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Abstract

In this article, we introduce a new method to estimate a directed acyclic graph (DAG) from
multivariate functional data. We build on the notion of faithfulness that relates a DAG
with a set of conditional independences among the random functions. We develop two
linear operators, the conditional covariance operator and the partial correlation operator,
to characterize and evaluate the conditional independence. Based on these operators, we
adapt and extend the PC-algorithm to estimate the functional directed graph, so that the
computation time depends on the sparsity rather than the full size of the graph. We study
the asymptotic properties of the two operators, derive their uniform convergence rates,
and establish the uniform consistency of the estimated graph, all of which are obtained
while allowing the graph size to diverge to infinity with the sample size. We demonstrate
the efficacy of our method through both simulations and an application to a time-course
proteomic dataset.

Keywords: Graphical model, faithfulness, functional regression, linear operator, repro-
ducing kernel Hilbert space, uniform consistency.

1. Introduction

In this article, we introduce a new method to estimate a directed acyclic graph (DAG) based
on multivariate functional data. Functional graphical modeling is becoming increasingly
important, as multivariate functional data, where the observations are sampled from a vector
of random functions, are fast emerging in a wide variety of scientific applications. Examples
include molecular network modeling based on time-course gene or phosphoprotein data
(Hill et al., 2016), and brain effective connectivity analysis based on electrocorticography
or functional magnetic resonance imaging data (Friston, 2011). A crucial problem in these
applications is to investigate directional relations among the random functions, which is
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a challenging task. The DAG model offers a tractable solution, and yet functional DAG
modeling is a relatively underdeveloped topic.

Consider a graph G = (V,E), where V = {1, . . . , p} denotes a set of vertices associated
with a vector of random variables or functions, X1, . . . , Xp, and E ⊆ {(i, j) ∈ V×V : i 6= j}
a set of edges. Let (V×V)0 denote the set {(i, j) ∈ V×V : i 6= j} that excludes the diagonal
pairs. A pair (i, j) ∈ E denotes an edge between vertices i and j, and is said to be directed
from i to j if (j, i) /∈ E. In this relation, i is called a parent of j, and j a child of i. If both
(i, j) and (j, i) belong to E, then the edge is said to be undirected. If there is a directed
path i → . . . → j from i to j, then i is called an ancestor of j, and j a descendant of i.
A DAG is a graph that contains only directed edges and no directed cycles. If two edges
meet head-to-head at a vertex i on a path, say j → i← k, then i is called a collider on the
path. For S ⊆ V\{i, j}, the vertices i and j are said to be d-connected by S if and only if
there exists a path connecting i and j that satisfies: (i) every collider in the path is either
in S or has a descendant in S, and (ii) no non-collider in the path is in S. By convention,
(i) includes the cases where the path has no collider at all. Also note that the descendant
of a collider in the path does not belong to the path. We say i and j are d-separated by S
if they are not d-connected by S.

In the classical random variable setting, directional relations among the variables can
be depicted by faithfulness. Formally, X = (X1, . . . , Xp)

T ∈ Rp is said to be faithful
with respect to a DAG G, if and only if the collection of the triplets {(i, j, S) ∈ T :
i and j are d-separated by S} is the same as {(i, j, S) ∈ T : Xi ⊥⊥ Xj | XS}, where ⊥⊥
denotes statistical independence, and T = {(i, j, S) : (i, j) ∈ (V × V)0,S ∈ V\{i, j}}. More-
over, when X follows a multivariate Gaussian distribution, we have the equivalence that
Xi ⊥⊥Xj | XS ⇔ cov (Xi, Xj |XS) = 0.

In the functional data setting, the notion of faithfulness is essentially the same. Specifi-
cally, suppose X = (X1, . . . , Xp)

T is a p-dimensional Gaussian random element in a Hilbert
space of functions defined on an interval T in R. We say X is faithful with respect to a
DAG G, if and only if the following equivalence holds:

i and j are d-separated by S ⇔ Xi ⊥⊥Xj | XS. (1)

The conditional independence in (1) is in terms of Hilbertian random elements, and is
formally defined in Section 2. Through the faithfulness in (1), a DAG is associated with a
collection of conditional independence relations among p random functions.

To evaluate the conditional independence in (1), we develop two linear operators, the
conditional covariance operator (CCO), and the partial correlation operator (PCO). Un-
der the assumption that the p-variate random function X follows a Gaussian distribution,
the conditional independence can be completely characterized by CCO or PCO, in the
sense that CCO or PCO is zero if and only if the conditional independence between the
random functions holds true. This agrees with the classical result that the conditional in-
dependence between two Gaussian variables is equivalent to their conditional covariance or
partial correlation being zero. Henceforth, CCO and PCO can be viewed as the functional
counterparts of conditional covariance and partial correlation. We next estimate the DAG
by repeatedly evaluating the Hilbert-Schmidt norms of CCO and PCO, whose computation
is straightforward and only involves eigen-decomposition of linear operators. We further
embed CCO and PCO in the commonly used PC-algorithm (Spirtes et al., 2000), and turn
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the NP-hard problem of evaluating conditional independence for every pair (i, j) and every
possible subset S ⊆ V\{i, j} to a computationally efficient algorithm of order pm, where m
is the maximum degree of the DAG. We also establish the error bounds and the uniform
convergence for the estimated CCO and PCO, as well as the uniform consistency of the
estimated DAG. We carry out all these theoretical investigations by allowing the graph size
to diverge to infinity along with the sample size.

We note that our theoretical analysis faces a number of challenges. The first is, when
characterizing the conditional independence between two random functions, we need to deal
with diverging numbers of random variables from the Karhunen-Loève expansions of the
functions, which requires a much more involved asymptotic analysis than in the classical
setting. The second challenge is, most existing concentration inequalities as well as their
sufficient conditions have been tailored for high-dimensional random variables, rather than
high-dimensional random functions. To fill this gap, we develop suitable new asymptotic
tools, including functional versions of the sub-Gaussianity and Bernstein’s inequality for
Hilbert space-valued random elements. The third challenge is, because the covariances are
replaced by the covariance operators, we need to establish several concentration bounds
and uniform convergences for the relevant linear operators in the high-dimensional setting.
In fact, the theoretical framework we develop here is fairly general, and we expect it to
be useful in other functional data analysis settings as well, especially when the number of
functions involved is large compared to the sample size. It is also noteworthy that there
is some novelty in our presentation of the classical DAG theory: We describe the CPDAG
as a member of the quotient space of the collection of all DAGs, which makes its subtle
definition more transparent and explicit.

Our work is a natural step forward in the current research on statistical graphical model-
ing. The majority of existing solutions focus on undirected or directed graphical models for
random variables. Notable examples of the former include Yuan and Lin (2007); Friedman
et al. (2008); Ravikumar et al. (2011); Cai et al. (2011); Guo et al. (2011); Ren et al. (2015);
Fan and Lv (2016); Liu et al. (2021), among others, whereas examples of the latter include
Chickering (2002); Kalisch and Bühlmann (2007); Harris and Drton (2013); van de Geer
and Bühlmann (2013); Li et al. (2020), among others. More recently, Zhu et al. (2016),
Li and Solea (2018), Qiao et al. (2019), Qiao et al. (2020), Solea and Li (2020), and Zhao
et al. (2022) extended undirected graphical models to random functions. Even though the
undirected and directed graphs are related, we discuss their differences in Section 7.3.

Despite the recent progress, the problem of estimating functional directed graphical
models remains largely underdeveloped. Gómez et al. (2021) reformulated DAG estimation
as sparse function-on-function regression (Fan et al., 2015; Luo and Qi, 2016), but required
the causal order is known a prior, which can be unrealistic in practice. Lee and Li (2022)
relaxed this requirement and proposed to estimate DAG through a functional structural
equation model (SEM) with two man steps: order determination, then sparse functional
regression. Our proposal is considerably different in several ways. First, unlike Gómez et al.
(2021), our method does not assume the order is known, and thus the problem is more
challenging; see also van de Geer and Bühlmann (2013) for the differences between DAG
estimation with and without a known order in the random variable setting. Second, our
method is built upon the proposed functional PC-algorithm, and belongs to the category of
independence-based solutions, whereas Lee and Li (2022) is built upon function-on-function
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regression, and belongs to the category of SEM-based approaches; see also Peters et al.
(2014) for the differences of these two categories of solutions under the random variable
setting. Due to this methodological difference, the subsequent asymptotic analysis becomes
utterly different too. In Section 7.1, we establish a one-to-one correspondence between the
functional DAG and the functional linear SEM, which in turn reveals how the functional
DAG factorizes the joint distribution, and how to interpret the identified edges. We further
develop in Section 7.2 the notion of do-intervention for possible causal interpretation in the
functional setting. None of these results are available in Lee and Li (2022).

We also remark that our proposal hinges on linear operators, which are being increasingly
employed in graphical modeling (Li et al., 2014; Lee et al., 2016, 2020). Nevertheless,
we use linear operators to study a completely different problem. For instance, Lee et al.
(2021) studied conditional undirected graphs that vary along with the external variables,
whereas we target DAG estimation for multivariate random functions. Correspondingly,
the estimation method and asymptotic theory are substantially different.

The rest of the article is organized as follows. We introduce DAG and its equivalence
class in Section 2, and develop the linear operators, CCO and PCO, in Section 3. We
derive their sample estimation and the modified PC-algorithm in Section 4, and develop
the asymptotic theory in Section 5. We conduct numerical studies in Section 6, and further
discuss the model in Section 7. We relegate all technical proofs and additional numerical
results to the Appendix.

2. DAG and its equivalence class for functions

Let (Ω,F , P ) denote a probability space. For an interval T ⊆ R and t ∈ T , let X(t) =
[X1(t), . . . , Xp(t)]

T denote a vector of multivariate random functions of dimension p defined
on Ω and taking values in ΩX = ΩX1

× · · · × ΩXp , where each ΩXi is a Hilbert space of
R-valued functions on T , i ∈ V. Let 〈·, ·〉ΩXi denote the inner product in ΩXi

, and ‖ · ‖ΩXi

the norm induced by this inner product. We allow p to increase with the sample size n;
that is, p = p(n), and limn→∞ p(n) = ∞. Henceforth, V also depends on n implicitly. We
abbreviate X(t) and Xi(t) as X and Xi whenever there is no confusion. Next, we introduce
two assumptions on X.

Assumption 1 There exists M0 > 0 such that max{E‖Xi‖2
ΩXi

: i ∈ V} ≤M0.

Assumption 2 The p-variate random function X is a zero-mean Gaussian random ele-
ment in ΩX and is faithful with respect to a DAG G; i.e., X satisfies (1).

Assumption 1 is standard in high-dimensional functional data analysis, and ensures that
the trace of the covariance operator of Xi is uniformly bounded. Assumption 2 is our main
distributional assumption. The zero-mean condition is to simplify the development, and
can be easily relaxed. It is also possible to relax the Gaussian condition, by employing
the notions of functional additive conditional independence (Li and Solea, 2018) or copula
graphical models (Liu et al., 2012; Solea and Li, 2020). Nevertheless, we feel the Gaussian
case is important for its own sake and is worthy of a full investigation. We leave the
non-Gaussian extension as future research.

4



Functional Directed Acyclic Graphs

Under Assumption 1, the bilinear form (f, g) 7→ E(〈f,Xi〉ΩXi 〈g,Xj〉ΩXj ) from ΩXi
× ΩXj

to R is bounded, and induces a bounded linear operator ΣXiXj
: ΩXj

→ ΩXi
for each

(i, j) ∈ V × V. We call it the covariance operator from ΩXj
to ΩXi

. We then define
the joint covariance operator ΣXX : ΩX → ΩX as the p × p matrix of operators whose
(i, j)th entry is ΣXiXj

. This means, for any f = (f1, . . . , fp)
T ∈ ΩX , we have ΣXXf =(∑

p

j=1
ΣX1Xj

fj, . . . ,
∑

p

j=1
ΣXpXj

fj

)T

. Moreover, for any subsets A,B ⊆ V, we define ΣXAXB

to be the matrix of operators whose entries are {ΣXiXj
: i ∈ A, j ∈ B}, and its dimension

is |A| × |B|, where |A| denotes the cardinality of A. We note that, in Assumption 2, an
ΩX-valued random element X is Gaussian if and only if 〈f,X〉ΩX is a Gaussian random
variable for every f = (f1, . . . , fp)

T ∈ ΩX , or equivalently, E
(

exp
∑

p

i=1
ι〈fi, Xi〉ΩXi

)
= exp

(
−

1/2
∑

p

i=1

∑
p

j=1
〈fi,ΣXiXj

fj〉ΩXi
)
, where ι =

√
−1.

Next, we formally define the notion of conditional independence of random functions.
For the probability space (Ω,F , P ), suppose (ΩX ,FX), (ΩY ,FY ), (ΩZ ,FZ) are measurable
spaces, and X : Ω → ΩX , Y : Ω → ΩY , Z : Ω → ΩZ are random elements in (ΩX ,FX),
(ΩY ,FY ), (ΩZ ,FZ), respectively. We say that X and Y are conditionally independent given
Z, if and only if, for every A ∈ FX , B ∈ FY ,

P (X ∈ A, Y ∈ B | Z) = P (X ∈ A | Z)P (Y ∈ B | Z) almost surely P .

In our case, ΩX , ΩY , ΩZ are separable Hilbert spaces, and FX , FY , FZ , are the Borel
σ-fields generated by the open sets in ΩX , ΩY , ΩZ , respectively. The specific forms of
ΩX , ΩY , ΩZ are determined by contexts. This general definition satisfies all the relevant
axioms of conditional independence such as those described in Lauritzen (1996, Chapter 3).
In particular, as in the setting of undirected graphs, under the Gaussian assumption, the
pairwise Markov property is equivalent to the global Markov property.

For a DAG G defined on V, let H = {(i, j, S) : (i, j) ∈ V × V,S ⊆ V\{i, j}}, and
H0 = {(i, j, S) ∈ H : i 6= j}. Moreover, let

D(G) = {(i, j, S) ∈ H0 : i and j are d-separated by S under G},
F = {(i, j, S) ∈ H0 : Xi ⊥⊥Xj | XS}.

(2)

By definition, X is faithful to G if D(G) = F. It is possible for two different DAGs, say G1 and
G2, to share the same D; i.e., D(G1) = D(G2). Consequently, by conditional independence
and faithfulness, we can only determine the class of DAGs with the same D. Let G be
the collection of all DAGs defined on V. We say that G1,G2 ∈ G are equivalent, and write
G1 ∼ G2 if and only if D(G1) = D(G2), where ∼ is an equivalence relation. This is called the
Markov equivalence (Peters et al., 2014). Thus, each G ∈ G induces an equivalence class
{G′ ∈ G : G′ ∼ G}. The collection of all Markov equivalence classes forms a partition of G,
which is a quotient space of G, denoted by G/∼ (Kelley, 1955), and is referred to as the
quotient space of Markov equivalence.

A partially directed graph is a graph in which some edges are undirected. A completed
partially acyclic directed graph (CPDAG) is a partially directed acyclic graph L such that
there exists a member D of G/∼ satisfying the following properties: (i) each directed edge
in L is an edge in every DAG in D; and (ii) for each undirected edge, say i ↔ j, in L,
there is a DAG in D with i→ j being one of its edges, and another DAG in D with j → i
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being one of its edges. Chickering (2002, Lemma 2) showed that two DAGs are Markov
equivalent if and only if they have the same CPDAG. In other words, a member D of G/∼
corresponds to one and only one CPDAG. This also establishes a bijection between G/∼
and the collection of all CPDAGs.

3. Two linear operators

In this section, we formally develop the conditional covariance operator and the partial
correlation operator to estimate the CPDAG, and derive their population properties.

We begin with some notation. Let Ω and Ω′ be two Hilbert spaces, B (Ω,Ω′) the
collection of all bounded linear operators from Ω to Ω′, B 2(Ω,Ω

′) the collection of all
Hilbert-Schmidt operators from Ω to Ω′, and B 1(Ω,Ω

′) the collection of all trace class
operators from Ω to Ω′. When Ω′ = Ω, we write B (Ω,Ω) as B (Ω), B 2(Ω,Ω) as B 2(Ω),
and B 1(Ω,Ω) as B 1(Ω). Let ‖ · ‖, ‖ · ‖

HS
, and ‖ · ‖TR be the operator norm in B (Ω), the

Hilbert-Schmidt norm in B 2(Ω), and the trace norm in B 1(Ω) respectively. For a linear
operator A, let ker(A), ran(A), and ran(A) denote the kernel, range, and the closure of the
range of A; i.e., ker(A) = {f ∈ Ω : Af = 0}, ran(A) = {Af : f ∈ Ω}, ran(A) = cl [ran(A)],
where cl(·) stands for the closure of a set. For a bounded and self-adjoint linear operator A,
its restriction on ran(A) is an injective function from ran(A) to ran(A). We call the inverse
of this function A|ran(A) as the Moore-Penrose inverse, and denote it by A†. That is, A†

is the mapping from ran(A) to ran(A) such that, for any x ∈ ran(A), A†x is the unique
member y ∈ ran(A) satisfying Ay = x. Let A∗ denote the adjoint of A. For two positive
sequences {an} and {bn}, we write an � bn or bn � an if an/bn is bounded, and write an ≺ bn
or bn � an if an/bn → 0. If two sequences an and bn are ordered by �, then we use an ∧ bn
to denote the smaller sequence in terms of �. Moreover, we write an � bn if an � bn and
bn � an.

For each i ∈ V, let {(λai , ηai )}a∈N be the collection of eigenvalue-eigenfunction pairs of
ΣXiXi

, with λ1
i ≥ λ2

i ≥ · · · ≥ 0 and N being the set of natural numbers {1, 2, . . . , }. Then
Xi =

∑
a∈Nc

a
i η

a
i holds almost surely, where cai = 〈Xi, η

a
i 〉 are from i.i.d. N(0, λai ). This

expansion is known as the Karhunen-Loève (K-L) expansion, and c1
i , c

2
i , . . . are called the

functional principal component scores (Bosq, 2000). We note that the K-L expansion has
been widely used in functional data analysis (Yao et al., 2005; Yao and Müller, 2010; Li
and Guan, 2014; Chen and Lei, 2015). Particularly, Qiao et al. (2019) also used the K-L
expansion for undirected functional graphic modeling.

We next formally define the conditional covariance operator. Let

MXAXB
= Σ†XAXA

ΣXAXB
, for A,B ⊆ V.

Given its resemblance to the regression coefficient matrix in the classical regression, we call
MXAXB

a regression operator, and the next assumption ensures it is well-defined.

Assumption 3 Suppose ran(ΣXAXB
) ⊆ ran(ΣXAXA

), and MXAXB
is Hilbert-Schmidt.

The Hilbert-Schmidt assumption on MXAXB
regulates the degree of smoothness in the de-

pendence between XA and XB. That is, the output of ΣXAXB
needs to sufficiently concentrate

on the leading eigenfunctions of ΣXAXA
. Similar conditions are commonly imposed in the

literature (see, e.g., Lee et al., 2016; Li, 2018).
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For any A ⊆ V, let ΩXA
be the direct sum of {ΩXi

: i ∈ A}; i.e., ΩXA
is the Cartesian

product of ΩXi
, i ∈ A, and the inner product in ΩXA

is the sum of the inner products in
ΩXi

, i ∈ A. The next proposition shows that the regression operator MXAXB
in fact uniquely

determines the mapping f 7→ E(〈f,XB〉ΩXB
| XA), which characterizes E(XB | XA). In other

words, MXAXB
has a one-to-one correspondence with E(XB | XA).

Proposition 1 Suppose Assumptions 1 to 3 hold. Then, for f ∈ ΩXB
, 〈MXAXB

f,XA〉ΩXA

= E(〈f,XB〉ΩXB
| XA).

Definition 1 Suppose Assumptions 1 to 3 hold. For (i, j, S) ∈ H, let ΣXiXj |XS
: ΩXj

→ ΩXi

be the linear operator

ΣXiXj
−M ∗

XSXi
ΣXSXS

MXSXj
.

We call ΣXiXj |XS
the conditional covariance operator (CCO) of Xi and Xj given XS.

We note that, an equivalent form of CCO is ΣXiXj |XS
= ΣXiXj

− ΣXiXS
Σ†XSXS

ΣXSXj
. How-

ever, the form in Definition 1 involves the regression operator, and is more conducive for
subsequent proofs. The next theorem establishes the properties of ΣXiXj |XS

.

Theorem 1 Suppose Assumptions 1 to 3 hold. Then, for every (i, j, S) ∈ H0,

(i) ΣXiXj |XS
= 0 if and only if Xi ⊥⊥Xj | XS;

(ii) ΣXiXj |XS
=
∑

a,b∈N cov(cai , c
b
j | XS)(η

a
i ⊗ ηbj), where cai is the ath K-L coefficient of Xi,

and ηai is the eigenfunction of ΣXiXi
associated with its ath largest eigenvalue.

Theorem 1 (i) generalizes the classical result when X is a vector of Gaussian random
variables to the functional setting. Consequently, we can use the CCO to characterize the
conditional independence between Xi and Xj given XS.

We next define the partial correlation operator, which extends partial correlation to the
functional setting. This is motivated by the observation that partial correlation achieves
better scaling in the classical random variable setting (Peng et al., 2009; Lee et al., 2016;
Liu, 2017). The next theorem establishes the existence of PCO and its connection with the
conditional independence. Its proof is similar to that of Lee, Li, and Zhao (2016, Theorem
1), and is thus omitted.

Theorem 2 Suppose Assumptions 1 to 3 hold. Then, there exists a unique operator RXiXj |XS
∈

B (ΩXj
,ΩXi

) such that,

(i) ΣXiXj |XS
= Σ1/2

XiXi|XS
RXiXj |XS

Σ1/2

XjXj |XS
;

(ii) ‖RXiXj |XS
‖ ≤ 1, for every (i, j, S) ∈ H0.

Moreover, RXiXj |XS
= 0 if and only if Xi ⊥⊥Xj | XS.

Definition 2 We call RXiXj |XS
in Theorem 2 the partial correlation operator (PCO) of Xi

and Xj given XS.
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4. Estimation

Theorems 1 and 2 suggest two linear operators, ΣXiXj |XS
and RXiXj |XS

, to characterize the
conditional independence. In this section, we develop their sample estimators, first at the
operator level, then at the coordinate level. We then develop a procedure for evaluating
Xi ⊥⊥Xj | XS for a given triplet (i, j, S) ∈ H0, and a modified PC-algorithm for estimating
the entire DAG.

4.1 Operator-level estimation

We first derive the K-L expansion at the sample level. Suppose X1, . . . , Xn are i.i.d. samples
from X, where Xk = (Xk

1 , . . . , X
k
p )T, k = 1, . . . , n. Let En represent the sample mean

operator; i.e., En(U) =
∑

n

k=1
U k/n, for a set of samples (U 1, . . . , Un). The covariance

operator ΣXiXj
is estimated by

Σ̂XiXj
= En [(Xi − EnXi)⊗ (Xj − EnXj)] ,

for any (i, j) ∈ V × V. For each i ∈ V, let {(λ̂ai , η̂ai )}a∈N be the sequence of eigenvalue-
eigenfunction pairs of Σ̂XiXi

. Then, the sample-level K-L expansion of Xk
i − En(Xi) is

Xk
i − En(Xi) =

∑
a∈Nĉ

k,a
i η̂ai , where ĉk,ai = 〈Xk

i − En(Xi), η̂
a
i 〉ΩXi . To improve estimation

efficiency, we further truncate this expansion at the dth term to obtain the approximation,
Xk
i − En(Xi) ≈

∑
d

a=1
ĉk,ai η̂ai , for all k = 1, . . . , n, and i ∈ V. Note that, we allow the

truncation number d to depend on n. Correspondingly, the truncated estimate of ΣXiXj
is

Σ̂d
XiXj

=
∑

d

a,b=1
En(ĉai ĉ

b
j)(η̂

a
i ⊗ η̂bj).

We next estimate the regression operators MXSXi
by

M̂XSXi
= (Σ̂d

XSXS
+ εI)−1Σ̂d

XSXi
, (3)

for i ∈ V, where ε > 0 is a ridge-type tuning parameter, and I is the identity operator from
ΩXS

to ΩXS
. The inverse is done by taking the inverse of the eigenvalues; see Proposition 3

in Section 4.2. Following Theorem 1(ii), we estimate the CCO by

Σ̂d,ε
XiXj |XS

=
∑

d

a,b=1
{En(ĉai ĉ

b
j)− En[(M̂XSXi

η̂ai )(XS)(M̂XSXj
η̂bj)(XS)]}(η̂ai ⊗ η̂bj).

Similarly, following Theorem 2(i), we estimate the PCO by

R̂d,ε,δ
XiXj |XS

= (Σ̂d,ε
XiXi|XS

+ δI)−1/2Σ̂d,ε
XiXj |XS

(Σ̂d,ε
XjXj |XS

+ δI)−1/2, (4)

where δ > 0 is a ridge parameter that regularizes the inverses of the two matrices.
Note that in (3) and (4), we both truncate the K-L expansion and employ the ridge-

type regularization. We choose to do so for the following reasons. First of all, we note that
the rank of Σ̂d

XSXS
is dns, where ns is the cardinality of S. This rank can be larger than

the sample size n, and thus we need to introduce an extra ridge-type regularization in (3).
Meanwhile, since the ranks of Σ̂d,ε

XiXi|XS
and Σ̂d,ε

XjXj |XS
are d, which is typically smaller than

n, an alternative estimator of the PCO is not to employ the ridge regularization as in (3)
and (4), which leads to

R̃d
XiXj |XS

= (Σ̃d
XiXi|XS

)−1/2Σ̃d
XiXj |XS

(Σ̃d
XjXj |XS

)−1/2, (5)

8
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where Σ̃d
XiXj |XS

= Σ̂d
XiXj
−Σ̂d

XiXS
Σ̂†dXSXS

Σ̂d
XSXj

, and Σ̂†dXSXS
=
∑

d

a=1
(λaS)

−1(ηaS⊗ηaS ) is the Moore-

Penrose inverse of Σ̂d
XSXS

, for (i, j, S) ∈ H0. Comparing (5) to (4), this alternative PCO
estimator has two fewer tuning parameters, and thus is computationally easier. However,
as we remark after Theorem 4 in Section 5.2, the asymptotic analysis of (4) is much easier
than that of (5). Moreover, when d = 1, (5) is closely related to one of the competing
methods, linear-PC, that we numerically compare in Section 6.1, and we show that (4)
achieves a better empirical performance than (5). Therefore, we propose (4) as our PCO
estimator, and build our DAG estimation based on (4).

4.2 Coordinate-level evaluation for conditional independence

We begin with constructing the spaces ΩXi
and ΩX using functional bases. Let H be a

generic finite-dimensional Hilbert space spanned by a set of functions B = {b1, . . . , bm}
defined on T . For any h ∈ H, let [h]B = ([h]B,1 , . . . , [h]B,m)T denote the coordinate of h with
respect to B; that is, h =

∑
m

i=1
[h]B,i bi = bT1:m [h]B, where b1:m denotes the vector of functions

(b1, . . . , bm)T. Let KB = {〈bs, bt〉H}ms,t=1
be the Gram kernel matrix. Then the inner product

〈h1, h2〉H can be expressed as [h1]
T

BKB [h2]B.
We next derive the coordinate representation of Xk, k = 1, . . . , n. Suppose each Xk

is measured on uk time points Tk = {tk1, . . . , tkuk}, k = 1, . . . , n. Let T1:n = ∪nk=1Tk,
τ1 < τ2 < · · · < τ` be all the time points in T1:n, and ` = |T1:n| be the total num-
ber of distinctive time points. Let ΩXi

be the linear space spanned by the functions
{κT (·, τ) : τ ∈ T1:n}. Let KT = {κT (τi, τj)}`i,j=1

. Suppose KT is of rank r, and has
the spectral decomposition KT = UTDTU

T
T , where DT ∈ Rr×r is the diagonal matrix

whose diagonal elements are the sorted nonzero eigenvalues of KT , and UT ∈ R`×r is
the matrix whose columns are the eigenvectors corresponding to the eigenvalues in DT .
Let (b1, . . . , br)

T = D−1/2
T UT

T [κT (·, τ1), . . . , κT (·, τ`)]T. It is straightforward to verify that
Br = {b1, . . . , br} is an orthonormal basis of ΩXi

. Using this basis, each Xk
i can be rep-

resented as Xk
i (·) =

∑
r

t=1
[Xk

i ]Br,t bt(·) = bT1:r(·) [Xk
i ]Br . Note that the kth individual Xk

i

is observed only at uk time points in Tk. Let Xk
i (Tk) =

(
Xk
i (tk1), . . . , X

k
i (tkuk)

)T
, and

b1:r(Tk) =
(
b1:r(tk1), . . . , b1:r(tkuk)

)
. Therefore, we have Xk

i (Tk) = b1:r(Tk)
T [Xk

i ]Br , on both
side of which we then multiply b1:r(Tk) to get b1:r(Tk)X

k
i (Tk) = b1:r(Tk)b1:r(Tk)

T [Xk
i ]Br . Solv-

ing this linear equation with a ridge-type regularization, we obtain the following coordinate
representation of [Xk

i ]Br , for i ∈ V and k = 1, . . . , n,

[Xk
i ]Br = [b1:r(Tk)b1:r(Tk)

T + εkT Ir]
−1
b1:r(Tk)X

k
i , (6)

where Ir is the r × r identity matrix, and εkT is a ridge tuning parameter.
We next derive the coordinate representations of the truncated sample covariance oper-

ators. Let H and H′ be two finite-dimensional Hilbert spaces spanned by B = {b1, . . . , bm}
and B′ = {b′1, . . . , b′m′}, respectively. Let A : H → H′ be a linear operator. The coordinate
representation of A with respect to B and B′ is defined as ([Ab1]B′ , . . . , [Abm]B′) ≡ B′ [A]B.
If H′′ is a third Hilbert space with basis B′′, and A′ is a linear operator from H′ to H′′, then

B′′ [A
′A]B = (B′′ [A

′]B′)(B′ [A]B). For simplicity, we abbreviate B′ [A]B by [A] when the bases
B,B′ are obvious from the context.

Proposition 2 For each (i, j) ∈ V × V, [Σ̂XiXj
] = En

(
[Xi − EnXi] [Xj − EnXj]

T
)
.

9
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Therefore, by the definition of M̂XSXi
, the coordinate representation of M̂XSXi

f is

[M̂XSXi
f ] = ([Σ̂XSXS

] + εIrns)
−1[Σ̂XSXi

][f ],

for each f ∈ ΩXi
, i ∈ V, and S ⊆ V, with ns being the cardinality of S.

Let {(λ̂ai , [η̂ai ])}ra=1 denote the collection of eigenvalue-eigenvector pairs of [Σ̂XiXi
], i ∈ V.

Then the sample-level K-L expansion of Xk
i − EnXi is

Xk
i − EnXi =

∑
d

a=1
〈Xk

i − EnXi, η̂
a
i 〉ΩXi η̂

a
i =

∑
d

a=1
[Xk

i − EnXi]
T

[η̂ai ] η̂
a
i . (7)

Finally, we derive the coordinate representations of the sample CCO and PCO. Recall
that ĉk,ai denotes the inner product 〈Xk

i −EnXi, η̂
a
i 〉ΩXi . For i ∈ V, a = 1, . . . , d, let Ca

i be the

n-dimensional vector {ck,ai : k = 1, . . . , n}, and C1:d
i be the n× d matrix whose ath column

is Ca
i . For S = {a1, . . . , ans} ⊆ V\{i, j}, let CS be the 1× ns block matrix

(
C1:d
a1
, . . . , C1:d

ans

)
.

The sample estimates of CCO and PCO are given in Proposition 3. Its proof can be derived
from Proposition 2 and (7), and is omitted.

Proposition 3 The coordinate representations of Σ̂d,ε
XiXj |XS

and R̂d,ε,δ
XiXj |XS

with respect to

B∗i = {η̂1
i , . . . , η̂

d
i } and B∗j = {η̂1

j , . . . , η̂
d
j } are:

B∗i
[Σ̂d,ε

XiXj |XS
]B∗j = n−1{(cai )T[In −D(S)]cbj}da,b=1 ≡Mi,j|S(ε), (8)

B∗i
[R̂d,ε,δ

XiXj |XS
]B∗j = [Mi,i|S(ε) + δId]

−1/2Mi,j|S(ε)[Mj,j|S(ε) + δId]
−1/2, (9)

where D(S) = CS [(CT
SCS + εInsd)

−1CT
SCS(C

T
SCS + εInsd)

−1]CT
S .

Based on (8), we compute the squared Hilbert-Schmidt (H-S) norm of Σ̂d,ε
XiXj |XS

as

‖Σ̂d,ε
XiXj |XS

‖2
HS =

∑
d

a=1
〈Σ̂d,ε

XiXj |XS
η̂aj , Σ̂

d,ε
XiXj |XS

η̂aj 〉ΩXi
=
∑

d

a=1

[
η̂aj
]T
B∗j

(B∗j [Σ̂
d,ε
XjXi|XS

]B∗i )(B∗i [Σ̂
d,ε
XiXj |XS

]B∗j )
[
η̂aj
]
B∗j

= ‖B∗i [Σ̂
d,ε
XiXj |XS

]B∗j ‖
2
F,

where ‖ · ‖F is the Frobenius norm. In other words, the H-S norm of Σ̂d,ε
XiXj |XS

is simply

the Frobenius norm of the matrix B∗j
[Σ̂d,ε

XiXj |XS
]B∗i . Similarly, the H-S norm of R̂d,ε,δ

XiXj |XS
is

the Frobenius norm of the matrix B∗i [R̂
d,ε,δ
XiXj |XS

]B∗j in (9). We then threshold the H-S norms

‖Σ̂d,ε
XiXj |XS

‖HS and ‖R̂d,ε,δ
XiXj |XS

‖HS to evaluate the conditional independence; that is, we declare

Xi ⊥⊥Xj | XS if

‖B∗j [Σ̂
d,ε
XiXj |XS

]B∗i ‖F < ρCCO, ‖B∗j [R̂
d,ε,δ
XiXj |XS

]B∗i ‖F < ρPCO, (10)

where ρCCO and ρPCO are the threshold values determined adaptively given the data. Ob-
serving that for the random variable case, the partial correlation can be tested using its
Fisher z-transformation, whose variance is approximated by (n − |S| − 3)−1 (Harris and
Drton, 2013), we take ρCCO and ρPCO to be proportional to (n − |S| − 3)−1/2. Our numeri-
cal experiments have found that the results are not overly sensitive to the choice of these
threshold values as long as they are within a reasonable range.

We summarize the above estimation procedure in Algorithm 1.
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Algorithm 1 Evaluation of Xi ⊥⊥Xj | XS for a given triplet (i, j, S) ∈ H0.

1: Choose a kernel κT ; e.g., the Brownian motion function κT (s, t) = min(s, t), or
the radial basis function κT (s, t) = exp {−γT (s− t)2}, for (s, t) ∈ T × T , where
γT =

{∑
s<t
|τs − τt|/(`2)

}−2
. Compute the Gram matrix KT , and perform spectral

decomposition to obtain UT and DT .
2: Compute the coordinate [Xk

i ] using (6), for i ∈ V, k = 1, . . . , n, where the ridge param-
eter is set as εkT = 0.01× σmax[b1:r(Tk)b1:r(Tk)

T], k = 1, . . . , n, with σmax(·) denoting the
largest eigenvalue.

3: Perform the spectral decomposition on En

(
[Xi − EnXi] [Xi − EnXi]

T
)

to obtain its ath
eigenvector [η̂ai ], and K-L coefficient ĉk,ai for Xk

i using (7), i ∈ V and a = 1, . . . , d, where
the parameter d is set as d = [n1/5]. Then obtain Ca

i , C1:d
i , and CS.

4: Compute the coordinates of Σ̂d,ε
XiXj |XS

and R̂d,ε,δ
XiXj |XS

using (8) and (9), where

the tuning parameters are set at ε = 0.1 × σmax(CSC
T
S ), and δ = 0.5 ×

max{σmax[Mi,i|S(ε)], σmax[Mj,j|S(ε)]}.
5: Evaluate Xi ⊥⊥ Xj | XS using (10), where we take ρCCO = c−1 × (n − |S| − 3)−1/2, and
ρPCO = Φ−1(1−c/2)×(n−|S|−3)−1/2, with Φ(·) being the normal cumulative distribution
function, 0 < c < 1 being a constant and set as c = 0.05.

4.3 Functional PC-algorithm

Algorithm 1 allows us to evaluate (10) for all possible triplets (i, j, S) ∈ H0, which leads to
an estimate of the collection F defined in (2). By faithfulness, we then have an estimate
of D(G) in (2), and hence an estimate for CPDAG. However, despite the simplicity of this
idea, the amount of computation needed to achieve it can be prohibitively large, as one has
to evaluate the conditional independence Xi⊥⊥Xj | XS for every triplet (i, j, S) ∈ H0, which
is an NP-hard problem.

A solution to address this issue is the PC-algorithm, which involves two main steps.
In the first step, it recursively deletes edges from an initial complete undirected graph
based on conditional independence evaluations. This results in a skeleton. In the second
step, it extends the skeleton to a CPDAG. This algorithm brings down the computation
time considerably by avoiding an exhaustive search: the amount of search is determined
by the sparsity, rather than the size, of the graph. In the worst scenario, its runtime
grows exponentially with p, but when the true DAG is sparse, the runtime reduces to the
polynomial time.

Next, we extend the PC-algorithm to our DAG setting, which, like the classical PC-
algorithm, also consists of two steps. For any undirected graph M ⊆ (V × V)0 and any
i ∈ V, let V(i,M) = {k ∈ V : (i, k) ∈ M} be the neighborhood of i in M. For any
j ∈ V, let V(i,−j,M) = V(i,M)\{j} be the neighborhood of i in M with j removed. For
` = 0, 1, 2, . . ., let Λ(M, `) = {(i, j) ∈ M : |V(i,−j,M)| ≥ `}. For (i, j) ∈ Λ(M, `), let
Γ(i, j,M, `) = {S ⊆ V(i,−j,M) : |S| = `}. Moreover, define two test functions:

φ1(i, j, S) = 1 if Xi ⊥⊥Xj | XS is accepted by CCO, and 0 otherwise;

φ2(i, j, S) = 1 if Xi ⊥⊥Xj | XS is accepted by PCO, and 0 otherwise.

11
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Algorithm 2 Step 1 of the PC-algorithm

initialize: set ` = −1 and M = the complete undirected graph
repeat

set ` = `+ 1 and R` = ∅, which denotes the edge set to be removed
repeat

choose (i, j) ∈ Λ(M, `)
repeat

evaluate φ(i, j, S) for each S ∈ Γ(i, j,M, `)
until φ(i, j, S) = 1, then reset R` to R` ∪ {(i, j)} and record Si,j = S for later use;
if φ(i, j, S) = 0 for all S ∈ Γ(i, j,M, `), then keep R` the same

until all (i, j) ∈ Λ(M, `) are chosen, then reset M to M\R`
until Λ(M, `) = ∅

The first step of our extended PC-algorithm is summarized in Algorithm 2, where the test
function φ can be either φ1 or φ2. Also note that in Algorithm 2, we need to select a
sequence of pairs (i, j) from Λ(M, `), but the output does not depend on the choice of the
sequence. See Colombo and Maathuis (2014) for more discussion on the order-dependent
issue of the PC-algorithm. The output of Step 1 is a skeleton ÊSKE, along with a collection
of sets of vertices {Si,j}.

The second step of the PC-algorithm transforms the skeleton ÊSKE to a CPDAG by
applying several deterministic operations based on ÊSKE and {Si,j}. This step is exactly the
same as the classical PC-algorithm (see, e.g., Meek, 1995, Phase I-S2 and Phase II), and its
presentation is omitted. We denote the resulting CPDAG as ÊCPDAG-fCCO or ÊCPDAG-fPCO, de-
pending on the thresholding criterion used in (10). We also denote the number of iterations
in the functional-PC algorithm as ˆ̀

fCCO or ˆ̀
fPCO.

The next proposition shows that, at the population-level, the output of the PC-algorithm
indeed recovers the true CPDAG, and the number of iterations needed is no greater than
the maximum degree of the true skeleton. Define a population-level PC-algorithm, denoted
by functional-PC0, where we replace the evaluation of functional conditional independence
using (10) with the ground truth of Xi ⊥⊥Xj | XS. Denote the true edge set of G by EDAG,
the CPDAG of G by ECPDAG, and the skeleton of EDAG by ESKE. Also, denote the CPDAG
from functional-PC0 by E0

CPDAG, and the number of iterations in functional-PC0 by `0.

Proposition 4 Suppose Assumptions 1 to 3 hold. Then,

(i) E0
CPDAG = ECPDAG;

(ii) `0 ≤ m, where m = maxi∈V |{j : (i, j) ∈ ESKE}| is the maximum degree of ESKE.

5. Asymptotic theory

We derive the uniform convergence rates of the sample estimates of CCO and PCO, and
establish the uniform consistency of the estimated CPDAG. Our asymptotic theory allows
both the number of functions p and the number of leading K-L expansion d to diverge with
the sample size n. Moreover, many of our theoretical results only require the sub-Gaussian
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distribution of the random functions, which is weaker than the Gaussian assumption. Nev-
ertheless, the Gaussianity is still needed for CCO and PCO to characterize the conditional
independence.

We first formally define a sub-Gaussian, Hilbertian random element.

Definition 3 Suppose X is an H-valued random element with a trace-class covariance
operator Σ : H → H, where H is a generic separable Hilbert space. We say X follows a sub-
Gaussian distribution, if there exists b > 0, such that E (exp〈f,X〉H) ≤ exp (b 〈Σf, f〉H/2),
for all f ∈ H. We denote it as X ∼ subG(Σ, b).

The notion of sub-Gaussianity in Hilbert space was introduced by Antonini (1997, Definition
1.1). See also Chen and Yang (2021); Mirshani and Reimherr (2021); Zapata et al. (2021);
Qin Fang and Qiao (2023); Waghmare et al. (2023). Our Definition is slightly different:
Antonini (1997) allows b = 0, which leads to a degenerate distribution, whereas we require
b to be strictly positive.

5.1 Uniform convergence of CCO estimation

We first study the CCO. We begin with an assumption on the smoothness level of Xi.

Assumption 4 There exists γ > 1, such that λai � a−γ and λai − λa+1
i � a−1−γ, as a→∞,

for every i ∈ V.

As our estimators are built on the leading K-L coefficients, it is reasonable to assume the
tail eigenvalues of ΣXiXi

diminish sufficiently fast. The first part of Assumption 4 implies
that maxi∈V(

∑∞
a=d+1

λai ) � d−γ. That is, the decaying rate of the tail eigenvalues of ΣXiXi
is

in a polynomial order of d. The second part of Assumption 4 requires the decaying rate of
the gaps of the adjacent eigenvalues, λai − λa+1

i , to be greater than a polynomial order of a,
for a ∈ N. The parameter γ imposes a level of smoothness of the decaying rate; the larger
the value of γ, the faster the decaying rate.

For any m ∈ N ∪ {0}, let H0(m) = {(i, j, S) ∈ H0 : |S| ≤ m}, H(m) = {(i, j, S) ∈ H :
|S| ≤ m}, and H1(m) = H(m)\H0(m). In the following development, we allow p→∞, d→
∞,m → ∞, ε → 0 as n → ∞. Moreover, given m ∈ N, let t(m) = min{‖ΣXiXj |XS

‖HS :
ΣXiXj |XS

6= 0, (i, j, S) ∈ H0(m)}, and ζ(m, d, p, ε, n) = md3+γ(log p)1/2/ (n1/2ε) + mε−1d−γ +
ε1/2s(m). Here t(m) is the minimal H-S norm of the nonzero CCO, and thus t(m) � 1.
Next, we introduce an assumption on t(m).

Assumption 5 Suppose t(m) � ζ(m, d, p, ε, n).

Assumption 5 places a lower bound on the order of t(m) to prevent it from diminishing too
fast. Note that, in the random variable setting, the partial correlation-based PC-algorithm
requires a strong faithfulness assumption to ensure the uniform consistency of the estimated
graph (Uhler et al., 2013). Assumption 5 is similar and can be viewed as the functional
version of strong faithfulness. Also note that, we require t(m) to go to 0 at a slower rate than
ζ(m, d, p, ε, n), whose first term is md3+γ(log p)1/2/(n1/2ε). By comparison, for the partial
correlation-based PC-algorithm, the order of the minimal nonzero partial correlation has to
be greater than (m log p/n)1/2 (Uhler et al., 2013).
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We next establish the uniform convergence rate of Σ̂d,ε
XiXj |XS

, and the uniform consistency

of the estimated CPDAG, ÊCPDAG-fCCO, based on CCO.

Theorem 3 (i) Uniform convergence rate of Σ̂d,ε
XiXj |XS

: Suppose Assumptions 1, 3, 4, and

5 hold, Xi ∼ subG(ΣXiXi
, b0) with E(Xi) = 0, ε ≺ 1, md3+γ(log p)1/2/(n1/2ε) � 1, and the

threshold ρCCO = t(m)/2. Then,

max
(i,j,S)∈H(m)

‖Σ̂d,ε
XiXj |XS

− ΣXiXj |XS
‖HS = OP [md3+γ(log p)1/2/(n1/2ε) +mε−1d−γ + ε1/2s(m)],

where s(m) = max(i,i,S)∈H1(m) ‖MXSXi
‖HS. (ii) Uniform graph consistency based on CCO: If

we further assume Assumption 2 holds, then,

P (ÊCPDAG-fCCO = E0
CPDAG)→ 1 and P (ˆ̀

fCCO = `0)→ 1, as n→∞.

Theorem 3 requires the maximal degree m to satisfy md3+γ(log p)1/2/(n1/2ε) � 1, which
implies that m can grow at most at a polynomial rate, and thus in turn imposes a level of
sparsity on the graph. This rate for m is consistent with the classical settings. For instance,
in the sparse regression, the order of magnitude of the sparsity parameter can only grow in
a polynomial order of n. The classical linear PC-algorithm (Kalisch and Bühlmann, 2007,
condition A3) also requires m to grow in a polynomial order of n.

5.2 Uniform convergence of PCO estimation

We next study the PCO. We show that the norm of R̂d,ε,δ
XiXj |XS

is no greater than 1, which
resembles the property of the partial correlation. We then introduce two assumptions.

Proposition 5 For each (i, j, S) ∈ H0, we have ‖R̂d,ε,δ
XiXj |XS

‖ ≤ 1.

Assumption 6 There exists c0 > 0, such that max
{∑

a∈Mi,S

∑
b∈Mj,S

(ρa,bi,j,S)
2/(µai,Sµ

b
j,S) : (i, j, S) ∈

H0

}
≤ c0, where ρa,bi,j,S = cor(〈νai,S, Xi〉ΩXi , 〈ν

b
j,S, Xj〉ΩXj ), Mi,S = {a ∈ N : µai,S > 0},

µ1
i,S ≥ µ2

i,S ≥ · · · and ν1
i,S, ν

2
i,S · · · are the eigenvalues and eigenfunctions of ΣXiXi|XS

.

Assumption 6 places a level of smoothness on the relation between Xi and Xj given XS.
Under the Gaussian assumption, the correlation ρa,bi,j,S measures the strength of dependency
between Xi and Xj given XS. Moreover, because ΣXiXi|XS

is a trace-class operator, its
eigenvalues decay to 0 sufficiently fast so that

∑
a∈Nµ

a
i,S < ∞. Assumption 6 implies that

ρa,bi,j,S needs to converge to 0 faster than the product µai,Sµ
b
j,S, as a → ∞, b → ∞. Hence,

intuitively, the dependency between Xi and Xj given XS has to be sufficiently concentrated
on the leading eigenfunctions.

Similar to Assumption 5 on CCO, we also require the minimum H-S norm of the nonzero
PCO to be sufficiently large. For m ∈ N, let u(m) = min{‖RXiXj |XS

‖HS : RXiXj |XS
6=

0, (i, j, S) ∈ H0(m)}. The next assumption is the functional version of strong faithfulness
based on PCO, which prevents u(m) to go to zero too fast.

Assumption 7 Suppose u(m) � δ−3/2ζ(m, d, p, ε, n) + δ1/2.
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We next establish the uniform convergence rate of R̂d,ε,δ
XiXj |XS

, and the uniform consistency

of the estimated CPDAG, ÊCPDAG-fPCO, based on PCO.

Theorem 4 (i) Uniform convergence rate of PCO: Suppose Assumptions 1, 3, 4, 6, and
7 hold, Xi ∼ subG(ΣXiXi

, b0) with E(Xi) = 0, ζ(m, d, p, ε, n) � 1, δ ≺ 1, and the threshold
ρPCO = u(m)/2. Then,

max
(i,j,S)∈H0(m)

‖R̂d,ε,δ
XiXj |XS

−RXiXj |XS
‖HS = OP [δ−3/2ζ(m, d, p, ε, n) + δ1/2].

(ii) Uniform graph consistency based on PCO: If we further assume Assumption 2 holds,
then,

P (ÊCPDAG-fPCO = ECPDAG)→ 1 and P (ˆ̀
fPCO = `0)→ 1, as n→∞.

Bühlmann and van de Geer (2011, Theorem 13.1) derived the consistency of the PC-
algorithm of Kalisch and Bühlmann (2007) for the random variable setting. We next com-
pare our Theorem 4 to theirs. Specifically, both results establish the uniform consistency
of the parameter estimation and the uniform graph consistency: whereas Bühlmann and
van de Geer (2011) was based on the partial correlation, our result is based on the proposed
partial correlation operator. As such, Theorem 4 can be viewed as the functional extension
of the above-mentioned Theorem 13.1, though such an extension is far from trivial. The
conditions imposed by the two theorems are generally similar. Both allow the graph size
p to diverge at an exponential order of the sample size n, and both require the maximum
degree of the DAG m to diverge at a polynomial order of n. However, there are some minor
differences. For example, Bühlmann and van de Geer (2011, condition A4) required the
absolute value of the smallest non-zero partial correlation to go to zero at a rate slower
than (m log p/n)1/2. By contrast, our Assumption 7 requires the minimal H-S norm of
all non-zero partial correlation operators u(m) to converge to zero at a rate slower than
δ−3/2md3+γ(log p)1/2/(n1/2ε). Our rate is slower than that of Bühlmann and van de Geer
(2011), but we feel this is reasonable, as our setting involves infinite-dimensional functions
and is more complicated. Also, Bühlmann and van de Geer (2011, condition A4) imposed
a regularization on the dependency among the random variables by upper-bounding the
partial correlations. We impose a similar condition, by requiring the maximum of the H-S
norms of the regression operator MXSXi

, i.e., ε1/2s(m) � 1, for any i ∈ V and any subset
S ⊆ V\{i} with |S| ≤ m. Note that ε goes to zero in a polynomial rate of n. If ε � n−b with
some b ∈ (0, 1/2), then this implies that s(m) � nb. As such, our condition also regulates
the dependency among the random functions.

Following up our discussion in the last paragraph of Section 4.1, using the estimator
defined in (4), Theorem 4 establishes the uniform convergence rate of our proposed PCO
estimator R̂d,ε,δ

XiXj |XS
in (4). By contrast, the theoretical analysis of the alternative estimator

R̃d
XiXj |XS

in (5) would have involved inversion of Σ̂d,ε
XiXi|XS

, where the norm of this inverse is

identical to the smallest eigenvalue of Σ̂d,ε
XiXi|XS

. Let µdi,S denote the smallest eigenvalue of

Σd
XiXi|XS

, i.e., the population version of Σ̂d,ε
XiXi|XS

. Then, it is easy to see that, the rate of

convergence of R̃d
XiXj |XS

in (5) depends on the rate at which µdi,S approaches to zero. On

the other hand, the norm of the ridge-type estimator (Σ̂d,ε
XiXi|XS

+ δI)−1 in R̂d,ε,δ
XiXj |XS

in (4) is
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upper bounded by δ−1, regardless of the magnitude of µdi,S. Consequently, the uniform rate

of convergence of R̂d,ε,δ
XiXj |XS

in (4) is independent of µdi,S. Therefore, the asymptotic analysis

of our PCO estimator is simpler than that of the alternative estimator defined by (5).

6. Numerical studies

We first evaluate the empirical performance of the proposed method through two simulation
examples, then illustrate with an analysis of a time-course proteomic dataset.

6.1 Simulations

Without loss of generality, we assume that {1, 2, . . . , p} is the order of the true DAG.
Moreover, let pa(i) = {j : (j, i) ∈ EDAG} denote the parents of i, and {u1, . . . uk} a k-grid in
[0, 1] with u1 = 1/k, . . . , uk = 1. We generate the p-dimensional vector of random functions
X(t) = [X1(t), . . . , Xp(t)]

T in a sequential manner as,

Model I : X1(t) = ε1(t), Xi(t) =
∑

(j,i)∈EDAG
Xj(t) + εi(t), i = 2, . . . , p,

Model II : Xi(t) = Ui1η1(t) + Ui2η2(t), Ui2 = (|pa(i)|+ 1)−1
(∑

j∈pa(i)
Uj2 + εi

)
, i = 1, . . . , p.

For Model I, the error functions εi(t) =
∑

v

j=1
ξjκ(t, sj), i = 1, . . . , p, are i.i.d. Gaussian

random process with the Brownian motion covariance function, where κ(t, s) = min(t, s),
{s1, . . . , sv} is a v-grid in [0, 1], ξ1, . . . , ξv are i.i.d. normal variables with mean zero and
standard deviation 5, and v = 10. For Model II, U11, . . . , Up1, ε1, . . . , εp are i.i.d. standard
normal variables, ηk(t) = akχk(t), χk(t) =

√
2 sin((k − 0.5)πt) is the kth eigenfunction of

the Brownian motion kernel, k = 1, 2, a1 = 2.5, and a2 = 1. We assume all subjects are
observed at the same set of time points, Tk = {t1, . . . , tu}, which is taken to be an u-grid in
[0, 1] with u = 50. We generate the edge set EDAG via the independent Bernoulli variable
I[(i, j) ∈ EDAG], with P{I[(i, j) ∈ EDAG]} = 2q/(p − 1). The expected number of edges in
EDAG is qp, with q controlling the sparsity of the graph, and q = 1.05.

We apply the proposed CCO and PCO estimators to the simulated data. We employ
the Brownian motion kernel to construct ΩXi

as the span of {κT (·, ts) : s = 1, . . . , u}.
Besides, we choose all the tuning parameters following the rules outlined in Algorithm 1.
Our preliminary results have found that PCO outperforms CCO consistently, due to the
benefit of proper scaling. As such, we only report the PCO results subsequently.

We also compare with some alternative methods. Specifically, we consider the PC-
algorithm based on the partial correlation test (linear-PC, Spirtes et al., 2000), the PC-
algorithm based on the rank correlation test (rank-PC, Harris and Drton, 2013), and the
causal additive models based on high-dimensional penalized regressions (CAM, Bühlmann
et al., 2014). To adapt them to the functional setting, for each subject k and node i,
we first extract from the observed function Xk

i the first K-L expansion coefficient ĉk,1i =
〈Xk

i − EnXi, η̂
1
i 〉ΩXi using (7), which is the first functional PCA score. We then apply the

three competing methods to the sample of the p-dimensional vectors, {(ĉk,11 , . . . , ĉk,1p )T : k =
1, . . . , n}, to estimate the CPDAG. We comment that such an adaption is intuitive, but
there is no theoretical guarantee. We also note that the linear-PC method corresponds to
the alternative estimator R̃d

XiXj |XS
in (5) with d = 1.
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Structure Hamming distance True discovery rate
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Figure 1: Empirical performance under Model I. Four methods are compared, from left to
right, the modified PC-algorithm based on PCO, linear-PC, rank-PC, and CAM.

We evaluate the performance by two criteria, the structure Hamming distance (SHD,
Tsamardinos et al., 2006), and the true discovery rate (TDR), which are defined as,

SHD(ÊCPDAG,ECPDAG) = |ÊCPDAG ∪ ÊT
CPDAG − ECPDAG ∪ ET

CPDAG|/2
+ |ECPDAG ∪ ET

CPDAG − ÊCPDAG ∪ ÊT
CPDAG|/2

+ |ÊCPDAG − (ECPDAG ∪ ÊT
CPDAG − ECPDAG ∪ ET

CPDAG)− ECPDAG|,
TDR(ÊCPDAG,ECPDAG) = |{(i, j) ∈ ÊCPDAG : (i, j) ∈ ECPDAG}|/|ÊCPDAG|,

where, for an edge set E, ET stands for {(j, i) : (i, j) ∈ E}, ECPDAG is the true CPDAG, and
ÊCPDAG is its estimate. We note that the three terms in SHD(ÊCPDAG,ECPDAG) represent the
numbers of deletions, insertions, and reorientations needed to transform ÊCPDAG to ECPDAG,
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Structure Hamming distance True discovery rate
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Figure 2: Empirical performance under Model II. Four methods are compared, from left to
right, the modified PC-algorithm based on PCO, linear-PC, rank-PC, and CAM.

respectively. A smaller SHD or a higher TDR indicates more accurate estimation. We
choose to report the true discovery rate, instead of the true positive rate or false positive
rate, because the underlying DAG is sparse, and the proportions of the true positives and
negatives are highly imbalanced.

We vary the sample size n in {50, 100}, and the graph size p in {25, 50, 75, 100}, resulting
in 8 different scenarios. Figures 1 and 2 report the box plots for SHD and TDR based on
80 data replications, for Model I and Model II, respectively. We observe that the proposed
PCO-based method has a comparable performance as the alternative methods in Model I,
but clearly outperforms the alternatives in Model II. This is because the first PC captures
most of variation in Model I, but not so in Model II. Moreover, the performance of PCO
improves as the sample size increases, which agrees with our asymptotic theory.
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We have also conducted additional simulations with more combinations of (n, p, q), dif-
ferent initializations, different kernel functions, and comparison with the SEM method of
Lee and Li (2022). We report those results in Section A.5 of the Appendix. Overall our
proposed PCO-based method achieves a competitive empirical performance.

6.2 Proteomic application

We illustrate our method with a DREAM breast cancer proteomic dataset (https://www.
synapse.org/#!Synapse:syn1720047/wiki/56213). The goal of the study is to estimate
the directed relations among different proteins given the time-course proteomic measure-
ments. We consider the in silico data generated using a nonlinear dynamic model whose
characteristic satisfies the Reverse Phase Protein Array (RPPA) quantitative proteomics
technology (Hill et al., 2016). Based on various combinations of stimuli and inhibitors, the
true network, as shown in the first panel in Figure 3, is used to generate the time-courses
of phosphoprotein abundance levels. There are a total of 20 different conditions, and for
each condition, 3 independent copies of 20 time-course protein levels were collected at time
t = 0, 1, 2, 4, 6, 10, 15, 30, 45, 60, 120 minutes. After the removal of 4 conditions whose pro-
tein levels had unusual distributions, the data consists of n = 48 subjects, each with p = 20
protein levels measured at m = 11 time points. Figure 11 in the Appendix plots the
time-course data for all 20 protein levels.
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Figure 3: True and estimated graphs for the time-course proteomic data. From left to right,
top to bottom: the truth, the modified PC-algorithm based on PCO, linear-PC, rank-PC,
CAM, and SEM.
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Table 1: The performance and comparison for the time-course proteomic data.

Method PCO linear-PC rank-PC CAM SEM

Structure Hamming distance 44 50 48 51 50
True discovery rate 0.70 0.59 0.53 0.48 0.40

Figure 3 reports the estimated graphs by our method, linear-PC, rank-PC, CAM, and
the SEM method of Lee and Li (2022), while Table 1 reports the corresponding structure
Hamming distance and true discovery rate. We see that our PCO-based method performs
the best, by achieving the smallest SHD and the highest TDR.

7. Discussions

In this section, we discuss the interpretation and implication of the functional DAG model,
including its relation to the linear structural equation, the factorization of joint distribution,
the causal interpretation, and the comparison to an undirected graph.

7.1 Relation to the functional linear structural equation model

We show that there is a one-to-one correspondence between the functional DAG and the
functional linear structural equation model. Such a relation reveals how the functional
DAG factorizes the joint distribution, and allows us to better interpret and understand the
identified edges of the DAG.

We first formally define the linear structural equation model (SEM) for Hilbert space-
valued random functions. For node i ∈ V, subset S ⊆ V\{i}, and linear operator B(i,S) ∈
B (ΩXi

,ΩXS
), let Bj(i,S) denote the jth suboperator of B(i,S).

Definition 4 We say that X = (X1, . . . , Xp)
T follows a zero-mean, linear structural equa-

tion model with respect to a DAG G if, for each i ∈ V, there exists a B(i,pa(i)) ∈
B (ΩXi

,ΩXpa(i)
), such that

Xi =
∑

j∈pa(i)
B∗j (i,pa(i))Xj + εi,

where εi is a zero-mean random element in ΩXi
, and ε1, . . . , εp are independent.

We next recall the notion of the global Markov property from (1). That is, X =
(X1, . . . , Xp)

T satisfies the global Markov property with respect to G, if

i and j are d-separated by S in G ⇒ Xi ⊥⊥Xj | XS. (11)

The next theorem establishes the equivalence between the functional linear SEM in
Definition 4 and the global Markov property in (11) under the Gaussian assumption.

Theorem 5 Suppose Assumptions 1 and 3 are satisfied, and X = (X1, . . . , Xp)
T is a zero-

mean, Gaussian random element in ΩXi
. Then the following two statements are equivalent:

(i) X satisfies the global Markov property with respect to G, and (ii) X follows a linear
structural equation model with respect to G.
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The structural equation factorizes the joint distribution of X1, . . . , Xp into the product
of the set of conditional distributions of Xi | Xpa(i), i = 1, . . . , p, under G, and provides
an interpretation of the edge directions. Consequently, we can interpret the edges of the
functional DAG following the functional linear SEM. For instance, in the proteomic ap-
plication, let XSOS, XERK, XSHC and XERBB1 denote the random functions of the protein levels
of SOS, ERK, SHC, and ERBB1, respectively, and suppose they all have zero-means. Because
ERK, SHC, and ERBB1 are the parent nodes of SOS in the ground truth, we have,

XSOS = B∗1XERK +B∗2XSHC +B∗3XERBB1 + ε,

where ε is a zero-mean, Gaussian random error function that is independent of XERK, XSHC

and XERBB1, and B∗1 , B∗2 , B∗3 are the linear operators from the ranges of XERK, XSHC and XERBB1,
to the range of XSOS, respectively.

7.2 Potential causal interpretation

Next, we introduce the do-intervention under the functional setting, and discuss potential
causal interpretation of the functional DAG model.

For any j ∈ V, and any x = (x1, . . . , xp) ∈ ΩX , let xpa(j) = {xk : k ∈ pa(j)}, and let
LSEj,G : ΩXpa(j)

× ΩXj
→ ΩXj

denote the mapping

LSEj,G(xpa(j), xj) =
∑

k∈pa(j)
B∗k(j,pa(j))xk + xj.

For y ∈ ΩX , A ⊆ V, i ∈ A, and xi ∈ ΩXi
, let yA(yi → xi) be the vector yA = {yk : k ∈ A} with

its member yi replaced by xi. In other words, yA(yi → xi) = (yA\{yi}) ∪ {xi}. Following
Pearl (2009, Definition 3.2.1), we obtain the following definition.

Definition 5 Suppose X = (X1, . . . , Xp)
T follows a linear structural equation model with

respect to a DAG G, a set of regression operators B(j,pa(j)) ∈ B (ΩXj
,ΩXpa(j)

), j = 2, . . . , p,

and the error random functions {εj : j ∈ V}. For a fixed i ∈ V, and xi ∈ ΩXi
, the causal

effect of Xi = xi on XV\{i} is the joint distribution of XV\{i} induced by the following p− 1
equations:

Xj =

{
LSEj,G(Xpa(j)(Xi → xi), εj), if pa(j) 3 i,
LSEj,G(Xpa(j), εj), if pa(j) 63 i,

for all j ∈ V\{i}. We denote such a joint distribution as PXV\{i}|do(xi)
, and call this distri-

bution the interventional distribution at Xi = xi.

For any j ∈ V\{i}, let PXj |do(xi)
denote the marginal distribution of Xj in the inter-

ventional distribution at Xi = xi, PXj the marginal distribution of Xj, and PXj |xi the
conditional distribution of Xj | Xi = xi. Then by Definition 5, we have,

PXj |do(xi)
=

{
PXj , if j is not a descendant of i,

PXj |xi , if j is a descendant of i.

Definition 5 offers one way to define the causal effect in functional data, and is general
and potentially useful for time-course interventional studies (Luo and Zhao, 2011). Based
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Figure 4: The induced undirected graph structure and the directed graph structure, based
on the relation in model (12).

on this definition, it is possible to develop a full methodology and theory for modeling
functional interventional data, following the lines of Maathuis et al. (2009); Hauser and
Bühlmann (2015), who studied the random variable-based linear SEM for interventional
data. However, it requires a substantial amount of additional efforts, and to avoid too
much digestion, we leave it for future research.

7.3 Comparison with undirected graph

Finally, we illustrate the difference between the undirected functional graphical model and
our functional DAG model by a specific example.

Example 1 Suppose X = (X1, X2, X3)
T is a random element in H × H × H, where H

is a Hilbert space, and ε1, ε2, ε3 are i.i.d. random elements in H with zero-mean and the
covariance operator Λ. Furthermore, suppose

X1 = ε1, X2 = ε2, X3 = X1 +X2 + ε3. (12)

Note that the conditional covariance operator between X1 and X2 given X3, by definition,
is ΣX1X2|X3

= ΣX1X2
− ΣX1X3

Σ†X3X3
ΣX3X2

= −ΛΛ†Λ = −Λ. Similarly, the conditional
covariance operators ΣX1X3|X2

= ΣX2X3|X1
= Λ. Therefore, by Theorem 5, we have,

X1 ⊥6⊥X2 | X3, X1 ⊥6⊥X3 | X2, X2 ⊥6⊥X3 | X1.

Figure 4 shows the undirected graph structure and the CPDAG, both induced by the relation
in (12). We see that the the two graphs are very different. The undirected graphical model
studied in Qiao et al. (2019); Li and Solea (2018) does not offer any structural simplification
of the joint distribution of X1, X2, X3 in this example, because there is no zero entry in
the precision operator. On the other hand, the directed graphical model targeted by the
functional DAG does provide a simplification of the joint distribution.

Appendix A. Appendix

In this Appendix, we first present some supporting theoretical results in Section A.1. We
then prove the two main theorems, Theorems 3 and 4, in Sections A.2 and A.3. We collect
the proofs of the rest of the theoretical results in Section A.4. We present additional
numerical results in A.5.
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A.1 Supporting theoretical results

We first derive a useful property of a zero-mean, Hilbert space-valued, Gaussian random
element. Let π : V → V denote a permutation, i.e., an injective mapping from V to V. Let
[a] denote the vector (1, . . . , a)T for integer a ≥ 1.

Lemma 1 Suppose Assumptions 1 and 3 hold, and the p-variate random function X =
(X1, . . . , Xp)

T is a zero-mean Gaussian random element in ΩX. Then, for i = 2, . . . , p,
there exists a linear operator B(i, [i − i]) ∈ B2(ΩXi

,ΩX[i−1]
), and an ΩXi

-valued random
element εi, such that

Xi =
∑

i−1

j=1
B∗j (i, [i− 1])Xj + εi. (13)

Moreover, for i = 2, . . . , p, B(i, [i− i]) = MX[i−1]Xi
, and X1, ε2, . . . , εp are independent, zero-

mean Gaussian random element in ΩXi
, with E(εi ⊗ εi) = ΣXiXi|X[i−1]

∈ B 1(ΩXi
). This

statement remains true if we replace 1, . . . , p by π(1), . . . , π(p).

Proof of Lemma 1: We first show that, for any i ∈ V and any S ⊆ V\{i}, E(Xi | XS) ∈
ΩXi

. This is because, under Assumptions 1 and 3, MXSXi
is defined and by Proposition 1,

E(Xi | XS) = M ∗
XSXi

XS , which is a member of ΩXi
.

For i = 2, . . . , p, let εi = Xi − E(Xi | X[i−1]). Then Xi = E(Xi | X[i−1]) + εi. By
Proposition 1, we have Xi = M ∗

X[i−1]Xi
X[i−1] + εi =

∑
i−1

j=1
(M ∗

X[i−1]Xi
)jXj + εi. Therefore, (13)

holds with B(i, [i− 1]) = MX[i−1]Xi
.

Next, we show that X1, ε2, . . . , εp are independent. For convenience, denote X1 by ε1.
Since ε1, . . . , εp are jointly Gaussian, we only need to check

cov[〈f, εi〉ΩXi , 〈g, εj〉ΩXj ] = 〈f,Σεiεj
g〉ΩXi = 0,

for every f ∈ ΩXi
, g ∈ ΩXj

. Suppose i < j. We have that,

Σεiεj
= E(εi ⊗ εj) = E{E[(Xi − E(Xi | X[i−1]))⊗ (Xj − E(Xj | X[j−1])) | X[i]]}

= E{(Xi − E(Xi | X[i−1]))⊗ E(Xj − E(Xj | X[j−1]) | X[i])}
= E{(Xi − E(Xi | X[i−1]))⊗ [E(Xj | X[i])− E(Xj | X[i])]} = 0.

It remains to show Σεiεi
= ΣXiXi|X[i−1]

and Σεiεi
is a member of B 1(ΩXi

). By definition,

Σεiεi
= E(Xi ⊗Xi) + E[E(Xi | X[i−1])⊗ E(Xi | X[i−1])]− 2E[Xi ⊗ E(Xi | X[i−1])]

= E(Xi ⊗Xi)− E[E(Xi | X[i−1])⊗ E(Xi | X[i−1])],
(14)

where the second equality holds because E[Xi⊗E(Xi | X[i−1])] = E[E(Xi | X[i−1])⊗E(Xi |
X[i−1])]. Since the second term on the right-hand-side of (14) is equal to

E[E(Xi | X[i−1])⊗ E(Xi | X[i−1])] = E[(M ∗
X[i−1]Xi

X[i−1])⊗ (M ∗
X[i−1]Xi

X[i−1])]

= M ∗
X[i−1]Xi

ΣX[i−1]X[i−1]
MX[i−1]Xi

,

we have that E(εi ⊗ εi) = ΣXiXi|X[i−1]
.
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To show that Σεiεi
is a member of B 1(ΩXi

), note that, for any f ∈ ΩXi
,

〈f, (ΣXiXi
− ΣXiXi|X[i−1]

)f〉ΩXi ≥ 0 ⇒ 〈f,ΣXiXi
f〉ΩXi ≥ 〈f,ΣXiXi|X[i−1]

f〉ΩXi ,

which further implies that ‖ΣXiXi|X[i−1]
‖TR ≤ ‖ΣXiXi

‖TR <∞ by Assumption 1. This com-
pletes the proof of Lemma 1. 2

Let H be a generic separable Hilbert space. The next lemma extends the classical
Bernstein’s inequality (Boucheron et al., 2013, Chapter 2) to the functional setting.

Lemma 2 (Bernstein’s inequality in Hilbert space) Suppose X is a random element
in H with E(X) = 0, and X1, . . . , Xn are i.i.d. samples of X. If

E(‖X‖`H) ≤ b` `!, for some b > 0, and each ` ∈ N, (15)

then, for any t > 0, P (‖EnX‖H > t) ≤ 2 exp {−n [t/(4b) ∧ t2/(8b2)]}.

Proof of Lemma 2: By (15), we have
∑

n

i=1
E(‖X‖`H) ≤ nb` `!. Therefore, by Bosq (2000,

Theorem 2.5),

P (‖EnX‖H > t) ≤ 2 exp

(
− nt2

4b2 + 2bt

)
≡ 2 exp[−nf(t)].

Moreover, note that f(t) > t/(4b) if t > 2b, and f(t) ≤ t2/(8b2) if t ≤ 2b. This completes
the proof of Lemma 2. 2

Let {(λai , ηai )}a∈N denote the eigenvalue-eigenfunction pairs of ΣXiXi
, with λ1

i ≥ λ2
i ≥

· · · ≥ 0. Let cai = 〈Xi, η
a
i 〉. The next lemma shows that, if X follows a sub-Gaussian

distribution, then we can bound the moments E(cai )
2`, for each a ∈ N and ` ∈ N.

Lemma 3 If Xi ∼ subG(Σ, b), then E(cai )
2` ≤ (4b λai )

` `!, for a ∈ N and ` ∈ N.

Proof of Lemma 3: By the definition of sub-Gaussianity of Xi, for any s, t > 0,

P (cai > t) = P [exp(scai ) > exp(st)] ≤ exp(bλai s
2/2− st), (16)

where the inequality follows from the Markov’s inequality. Note that infs>0 exp(bλai s
2/2−

st) ≤ exp [−t2/(2bλai )], which, together with (16), further implies that P (cai > t) ≤ exp [−t2/(2bλai )]
for each t > 0. Using a similar argument, we can show that P (cai < −t) ≤ exp [−t2/(2bλai )],
for t > 0. Therefore, we have

P (|cai | > t) ≤ 2 exp [−t2/(2bλai )] . (17)

Moreover, we note that, for ` ∈ N,

E(cai )
2` =

∫ ∞
0

P
(
|cai | > t1/(2`)

)
dt ≤ 2

∫ ∞
0

exp
[
−t1/`/(2bλai )

]
dt,

2

∫ ∞
0

exp
[
−t1/`/(2bλai )

]
dt = 2(2bλai )

``

∫ ∞
0

exp(−x)x`−1dx ≤ (4bλai )
` `!.
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Combining with (17), we obtain the desired bound for E(cai )
2`. This completes the proof of

Lemma 3. 2

The next lemma provides some properties regarding the Tychonoff regression. Its proof
is similar to Lee et al. (2020, Lemma A4), and is omitted.

Lemma 4 Let Σ and Γ be self-adjoint operators in B (H), and let I be the identity mapping.
Then, for any ε > 0,

(i) ‖(Σ + εI)−1‖ ≤ ε−1;

(ii) ‖(Σ + εI)−1Γ‖ ≤ 1 + ε−1‖Σ− Γ‖;

(iii) ‖(Σ + εI)−1Γ1/2‖ ≤ ε−1/2(1 + ε−1‖Σ− Γ‖)1/2.

The next lemma is about the perturbation of the covariance operators.

Lemma 5 For a given i ∈ V, let {(λai , ηai )}m+1
a=1 denote the leading m + 1 eigenvalue-

eigenfunction pairs of ΣXiXi
, with λ1

i > λ2
i > · · · > λm+1

i . Then, maxa=1,...,m ‖η̂ai − ηai ‖ ≤
4κ−1

m ‖Σ̂XiXi
− ΣXiXi

‖, where κm = min{λai − λa+1
i : a = 1, . . . ,m, i ∈ V}.

Proof of Lemma 5: For a given i ∈ V, let λ̃ai be the member of {λ̂1
i , . . . , λ̂

n
i } that is closest

to λai . Then by Kato (1980, Theorem 4.10), max{|λ̃ai−λai | : a = 1, . . . , n} ≤ ‖Σ̂XiXi
−ΣXiXi

‖.
This implies, for all a = 1, . . . , n, λai − ‖Σ̂XiXi

− ΣXiXi
‖ ≤ λ̃ai ≤ λai + ‖Σ̂XiXi

− ΣXiXi
‖.

Therefore, for all a = m+ 1, . . . , n,

λ̃ai ≤ λai + ‖Σ̂XiXi
− ΣXiXi

‖ ≤ λm+1
i + ‖Σ̂XiXi

− ΣXiXi
‖. (18)

Similarly, for all a = 1, . . . ,m,

λ̃ai ≥ λmi − ‖Σ̂XiXi
− ΣXiXi

‖. (19)

If κm ≤ 2‖Σ̂XiXi
− ΣXiXi

‖, then the asserted inequality holds automatically.

If κm > 2‖Σ̂XiXi
−ΣXiXi

‖, then λmi −‖Σ̂XiXi
−ΣXiXi

‖ > λm+1
i + ‖Σ̂XiXi

−ΣXiXi
‖, which,

together with (18) and (19), implies that min{λ̃1
i , . . . , λ̃

m
i } > max{λ̃m+1

i , . . . , λ̃ni }. Therefore,
we have {λ̃1

i , . . . , λ̃
m
i } = {λ̂1

i , . . . , λ̂
m
i }. Moreover, for any a = 1, . . . ,m− 1,

λ̃a+1
i ≤ λa+1

i + ‖Σ̂XiXi
− ΣXiXi

‖ < λai − ‖Σ̂XiXi
− ΣXiXi

‖ ≤ λ̃ai ,

which implies that λ̃ai = λ̂ai , for all a = 1, . . . ,m and i ∈ V. Therefore, max{|λ̂ai − λai | : a =
1, . . . ,m} ≤ ‖Σ̂XiXi

− ΣXiXi
‖, which, by Kazdan (1971, Lemma 2), leads to the asserted

inequality. This completes the proof of Lemma 5. 2

The next theorem establishes the concentration bound and the uniform convergence rate
of ‖Σ̂XiXj

− ΣXiXj
‖HS.
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Theorem 6 Suppose Assumption 1 holds, and Xi ∼ subG(ΣXiXi
, b0) with E(Xi) = 0 for

i ∈ V. Then, for any t ≥ 0 and (i, j) ∈ V × V,

P (‖Σ̂XiXj
− ΣXiXj

‖HS > t) ≤ 2 exp

[
−n
(

t

4C0

∧ t2

8C2
0

)]
,

where C0 = max(2M0, 8M0b0), and M0 is as defined in Assumption 1. Moreover, if log p/n→
0, as n→∞, then,

max
i,j∈V
‖Σ̂XiXj

− ΣXiXj
‖HS = OP [(log p/n)1/2].

Proof of Theorem 6: For convenience, for two sets I, J , we use
∑

I,J

i,j
to abbreviate the

double sum
∑

i∈I

∑
j∈J . Similarly, for two integers r and s, we use

∑
r,s

i,j
to abbreviate the

double sum
∑

r

i=1

∑
s

j=1
.

We first note that, by the triangular and Jensen’s inequalities,

E‖Xi ⊗Xj − E(Xi ⊗Xj)‖`HS ≤ 2`−1[E‖Xi ⊗Xj‖`HS + ‖E(Xi ⊗Xj)‖`HS]

≡ 2`−1[M1(`) +M2(`)].

We next bound M1(`) and M2(`), respectively.
For, M1(`), let Ni = {a ∈ N : λai 6= 0}. For ` = 1,

M1(`) ≤ E1/2[
∑N,N

a,b
(cai )

2(cbj)
2] ≤

{∑N,N
a,b
E[(cai )

2(cbj)
2]
}1/2 ≤M0 = M 1

0 1!.

For any ` ∈ Ni, ` ≥ 2, we have

M1(`) ≤ E|
∑Ni,Ni

a,b
〈Xi ⊗Xj, η

a
i ⊗ ηbj〉2HS|`/2

= E[
∑Ni,Ni

a,b
(cai )

2(cbj)
2]`/2 ≤M `

0

{∑Ni,Ni
a,b

λaiλ
b
jM

−2
0 E[(cai )

2(cbj)
2/(λaiλ

b
j)]

`/2
}
,

where the last inequality follows from Jensen’s inequality as applied to the convex function
f(u) = u`/2. By Lemma 3, we have E(cai )

2` ≤ (4b0λ
a
i )
` `!. Substituting this into the right-

hand-side above, we obtain that M1(`) ≤ (4b0M0)
` `! for ` ≥ 2. Therefore, for any ` ∈ N,

we have M1(`) ≤ [M0 max(1, 4b0)]
` `!.

For M2(`), by the Cauchy-Schwarz inequality,

M2(`) = [
∑N,N

a,b
E2(cai c

b
j)]

`/2 ≤
(∑N,N

a,b
λaiλ

b
j

)`/2 ≤M `
0 . (20)

Putting the bounds for M1(`) and M2(`) together, we have E‖Xi⊗Xj−E(Xi⊗Xj)‖`HS ≤
[max(2M0, 8M0b0)]

` `! ≡ C`
0 `!, which, by Lemma 2, implies the first statement of this theo-

rem.
Next, note that, for any t > 0,

P

(
max
i,j∈V
‖Σ̂XiXj

− ΣXiXj
‖HS > t

)
≤
∑

i,j∈VP
(
‖Σ̂XiXj

− ΣXiXj
‖HS > t

)
≤ 2p2 exp

[
−n
(

t

4C0

∧ t2

8C2
0

)]
,

which implies that the second statement of this theorem holds when log p/n → 0. This
completes the proof of Theorem 6. 2

Let Σd
XiXj

=
∑

d

a=1

∑
d

b=1
E(cai c

b
j)(η

a
i ⊗ηbj) be the truncated version of ΣXiXj

, (i, j) ∈ V×V.

The next theorem establishes the uniform convergence of ‖Σ̂d
XiXj

− Σd
XiXj
‖HS.
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Theorem 7 Suppose Assumption 1 holds, Xi ∼ subG(ΣXiXi
, b0) with E(Xi) = 0 for i ∈ V,

and dγ+1(log p)1/2/n1/2 � 1. Then, we have

max
i,j∈V
‖Σ̂d

XiXj
− Σd

XiXj
‖HS = OP

[
d3+γ(log p)1/2/n1/2

]
.

Proof of Theorem 7: Note that maxi,j∈V ‖Σ̂d
XiXj

− Σd
XiXj
‖HS is upper-bounded by

max
i,j∈V
‖
∑

d,d

a,b
[En(ĉai ĉ

b
j)− E(cai c

b
j)] η̂

a
i ⊗ η̂bj‖HS

+ max
i,j∈V
‖
∑

d,d

a,b
E(cai c

b
j) [(η̂ai − ηai )⊗ η̂bj + ηai ⊗ (η̂bj − ηbj)]‖HS ≡M3(n) +M4(n).

Next, we derive the orders of magnitude for M3(n) and M4(n).
For M3(n), we have

M3(n) ≤max
i,j∈V
‖
∑

d,d

a,b
En[(cai c

b
j)− E(cai c

b
j)] η̂

a
i ⊗ η̂bj‖HS

+ max
i,j∈V
‖
∑

d,d

a,b
En[(ĉai − cai )(ĉbj − cbj)] η̂ai ⊗ η̂bj‖HS

+ max
i,j∈V
‖
∑

d,d

a,b
En[cai (ĉ

b
j − cbj)] η̂ai ⊗ η̂bj‖HS

+ max
i,j∈V
‖
∑

d,d

a,b
En[(ĉai − cai )cbj] η̂ai ⊗ η̂bj‖HS ≡M3,1(n) + · · ·+M3,4(n).

For M3,1(n), it can be bounded as,

M3,1(n) = max
i,j∈V
‖
∑

d,d

a,b
En〈Xi ⊗Xj,−E(Xi ⊗Xj), η

a
i ⊗ ηbj〉HS η̂

a
i ⊗ η̂bj‖HS,

≤max
i,j∈V

∑
d,d

a,b
‖En〈Xi ⊗Xj − E(Xi ⊗Xj), η

a
i ⊗ ηbj〉HS η̂

a
i ⊗ η̂bj‖HS

≤max
i,j∈V
‖En[Xi ⊗Xj − E(Xi ⊗Xj)]‖HS

(∑
d,d

a,b
‖η̂ai ⊗ η̂bj‖HS

)
=d2 max

i,j∈V
‖En[Xi ⊗Xj − E(Xi ⊗Xj)]‖HS.

Therefore, by Theorem 6, M3,1(n) = OP [d2(log p/n)1/2].
For M3,2(n), it can be bounded as,

M3,2(n) ≤max
i,j∈V
‖
∑

d,d

a,b
En〈Xi ⊗Xj − E(Xi ⊗Xj), (η̂

a
i − ηai )⊗ (η̂bj − ηbj)〉HS η̂

a
i ⊗ η̂bj‖HS

+ max
i,j∈V
‖
∑

d,d

a,b
〈E(Xi ⊗Xj), (η̂

a
i − ηai )⊗ (η̂bj − ηbj)〉HS η̂

a
i ⊗ η̂bj‖HS

≤16d2κ−2
d max

i,j∈V
[‖Σ̂XiXi

− ΣXiXi
‖ ‖Σ̂XjXj

− ΣXjXj
‖

× (‖En[Xi ⊗Xj − E(Xi ⊗Xj)]‖HS + ‖E(Xi ⊗Xj)‖HS)],

where last inequality holds because, by Lemma 5,
∑

d,d

a,b
‖(η̂ai−ηai )⊗(η̂bj−ηbj)‖HS ≤ 16d2κ−2

d ‖Σ̂XiXi
−

ΣXiXi
‖ ‖Σ̂XjXj

− ΣXjXj
‖. By (20), we have ‖E(Xi ⊗ Xj)‖HS ≤ M0. Therefore, M3,2(n) =

OP [d2(log p)/(nκ2
d)].

For M3,3(n), by Lemma 5 again, it can be bounded by

M3,3(n) ≤ 4d2κ−1
d max

i,j∈V
{‖Σ̂XjXj

− ΣXjXj
‖

× [‖En[Xi ⊗Xj − E(Xi ⊗Xj)]‖HS + ‖E(Xi ⊗Xj)‖HS]}.
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By Theorem 6 again, M3,3(n) = OP [d2(log p)1/2/(n1/2κd)].
Similarly, we can show that M3,4(n) has the same order of magnitude as M3,3(n).
For M4(n), we have

M4(n) ≤ max
i,j∈V

[
‖E(Xi ⊗Xj)‖HS

∑
d,d

a,b
(‖η̂ai − ηai ‖+ ‖η̂bj − ηbj‖)

]
≤ 4d2κ−1

d M0 ×max
i,j∈V

(‖Σ̂XiXi
− ΣXiXi

‖+ ‖Σ̂XjXj
− ΣXjXj

‖),

which leads to M4(n) = OP [d2(log p)1/2/(n1/2κd)].
Combining the orders of magnitude of M3,1(n), . . . ,M3,4(n), and M4(n), we obtain,

max
i,j∈V
‖Σ̂d

XiXj
− Σd

XiXj
‖HS

= OP [d2(log p/n)2] +OP [d2 log p/(nκd)] +Op[d
2(log p)1/2/(n1/2κd)].

Because κd → 0 and d2(log p)1/2/(n1/2κd) � 1, the third term on the right-hand-side is the
dominating term, which is equal to the desired rate because κ−1

d � d1+γ by Assumption 4.
This completes the proof of Theorem 7. 2

Theorem 7 generalizes the convergence result for the high-dimensional covariance matrix
(Bickel and Levina, 2008) to the high-dimensional covariance operator. We remark that,
under the Gaussian assumption, Qiao et al. (2019) also established the concentration bound
for the sample covariance of the leading K-L expansion coefficients. However, Theorem 7
differs from the result of Qiao et al. (2019), in that it provides the uniform convergence at
the operator level, which can not be derived directly from their result. Moreover, Theorems
6 and 7 do not require the random process to be Gaussian, but only require the distribution
to be sub-Gaussian.

A.2 Proof of Theorem 3

To prove this theorem, we first introduce an intermediate operator Σd,ε
XiXj |XS

. We next derive

the order of magnitude for the differences between Σd,ε
XiXj |XS

and Σ̂d,ε
XiXj |XS

in Lemma 6, and

between Σd,ε
XiXj |XS

and ΣXiXj |XS
in Lemma 7, respectively. These two Lemmas together lead

to the first assertion, i.e. the uniform convergence of Σ̂d,ε
XiXj |XS

−ΣXiXj |XS
. Lastly, we derive

the uniform convergence of the estimated graph.
For any A,B ⊆ V, let Σd

XAXB
be the matrix of operators {Σd

XiXj
}i∈A,j∈B, and let

Σd,ε
XiXj |XS

= Σd
XiXj

− Σd
XiXS

[Σd
XSXS

(ε)]‡Σd
XSXj

,

where ε > 0 is a tuning constant that decreases to 0 as n → ∞, and [A(ε)]‡ represents
(A + εI)−1A(A + εI)−1. This term Σd,ε

XiXj |XS
plays the role of an intermediate operator

between ΣXiXj |XS
and Σ̂d,ε

XiXj |XS
.

Lemma 6 Suppose Assumptions 1 and 3 hold, Xi ∼ subG(ΣXiXi
, b0) with E(Xi) = 0, for

i ∈ V, m � 1, ε ≺ 1, and md3+γ(log p)1/2/(n1/2ε) � 1. Then,

max
H(m)
‖Σ̂d,ε

XiXj |XS
− Σd,ε

XiXj |XS
‖HS = OP{md3+γ(log p)1/2/(n1/2ε)}.
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Proof of Lemma 6: Because M̂XSXi
= (Σ̂d

XSXS
+ εI)−1Σ̂d

XSXi
, we have Σ̂d,ε

XiXj |XS
= Σ̂d

XiXj
−

Σ̂d
XiXS

[Σ̂d
XSXS

(ε)]‡Σ̂d
XSXj

. Therefore,

max
(i,j,S)∈H(m)

‖Σ̂d,ε
XiXj |XS

− Σd,ε
XiXj |XS

‖HS

≤ max
i,j∈V
‖Σ̂d

XiXj
− Σd

XiXj
‖HS + max

(i,j,S)∈H(m)
‖(Σ̂d

XiXS
− Σd

XiXS
)[Σ̂d

XSXS
(ε)]‡Σ̂d

XSXj
‖HS

+ max
(i,j,S)∈H(m)

‖Σd
XiXS
{[Σ̂d

XSXS
(ε)]‡ − [Σd

XSXS
(ε)]‡}Σ̂d

XSXj
‖HS

+ max
(i,j,S)∈H(m)

‖Σd
XiXS

[Σd
XSXS

(ε)]‡(Σ̂d
XSXj

− Σd
XSXj

)‖HS ≡M5(n) +M6(n) +M7(n) +M8(n).

The order of magnitude of M5(n) is given in Theorem 7. We next derive the orders of
magnitude of M6(n),M7(n) and M8(n), respectively.

For M6(n), we have

M6(n) ≤ max
(i,j,S)∈H(m)

‖(Σ̂d
XiXS

− Σd
XiXS

)(Σ̂d
XSXS

+ εI)−1Σ̂d
XSXS

(Σ̂d
XSXS

+ εI)−1Σd
XSXj
‖HS

+ max
(i,j,S)∈H(m)

‖(Σ̂d
XiXS

− Σd
XiXS

)(Σ̂d
XSXS

+ εI)−1Σ̂d
XSXS

× (Σ̂d
XSXS

+ εI)−1(Σ̂d
XSXj

− Σd
XSXj

)‖HS.

(21)

The first term on the right, by Lemma 4 and ‖Σ̂d
XSXS

(Σ̂d
XSXS

+ εI)−1‖ ≤ 1, is upper-bounded
by

ε−1 max
(i,j,S)∈H(m)

[‖Σ̂d
XiXS

− Σd
XiXS
‖HS ‖Σd

XSXj
‖HS]

≤ ε−1 max
(i,i,S)∈H1(m)

‖Σ̂d
XiXS

− Σd
XiXS
‖HS × max

(j,j,S)∈H1(m)
‖Σd

XSXj
‖HS.

(22)

By a special case of (20), ‖ΣXjXi
‖HS ≤M0. Henceforth,

max
(j,j,S)∈H1(m)

‖Σd
XSXj
‖HS = max

(j,j,S)∈H1(m)

√∑
i∈S‖Σd

XiXj
‖2

HS ≤ max
(j,j,S)∈H1(m)

√∑
i∈S‖ΣXiXj

‖2
HS ≤ m1/2M0.

So the right-hand-side of (22) is further bounded by ε−1m1/2M0(max(i,i,S)∈H1(m) ‖Σ̂d
XiXS

−
Σd
XiXS
‖HS). Similarly, we can bound the second term on the right of (21) by

ε−1 max
(i,j,S)∈H(m)

(‖Σ̂d
XiXS

− Σd
XiXS
‖HS ‖Σ̂d

XSXj
− Σd

XSXj
‖HS).

Therefore, we have,

M6(n) ≤ ε−1[m1/2 M0( max
(i,i,S)∈H1(m)

‖Σ̂d
XiXS

− Σd
XiXS
‖HS)

+ max
(i,j,S)∈H(m)

(‖Σ̂d
XiXS

− Σd
XiXS
‖HS ‖Σ̂d

XSXj
− Σd

XSXj
‖HS)].

For M7(n), let [A(ε)]† denote (A + εI)−1, so that [A(ε)]‡ = [A(ε)]†A[A(ε)]†. In these
notations, the difference [Σ̂d

XSXS
(ε)]‡ − [Σd

XSXS
(ε)]‡ can be decomposed as

{[Σ̂d
XSXS

(ε)]† − [Σd
XSXS

(ε)]†}Σ̂d
XSXS

[Σ̂d
XSXS

(ε)]† + [Σd
XSXS

(ε)]†(Σ̂d
XSXS

− Σd
XSXS

)[Σ̂d
XSXS

(ε)]†

+[Σd
XSXS

(ε)]†Σd
XSXS
{[Σ̂d

XSXS
(ε)]† − [Σd

XSXS
(ε)]†} ≡ Γ1(n) + Γ2(n) + Γ3(n).
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Moreover, ‖Σd
XiXS

Γ1(n)Σ̂d
XSXj
‖HS is bounded by

‖Σd
XiXS

[Σd
XSXS

(ε)]†‖ ‖Σ̂d
XSXS

− Σd
XSXS
‖HS ‖[Σ̂d

XSXS
(ε)]†Σ̂d

XSXS
[Σ̂d

XSXS
(ε)]†Σ̂d

XSXj
‖. (23)

The first norm in (23), by Baker (1973, Theorem 1) and Lemma 4, is upper-bounded
by ε−1/2‖Σd

XiXi
‖1/2 ≤ [tr(ΣXiXi

)/ε]1/2 = (M0/ε)
1/2. The third norm in (23) is upper-

bounded by ε−1/2[‖(Σ̂d
XSXS

+ εI)−1/2Σd
XSXj
‖ + ‖(Σ̂d

XSXS
+ εI)−1/2(Σ̂d

XSXj
− Σd

XSXj
)‖]. By a

similar argument as used to bound the first norm, we can be further bound the above by
ε−1/2[(M0 + ε−1M0‖Σ̂d

XSXS
− Σd

XSXS
‖)1/2 + ε−1/2‖Σ̂d

XSXj
− Σd

XSXj
‖]. Therefore,

max
(i,j,S)∈H(m)

‖Σd
XiXS

Γ1(n)Σ̂d
XSXj
‖HS ≤M 1/2

0 ε−1( max
(i,j,S)∈H(m)

‖Σ̂d
XSXS

− Σd
XSXS
‖HS)

× max
(i,j,S)∈H(m)

[(M0 + ε−1M0‖Σ̂d
XSXS

− Σd
XSXS
‖)1/2 + ε−1/2‖Σ̂d

XSXj
− Σd

XSXj
‖].

(24)

Moreover, max(i,j,S)∈H(m) ‖Σd
XiXS

Γ2(n)Σ̂d
XSXj
‖HS and max(i,j,S)∈H(m) ‖Σd

XiXS
Γ3(n)Σ̂d

XSXj
‖HS can

be bounded by the right-hand-side of (24). Therefore, M7(n) is bounded by three times of
the quantity on the right-hand-side of (24).

For M8(n), similar to the derivation of the bound for M6(n), we can show that

M8(n) ≤ ε−1m1/2 M0( max
(i,j,S)∈H(m)

‖Σ̂d
XSXj

− Σd
XSXj
‖HS).

On the other hand, note that

max
(i,j,S)∈H(m)

‖Σ̂d
XSXS

− Σd
XSXS
‖HS = max

(i,j,S)∈H(m)

√∑
i,j∈S‖Σ̂d

XiXj
− Σd

XiXj
‖2

HS,

which is no greater than m × (maxi,j∈V ‖Σ̂d
XiXj

− Σd
XiXj
‖HS). By the same derivation, we

have max(i,i,S)∈H1(m) ‖Σ̂d
XiXS

− Σd
XiXS
‖HS is bounded by m1/2 × (maxi,j∈V ‖Σ̂d

XiXj
− Σd

XiXj
‖HS).

Combining the bounds for M6(n), M7(n), and M8(n), and applying Theorem 7 as well
as the condition that md3+γ(log p)1/2/(n1/2ε) � 1, we have

M6(n)+M7(n) +M8(n)

� ε−1m(max
i,j∈V
‖Σ̂d

XiXj
− Σd

XiXj
‖HS) +m(max

i,j∈V
‖Σ̂d

XiXj
− Σd

XiXj
‖HS)2

+ ε−1/2m1/2(max
i,j∈V
‖Σ̂d

XiXj
− Σd

XiXj
‖HS)

=OP [md3+γ(log p)1/2/(n1/2ε)] +Op[md
6+2γ(log p)/n]

+OP [m1/2d3+γ(log p)1/2/(n1/2ε1/2)].

Since d3+γ(log p)1/2/n1/2 ≺ 1, the first term on the right is the dominating term. This com-
pletes the proof of Lemma 6. 2

Lemma 7 Suppose Assumptions 1, 3, and 4 hold. Then, for any (i, j) ∈ V × V and
S ∈ V\(i, j), we have,

max
(i,j,S)∈H(m)

‖Σd,ε
XiXj |XS

− ΣXiXj |XS
‖HS = O{mε−1d−γ + ε1/2s(m)}.

30



Functional Directed Acyclic Graphs

Proof of Lemma 7: Let Σε
XiXj |XS

= ΣXiXj
− ΣXiXS

[ΣXSXS
(ε)]‡ΣXSXj

be the intermediate

operator between Σd,ε
XiXj |XS

and ΣXiXj |XS
. By the triangular inequality,

max
(i,j,S)∈H(m)

‖Σd,ε
XiXj |XS

− ΣXiXj |XS
‖HS

≤ max
(i,j,S)∈H(m)

‖Σd,ε
XiXj |XS

− Σε
XiXj |XS

‖HS + max
(i,j,S)∈H(m)

‖Σε
XiXj |XS

− ΣXiXj |XS
‖HS

≡M9(n) +M10(n).

We next derive the orders of magnitude for M9(n) and M10(n).
For M9(n), we have

M9(n) ≤max
i,j∈V
‖Σd

XiXj
− ΣXiXj

‖HS + max
(i,j,S)∈H(m)

‖(Σd
XiXS

− ΣXiXS
)[Σd

XSXS
(ε)]‡Σd

XSXj
‖HS

+ max
(i,j,S)∈H(m)

‖ΣXiXS
{[Σd

XSXS
(ε)]‡ − [ΣXSXS

(ε)]‡}Σd
XSXj
‖HS

+ max
(i,j,S)∈H(m)

‖ΣXiXS
[ΣXSXS

(ε)]‡(Σd
XSXj

− ΣXSXj
)‖HS,

whose order of magnitude, by a similar argument as in the proof of Lemma 6, is no greater
than that of

max
i,j∈V
‖Σd

XiXj
− ΣXiXj

‖+ ε−1/2 max
(i,j,S)∈H(m)

(‖Σd
XiXS

− ΣXiXS
‖HS + ‖Σd

XSXj
− ΣXSXj

‖HS)

+ε−1 max
(i,j,S)∈H(m)

‖Σd
XSXS

− ΣXSXS
‖.

Let Nd = {d+ 1, d+ 2, . . .}. Then the term max(i,j,S)∈H(m) ‖Σd
XSXS

− ΣXSXS
‖HS equals

max
(i,j,S)∈H(m)

√∑
i,j∈S

∑Nd,Nd
a,b

E2(cai c
b
j) ≤ max

(i,j,S)∈H(m)

√∑
i,j∈S

∑Nd,Nd
a,b

λaiλ
b
j,

whose order is O(md−γ) by Assumption 4. Similarly, we can show that

max
(i,i,S)∈H1(m)

‖Σd
XiXS

− ΣXiXS
‖HS = O(m1/2d−γ).

Therefore, M9(n) � mε−1d−γ.
For M10(n), we note that, by the definitions of Σε

XiXj |XS
, ΣXiXj |XS

, and MXSXj
,

Σε
XiXj |XS

− ΣXiXj |XS
= ΣXiXS

{[ΣXSXS
(ε)]‡ΣXSXS

− I}MXSXj
.

By the definition of [A(ε)]‡, we can rewrite the right-hand-side of the above equation as
ΣXiXS

(
ε2{[ΣXSXS

(ε)]†}2 − 2ε[ΣXSXS
(ε)]†

)
MXSXj

. Therefore,

M10(n) ≤ s(m) max
(i,i,S)∈H1(m)

[
‖ΣXiXS

(
ε2{[ΣXSXS

(ε)]†}2 − 2ε[ΣXSXS
(ε)]†

)
‖
]
,

whose order, by Lemma 4, is no greater than ε1/2s(m). Combining the orders of M9(n) and
M10(n) completes the proof of Lemma 7. 2

Proof of Theorem 3: Combining Lemmas 6 and 7, we immediately obtain the uniform
convergence rate of Σ̂d,ε

XiXj |XS
.
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For the second assertion, we first note that,

P
(
{ÊCPDAG-fCCO 6= E0

CPDAG} ∪ {ˆ̀fCCO 6= `0}
)

≤ P [‖Σ̂d,ε
XiXj |XS

‖HS > ρfCCO, ΣXiXj |XS
= 0, for some (i, j, S) ∈ H0(m)]

+ P [‖Σ̂d,ε
XiXj |XS

‖HS ≤ ρfCCO, ΣXiXj |XS
6= 0, for some (i, j, S) ∈ H0(m)].

(25)

The first term in (25) is further bounded by

P [max{‖Σ̂d,ε
XiXj |XS

− ΣXiXj |XS
‖HS : (i, j, S) ∈ H0(m)} ≥ t(m)/2] ≡ p∗(m).

Moreover, by the definition of t(m), the second term in (25) is no greater than

P [‖Σ̂d,ε
XiXj |XS

− ΣXiXj |XS
‖HS ≥ t(m)/2, ΣXiXj |XS

6= 0, for some (i, j, S) ∈ H0(m)].

It is further bounded by p∗(m), which tends to 0 by the first assertion and Assumption 5.
We thus obtain the second assertion. This completes the proof of Theorem 3. 2

A.3 Proof of Theorem 4

Similar as the proof of Theorem 3, to prove this theorem, we first introduce another inter-
mediate operator Rδ

XiXj |XS
between R̂d,ε,δ

XiXj |XS
and RXiXj |XS

,

Rδ
XiXj |XS

= (ΣXiXi|XS
+ δI)−1/2ΣXiXj |XS

(ΣXiXi|XS
+ δI)−1/2.

Then by the triangular inequality,

‖R̂d,ε,δ
XiXj |XS

−RXiXj |XS
‖HS ≤ ‖R̂d,ε,δ

XiXj |XS
−Rδ

XiXj |XS
‖HS + ‖Rδ

XiXj |XS
−RXiXj |XS

‖HS.

We next derive the order of magnitude for the differences between R̂d,ε,δ
XiXj |XS

and Rδ
XiXj |XS

in Lemma 8, and between Rδ
XiXj |XS

and RXiXj |XS
in Lemma 9, respectively.

Lemma 8 Suppose the conditions in Theorem 3(i) hold, ζ(m, d, p, ε, n) � 1, and δ ≺ 1.
Then,

max
(i,j,S)∈H0(m)

‖R̂d,ε,δ
XiXj |XS

−Rδ
XiXj |XS

‖HS = OP [δ−3/2ζ(m, d, p, ε, n)].

Moreover, if δ−3/2ζ(m, d, p, ε, n) ≺ 1, then max(i,j,S)∈H0(m) ‖R̂d,ε,δ
XiXj |XS

−Rδ
XiXj |XS

‖HS

P→ 0.

Proof of Lemma 8: Let Γ4(n) = Σ̂d,ε
XiXi|XS

, Γ5(n) = ΣXiXi|XS
, Γ6(n) = Σ̂d,ε

XiXj |XS
, Γ7(n) =

ΣXiXj |XS
, Γ8(n) = Σ̂d,ε

XjXj |XS
, and Γ9(n) = ΣXjXj |XS

. By the triangular inequality,

‖R̂d,ε,δ
XiXj |XS

−Rd,ε,δ
XiXj |XS

‖HS

≤ ‖{Γ4(n) + δI]−1/2 − [Γ5(n) + δI]−1/2}Γ6(n)[Γ8(n) + δI]−1/2‖HS

+ ‖[Γ5(n) + δI]−1/2[Γ6(n)− Γ7(n)][Γ8(n) + δI]−1/2‖HS

+ ‖[Γ5(n) + δI]−1/2Γ7(n){[Γ8(n) + δI]−1/2 − [Γ9(n) + δI]−1/2}‖HS

≡ M i,j,S
11 (n) +M i,j,S

12 (n) +M i,j,S
13 (n).
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We next bound M i,j,S
11 (n), M i,j,S

12 (n), and M i,j,S
13 (n), respectively.

For M i,j,S
11 (n), using the identity,

A1/2 −B1/2 = A1/2(B−3/2 −A−3/2)B3/2 + (A−1 −B−1)B3/2

(Fukumizu et al., 2007), we have M i,j,S
11 (n) ≤ [M i,j,S

11,1 (n) +M i,j,S
11,2 (n)]M i,j,S

11,3 (n), where

M i,j,S
11,1 (n) = ‖[Γ5(n) + δI]−1/2{[Γ5(n) + δI]3/2 − [Γ4(n) + δI]3/2}[Γ4(n) + δI]−1‖HS,

M i,j,S
11,2 (n) = ‖[Γ4(n)− Γ5][Γ4(n) + δI]−1‖HS,

M i,j,S
11,3 (n) = ‖[Γ4(n) + δI]−1/2Γ6(n)[Γ8(n) + δI]−1/2‖.

By the inequality max(a1/2, b1/2) ≤ (a+ b)1/2, Lemma 4, and Fukumizu et al. (2008, Lemma
7), we have

M i,j,S
11,1 (n) ≤ 3δ−3/2 max(‖Γ4(n) + δI‖1/2, ‖Γ5(n) + δI‖1/2) ‖Γ4(n)− Γ5(n)‖HS

≤ 3δ−3/2[‖Γ4(n)− Γ5(n)‖+ ‖Γ5(n) + δI‖]1/2 ‖Γ4(n)− Γ5(n)‖HS.

Because ΣXiXi|XS
≤ ΣXiXi

, we have ‖Γ5(n)+δI‖ = ‖ΣXiXi|XS
+δI‖ ≤ ‖ΣXiXi

+δI‖ ≤M0 +δ.
Therefore,

M i,j,S
11,1 (n) ≤ 3δ−3/2(‖Γ4(n)− Γ5(n)‖+M0 + δ)1/2 ‖Γ4(n)− Γ5(n)‖HS.

For M i,j,S
11,2 (n), we have,

M i,j,S
11,2 (n) ≤ ‖[Γ4(n) + δI]−1‖ ‖Γ4(n)− Γ5(n)‖HS ≤ δ−1‖Γ4(n)− Γ5(n)‖HS.

For M i,j,S
11,3 (n), by Proposition 5, we have M i,j,S

11,3 (n) ≤ 1.
Combining the upper bounds forM i,j,S

11,1 (n), M i,j,S
11,2 (n), andM i,j,S

11,3 (n), and taking maximum
over H0(m), we obtain that,

max
(i,j,S)∈H0(m)

M i,j,S
11 (n) ≤ ( max

(i,i,S)∈H1(m)
‖Σ̂d,ε

XiXi|XS
− ΣXiXi|XS

‖HS)

× [3δ−3/2( max
(i,i,S)∈H1(m)

‖Σ̂d,ε
XiXi|XS

− ΣXiXi|XS
‖HS +M0 + δ)1/2 + δ−1].

By Theorem 3, the right-hand-side is dominated by ζ(m, d, p, ε, n){3δ−3/2[ζ(m, d, p, ε, n) +
M0 + δ]1/2 + δ−1}. Therefore, if ζ(m, d, p, ε, n) � 1, then

max
(i,j,S)∈H0(m)

M i,j,S
11 (n) = OP [δ−3/2ζ(m, d, p, ε, n)]. (26)

It remains to show that the orders of magnitude of the terms max(i,j,S)∈H0(m) M
i,j,S
12 (n)

and max(i,j,S)∈H0(m) M
i,j,S
13 (n) are dominated by (26). Using similar derivations for (26),

max
(i,j,S)∈H0(m)

M i,j,S
12 (n) ≤ δ−1( max

(i,j,S)∈H0(m)
‖Σ̂d,ε

XiXj |XS
− ΣXiXj |XS

‖HS) = OP [δ−1ζ(m, d, p, ε, n)],

max
(i,j,S)∈H0(m)

M i,j,S
13 (n) = OP [δ−3/2ζ(m, d, p, ε, n)],

both of which are dominated by (26). This completes the proof of Lemma 8. 2
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Lemma 9 Suppose Assumptions 1, 3 and 6 hold, and δ ≺ 1. Then,

max
(i,j,S)∈H0(m)

‖Rδ
XiXj |XS

−RXiXj |XS
‖HS = Op(δ

1/2).

Proof of Lemma 9: By definition, ‖Rδ
XiXj |XS

−RXiXj |XS
‖2

HS is equal to∑Mi,S,Mj,S
a,b 〈νai,S, [(ΣXiXi|XS

+ δI)−1/2ΣXiXj |XS
(ΣXiXi|XS

+ δI)−1/2 −RXiXj |XS
]νbj,S〉2ΩXi

=
∑Mi,S,Mj,S

a,b [(µai,S + δ)1/2(µbj,S + δ)1/2 − (µai,S)
1/2(µbj,S)

1/2]2
〈νai,S, RXiXj |XS

νbj,S〉2ΩXi
(µai,S + δ)(µbj,S + δ)

,

where Mi,S, Mj,S, µ
a
i,S, µ

b
j,S, ν

a
i,S, ν

b
j,S are as defined right before Assumption 6. Moreover,

〈νai,S, RXiXj |XS
νbj,S〉2ΩXi =

〈
νai,S

(µai,S)1/2
,ΣXiXj |XS

νbj,S
(µbj,S)1/2

〉2

ΩXi

= (ρa,bi,j,S)
2,

which implies that ‖Rδ
XiXj |XS

−RXiXj |XS
‖2

HS is upper-bounded by∑Mi,S,Mj,S
a,b [(µai,S + δ)1/2(µbj,S + δ)1/2 − (µai,S)

1/2(µbj,S)
1/2]2(ρa,bi,j,S)

2/(µai,Sµ
b
j,S).

By direct calculation, for any a ∈Mi,S, b ∈Mj,S,

[(µai,S + δ)1/2(µbj,S + δ)1/2 − (µai,S)
1/2(µbj,S)

1/2]2 ≤ δ(µai,S + µbj,S) + δ2,

which is no greater than 2δM0 + δ2 because µai,S ≤ ‖ΣXiXi|XS
‖ ≤ ‖ΣXiXi

‖ ≤ M0. Therefore,
by Assumption 6,

max
(i,j,S)∈H0(m)

‖Rδ
XiXj |XS

−RXiXj |XS
‖HS ≤ c1/2

0 (2δM0 + δ2)1/2 = Op(δ
1/2).

This completes the proof of Lemma 9. 2

Proof of Theorem 4: Combining Lemmas 8 and 9, we immediately obtain the uniform
convergence rate of ‖R̂d,ε,δ

XiXj |XS
−RXiXj |XS

‖HS. The second assertion can be obtained following
a similar proof of Theorem 3. This completes the proof of Theorem 4. 2

A.4 Proofs of other theoretical results

Proof of Proposition 1: By Assumption 2, for f ∈ ΩXB
, g ∈ ΩXA

, and (t1, t2) ∈ R2,

E exp
{
ι
[
t1(〈f,XB〉ΩXB

− 〈MXAXB
f,XA〉ΩXA

) + t2〈g,XA〉ΩXA

]}
= exp

(
−1

2

〈(
t1f

t2g − t1MXAXB
f

)
,

(
ΣUU ΣUV

ΣV U ΣV V

)(
t1f

t2g − t1MXAXB
f

)〉
ΩXB

⊕ΩXA

)
,

where ι =
√
−1. By direct calculation, the inner product in the above expression equals

t21〈f,ΣUUf〉ΩXB
− 2t21〈f,ΣUVMXAXB

f〉ΩXB
+ 2t1t2〈f,ΣUV g〉ΩXB

− 2t1t2〈g,ΣV VMXAXB
f〉ΩXA

+ t21〈MXAXB
f,ΣV VMXAXB

f〉ΩXA
+ t22〈g,ΣV V g〉ΩXA

= t21〈f, (ΣUU − ΣUV Σ†V V ΣV U)f〉ΩXB
+ t22〈g,ΣV V g〉ΩXA

≡ t21σ2
f + t22σ

2
g ,
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where we have used the relations 〈MXAXB
f,ΣV VMXAXB

f〉ΩXA
= 〈f,ΣUVMXAXB

f〉ΩXB
=

〈f,ΣUV Σ†V V ΣV Uf〉ΩXB
, and 〈f,ΣUVMXAXB

f〉ΩXB
= 〈f,ΣUV g〉ΩXB

. This implies, 〈f,XB〉ΩXB
−

〈MXAXB
f,XA〉ΩXA

and 〈g,XA〉ΩXA
are independent Gaussian variables with variances σ2

f and

σ2
g , respectively. Since this holds for all f ∈ ΩXB

and g ∈ ΩXA
, we have 〈f,XB〉ΩXB

−
〈MXAXB

f,XA〉ΩXA
⊥⊥XA, which completes the proof of Proposition 1. 2

Proof of Theorem 1: Following the proof of Proposition 1, we can show that, for any
(f, g) ∈ ΩXi

× ΩXj
, the conditional distribution of (〈f,Xi〉, 〈g,Xj〉) given XS is

N

((
〈MXSXi

f,XS〉
〈MXSXj

g,XS〉

)
,

(
〈f,ΣXiXi|XS

f〉 〈f,ΣXiXj |XS
g〉

〈g,ΣXjXi|XS
f〉 〈g,ΣXjXj |XS

g〉

))
,

which implies (i).

Because, by Assumption 3, ran(ΣXiXj |XS
) ⊆ ran(ΣXiXi

), and ran(ΣXjXi|XS
) ⊆ ran(ΣXjXj

),
it suffices to show that, for any f ∈ ran(ΣXiXi

) and g ∈ ran(ΣXjXj
),

〈f,ΣXiXj |XS
g〉ΩXi = 〈f,

[∑
a,b∈Ncov(cai , c

b
j | XS)(η

a
i ⊗ ηbj)

]
g〉ΩXi . (27)

Since f ∈ ran(ΣXiXi
) and g ∈ ran(ΣXjXj

), we have f =
∑

a∈N〈f, ηai 〉ΩXiη
a
i , and g =∑

b∈N〈g, ηbj〉ΩXj η
b
j . Substituting these into the left-hand-side of (27), we can obtain the

right-hand-side of (27). Thus, (ii) holds. This completes the proof of Theorem 1. 2

Proof of Proposition 2: Note that, for any a, b ∈ span(Br),

[a⊗ b] = ([(a⊗ b)b1] , . . . , [(a⊗ b)br]) = ([a] 〈b, b1〉, . . . , [a] 〈b, br〉) ,

which equals
(
[a] [b]T e1, . . . , [a] [b]T er

)
, where ei is the r-dimensional vector with its ith

element equal to 1 and other elements equal to 0. Noting that Σ̂XiXj
= En[(Xi − EnXi)⊗

(Xj − EnXj)] completes the proof of Proposition 2. 2

Proof of Proposition 4: We have, by the faithfulness, Xi ⊥⊥ Xj | XS if and only if i
and j are d-separated by S. Following the proof in Kalisch and Bühlmann (2007, Propo-
sition 1), we can show that the above equivalence implies that the output of Step 1 of the
functional-PC0 is the true skeleton ESKE, which further implies `0 ≤ m by the definition of
m. Therefore (ii) holds. Moreover, by Meek (1995), the output from Step 2 of functional-
PC0 is the CPDAG of G, which implies (i). This completes the proof of Proposition 4. 2

Proof of Proposition 5: By the definition of R̂d,ε,δ
XiXj |XS

,

ran(R̂d,ε,δ
XiXj |XS

) ⊆ ran(Σ̂d,ε
XiXi|XS

) = span{η̂ai : a = 1, . . . , d} = span{B∗i },

ker(R̂d,ε,δ
XiXj |XS

) ⊇ ker(Σ̂d,ε
XjXj |XS

) = span{η̂aj : a = 1, . . . , d}⊥ = span{B∗j}⊥.

This implies that the operator norm of R̂d,ε,δ
XiXj |XS

is the same as the largest singular value

of the coordinate representation of R̂d,ε,δ
XiXj |XS

with respect to B∗j and B∗i . Therefore, by
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Proposition 3, ‖R̂d,ε,δ
XiXj |XS

‖ can be computed via the optimization:

maximize : [fi]
TAT

i,SAj,S[fj],

subject to : [fi]
T(AT

i,SAi,S + δIn)[fi] = [fj]
T(AT

j,SAj,S + δIn)[fj] = 1,

[fi] ∈ Rd, [fj] ∈ Rd,

where Ai,S = [In −D(S)]1/2C1:d
i . By the Cauchy-Schwarz inequality, we have

[fi]
TAT

i,SAj,S[fj] ≤ ([fi]
TAT

i,SAi,S[fi])
1/2([fj]

TAT
j,SAj,S[fj])

1/2,

which is no greater than
(
[fi]

T(AT
i,SAi,S + δIn)[fi]

)1/2 (
[fj]

T(AT
j,SAj,S + δIn)[fj]

)1/2
= 1. This

completes the proof of Proposition 5. 2

Proof of Theorem 5: First, we show (a) ⇒ (b). We pick a permutation π, such that, for
any i = 2, . . . , p, pa(i) ⊆ π([i− 1]). For convenience, we reset π(1), . . . , π(p) to 1, . . . , p. By
Lauritzen et al. (1990, Corollary 2), the global Markov property is equivalent to

Xi ⊥⊥X[i−1] | Xpa(i),

which means that the conditional distributions of Xi | X[i−1] and Xi | Xpa(i) are identical.
Moreover, following a similar proof as that of Proposition 1, we can show that,

Xi | X[i−1] ∼ N(M ∗
X[i−1]Xi

X[i−1],ΣXiXi|X[i−1]
),

Xi | Xpa(i) ∼ N(M ∗
Xpa(i)Xi

Xpa(i),ΣXiXi|Xpa(i)
).

Since the above two Gaussian distributions are the same, we have (MX[i−1]Xi
)j = 0, for

j /∈ pa(i). Therefore, by Lemma 1, X satisfies the functional linear structural equation
model with respect to G.

Next, we show (b) ⇒ (a). This holds because the global Markov property is implied by
the local Markov property, which, under the Gaussian distribution, is implied by (b).

This completes the proof of Theorem 5. 2

A.5 Additional numerical results

Additional combinations of (p, q, n): We carry out an additional simulation study for
Model I with more combinations of (p, q, n). In our simulation, the true DAG is generated
by a random graph, whose level of sparsity is controlled by the expected neighborhoods size
q. Meanwhile, as q increases, we expect the maximal degree m to increase as well. Table 2
reports the average values of m for different combinations of (p, q, n). This new study thus
allows us to further examine the empirical performance of the proposed PCO method with
denser graphs. Moreover, it offers new insight into the condition that Theorem 3 requires
about m that,

md3+γ(log p)1/2/(n1/2ε) � 1. (28)

This condition implies that m can grow at most at a polynomial rate, and thus in turn
imposes a level of sparsity on the graph. We generate (p, q, n) following the relation,

q(n) = c1 + c2 × n, logc3 [p(n)] = c4 × nc5 ,
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n p q ave. m TDR TPR FM

20 4 1.18 2.150 0.956 0.139 0.195
40 8 1.26 3.237 0.742 0.399 0.505
60 17 1.34 4.400 0.730 0.498 0.586
80 32 1.42 5.150 0.687 0.530 0.594
100 57 1.50 5.937 0.689 0.568 0.619
120 100 1.58 6.600 0.684 0.574 0.622

Table 2: The true discovery rate (TDR), true positive rate (TPR) and F-measure (FM)
between the estimated and true CPDAG, as p grows in an exponential order of n, and q
grows in a polynomial order of n.

with c1 = 0.77, c2 = 0.003, c3 = 6, c4 = 0.09, and c5 = 0.7. As such, p grows in an exponen-
tial order of n, and q grows in a polynomial order of n. The resulting combinations are n =
{20, 40, 60, 80, 100, 120}, p = {4, 8, 17, 32, 57, 100}, and q = {0.82, 0.88, 0.93, 0.99, 1.05, 1.10}.

For the evaluation criteria, in addition to the structure Hamming distance (SHD) and
the true discovery rate (TDR), we employ two additional criteria, the true positive rate
(TPR) and the F-measure (FM), which are defined as,

TPR(ÊCPDAG,ECPDAG) = |{(i, j) ∈ ÊCPDAG : (i, j) ∈ ECPDAG}|/|ECPDAG|,

FM(ÊCPDAG,ECPDAG) = 2× TDR(ÊCPDAG,ECPDAG)× TPR(ÊCPDAG,ECPDAG)

TDR(ÊCPDAG,ECPDAG) + TPR(ÊCPDAG,ECPDAG)
,

where FM(ÊCPDAG,ECPDAG) is computed as the harmonic mean of TDR(ÊCPDAG,ECPDAG) and
TPR(ÊCPDAG,ECPDAG). A motivation of adding the new criteria is that an estimator may
sometimes have a high true discovery rate (TDR) but a low TPR (Rijsbergen, 1979). A
higher TPR and a higher FM indicate a more accurate estimator.

Figures 5 to 8 report the box plots of the SHD, TDR, TPR and FM, respectively, between
the true CPDAG and the PCO estimate across 80 data replications. We see that, as sample
size increase, the SHD decreases, and both TPR and FM increase with a stabilizing TDR.
This shows that our method performs well for these new combinations, and, in particular,
for the larger m’s, as long as the sample size is reasonably large.

Table 2 reports the average TDR, TPR, and FM for six combinations of (p, q, n), along
with the average m. We see that, with the increasing sample size, while TDR slightly
deceases, TPR and FM both increase substantially. This results indicates that the overall
performance of our PCO method improves as n increases. It also provides additional support
for our theoretical consistency and why we need condition (28).

Undirected screening: We also investigate the performance of our method when coupled
with an undirected graph estimation as a starting point. In the classical setting of random
variables, the undirected graph is a supergraph of the skeleton ESKE of the DAG G, and it
is easy to show this statement continues to hold in the setting of random functions.

Specifically, we employ Qiao et al. (2019) to estimate an undirected graph, then feed it
as an initial graph into our proposed PCO-based PC-algorithm. We have chosen Qiao et al.
(2019) over Li and Solea (2018), since both our method and Qiao et al. (2019) consider the
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Figure 5: The structure Hamming distance (SHD) between the estimated and true CPDAG
for combinations of the sample size n, graph size p, and sparsity rate q.

Gaussian distribution. There is a penalty constant in Qiao et al. (2019) that determines
the level of sparsity of the estimated undirected graph. We have experimented with a range
of penalty values, resulting in different percentage values of the selected edges among all
edges, from 100% to 4%, for the initial estimation. When the percentage is 100%, there
is no penalty in the undirected graph estimation, or effectively, no pre-screening for our
method.

Table 3 reports the average SHD and TDR and the standard error (in the parenthesis)
based on 80 data replications for Model I with (n, p, q) = (50, 50, 0.7). We see that, as the

38



Functional Directed Acyclic Graphs

q = 0.82 q = 0.88

●●●●●●●

●●●●●●●●●

●

●●●
●
●●

●

●

●

●●
●
●●●●

●

●●●●●
●

●

●

●●

●
●● ●

●●

●●● ●

●

●

●

●● ● ●

● ●●

●
●

●
●
●●

●● ●● ●● ●●●

p=32 p=57 p=100

p=4 p=8 p=17

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00T

D
R

●

●

●●

●

●●●●●●

●

●

●

●
●

●
●

●● ●

●

●●
● ●

●●

●

●

●
●
● ●

●
●

● ●●
●●

●

●

●

●
●●

●●
● ●

●
●

p=32 p=57 p=100

p=4 p=8 p=17

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00T

D
R

q = 0.93 q = 0.99

●

●

●●●●

●

●●●

●
●●

●

●
●●

●

●●

●●

●

●●

●

●
●
●●

●

●●

●●

●
●

● ●●● ●●

p=32 p=57 p=100

p=4 p=8 p=17

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00T

D
R

●

●●

●

●●●

●●

●

●

●

● ●

●

● ● ●● ●

●

●

●

●● ●

●

●

● ●

●

●●

●

●
●

●

●
● ●

●

●

●

● ●●
●

●●
●
●

● ●
●
●
●
●

●

●

p=32 p=57 p=100

p=4 p=8 p=17

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00T

D
R

q = 1.05 q = 1.10

●

●●

●

●●●

●●

●

●

●

● ●

●

● ● ●● ●

●

●

●

●● ●

●

●

● ●

●

●●

●

●
●

●

●
● ●

●

●

●

● ●●
●

●●
●
●

● ●
●
●
●
●

●

●

p=32 p=57 p=100

p=4 p=8 p=17

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00T

D
R

●●●●●●●●●●

●

●●●●

●

●

● ●
●
●

●
●
●

●●
●

●

●
●

●

●●

●
●●
●●

● ●
●

●

p=32 p=57 p=100

p=4 p=8 p=17

20 40 60 80 100120 20 40 60 80 100120 20 40 60 80 100120

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00T

D
R

Figure 6: The true discovery rate (TDR) between the estimated and true CPDAG for
combinations of the sample size n, graph size p, and sparsity rate q.

percentage of the pre-selected edges decreases to 10%, the performance of the combined
algorithm improves. When this percentage drops below 10%, the performance begins to
decline. This example shows the potential advantage of coupling an initial undirected
graph estimation with our proposed DAG estimation method.

Effect of the kernel function: In our simulations in Section 6.1, we employ the Brow-
nian motion covariance function (BMC) kernel, κT = min(s, t). To investigate whether
our method is sensitive to the choice of kernels, here we use the radial basis function
(RBF) kernel, κT = exp{γG(s − t)2}, where the bandwidth parameter is computed as
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Figure 7: The true positive rate (TPR) between the estimated and true CPDAG for com-
binations of the sample size n, graph size p, and sparsity rate q.

γT =
{∑

s<t
|τs − τt|/(`2)

}−2
following Li and Song (2017). We compare the estimation

results using these two different kernels. We still use the simulation Model I in Section 6.1,
with (n, p, q) = (50, 50, 1.05). Figure 9 shows the box plots of structure Hamming distance
(SHD) and true positive rate (TPR) based on 80 data replications. We see that our method
displays a relatively stable performance under the change of kernels.

Comparison with Lee and Li (2022) We analytically compare our proposed method
with the SEM method of Lee and Li (2022) in Section 1; see the last paragraph of page
3. Here we numerically compare the two methods. We adopt the simulation Model I
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Figure 8: The F-measure (FM) between the estimated and true CPDAG for combinations
of the sample size n, graph size p, and sparsity rate q.

in Section 6.1, with (n, p, q) = (50, 50, 1.05). Figure 10 shows the box plots of structure
Hamming distance (SHD) and true positive rate (TPR) based on 80 data replications. We
see that our method performs better in this example, partly because our method is built
upon the Gaussian assumption, which is satisfied in this simulated model. By comparison,
the SEM method of Lee and Li (2022) does not require the Gaussian assumption. We also
point out that, in this example, the computation of our method is much faster than SEM.
On a 2 x E5-2630 v4 workstation, the average running time of our method is 6.31 seconds,
and that of SEM is 18.64 seconds.
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ave. sparsity 100% 17% 15% 12% 10% 8% 5 % 6% 4%

SHD 23.73 22.34 20.95 19.71 18.51 18.69 19.96 22.56 31.75
(s.e.) 6.60 6.29 6.11 6.14 6.19 5.98 5.99 5.82 3.98
TDR 0.71 0.75 0.77 0.79 0.81 0.81 0.80 0.77 0.62
(s.e.) 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.10 0.09

Table 3: The average and standard error (in the parenthesis) of the structure Hamming
distance (SHD) and the true discovery rate (TDR), for the undirected graph pre-screening
as the initialization + the proposed DAG estimation.
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Figure 9: Empirical performance, in terms of structure Hamming distance (SHD) and true
positive rate (TPR), under Brownian motion covariance function (BMC) kernel and radial
basis function (RBF) kernel.

●

●

●

40

50

60

70

80

fPC fSEM

S
H

D

●

●

0.4

0.5

0.6

0.7

0.8

0.9

fPC fSEM

T
P

R

Figure 10: Empirical performance, in terms of structure Hamming distance (SHD) and true
positive rate (TPR), between the proposed PCO method and the SEM method of Lee and
Li (2022).

Plot of the proteomic data: Figure 11 plots the time-course measurements for all 20
protein levels in the DREAM breast cancer proteomic dataset.
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Figure 11: Plots of 20 protein levels for the proteomic data.

48


	Introduction
	DAG and its equivalence class for functions
	Two linear operators
	Estimation
	Operator-level estimation
	Coordinate-level evaluation for conditional independence
	Functional PC-algorithm

	Asymptotic theory
	Uniform convergence of CCO estimation
	Uniform convergence of PCO estimation

	Numerical studies
	Simulations
	Proteomic application

	Discussions
	Relation to the functional linear structural equation model
	Potential causal interpretation
	Comparison with undirected graph

	Appendix
	Supporting theoretical results
	Proof of Theorem 3
	Proof of Theorem 4
	Proofs of other theoretical results
	Additional numerical results


