[f̄
(m)
λ (x)] = E

[
1

µ(Zλx )

∫
Zλx

f(z)µ(dz)

]
=

∫
S
f(z)E

[
1{z∈Zλx }

µ(Zλx )

]
µ(dz),

where we have used the fact that the support of µ is contained in a linear subspace S. The
bias-variance decomposition for the risk of a tree estimator can be extended to the random
forest estimator as follows (Arlot and Genuer, 2014, equation 1):

E[(f̂λ,n,M (X)− f(X))2] = E[(f(X)− f̄λ,M (X))2] + E[(f̄λ,M (X)− f̂λ,n,M (X))2]. (19)

This is due to the fact that E[f̂λ,n,1(x)|P(λ)] = f̄λ,1(x). Indeed, by the independence of the
Xi’s,

EDn [f̂λ,n,1(x)] =
1

n
EDn

[∑n
i=1 Yi1{Xi∈Zx}

Nn(Zx)

]
=

1

n

n∑
k=1

(
n

k

)
PDn(X1, . . . , Xk ∈ Zx|Nn(Zx) = k)

· EDn

[∑k
i=1 f(Xi)1{Xi∈Zx}

k

∣∣∣∣X1, . . . , Xk ∈ Zx,Nn(Zx) = k

]
= EX [f(X)|X ∈ Zx] = f̄λ,n,1(x).

For the bias term in (19), Proposition 1 of Arlot and Genuer (2014) implies

E[(f(x)− f̄λ,M (x))2] = E[(f(x)− f̃λ(x))2] +
Var(f̄

(1)
λ (x))

M
.

We then have the following upper bound on the variance of f̄
(1)
λ . For x ∈ S,

Var(f̄
(1)
λ (x)) ≤ E[(f̄

(1)
λ (x)− f(x))2] ≤ L2E[diam(Zλx ∩ S)2] ≤

L2c2,PSΠ

λ2
,
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where the last inequality follows from Lemma 2 and stationarity. For the variance term in
(19), Jensen’s inequality implies

E[(f̄λ,M (x)− f̂λ,n,M (x))2] ≤ E[(f̄
(1)
λ (x)− f̂λ,n,1(x))2].

Thus, taking the expectation with respect to X,

E[(f̂λ,n,M (X)− f(X))2] ≤
L2c2,PSΠ

Mλ2
+ E[(f(X)− f̃λ(X))2] + E[(f̄

(1)
λ (X)− f̂λ,n,1(X))2].

This upper bound also holds when conditioning on X ∈ Kε, that is,

E[(f̂λ,n,M (X)− f(X))2|X ∈ Kε] ≤
L2c2,PSΠ

Mλ2

+ E[(f(X)− f̃λ(X))2|X ∈ Kε] + E[(f̄
(1)
λ (X)− f̂λ,n,1(X))2|X ∈ Kε].

We can then use Lemmas 15 and 4 to obtain the variance bound

E[(f̄
(1)
λ (X)− f̂λ,n,1(X))2]

≤ (5‖f‖2∞ + 2σ2)vold(PSΠ)

n

d∑
k=0

(
d

k

)
λkE[V (WS [k], ZS [d− k])],

and the conditional variance satisfies

E[(f̄
(1)
λ (X)− f̂λ,n,1(X))2|X ∈ Kε] ≤ P(X ∈ Kε)

−1E[(f̄
(1)
λ (X)− f̂λ,n,1(X))2]

≤ (5‖f‖2∞ + 2σ2)vold(PSΠ)

nP(X ∈ Kε)

d∑
k=0

(
d

k

)
λkE[V (WS [k], ZS [d− k])]. (20)

It remains to control the remaining bias term. By Taylor’s theorem, for f ∈ C1,β(L) with
β ∈ (0, 1],

|f(z)− f(x)−∇f(x)T (z − x)| =
∣∣∣∣∫ 1

0
[∇f(x+ t(z − x))−∇f(x)]T (z − x)dt

∣∣∣∣
≤
∫ 1

0
L(t‖z − x‖)β‖z − x‖dt ≤ L‖z − x‖1+β.
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Then, for x ∈ supp(µ),

|f̃λ(x)− f(x)| =

∣∣∣∣∣E
[

1

µ(Zλx )

∫
Zλx

(f(z)− f(x))µ(dz)

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

1

µ(Zλx )

∫
Zλx

∇f(x)T (z − x)µ(dz)

]∣∣∣∣∣
+ E

[
1

µ(Zλx )

∫
Zλx

∣∣f(z)− f(x)−∇f(x)T (z − x)
∣∣µ(dz)

]

≤
∣∣∣∣∇f(x)T

∫
S

(z − x)E
[

1{z∈Zλx }

µ(Zλx )

]
µ(dz)

∣∣∣∣+ E
[

1

µ(Zλx )

∫
S
L‖z − x‖1+β1{z∈Zλx }µ(dz)

]
≤ ‖∇f(x)‖

∥∥∥∥∫
S

(z − x)E
[

1{z∈Zλx }

µ(Zλx )

]
µ(dz)

∥∥∥∥+ LE
[
diam(Zλx ∩ S)1+β

]
≤ L

∥∥∥∥∫
S

(z − x)E
[

1{z∈Zλx }

µ(Zλx )

]
µ(dz)

∥∥∥∥+
Lcβ,PSΠ

λ1+β
.

Up to this point, we have closely followed the proof of Theorem 3 of Mourtada et al. (2020)
with more general bounds for the parameters of STIT tessellations. For the next step,
recall that by the assumptions, µ has a positive and Lipschitz density p w.r.t. the Lebesgue
measure on its support. To bound the first term above, Mourtada et al. (2020) compare the

density Fλ,p(z) := E
[
p(z)
µ(Zλx )

1{z∈Zλx }

]
with the density Fλ,unif(z) := E

[
1{z∈Zλx∩[0,1]D}

volD(Zλx∩[0,1]D)

]
(where

p is the uniform density on the unit cube). We instead compare Fλ,p with the density

Fλ(z) := E
[

1{z∈Zλx }

vold (Zλx ∩ S)

]
, z ∈ S,

from Lemma 16. In particular, using Lemma 16, we add zero inside the norm to obtain the
following upper bound∥∥∥∥∫

S
(z − x)Fλ,p(z)dz

∥∥∥∥ =

∥∥∥∥∫
S

(z − x) (Fλ,p(z)− Fλ(z)) dz

∥∥∥∥
≤
∫
S
‖z − x‖

∣∣∣∣E [p(z)1{z∈Zλx }µ(Zλx )

]
− E

[
1{z∈Zλx }

vold(Zλx ∩ S)

]∣∣∣∣dz
≤
∫
S
‖z − x‖E

[∫
Zλx∩S

|p(z)− p(y)|dy
µ(Zλx )vold(Zλx ∩ S)

1{z∈Zλx }

]
dz

≤ E

[
diam(Zλx ∩ S)

∫
Zλx∩S

∫
Zλx∩S

|p(z)− p(y)|dydz

µ(Zλx )vold(Zλx ∩ S)

]
.

Recall from the assumptions that the density p of µ has a finite Lipschitz constant Cp > 0
on its compact and convex d-dimensional support K := supp(µ) ⊂ S and we can define
p0 := minx∈K p(x) > 0 and p1 := maxx∈K p(x) < ∞. Also note that the integrand above
is zero when z, y /∈ K. In the following, we denote by Kc := Rd\K the complement of K.
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Thus,

∥∥∥∥∫
S

(z − x)Fλ,p(z)dz

∥∥∥∥ ≤ E

[
diam(Zλx ∩ S)

∫
Zλx∩S

∫
Zλx∩S

|p(z)− p(y)|dydz

µ(Zλx )vold(Zλx ∩ S)

]

≤ Cp
p0

E

[
diam(Zλx ∩ S)

∫
Zλx∩K

∫
Zλx∩K

‖z − y‖dydz

vold(Zλx ∩K)vold(Zλx ∩ S)

]

+
2Cpp1

p0
E

[
diam(Zλx ∩ S)

∫
Zλx∩K

∫
Zλx∩S∩Kc dydz

vold(Zλx ∩K)vold(Zλx ∩ S)

]

≤ Cp
p0

E
[
diam(Zλx ∩ S)2

]
+

2Cpp1

p0
E

[
diam(Zλx ∩ S)vold

(
Zλx ∩ S ∩Kc

)
vold(Zλx ∩ S)

]

≤
Cpc2,PSΠ

λ2p0
+

2Cpp1

p0
E

[
diam(Zλx ∩ S)vold

(
Zλx ∩ S ∩Kc

)
vold(Zλx ∩ S)

]
,

where the last inequality follows from Lemma 2 and stationarity. Now, using stationarity,
Fact 1, and (3),

diam(Zλx )vold(Z
λ
x ∩Kc)

vold(Zλx ∩ S)

d
=

diam(Z0,S)vold(Z0,S ∩ λ(Kc − x))

λvold(Z0,S)
.

Thus we have the following upper bound on the conditional bias

E[(f̃λ(X)− f(X))2|X ∈ Kε] ≤ L2E

[(∥∥∥∥∫
S

(z −X)Fλ,p(z)dz

∥∥∥∥+
cβ,PSΠ

λ1+β

)2 ∣∣∣∣X ∈ Kε

]

≤ L2E

[(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0
+

2Cpp1

λp0
E
[

diam(Z0,S)vold(Z0,S ∩ λ(Kc − x))

vold(Z0,S)

])2 ∣∣∣∣X ∈ Kε

]

≤ L2

(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0

)2

+
4C2

pp
2
1

λ2p2
0

E
[

diam(Z0,S)2vold(Z0,S ∩ λ(Kc −X))2

vold(Z0,S)2

∣∣∣∣X ∈ Kε

]
+

4L2Cpp1

λp0

(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0

)
E
[

diam(Z0,S)vold(Z0,S ∩ λ(Kc −X))

vold(Z0,S)

∣∣∣∣X ∈ Kε

]
.

(21)

Conditioned on X ∈ Kε, εB
d ⊆ K −X. This implies that vold(Z0,S ∩ λ(Kc −X)) = 0 if

diam(Z0,S) ≤ λε. Then, for k ∈ {1, 2},

E
[

diam(Z0,S)kvold(Z0,S ∩ λ(Kc −X))k

vold(Z0,S)k

∣∣∣∣X ∈ Kε

]
≤ E

[
diam(Z0,S)k1{diam(Z0,S)≥λε}

vold(Z0,S)2P(X ∈ Kε)
EX
[
vold(Z0,S ∩ λ(Kc −X))k

]]
.
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To bound the inner expectation with respect to X, we see that

EX [vold(Z0,S ∩ λ(Kc −X))k] =

∫
K
p(x)

(∫
Rd

1{y∈Z0,S∩λ(Kc−x)}

)k
dx

≤ p1vold(Z0,S)k−1

∫
K

∫
Rd

1{y∈Z0,S∩λ(Kc−x)}dydx

= p1vold(Z0,S)k−1

∫
Z0,S

∫
K

1{x∈Kc− y
λ
}dxdy

= p1vold(Z0,S)k−1

∫
Z0,S

vold

(
K ∩Kc − y

λ

)
dy

= p1vold(Z0,S)k−1

∫
Z0,S

vold

(
K ∪K − y

λ

)
dy − p1vold(Z0,S)kvold(K),

where we have used that vold(K ∩Kc− y/λ) = vold(K)− vold(K ∩K − y/λ) and vold(K ∩
K − y/λ) = 2vold(K)− vold(K ∪K − y/λ). We now observe that the union K ∪K − y

λ is a

subset of the Minkowski sum K + ‖y‖
λ B

d. By Steiner’s formula (Schneider and Weil, 2008,
equation 14.5),

vold

(
K ∪K − y

λ

)
≤ vold

(
K +

‖y‖
λ
Bd

)
=

d∑
j=0

(
‖y‖
λ

)d−j
κd−jVj(K)

= vold(K) +

d−1∑
j=0

(
‖y‖
λ

)d−j
κd−jVj(K).

Thus,

EX [vold(Z0,S ∩ λ(Kc −X))k] ≤ p1vold(Z0,S)k
d−1∑
j=0

(
diam(Z0,S)

λ

)d−j
κd−jVj(K)

= 2λ−1p1vold(Z0,S)kdiam(Z0,S)Vd−1(K) +O(λ−2).

Putting the above bounds together gives

E
[

diam(Z0,S)kvold(Z0,S ∩ λ(Kc −X))k

vold(Z0,S)k

∣∣∣∣X ∈ Kε

]
≤
(
p1Vd−1(K)

λP(X ∈ Kε)
+O(λ−2)

)
E
[
diam(Z0,S)k+11{diam(Z0,S)≥λε}

]
.

By Holder’s inequality, Lemma 2 and (7),

E
[
diam(Z0,S)k+11{diam(Z0,S)≥λε}

]
≤ E

[
diam(Z0,S)2k+2

]1/2
P (diam(Z0,S) ≥ λε)1/2

≤ ck,ε,PSΠe
−λεcPSΠ .
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Combining the above bounds implies

E[(f̃λ(X)− f(X))2|X ∈ Kε]

≤ L2

(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0

)2

+
4C2

pp
3
1Vd−1(K)

λ3p2
0P(X ∈ Kε)

c2,ε,PSΠe
−λεcPSΠ

+
4L2Cpp

2
1

λ2p0

(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0

)
Vd−1(K)

P(X ∈ Kε)
c1,ε,PSΠe

−λεcPSΠ +O(λ−4e−λεcPSΠ).

Next observe that P(X ∈ Kε) ≥ p0vold(Kε)
vold(K) > 0. The total conditional risk then satisfies

E[(f̂λ,n,M (X)− f(X))2|X ∈ Kε] ≤
L2c2,PSΠ

Mλ2
+ L2

(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0

)2

+
4C2

pp
3
1Vd−1(K)vold(K)

λ3p2
0p0vold(Kε)

c2,ε,PSΠe
−λεcPSΠ

+
4L2Cpp

2
1

λ2p0

(
cβ,PSΠ

λ1+β
+
Cpc2,PSΠ

λ2p0

)
Vd−1(K)vold(K)

p0vold(Kε)
c1,ε,PSΠe

−λεcPSΠ +O
(
λ−4e−λεcPSΠ

)
+

(5‖f‖2∞ + 2σ2)vold(PSΠ)vold(K)

np0vold(Kε)

d∑
k=0

(
d

k

)
λkE[V (WS [k], ZS [d− k])].

Extracting leading order terms, we have

E[f̂λ,n,M (X)− f(X))2|X ∈ Kε] ≤ O
(

L2

λ2M
+

L2

λ2(1+β)
+
λd

n

)
.

Finally, letting λ = λn ∼ L2/(d+2β+2)n1/(d+2β+2) and M = Mn & λ2β
n as n → ∞ gives the

rate O
(
L2d/(d+2β+2)n−(2β+2)/(d+2β+2)

)
in Corollary 9. In the unconditional case,

E[f̂λ,n,M (X)− f(X))2] ≤ O
(

L2

λ2M
+

L2

λmin{3,2(1+β)} +
λd

n

)
.

This bound gives the same rate as above when β ≤ 1/2. When β > 1/2, this bound
gives the suboptimal rate O

(
L2d/(d+3)n−3/(d+3)

)
by letting λ = λn ∼ L2/(d+3)n1/(d+3) and

M = Mn & λn as n→∞.

5.4 Proof of Theorem 11

By Corollary 1 of Schreiber and Thäle (2013), the typical cell of a STIT tessellation with
lifetime parameter λ has the same distribution as the typical cell of a Poisson hyperplane
tessellation with intensity λ and the same normalized associated zonoid, or equivalently, the
same directional distribution. The distribution of the typical cell determines the distribution
of the zero cell (Schneider and Weil, 2008, Theorem 10.4.1), and thus the same proof
methods used in Theorems 6 and 8 can be applied in this setting, and the results follow.
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6. Discussion and Future Work

This work expands and strengthens the theoretical basis for purely random forests and
establishes stochastic geometry as a promising toolkit for analyzing regression and classifi-
cation algorithms based on random partitions. In particular, we showed that a large class
of random forests built from stationary hyperplane partitions with oblique splits all achieve
the same minimax rates as Mondrian forests proved by Mourtada et al. (2020). We also
extended these rates to depend on a notion of the intrinsic dimension of the input instead
of the ambient dimension of the feature space. This work motivates many more questions
at the intersection of stochastic geometry and machine learning. We outline a few future
research directions here.

First, the definition of low intrinsic dimension used in our assumptions has limited
applicability. However, we hope that our results and proof techniques can form a basis for
future work to obtain optimal rates under more general notions of low dimensionality of the
input. Additionally, as mentioned in Remark 10, one needs an adaptive way of tuning the
lifetime parameter and number of trees to obtain these rates in practice since the intrinsic
dimension and regularity are not known a priori. For adaptation to regularity, a model
aggregation method was proposed by Mourtada et al. (2020) for Mondrian forests, which
could potentially be extended to STIT forests.

Another open question is whether the flexibility of the directional distribution allows
us to find “optimal” split directions, or directional distribution φ, for a given data set.
In particular, a directional distribution that depends on the covariate distribution may
improve performance and decrease computational costs by decreasing the complexity of the
partition needed to achieve optimal rates. The flexibility of these models also motivates
a study of whether, under different assumptions about the underlying function f , one can
obtain convergence rates that depend on the directional distribution and show optimal rates
are achieved with an appropriate choice of this distribution. In particular, we might expect
that with an appropriate choice of directional distribution, STIT random forests will adapt
to the same types of low dimensional structure that other purely random forest variants
have been shown to adapt to under a modification of the split direction probabilities. For
example, centered random forests have been shown to obtain convergence rates that depend
on the sparsity level of the regression function described by the number of relevant features
(Biau, 2012; Klusowski, 2021).

A third research direction concerns using the toolkit of stochastic geometry to study
random forests built from random tessellations where split locations depend on the data
set. For example, we may consider STIT or Poisson hyperplane tessellations associated
with a non-stationary intensity measure and somehow incorporate the given data set into
this measure to improve the performance of this class of random forests. In the stochastic
geometry literature, some non-stationary random tessellation models have been studied.
Sections 11.3 and 11.4 in Schneider and Weil (2008) collect results on non-stationary flat
processes and Poisson hyperplane tessellations, many of which are due to Schneider (2003).
Also of note is work by Hoffmann (2007), who studied a generalization of the associated
zonoid for non-stationary Poisson hyperplane tessellations.
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