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Abstract

This paper aims to develop a Newton-type method to solve a class of nonconvex composite
programs. In particular, the nonsmooth part is possibly nonconvex. To tackle the non-
convexity, we develop a notion of strong prox-regularity which is related to the singleton
property and Lipschitz continuity of the associated proximal operator, and we verify it
in various classes of functions, including weakly convex functions, indicator functions of
proximally smooth sets, and two specific sphere-related nonconvex nonsmooth functions.
In this case, the problem class we are concerned with covers smooth optimization problems
on manifold and certain composite optimization problems on manifold. For the latter,
the proposed algorithm is the first second-order type method. Combining with the semis-
moothness of the proximal operator, we design a projected semismooth Newton method
to find a root of the natural residual induced by the proximal gradient method. Due to
the possible nonconvexity of the feasible domain, an extra projection is added to the usual
semismooth Newton step and new criteria are proposed for the switching between the pro-
jected semismooth Newton step and the proximal step. The global convergence is then
established under the strong prox-regularity. Based on the BD regularity condition, we es-
tablish local superlinear convergence. Numerical experiments demonstrate the effectiveness
of our proposed method compared with state-of-the-art ones.
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1. Introduction

The nonconvex composite minimization problem has attracted lots of attention in signal
processing, statistics, and machine learning. The formulation we are concerned with is:

min
x∈Rn

ϕ(x) := f(x) + h(x), (1)

where f : Rn → R is twice differentiable and possibly nonconvex, h : Rn → (−∞,∞] is
a proper, closed, and extended real-valued function. Note that h can be nonsmooth and
nonconvex. In this paper, we consider a class of nonsmooth and nonconvex functions h
satisfying the following strong prox-regularity.

Definition 1 (strong prox-regularity) We call a proper, closed, and extended real-valued
function h : Rn → R̄ is strongly prox-regular with respect to a closed set C ⊃ dom(h),
a positive constant γ, and a norm function ‖ · ‖, if the proximal operator proxth(·) :=
arg minu th(u) + 1

2‖ · −u‖
2
2 is single-valued and Lipschitz continuous over the closed γ-

neighborhood of C, denoted as {x+ tv : x ∈ C ⊂ Rn, v ∈ Rn with ‖v‖ = 1, 0 ≤ t ≤ γ}.

We call the above definition strong prox-regularity due to the uniform γ for all x ∈ C,
which can be seen as an enhanced version of the prox-regularity (Rockafellar and Wets,
2009, Definition 13.27, Proposition 13.37). Note that the strong prox-regularity holds for
any closed C ⊂ Rn and γ > 0 if h is convex (Moreau, 1965). Here, we present some classes
of nonconvex functions satisfying Definition 1.

(i) h is weakly convex. A function is called weakly convex with modulus ρ > 0 if h(x) +
ρ
2‖x‖

2 is convex. By using the same idea for the convex functions, one can verify that
proxth is single-valued and Lipschitz continuous when t < 1

ρ . Thus, h is strongly prox-

regular with C = Rn, γ = t, and the `2-norm ‖ · ‖2 for any t < 1
ρ . Optimization with

weakly convex objective functions has been considered in (Davis and Drusvyatskiy,
2019).

(ii) h is the indicator function of a proximally smooth set (Clarke et al., 1995). For a set
X ⊂ Rn, define its closed r-neighborhoods

X (r) := {u ∈ Rn : dX (u) ≤ r} , with dX (u) := inf{‖u− x‖ : x ∈ X}. (2)

We say that X is r-proximally smooth if the nearest-point projection projX is single-
valued on X (r). In addition, the proximal operator (which is the same as the projec-
tion operator onto X ) is Lipschitz continuous (Clarke et al., 1995, Theorem 4.8) on
X (r). Thus, the indicator function δX (·) is strongly prox-regular with C = X , γ = r,
and ‖ · ‖. Note that the projection operator onto a smooth and compact manifold
embedded in Euclidean space is a smooth mapping on a neighborhood of the manifold
(Foote, 1984). It is also worth mentioning that the Stiefel manifold is 1-proximally
smooth (Balashov and Tremba, 2022, Proposition 1).

As shown above, optimization with weakly convex regularizers or constraints of the
proximally smooth set can be fitted into (1). The strong prox-regularity serves as a gen-
eral concept to put different problem classes together and allows us to derive a uniform
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algorithmic design and theoretic analysis. Since the proximal operator is single-valued and
Lipschitz continuous on a closed set, one can further explore the differentiability and design
second-order type algorithms to obtain the algorithmic speedup and fast convergence rate
guarantee.

It has been shown in (Böhm and Wright, 2021) that two popular nonsmooth nonconvex
regularizers, the minimax concave penalty (Zhang, 2010) and the smoothly clipped absolute
deviation (Fan, 1997), are weakly convex. Since any smooth manifold is proximally smooth,
the manifold optimization problems (Absil et al., 2009; Hu et al., 2020; Boumal, 2023) take
the form (1). Besides, we are also motivated by the following applications, where h is from
the oblique manifold and a simple `1 norm or the constraint of nonnegativity. Let us note
that such h is not weakly convex or the indicator function of a smooth manifold.

1.1 Motivating examples

Example 1. Sparse PCA on oblique manifold

In (Huang and Wei, 2021), the authors consider the following formulation of sparse
PCA:

min
X∈Ob(n,p)

‖X>A>AX −D2‖2F + λ‖X‖1, (3)

where Ob(n, p) = {X ∈ Rn×p : diag(X>X) = 1p} with diag(B) being a vector consisting
of the diagonal entries of B and 1p ∈ Rn of all elements 1, D is a diagonal matrix whose
diagonal entries are the first p largest singular values of A, ‖·‖F denotes the matrix Frobenius
norm, ‖X‖1 :=

∑n
i=1

∑p
j=1 |Xij |, and λ > 0 is a parameter to control the sparsity. Problem

(3) takes the form (1) by letting

h(X) = λ‖X‖1 + δOb(n,p)(X), (4)

where δC(·) denotes the indicator function of the set C, which takes the value zero on C and
+∞ otherwise. Utilizing the separable structure and the results by (Xiao and Bai, 2021),
the i-th column of proxth(X), denoted by (proxth(X))i, is

(proxth(X))i =


(0, . . . , 0︸ ︷︷ ︸

j−1

, sign(Xij), 0, . . . , 0︸ ︷︷ ︸
n−j

)>, if w ≥ 0,

−w−i /‖w
−
i ‖2 · sign(Xi), otherwise,

where wi = λt − |Xi|, Xi is the i-th column of X, w−i = min(wi, 0), sign(a) returns 1 if
a ≥ 0 and −1 otherwise, and j = arg min1≤k≤nwi(k). Note that proxth is not unique for
all X ∈ Rn×p and t > 0. We will give the specific C, γ, and ‖ · ‖ such that proxth is strongly
prox-regular later in Section 3.

Example 2. Nonnegative PCA on oblique manifold

If the nonnegativity of the principal components is required, we have the following
nonnegative PCA model

min
X∈Ob+(n,p)

‖X>A>AX −D2‖2F , (5)
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where Ob+(n, p) := Ob(n, p) ∩ {X ∈ Rn×p : Xij ≥ 0} and D is defined as in (3). Note
that a more general formulation with smooth objective function over Ob+(n, p) has been
considered in (Jiang et al., 2022). Problem (5) falls into (1) by letting

h(X) = δOb+(n,p)(X) (6)

is the indicator function of Ob+(n, p). Due to the separable structure, the i-th column of
proxth(X), denoted by (proxth(X))i, is

(proxth(X))i =


(0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

), if max(Xi) ≤ 0,

X+
i /‖X

+
i ‖2, otherwise,

where j = arg min1≤k≤nXik in the first case, X+
i = max(Xi, 0), and Xi is the i-th column

of X. Note that this projection is not unique for all X ∈ Rn×p, e.g., X = 0. We will show
its strong prox-regularity later in Section 3.

Example 3. Sparse least square regression with probabilistic simplex
constraint

The authors of (Xiao and Bai, 2021; Li et al., 2021) consider the spherical constrained
formulation of the following optimization problems:

min
y∈Rn

1

2
‖Ay − b‖22, s.t. y ∈ ∆n, (7)

where ∆n = {y ∈ Rn : y ≥ 0, 1>n y = 1}, A ∈ Rm×n, and b ∈ Rm. By decomposing y = x�x
with the Hadamard product � (i.e., yi = x2

i , i = 1, . . . , n), it holds that

y ∈ ∆n ⇐⇒ x ∈ Ob(n, 1).

Adding a sparsity constraint on x leads to the following optimization problem

min
x∈Rn

1

2
‖A(x� x)− b‖22 + λ‖x‖1, s.t. x ∈ Ob(n, 1). (8)

By taking h(x) = λ‖x‖1 + δOb(n,1), problem (8) has the form (1). Due to the separable
structure of the proximal operator of (4), the strong prox-regularity of h here is similar to
that of (4).

1.2 Literature review

The composite optimization problem arises from various applications, such as signal
processing, statistics, and machine learning. When h is convex, extensive first-order meth-
ods are designed, such as the proximal gradients and its Nesterov’s accelerated versions,
the alternating direction methods of multipliers, etc. We refer to (Boyd et al., 2011; Beck,
2017) for details. For faster convergence, second-order methods, such as proximal Newton
methods (Lee et al., 2014; Kanzow and Lechner, 2021) and semismooth Newton methods
(Mifflin, 1977; Qi and Sun, 1993, 1999; Byrd et al., 2016; Milzarek and Ulbrich, 2014; Zhao
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et al., 2010; Xiao et al., 2018; Li et al., 2018a,b) are also developed for the nonsmooth
problem (1). If h is nonconvex, the proximal gradient methods are developed for `1/2 norm
in (Xu et al., 2012) and more nonconvex regularizers (Gong et al., 2013; Yang, 2017). The
global convergence is established by utilizing the smoothness of f and the explicit solution
of the proximal subproblem.

In the case of h being weakly convex, subgradient-type methods (Davis and Drusvy-
atskiy, 2019; Davis et al., 2018) and proximal point-type method (Drusvyatskiy, 2018) yield
lower complexity bound. Optimization with prox-regular functions has recently attracted
much attention. The authors (Themelis et al., 2018) propose a gradient-type method to
solve the forward-backward envelope of ϕ. This can be seen as a variable-metric first-order
method. Since the Moreau envelope of a prox-regular function is continuously differen-
tiable, a nonsmooth Newton method is designed to solve the gradient system of the Moreau
envelope in (Khanh et al., 2020, 2021). Note that the indicator function of a proximally
smooth set is prox-regular (Clarke et al., 1995), the authors of (Balashov and Tremba, 2022)
developed a generalized Newton method to fixed point equation induced by the projected
gradient method.

In the case of h being the indicator function of a Riemannian manifold, the efficient
Riemannian algorithms have been extensively studied in the last decades (Absil et al.,
2009; Wen and Yin, 2013; Hu et al., 2020; Boumal, 2023). When h takes the form (4), the
manifold proximal gradient methods (Chen et al., 2020; Huang and Wei, 2021) are designed.
These approaches only use first-order information and do not have superlinear convergence.
In addition, manifold augmented Lagrangian methods are also proposed in works (Deng
and Peng, 2022; Zhou et al., 2021), in which the subproblem is solved by the first-order
method or second-order method. When it comes to the case of (6), a second-order type
method is proposed in the recent work (Jiang et al., 2022). While in their subproblems,
only the second-order information of the smooth part is explored.

1.3 Our contributions

In this paper, we propose a projected semismooth Newton method to deal with a class of
nonsmooth and nonconvex composite programs. In particular, the nonsmooth part is non-
convex but satisfies the proposed strong prox-regularity properties. Our main contributions
are as follows:

• We introduce the concept of strong prox-regularity. Different from the classic prox-
regularity, the strong prox-regularity enjoys some kind of uniform proximal regularity
around a closed region containing all feasible points. A crucial property is that the
proximal operator of a strongly prox-regular function locally behaves like that of
convex functions. With the strong prox-regularity, the stationary condition can be
reformulated as a single-valued residual mapping which is Lipschitz continuous on
the closed region. We present several classes of functions satisfying both the strong
prox-regularity condition, including weakly convex functions and indicator functions
of proximally smooth sets (including manifold constraints). In particular, two specific
sphere-related nonsmooth and nonconvex functions, which are not weakly convex
or indicator functions of a smooth manifold, are verified to satisfy the strong prox-
regularity.
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• As shown in Section 1.1, two sphere-related nonsmooth and nonconvex functions result
in composite optimization problems on manifolds. In this paper, we propose the first
second-order type method to solve this kind of problem, which outperforms state-of-
the-art first-order methods (Chen et al., 2020; Huang and Wei, 2021). It is worth
mentioning that first-order methods (Chen et al., 2020; Huang and Wei, 2021) fail in
solving the nonnegative PCA on the oblique manifold due to their dependence on the
Lipschitz continuity of the nonsmooth part.

• By introducing the strong prox-regularity condition and semismoothness, we design a
residual-based projected semismooth Newton method to solve the nonconvex compos-
ite optimization problem (1). To tackle the nonconvexity, we add an extra projection
on the usual semismooth Newton step and switch to the proximal gradient step if two
proposed inexact conditions are not satisfied. Compared with the Moreau-envelope
based approaches (Khanh et al., 2020, 2021), we decouple the composite structures and
design a second-order method by utilizing the second-order derivative of the smooth
part and the generalized Jacobian of the proximal operator of h.

• The global convergence of the proposed projected semismooth Newton method is pre-
sented. Other than the strong prox-regularity condition and the semismoothness, the
assumptions are standard and can be achieved by various applications including our
motivating examples. We prove the switching conditions are locally satisfied, which
allows the local transition to the projected semismooth Newton step. By assuming
the BD-regularity condition, we show the local superlinear convergence. Numerical
experiments on various applications demonstrate the efficiency over state-of-the-art
ones.

1.4 Notation

Given a matrix A, we use ‖A‖F to denote its Frobenius norm, ‖A‖1 :=
∑

ij |Aij | to
denote its `1 norm, and ‖A‖2 to denote its spectral norm. For a vector x, we use ‖x‖2 and
‖x‖1 to denote its Euclidean norm and `1 norm, respectively. The symbol B will denote
the closed unit ball in Rn, while B(x, ε) will stand for the closed ball of the radius of ε > 0
centered at x.

1.5 Organization

The outline of this paper is as follows. In Section 2, we present the preliminaries on
the subdifferential, concepts of stationarity, and semismoothness. Various nonconvex and
nonsmooth functions satisfying the strong prox-regularity and semismoothness are demon-
strated in Section 3. Then, we propose a projected semismooth Newton method in Section
4. The corresponding convergence analysis of the proposed method is provided in Section
5. We illustrate the efficiency of our proposed method by several numerical experiments in
Section 6. Finally, a brief conclusion is given in Section 7.
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2. Preliminaries

In this section, we first review some basic notations of subdifferential and give the
definition of the prox-regular function. We also introduce several concepts of stationarity
and present the definition of semismoothness.

2.1 Subdifferential and prox-regular functions

Let ϕ : Rn → (−∞,+∞] be a proper, lower semicontinuous, and extended real-valued
function. The domain of ϕ is defined as dom(ϕ) = {x ∈ Rn : ϕ(x) < +∞}. A vector v ∈ Rn
is said to be a Fréchet subgradient of ϕ at x ∈ dom(ϕ) if

lim inf
y→x,
y 6=x

ϕ(y)− ϕ(x)− 〈v, y − x〉
‖y − x‖2

≥ 0. (9)

The set of vectors v ∈ Rp satisfying (9) is called the Fréchet subdifferential of ϕ at x ∈
dom(ϕ) and denoted by ∂̂ϕ(x). The limiting subdifferential, or simply the subdifferential,
of ϕ at x ∈ dom(ϕ) is defined as

∂ϕ(x) =
{
v ∈ Rn : ∃xk → x, vk → v with ϕ

(
xk
)
→ ϕ(x), vk ∈ ∂̂ϕ

(
xk
)}

.

By convention, if x /∈ dom(ϕ), then ∂ϕ(x) = ∅. The domain of ∂ϕ is defined as dom(∂ϕ) =
{x ∈ Rn : ∂ϕ(x) 6= ∅} . For the indicator function δS : Rn → {0,+∞} associated with the
non-empty closed set S ⊆ Rn, we have

∂̂δS(x) =

{
v ∈ Rn : lim sup

y→x,y∈S

〈v, y − x〉
‖y − x‖2

≤ 0

}
and ∂δS(x) = NS(x)

for any x ∈ S, where NS(x) is the normal cone to S at x.
The function ϕ is prox-bounded (Rockafellar and Wets, 2009, Definition 1.23) if there

exists λ > 0 such that eλϕ(x) := infy{ϕ(y) + 1
2λ‖y − x‖

2
2} > −∞ for some x ∈ Rn. The

supremum of the set of all such λ is the threshold λϕ of prox-boundedness for ϕ. The
function ϕ is prox-regular (Rockafellar and Wets, 2009, Definition 13.27) at x̄ for v̄ if ϕ is
finite and locally lower semicontinuous at x̄ with v̄ ∈ ∂ϕ(x̄), and there exist ε > 0 and ρ ≥ 0
such that

ϕ(x′) ≥ ϕ(x) +
〈
v, x′ − x

〉
− ρ

2
‖x′ − x‖22, ∀x′ ∈ B(x̄, ε), (10)

when v ∈ ∂ϕ(x), ‖v− v̄‖2 < ε, ‖x− x̄‖2 < ε, ϕ(x) < ϕ(x̄) + ε. If the above inequality holds
for all v̄ ∈ ∂ϕ(x̄), ϕ is said to be prox-regular at x̄. Note that the inequality (10) holds
for all x′ ∈ dom(ϕ) and v ∈ ∂ϕ(x) with a uniform ρ if ϕ is weakly convex. It follows from
(Rockafellar and Wets, 2009, Exercise 13.35) that the summation of a smooth function and
a prox-regular function is prox-regular as well.

For prox-regular functions, we have the following fact.

Proposition 2 ((Rockafellar and Wets, 2009, Proposition 13.37), (Khanh et al., 2020,
Lemma 6.3)) Let ϕ : Rn → R̄ be proper, lower semicontinuous, and prox-bounded with
threshold λϕ. Suppose ϕ is finite and prox-regular at x̄ for v̄ ∈ ∂ϕ(x̄). Then for any
sufficiently small γ ∈ (0, λϕ), the proximal mapping proxγϕ is single-valued and Lipschitz
continuous around x̄+ γv̄ and satisfies the condition proxλϕ(x̄+ γv̄) = x̄.
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Our proposed prox-regularity condition is a stronger version of the well-known prox-
regularity condition in optimization theory. Specifically, our condition requires the proximal
operator to be single-valued and Lipschitz continuous for a closed region C with a uniform
γ. As shown later, the uniformity of γ plays a critical role in determining the lower bound
of step sizes in algorithmic design.

2.2 Concepts of stationarity and their relationship

There are two definitions of stationarities based on the subdifferential and the proximal
gradient iteration.

• Critical point: x is a critical point if

0 ∈ ∂ϕ(x) = ∇f(x) + ∂h(x). (11)

• Fixed point of the proximal mapping:

x ∈ proxth(x− t∇f(x)), (12)

where t > 0.

It follows from the definition of proxth that any point x satisfying (12) yields 0 ∈ ∇f(x) +
∂h(x), which implies x is also a critical point. Inversely, a critical point may not satisfy
(12) due to the nonconvexity of h. Therefore, equation (12) defines a stronger stationary
point than (11).

2.3 Semismoothness

By the Rademacher’s theorem, a locally Lipschitz operator is almost everywhere differ-
entiable. For a locally Lipschitz F , denote by DF the set of the differential points of F .
The B-subdifferential at x is defined as

∂BF (x) :=

{
lim
k→∞

J
(
xk
)
| xk ∈ DF , x

k → x

}
,

where J(x) represents the Jacobian of F at the differentiable point x. Obviously, ∂BF (x)
may not be a singleton. The Clarke subdifferential ∂CF (x) is defined as

∂CF (x) = conv (∂BF (x)) ,

where conv(A) represents the closed convex hull of A. A locally Lipschitz continuous oper-
ator F is called semismooth at x with respect to ∂BF (∂CF ) if

• F is directionally differentiable at x, i.e., for any direction d, the limit limt↓0
F (x+td)−F (x)

t
exists.

• For all d and J ∈ ∂BF (x+ d) (∂CF (x+ d)), it holds that

‖F (x+ d)− F (x)− Jd‖2 = o(‖d‖2), d→ 0.
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We say F is semismooth with respect to ∂BF (∂CF ) if F is semismooth for any x ∈ Rn with
respect to ∂BF (∂CF ). If f is twice continuously differentiable and proxth is single-valued,
Lipschitz continuous, and semismooth with respect to its B-subdifferential D(x), one can
follow (Chan and Sun, 2008, Lemma 1) to verify that if I − t∇2f(x) is nonsingular, the
operator F (x) := proxth(x− t∇f(x))− x is semismooth with respect to

M(x) := {I −D(I − t∇2f(x)) : D ∈ D(x)} (13)

by using the definition of semismoothness.

3. Semismooth and strongly prox-regular functions

Let us verify the semismoothness and the strongly prox-regularity condition for some
typical nonconvex nonsmooth functions h.

3.1 Weakly convex function

Following (Moreau, 1965), one can verify that the strong prox-regularity holds for ρ-
weakly convex functions if t ≤ 1/ρ. The semismoothness of the proximal operator of
a weakly convex function generally does not hold, which happens in the convex case as
well. While two popular nonconvex regularizers for reducing bias are the minimax concave
penalty (MCP) (Zhang, 2010) and the smoothly clipped absolute deviation (Fan, 1997), the
semismoothness is satisfied. Specifically, the MCP is defined as

hλ,θ(x) :=

{
λ|x| − x2

2θ , |x| ≤ θλ,
θλ2

2 , otherwise,

where λ and θ are two positive parameters. It is weakly convex with modulus ρ = θ−1. If
t < θ, the closed-form expression of the proximal operator is

proxth(x) =


0, |x| < tλ,
x−λt sign(x)

1−(t/θ) , tλ ≤ |x| ≤ θλ,
x, |x| > θλ.

The semismoothness property of the MCP regularizer is presented in (Shi et al., 2019).
Analogously, one can also verify the weak convexity of the SCAD regularizer and the semis-
moothness of its proximal operator. We refer to (Böhm and Wright, 2021) and (Shi et al.,
2019) for the details. Numerical results in (Shi et al., 2019) exhibit the efficiency of semis-
mooth Newton methods.

3.2 Smooth and compact embedded manifold

Since any smooth manifold is a proximally smooth set, there exists a neighborhood
X (r) of the form (2) such that the projection is single-valued and Lipschitz continuous
(Clarke et al., 1995, Theorem 4.8). On the other hand, the projection onto smooth and
compact embedded manifold is also a smooth mapping (Foote, 1984) on X (r). Putting
them together, we conclude that the indicator function is strongly prox-regular and the
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corresponding projection operator is smooth over X (r). For a special sphere-constrained
smooth optimization problem, the Bose-Einstein condensates, we will show the numerical
superiority of our proposed method using strong prox-regularity and semismoothness. For
general smooth optimization problems with orthogonal constraints, we refer the reader
to (Gawlik and Leok, 2017) for the calculations of the generalized Jacobian of the polar
decomposition.

3.3 Two specific oblique manifold related nonconvex functions

We shall show that the nonconvex and nonsmooth functions (4) and (6) satisfy the
strong prox-regularity and semismoothness.

Lemma 3 The functions h defined in both (4) and (6) are strongly prox-regular and their
proximal operators are semismooth with respect to their B-subdifferentials. Specifically,

(i) Let C1 = Ob(n, p), ‖V ‖2,∞ := maxi=1,2,...,p ‖Vi‖2, and γ1 = 1
(λ+1)n . The function

h(X) = λ‖X‖1+δOb(n,p)(X) is strongly prox-regular with respect to C1, γ1, and ‖·‖2,∞.
Moreover, the proximal mapping proxth is semismooth over the set D1 = {X + tV :
X ∈ C1, ‖V ‖2,∞ = 1, 0 ≤ t ≤ γ1} with repsect to ∂Bproxth.

(ii) Let C2 = Ob+(n, p) and 0 < γ2 < 1. The function h(X) = δOb+(n,p)(X) is strongly
prox-regular with respect to C2, γ2, and ‖ · ‖2,∞. Moreover, the proximal mapping
proxth is semismooth over the set D2 = {X + tV : X ∈ C2, ‖V ‖2,∞ = 1, 0 ≤ t ≤ γ2}
with repsect to ∂Bproxth.

Proof Let us prove (i) and (ii), respectively.

(i) Note that for any vector x ∈ Rn with ‖x‖2 = 1, ‖x‖∞ ≥ 1/
√
n. Following from the

definition of the proximal mapping (4), we have for t ≤ γ1, the proximal mapping
proxth is single-valued and Lipschitz continuous over D1.

Since the proximal mapping (4) is separable with respect to the columns in X, its
semismoothness property can be reduced to the case of p = 1. Note that the non-
differential points of proxth are in the set A := {x ∈ Rn : ∃i, |xi| = λt}. At a
nondifferentiable point x ∈ A, let d ∈ Rn be a direction. Without loss of generality,
assume xi = tλ and |xj | 6= tλ for all j 6= i. If di > 0, we have ∂Bproxth(x + d) =
diag(1w̃<0)
‖w̃−‖2 − w̃−(w̃−)>

‖w̃−‖32
=: J(x + d), with w̃− = min(λt − |x + d|, 0) � sign(x). De-

fine d̃j = dj if j 6= i and 0 otherwise. Note that proxth(x + d) = proxth(x + d̃),
J(x+ d) = J(x+ d̃) and J(x+ d)d = J(x+ d̃)d̃. Thus,

‖proxth(x+ d)− proxth(x)− J(x+ d)d‖2
=‖proxth(x+ d̃)− proxth(x)− J(x+ d̃)d̃‖2
=o(‖d̃‖2) = o(‖d‖2).

One can draw a similar conclusion for the case di < 0. Combining them together, we
conclude that proxth is semismooth.

10
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(ii) It follows from the definition of the proximal mapping (6) that proxth(X) is single-
valued and Lipschitz continuous over D2. Analogous to the case above, one can prove
the semismooth property of proxth.

The strong prox-regularity and semismoothness established in the above lemma allow us
to design efficient second-order methods for solving the applications in Subsection 1.1.
Corresponding numerical experiments will be conducted in Section 6.

4. A projected Semismooth Newton method

To solve (1), the proximal gradient method is

xk+1 ∈ arg min
x

〈
∇f(xk), x− xk

〉
+

1

2tk
‖x− xk‖22 + h(x) = proxtkh(xk − tk∇f(xk)), (14)

where tk > 0 is the step size depending on the Lipschitz constant of ∇f . Since h is
nonconvex, proxtkh is usually a set-valued mapping. To accelerate (14), the author (Yang,
2017) investigates the techniques of extrapolation and nonmonotone line search.

If h is strongly prox-regular with respect to C ⊃ dom(h), γ, and ‖ · ‖, then proxth(xk −
t∇f(xk)) is single-valued and Lipschitz continuous (SL) whenever ‖t∇f(xk)‖ ≤ γ and xk

belongs to the closed set C. To ensure the compactness of the sequence {xk}, one usually
investigates the coercive property and the descent property of ϕ. Specifically, any level
set {x : ϕ(x) ≤ α} with α ∈ R is compact for a coercive ϕ. If the sequence {ϕ(xk)} is
decreasing, {xk} ⊂ {x : ϕ(x) ≤ ϕ(x0)} is a compact set. Moreover, the norm ‖∇f(x)‖ is
upper bounded by a finite constant L > 0 over {x : ϕ(x) ≤ ϕ(x0)} due to the smoothness.
The proximal operator proxth is SL if t ≤ γ

L . For this choice of t, we are able to design a
second-order method to solve the fixed point equation:

0 = F (x) := x− proxth(x− t∇f(x)), (15)

where t is set as min{γ, 1}/L. It follows the SL property of proxth and twice continuous
differentiability of f that F is single-valued, Lipschitz continuous, and semismooth.

In what follows, we assume that proxth is semismooth with respect to its B-subdifferential.
Then, F is semismooth with respect to M(x). This allows us to design a semismooth New-
ton method for solving (1). One typical benefit of second-order methods is the superlinear
or faster local convergence rate. Specifically, we first solve the linear system

(Mk + µkI)dk = −F (xk), (16)

where Mk ∈ M(xk) defined by (13) is a generalized Jacobian and µk = κ‖F (xk)‖2 with
a positive constant κ. Note that the shift term µkI can be used to promote the positive
definiteness of the coefficient matrix of (16), particularly in the convex setting (Xiao et al.,
2018; Li et al., 2018b). The semismooth Newton step is then defined as

zk = Pdom(h)(x
k + dk), (17)

where the projection onto dom(h) is necessary for the globalization due to the nonconvexity
of h. We remark that the strong prox-regularity in Definition 1 is crucial for the design

11
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of semismooth Newton methods. For a general prox-regular function h, we know from
Proposition 2 that for v ∈ ∂h(x), the proximal operator proxth is a singleton and Lipschitz
continuous around x+ tv for sufficiently small t. Since ∇f(x) could be far away from ∂h(x),
the proximal operator proxth(x − t∇f(x)) may not be a singleton. On the other hand, a
uniform t for all iterates may not exist. This non-singleton property causes difficulty in
designing second-order methods.

Note that the pure semismooth Newton step is generally not guaranteed to converge
from arbitrary starting points. For globalization, we switch to the proximal gradient step
when the semismooth Newton step does not decrease the norm of the residual (15) or
increases the objective function value to a certain amount. To be specific, the Newton step
zk is accepted if the following conditions are simultaneously satisfied:

‖F (zk)‖2 ≤ νρk, (18)

ϕ(zk) ≤ ϕ(xk) + ηρ1−q
k ‖F (zk)‖q2, (19)

where ρk is the norm of the residual of the last accepted Newton iterate until k with an
initialization ρ0 > 0, η > 0, and ν, q ∈ (0, 1). Otherwise, the semismooth Newton step zk

fails, and we do a proximal gradient step, i.e.,

xk+1 = proxth(xk − t∇f(xk)) = xk − F (xk). (20)

Due to the choice of t = min{γ, 1}/L, we will show in the next section that there is a
sufficient decrease in the objective function value ϕ(xk+1). Under the BD-regularity con-
dition (Any element of ∂BF (x∗) at the stationary point x∗ is nonsingular (Qi, 1993; Pang
and Qi, 1993)), we show in the next section that the semismooth Newton steps will always
be accepted when the iterates are close to the optimal solution. The proposed switching
between the Newton step and the proximal gradient step ensures that its theoretical con-
vergence is independent of the specific value chosen for κ > 0 in (16). However, selecting an
appropriate κ is beneficial for achieving satisfactory numerical performance. The detailed
algorithm is presented in Algorithm 1.

Algorithm 1 A projected semismooth Newton method for solving (1)

Input: The constants L > 0, γ > 0, ν ∈ (0, 1), q ∈ (0, 1), η > 0, ρ0 > 0, κ > 0, and an
initial point x0 ∈ Rn, set k = 0.

1: while the condition is not met do
2: Calculate the semismooth Newton direction dk by solving the linear equation

(M(xk) + µkI)dk = −F (xk).

3: Set zk = Pdom(h)(x
k+dk). If the conditions (18) and (19) are satisfied, set xk+1 = zk.

Otherwise, set xk+1 = xk − F (xk).
4: Set k = k + 1.
5: end while

12
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5. Convergence analysis

In this section, we will present the convergence properties of the proposed projected
semismooth Newton method, i.e., Algorithm 1. It consists of two parts, the global conver-
gence to a stationary point from any starting point and the local superlinear convergence.

5.1 Global convergence

First of all, we introduce the following assumptions.

Assumption 4 For problem (1), we assume

• the function f is twice continuously differentiable, its gradient ∇f is Lipschitz con-
tinuous with modulus L > 0.

• the function h is strongly prox-regular with respect to C and γ.

• the function ϕ is bounded from below and coercive.

With the above assumption, the proximal gradient step (20) leads to a sufficient decrease
on ϕ.

Lemma 5 Suppose that Assumption 4 holds. Then for any tk ∈ (0, 1
L ] we have

ϕ(xk)− ϕ(xk+1) ≥
(

1

2tk
− L

2

)
‖xk+1 − xk‖22. (21)

Proof It follows from the optimality of xk+1 that〈
∇f(xk), xk+1 − xk

〉
+

1

2tk
‖xk+1 − xk‖22 + h(xk+1) ≤ h(xk).

By Assumption 4 and tk ∈ (0, 1
L), we have

f(xk+1) + h(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖22 + h(xk+1)

≤ f(xk) + h(xk) +

(
L

2
− 1

2tk

)
‖xk+1 − xk‖22.

The proof is completed.

From the above lemma, the convergence of the proximal gradient method for solving (1)
can be obtained by the coercive property of ϕ. When the projected semismooth Newton
update zk is accepted, the function value ϕ(zk) may increase while the residual decreases
as guaranteed by (18) and (19). This allows us to show global convergence.

Theorem 6 Let {xk} be the iterates generated by Algorithm 1. Suppose that Assumption
4 holds. Let tk ≡ t ∈ (0,min(γ, 1)/L], Then we have

lim
k→∞

‖F (xk)‖2 = 0.

13
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Proof If xk+1 is obtained by the proximal gradient update, it holds from Lemma 5 that

ϕ(xk)− ϕ(xk+1) ≥
(

1

2t
− L

2

)
‖F (xk)‖22. (22)

It follows the Lipschitz properties of proxth and ∇f(x) that F is Lipschitz continuous. Let
LF be the Lipschitz constant of F . From the triangle inequality, we have

‖F (xk+1)‖2 ≤ ‖F (xk)‖2 + ‖F (xk+1)− F (xk)‖2 ≤ (LF + 1)‖F (xk)‖2.

Plugging the above inequality into (22) leads to

ϕ(xk)− ϕ(xk+1) ≥ c1‖F (xk+1)‖22, (23)

where c1 :=
(

1
2t −

L
2

)
1

(LF +1)2
> 0.

If the Newton update zk is accepted, the conditions (18) and (19) imply that

ϕ(xk)− ϕ(xk+1) ≥ −ηρ1−q
k ‖F (xk+1)‖q2

= c1‖F (xk+1)‖22 − (c1‖F (xk+1)‖2−q2 + ηρ1−q
k )‖F (xk+1)‖q2

and ρk+1 = ‖F (xk+1)‖2 ≤ νρk. Since ρk ∈ (0, ρ0) for all k, c1‖F (xk+1)‖2−q2 + ηρ1−q
k is

bounded by a constant, denoted by c2. Hence, for the projected semismooth Newton step,
it holds

ϕ(xk)− ϕ(xk+1) ≥ c1‖F (xk+1)‖22 − c2ρ
q
k+1. (24)

Combining (23) and (24), we have

ϕ(x0)− ϕ(xK+1) =
K∑
i=1

(ϕ(xk)− ϕ(xk+1)) ≥ c1

K∑
k=0

‖F (xk+1)‖22 − c2

∑
k∈KN

ρqk+1,

whereKN ⊂ {1, 2, . . . ,K+1} consists of the indices where the projected semismooth Newton

updates are accepted. It is easy to see that
∑

k∈KN
ρqk+1 ≤ ρq0

∑K+1
k=1 νqk =

ρq0(1−νq(K+1))
1−ν ≤

ρq0
1−νq . Therefore,

c1

K∑
k=0

‖F (xk+1)‖22 ≤ ϕ(x0)− ϕ(xK+1) +
c2ρ

p
0

1− νp
.

Since ϕ is bounded from below, we have

∞∑
k=0

‖F (xk)‖22 <∞,

which implies that limk→∞ ‖F (xk)‖2 = 0. We complete the proof.
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5.2 Local superlinear convergence

The local superlinear convergence of the semismooth Newton update has been studied
in (Qi and Sun, 1993, 1999; Xiao et al., 2018). The difficulties in our case lie in the extra
nonconvex projection operator Pdom(h) and the switching conditions (18) and (19). We
make the following assumptions.

Assumption 7 Let {xk} be the iterates generated by Algorithm 1.

(A1) The iterate xk converges to x∗ with F (x∗) = 0, as k →∞.

(A2) The Hessian ∇2f is continuous around x∗.

(A3) The mapping F is semismooth at x∗ with respect to M(x). In addition, there ex-
ists C > 0 such that each element M ∈ M(x∗) defined by (13) is nonsingular with
‖M−1‖2 ≤ C.

(A4) The function ϕ is Lipschitz continuous over dom(h) with modulus Lϕ, i.e., for all
x, y ∈ dom(h),

|ϕ(x)− ϕ(y)| ≤ Lϕ‖x− y‖2.

Since the convergence of {‖F (xk)‖2} is proved in Theorem 6, any accumulation point
of {xk} has zero residual. The Assumption (A1) reads that the full sequence {xk} is
convergent. The Assumption (A2) holds for any twice continuously differentiable f . The
Assumption (A3) is the standard BD-regularity condition used in (Qi, 1993; Pang and Qi,
1993; Milzarek and Ulbrich, 2014; Xiao et al., 2018).

For the projection operator Pdom(h) in Algorithm 1, we prove the following bounded
property, which has also been used in the convergence rate analysis for the generalized
power method for the group synchronization problems (Liu et al., 2017b, Lemma 1) (Liu
et al., 2017a, Proposition 3.3) (Liu et al., 2020, Lemma 2).

Proposition 8 For all x ∈ Rn and y ∈ dom(h), it holds ‖Pdom(h)(x)− y‖2 ≤ 2‖x− y‖2.

Proof Following the definition of Pdom(h), we have

‖Pdom(h)(x)− y‖2 ≤ ‖Pdom(h)(x)− x‖2 + ‖x− y‖2 ≤ 2‖x− y‖2.

The following lemma shows that the switching conditions (18) and (19) are satisfied by
the projected semismooth Newton update when k is large enough.

Lemma 9 Let {xk} be the iterates generated by Algorithm 1. Suppose that Assumptions 4
and 7 hold. Then for sufficiently large k, the Newton update zk is always accepted.

Proof Let us first define a constant γF ∈
(

0,min

{
1

8C ,
ν

32C2LF
, η

1
1−q

32C2(Lϕ3qCq)
1

1−q

})
, where

C, ν, η, q, LF , Lϕ are defined previously. It follows from (Qi, 1993, Lemma 2.6) and (A3)
that there exists ε > 0 such that for any x ∈ B(x∗, ε) and M ∈M(x),

‖F (x)−F (x∗)− (M + κ‖F (x)‖2I)(x− x∗)‖2 ≤ γF ‖x− x∗‖2, ‖(M + κ‖F (x)‖I)−1‖2 ≤ 2C.
(25)
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For the projected semismooth Newton update zk = Pdom(h)(x
k − (Mk + µkI)−1F (xk)), it

hold that

‖zk − x∗‖2 = ‖Pdom(h)(x
k − (Mk + µkI)−1F (xk))− x∗‖2

≤ 2‖(Mk + µkI)−1(F (xk)− F (x∗)− (Mk + µkI)(xk − x∗))‖2
≤ 4γFC‖xk − x∗‖2,

(26)

where we assume xk ∈ B(x∗, ε). Due to the choice of γF , we have zk ∈ B(x∗, ε). Note that

‖xk − x∗‖2 ≤ ‖zk − x∗‖2 + ‖zk − xk‖2 ≤ 4γFC‖xk − x∗‖2 + 4C‖F (xk)‖2. (27)

Then

‖xk − x∗‖2 ≤
4C

1− 4γFC
‖F (xk)‖2. (28)

Combining (26) and (28) implies

‖zk − x∗‖2 ≤
16γFC

2

1− 4γFC
‖F (xk)‖2. (29)

Hence,

‖F (zk)‖2 = ‖F (zk)− F (x∗)‖2 ≤ LF ‖zk − x∗‖2 ≤
16γFC

2LF
1− 4γFC

‖F (xk)‖2 ≤ ν‖F (xk)‖2. (30)

In addition, note that

‖zk − x∗‖2 = ‖(Mk + µkI)−1
(
F (zk)− F (x∗)− (Mk + µkI)(zk − x∗)− F (zk)

)
‖2

≤ 2γFC‖zk − x∗‖2 + 2C‖F (zk)‖2.

This gives

‖zk − x∗‖2 ≤
2C

1− 2γFC
‖F (zk)‖2. (31)

The changes between ϕ(zk) and ϕ(xk) can be estimated by

ϕ(zk)− ϕ(xk) ≤ ϕ(zk)− ϕ(x∗) ≤ Lϕ‖zk − x∗‖2
= Lϕ‖zk − x∗‖1−q2 ‖zk − x∗‖q2

≤ Lϕ
(

16γFC
2

1− 4γFC

)1−q (
2C

1− 2γFC

)q
‖F (xk)‖1−q2 ‖F (zk)‖q2

≤ η‖F (xk)‖1−q2 ‖F (zk)‖q2.

(32)

Due to the convergence of residual, for any proximal gradient step index k0, there always
exists a k > k0 such that ‖F (xk)‖2 ≤ ρk. Then all followed iterates are projected semis-
mooth Newton steps because of (30) and (32). This completes the proof.

The above lemma establishes the local transition to the projected semismooth Newton
step. Utilizing the semismoothness, we have the locally superlinear convergence on the
iterates generated by Algorithm 1.

16



A Projected SSN for Nonconvex and Nonsmooth Programs

Theorem 10 Let {xk} be the iterates generated by Algorithm 1. Suppose that Assumptions
4 and 7 hold. Then there exists a finite K > 0, such that for all k ≥ K, {xk} converges to
x∗ Q-superlinearly.

Proof From Lemma 9, there exists a K such that the projected semismooth Newton
update is accepted for k ≥ K. It follows from the semismoothness of F that

‖xk+1 − xk‖2 = ‖Pdom(h)(x
k − (Mk + µkI)−1F (xk))− x∗‖2

≤ 4C‖F (xk)− F (x∗)− (Mk + µkI)(xk − x∗)‖2
= o(‖xk − x∗‖2),

where we use µk = κ‖F (xk)‖2 and F (xk)→ 0 (i.e., (A1)) for the last equality. This means
{xk} converges to x∗ Q-superlinearly.

6. Numerical experiments

In this section, some numerical experiments are presented to evaluate the performance
of our proposed Algorithm 1, denoted by ProxSSN. We compare ProxSSN with the existing
methods including AManPG and ARPG (Huang and Wei, 2021). We also test the proximal
gradient descent method (ProxGD for short) as in (14). Here, a nonmonotone line search
with Barzilai–Borwein (BB) step size (Barzilai and Borwein, 1988) is used for acceleration.
Let sk = xk − xk−1 and yk = ∇f(xk)−∇f(xk−1). The BB step sizes are defined as

β1
k =

〈
sk, sk

〉
| 〈sk, yk〉 |

, and β2
k =
|
〈
sk, yk

〉
|

〈yk, yk〉
. (33)

Given %, δ ∈ (0, 1), the nonmonotone Armijo line search is to find the smallest nonnegative
integer ` satisfying

ϕ(proxtk(`)h(xk − tk(`)∇f(xk))) ≤ Ck +
%

2tk(`)
‖proxtk(`)h(xk − tk(`)∇f(xk))− xk‖22. (34)

Here, tk(`) := βkδ
`, βk is set to β1

k and β2
k alternatively, and the reference value Ck is

calculated via Ck = ($Qk−1Ck−1+ϕ(xk))/Qk where $ ∈ [0, 1], C0 = ϕ(x0), Qk = $Qk−1+
1 and Q0 = 1. Once ` is obtained, we set tk = βkδ

` and the next iterate is then given by
xk+1 = proxtkh(xk − tk∇f(xk)).

The reasons of not using ManPG (Chen et al., 2020), RPG (Huang and Wei, 2021)
or the algorithms proposed in (Lai and Osher, 2014; Kovnatsky et al., 2016) is that their
performance can not measure up with AManPG or ARPG in tests of (Huang and Wei,
2021). For ARPG and AManPG, we use the code provided by (Huang and Wei, 2021).
The codes were written in MATLAB and run on a standard PC with 3.00 GHz AMD R5
microprocessor and 16GB of memory. The reported time is wall-clock time in seconds.

. all codes are available at https://www.math.fsu.edu/~whuang2/files/RPG_v0.2.zip
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6.1 Sparse principal component analysis

In this subsection, we consider the sparse PCA problem (3), which can be regarded as a
nonsmooth problem on the oblique manifold. Let f(X) := ‖XTATAX −D2‖2F . AManPG
solves the following subproblem in each iteration:

ηXk = arg min
η∈T

XkOb(n,p)

〈
gradf(Xk), η

〉
+
L̃

2
‖η‖2F + λ‖Xk + η‖1,

where L̃ > L with L being the Lipschitz constant of f , gradf(Xk) denotes the Riemannian
gradient of f at Xk, and TXOb(n, p) is the tangent space to Ob(n, p) at X. We refer to
(Chen et al., 2020) for more details. In the k-th iteration of ARPG, one needs to solve the
subproblem:

ηXk = arg min
η∈T

XkOb(n,p)

〈
gradf(Xk), η

〉
+
L̃

2
‖η‖2F + λ‖RXk(η)‖1,

where R denotes a retraction operator on Ob(n, p). The termination condition of both
AManPG and ARPG is as follows:

‖L̃ηXk‖2F ≤ tol, (35)

where tol > 0 is a given tolorance. The ProxGD and ProxSSN methods are applied to
solve problem (3) by setting f(X) := ‖XTATAX − D2‖2F , h(X) = λ‖X‖1 + δOb(n,p)(X).
ProxGD has the following update rule

Xk+1 = proxtkh(Xk − tk∇f(Xk)).

The following relative KKT condition is set as a stopping criterion for our algorithm and
ProxGD:

err :=

∥∥Xk − proxtkh(Xk − tk∇f(Xk))
∥∥
F

tk(1 + ‖Xk‖F )
≤ tol. (36)

Note that tk is fixed in ProxSSN. Based on Lemma 3, we can calculate the proximal mapping
and its generalized Jacobian in our ProxSSN at a low cost.

Implementation details The parameters of AManPG and ARPG are set the same
as in (Huang and Wei, 2021). For ProxSSN, we set q = 20, ν = 0.9999, η = 10−6, t =
1/λmax(ATA), and the initial value κ = 1. The maximum number of iterations is 10000.
The starting point of all algorithms is the leading p right singular vectors of the matrix A.
Due to the evaluation criterion being different for different algorithms, we first run ARPG
when (35) is satisfied with tol = 10−10 × n × p or the number of iterations exceeds 10000,
and denote FARPG as the obtained objective value. The other algorithms are terminated
when the objective value satisfies F (Xk) ≤ FARPG + 10−6 or (35) (or (36)) is satisfied with
tol = 10−10 × n× p, or the number of iterations exceeds 10000.

In our experiments, the data matrix A ∈ Rm×n is produced by MATLAB function
randn(m,n), in which all entries of A follow the standard Gaussian distribution. Next, we
shift the columns of A such that they have zero-mean, and normalize the resulting matrix
by its spectral norm.
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6.1.1 Numerical results

In Figure 1, we present the trajectories of the objective function values with respect
to the wall-clock time for the cases of n = 300 and n = 400, where ϕmin is the minimum
objective value of all algorithms in the iterative process. It can be seen that our proposed
ProxSSN converges fastest among all algorithms. AManPG and ARPG have comparable
performances. Figures 2 and 3 shows the performance of all algorithms under different n, p.
We see that all algorithms have similar objective values, but the consuming time of ProxSSN
is the least. We present the wall-clock time in the column “time” and the objective function
value in the column “obj” in Table 1 for different combinations of m,n, p, where similar
conclusions can be drawn. It should be noted that computational time for larger values of
n or p may decrease as the stopping criterion, defined by tol = 10−10 × n × p, varies with
n and p.

0 1 2 3 4

time elapsed (sec)

10-15

10-10

10-5

ProxSSN

ProxGD

AManPG

ARPG

0 2 4 6 8

time elapsed (sec)

10-15

10-10

10-5

100

ProxSSN

ProxGD

AManPG

ARPG

Figure 1: The trajectories of the objective function values with respect to the wall-clock
time on the sparse PCA problem (3) with p = 10, λ = 0.01. Left: n = 300; right:
n = 400

We also compare the accuracy and efficiency of ProxSSN with other algorithms using
the performance profiling method proposed in (Dolan and Moré, 2002). Let ti,s be some
performance quantity (e.g. the wall-clock time or the gap between the obtained objective
function value and ϕmin, lower is better) associated with the s-th solver on problem i. Then,
one computes the ratio ri,s as ti,s over the smallest value obtained by ns solvers on problem

i, i.e., ri,s :=
ti,s

min{ti,s:1≤s≤ns} . For τ > 0, the value

πs(τ) :=
number of problems where log2(ri,s) ≤ τ

total number of problems

indicates that solver s is within a factor 2τ ≥ 1 of the performance obtained by the best
solver. Then the performance plot is a curve πs(τ) for each solver s as a function of τ .
In Figure 4, we show the performance profiles of the criterion, the wall-clock time and the
gap in the objective function values. In particular, the intercept point of the axis “ratio of
problems” and the curve in each subfigure is the percentage of the faster one among the
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Figure 2: Comparisons of wall-clock time and the objective function values on the sparse
PCA problem (3) with p = 20, λ = 0.01 for different n.

four solvers. These figures show that both the wall-clock time and the gap in the objective
function values of ProxSSN are much better than other algorithms on most problems.
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Figure 3: Comparisons of wall-clock time and the objective function values on the sparse
PCA problem (3) with n = 512, λ = 0.01 for different p.

Table 1: Computational results of oblique SPCA

(m,n, p)
ProxSSN ProxGD AManPG ARPG

time obj time obj time obj time obj

100 / 500 / 10 1.58 1.28380 13.59 1.28380 1.99 1.28380 1.75 1.28380

100 / 500 / 15 1.16 1.85986 7.05 1.85986 1.82 1.85986 1.696 1.85986

100 / 500 / 20 1.71 2.44963 16.59 2.44963 3.40 2.44963 2.96 2.44963

100 / 500 / 25 2.36 3.00555 15.66 3.00555 4.05 3.00555 3.97 3.00555

100 / 500 / 30 0.84 3.58139 12.15 3.58139 3.21 3.58139 3.16 3.58139

100 / 600 / 10 0.40 1.39524 2.47 1.39524 0.53 1.39524 0.62 1.39524

100 / 600 / 15 0.19 2.04237 1.45 2.04237 0.51 2.04237 0.48 2.04237
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(m,n, p)
ProxSSN ProxGD AManPG ARPG

time obj time obj time obj time obj

100 / 600 / 20 5.98 2.68717 28.37 2.68875 7.53 2.68717 9.03 2.68717

100 / 600 / 25 0.34 3.31583 2.96 3.31583 1.27 3.31583 1.11 3.31583

100 / 600 / 30 2.47 3.93575 35.16 3.93579 9.68 3.93580 10.49 3.93580

100 / 700 / 10 1.50 1.50657 8.51 1.50657 1.65 1.50657 1.68 1.50657

100 / 700 / 15 0.60 2.21769 2.61 2.21769 0.80 2.21769 0.84 2.21769

100 / 700 / 20 2.02 2.92664 19.00 2.92664 3.42 2.92664 3.20 2.92664

100 / 700 / 25 2.22 3.59936 21.64 3.59936 5.04 3.59936 4.55 3.59936

100 / 700 / 30 2.44 4.23529 42.76 4.23540 6.04 4.23529 5.07 4.23529

100 / 800 / 10 0.27 1.60610 1.64 1.60610 0.45 1.60610 0.53 1.60610

100 / 800 / 15 0.46 2.36806 4.67 2.36806 0.87 2.36806 0.91 2.36806

100 / 800 / 20 1.64 3.09902 16.86 3.09902 3.89 3.09902 4.03 3.09902

100 / 800 / 25 1.38 3.82806 19.20 3.82806 4.08 3.82806 3.98 3.82806

100 / 800 / 30 5.77 4.55643 41.61 4.55681 13.49 4.55644 12.97 4.55644

100 / 900 / 10 0.76 1.71069 4.21 1.71069 0.80 1.71069 0.90 1.71069

100 / 900 / 15 0.28 2.51949 2.68 2.51949 0.93 2.51949 0.88 2.51949

100 / 900 / 20 1.44 3.28293 10.74 3.28294 2.63 3.28294 2.50 3.28294

100 / 900 / 25 1.66 4.09218 22.07 4.09218 6.50 4.09218 6.23 4.09218

100 / 900 / 30 3.70 4.81562 38.57 4.81896 13.25 4.81563 13.80 4.81563

100 / 1000 / 10 1.42 1.80718 10.43 1.80718 1.81 1.80718 1.69 1.80718

100 / 1000 / 15 2.38 2.64274 19.57 2.64274 3.65 2.64274 3.45 2.64274

100 / 1000 / 20 0.55 3.47447 6.46 3.47447 1.92 3.47447 1.94 3.47447

100 / 1000 / 25 2.23 4.25629 29.63 4.25629 6.83 4.25629 6.84 4.25629

100 / 1000 / 30 5.37 5.08015 44.92 5.08103 17.01 5.08015 15.79 5.08015

6.2 Sparse least square regression

In this subsection, we consider the sparse least-square problem (8), which can be re-
garded as a nonsmooth problem on the oblique manifold. We test the same algorithms as in
subsection 6.1 for the comparisons. All parameters and strategies follow the setup discussed
in the last subsection except tol = 10−10nm. The numerical results are presented in Figures
5-7. In general, the overall performance of different methods is similar to the results shown
in the last subsection. It is clear that ProxSSN is the fastest method for solving problem
(8), both in terms of the objective function value and the wall-clock time. Table 2 shows
the detailed results for different combinations of m,n. We see that ProxSSN compares
favorably with the other algorithms and outperforms the first-order algorithm ProxGD.

Table 2: Computational results of least square regression

(m,n)
ProxSSN ProxGD AManPG ARPG

time obj time obj time obj time obj

20 / 3000 0.04 3.43796e-02 2.92 3.43839e-02 0.07 3.43799e-02 0.07 3.43798e-02

20 / 3200 0.18 3.39873e-02 1.07 3.39886e-02 0.08 3.39886e-02 0.09 3.39885e-02

20 / 3400 0.11 3.23110e-02 5.61 3.23240e-02 0.26 3.23123e-02 0.29 3.23122e-02

20 / 3600 0.17 3.17896e-02 5.18 3.20365e-02 0.24 3.20365e-02 0.27 3.20364e-02

20 / 3800 0.05 3.43032e-02 5.94 3.43061e-02 0.24 3.43048e-02 0.27 3.43047e-02

20 / 4000 0.09 3.44652e-02 6.07 3.54900e-02 0.36 3.44664e-02 0.42 3.44663e-02

20 / 4200 0.21 3.60764e-02 6.34 3.67852e-02 0.43 3.60786e-02 0.50 3.60785e-02

20 / 4400 0.11 3.36402e-02 6.49 3.68569e-02 0.60 3.36402e-02 0.80 3.36402e-02

20 / 4600 0.13 3.39844e-02 6.59 3.71441e-02 0.92 3.35500e-02 1.32 3.35500e-02

20 / 4800 0.16 3.40047e-02 6.90 3.40144e-02 0.34 3.40059e-02 0.42 3.40058e-02
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(m,n)
ProxSSN ProxGD AManPG ARPG

time obj time obj time obj time obj

20 / 5000 0.06 3.32278e-02 6.90 3.54494e-02 0.86 3.32286e-02 1.22 3.32285e-02

30 / 3000 0.05 3.73733e-02 3.28 3.85623e-02 0.18 3.73735e-02 0.18 3.73734e-02

30 / 3200 0.05 3.46184e-02 5.82 3.51461e-02 0.28 3.46273e-02 0.31 3.46273e-02

30 / 3400 0.08 3.57899e-02 2.21 3.59235e-02 0.14 3.59235e-02 0.15 3.59234e-02

30 / 3600 0.17 3.73116e-02 3.56 3.73122e-02 0.17 3.73122e-02 0.20 3.73121e-02

30 / 3800 0.14 3.76258e-02 6.57 3.90207e-02 0.63 3.76263e-02 0.83 3.76263e-02

30 / 4000 0.03 4.06294e-02 6.83 4.08145e-02 0.31 4.08106e-02 0.37 4.08105e-02

30 / 4200 0.08 3.96908e-02 6.98 4.07081e-02 0.40 3.96931e-02 0.48 3.96930e-02

30 / 4400 0.03 3.95462e-02 7.57 3.95534e-02 0.27 3.95500e-02 0.30 3.95500e-02

30 / 4600 0.10 3.55181e-02 5.54 3.55193e-02 0.20 3.55193e-02 0.22 3.55192e-02

30 / 4800 0.11 3.85425e-02 7.67 3.92473e-02 0.59 3.85426e-02 0.81 3.85425e-02

30 / 5000 0.14 3.95414e-02 8.00 4.16688e-02 0.77 3.95439e-02 1.15 3.95438e-02

50 / 3000 0.05 4.14906e-02 4.46 4.16952e-02 0.23 4.14908e-02 0.24 4.14907e-02

50 / 3200 0.03 4.08372e-02 2.60 4.08408e-02 0.17 4.08407e-02 0.18 4.08407e-02

50 / 3400 0.12 4.53565e-02 5.64 4.58502e-02 0.18 4.58502e-02 0.19 4.58501e-02

50 / 3600 0.05 4.52462e-02 8.17 4.57722e-02 0.35 4.52464e-02 0.43 4.52463e-02

50 / 3800 0.06 4.12851e-02 3.47 4.12852e-02 0.19 4.12852e-02 0.23 4.12851e-02

50 / 4000 0.08 4.44167e-02 10.12 4.40984e-02 0.82 4.40979e-02 0.40 4.40983e-02

50 / 4200 0.23 4.16107e-02 10.48 4.16618e-02 0.60 4.16623e-02 1.26 4.16622e-02

50 / 4400 0.13 4.37490e-02 13.72 4.37491e-02 0.62 4.37491e-02 1.13 4.37490e-02

50 / 4600 0.07 4.41428e-02 3.45 4.41463e-02 0.31 4.41463e-02 0.42 4.41462e-02

50 / 4800 0.44 4.40181e-02 13.08 4.49775e-02 0.96 4.40813e-02 1.51 4.40812e-02

50 / 5000 0.18 4.02113e-02 13.16 4.38594e-02 0.91 4.05313e-02 1.35 4.05312e-02

6.3 Nonnegative principal component analysis

In this subsection, we consider the nonnegative PCA model (5) on the oblique manifold.
All parameters of our algorithm are the same as those in subsection 6.1. Since AManPG and
ARPG cannot achieve our requirement for accuracy in most testing cases, we omit them in
this experiment. The possible reason is that the convergence of AManPG and ARPG relies
on the Lipschitz continuity of the nonsmooth part, while it is not the case for the indicator
function of δX≥0. Hence, we only compare our algorithm with ProxGD. The comparisons
are illustrated in Figures 8 and 9 and Table 3 for the computational results. Those results
show that ProxSSN achieves better results and converges much faster to highly accurate
solutions compared with ProxGD.

Table 3: Computational results of the nonnegative PCA problem (5).

(n, p)
ProxSSN ProxGD

time obj err iter time obj err iter

500 / 10 0.35 1.166866 1.23e-7 66 (9.2) 2.46 1.166866 2.93e-5 2840

500 / 15 0.22 1.619850 6.55e-7 33 (9.5) 1.96 1.619850 2.60e-5 1838

500 / 20 0.53 1.942255 8.52e-7 64 (9.8) 4.60 1.942255 2.29e-5 3413

500 / 25 0.72 2.300220 7.04e-7 73 (9.8) 10.42 2.300220 1.70e-5 7317

500 / 30 0.89 2.523960 6.56e-7 83 (9.9) 15.41 2.523999 2.69e-4 10000

500 / 5 0.04 0.592243 8.56e-8 13 (8.8) 0.13 0.592244 4.83e-5 189

600 / 10 0.12 1.223420 5.71e-7 20 (9.4) 1.32 1.223420 2.57e-5 1362

600 / 15 0.34 1.894680 3.86e-7 47 (9.7) 5.43 1.894680 2.44e-5 4455

600 / 20 1.23 2.261036 1.19e-6 130 (9.6) 13.43 2.261036 1.63e-5 9617
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(n, p)
ProxSSN ProxGD

time obj err iter time obj err iter

600 / 25 0.90 2.238704 9.12e-7 91 (9.8) 14.71 2.241462 1.54e-3 10000

600 / 30 0.92 2.510240 1.19e-6 94 (9.8) 16.34 2.510453 1.81e-5 10000

600 / 5 0.04 0.782584 8.94e-8 12 (9.2) 0.52 0.782584 2.43e-5 757

700 / 10 0.48 1.332547 3.06e-7 66 (9.5) 4.74 1.332547 2.90e-5 5031

700 / 15 0.23 1.891921 4.99e-7 32 (9.7) 3.09 1.891922 1.61e-5 2448

700 / 20 0.35 2.232710 7.31e-7 38 (9.7) 4.07 2.232710 1.86e-5 2787

700 / 25 1.00 2.578730 1.39e-6 90 (9.9) 18.99 2.578745 1.61e-4 10000

700 / 30 2.01 2.997021 1.90e-6 124 (9.8) 14.99 3.025005 1.36e-5 6748

700 / 5 0.09 0.751121 1.23e-7 19 (9.1) 1.06 0.751121 4.40e-5 1475

800 / 10 0.62 1.361048 6.58e-7 57 (9.5) 5.33 1.361048 2.53e-5 3805

800 / 15 1.07 1.837726 5.13e-7 99 (9.7) 17.68 1.839436 7.48e-4 10000

800 / 20 1.50 2.262145 1.20e-6 115 (9.5) 18.80 2.262147 5.92e-5 10000

800 / 25 2.30 2.621645 1.51e-6 158 (9.8) 19.63 2.623857 1.42e-4 10000

800 / 30 1.58 2.943294 2.20e-6 122 (9.7) 19.78 2.944495 1.71e-3 10000

800 / 5 0.07 0.754357 1.28e-7 10 (9.0) 0.31 0.754357 4.35e-5 257

900 / 10 0.10 1.374185 3.69e-7 14 (9.3) 1.51 1.374185 2.40e-5 1200

900 / 15 0.86 1.933525 1.06e-6 93 (9.7) 7.89 1.933525 1.07e-5 5513

900 / 20 1.18 2.360027 1.36e-6 107 (9.7) 17.38 2.360027 1.74e-5 10000

900 / 25 1.88 2.773641 1.69e-6 153 (9.8) 19.07 2.777065 3.41e-4 10000

900 / 30 1.60 3.157731 2.02e-6 121 (9.8) 21.05 3.159992 3.55e-3 10000

900 / 5 0.27 0.770418 2.27e-7 62 (7.9) 1.54 0.770418 2.59e-5 1672

1000 / 10 0.64 1.376750 2.84e-7 81 (9.0) 3.50 1.376750 3.47e-5 2719

1000 / 15 0.19 2.049750 1.08e-6 21 (9.5) 2.65 2.049750 2.16e-5 1673

1000 / 20 1.05 2.581317 1.41e-6 85 (9.7) 18.11 2.581318 2.08e-5 10000

1000 / 25 1.30 3.043254 1.18e-6 101 (9.8) 20.56 3.045420 4.82e-4 10000

1000 / 30 1.79 3.516861 2.84e-6 129 (9.8) 23.79 3.517976 1.25e-3 10000

1000 / 5 0.05 0.804861 2.75e-7 10 (9.0) 0.33 0.804861 3.53e-5 390

6.4 Bose-Einstein condensates

In this subsection, we consider the Bose-Einstein condensates (BEC) problem (Aftalion
and Du, 2001; Bao and Cai, 2013; Wu et al., 2017). The total energy in the BEC problem
is defined as

E(ψ) =

∫
Rn

[
1

2
|∇ψ(x)|2 + V (x)|ψ(x)|2 +

β

2
|ψ(x)|4 − Ωψ̄(x)Lz(x)

]
dx, (37)

where x ∈ Rd is the spatial coordinate vector, ψ̄ denotes the complex conjugate of ψ,
Lz = −i(x∂y − y∂x), V (x) is an external trapping potential, Ω ∈ R is an angular velocity,
and β is a given constant. Then, the ground state of a BEC is usually defined as the
minimizer of the following nonconvex minimization problem

min
ψ∈S

E(ψ), (38)

where S is the spherical constraint and is defined as

S :=

{
ψ | E(ψ) <∞,

∫
Rd

|ψ(x)|2dx = 1

}
.
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Figure 4: The performance profiles on the sparse PCA problem (3).

0 0.5 1 1.5 2

time elapsed (sec)

10-15

10-10

10-5

100

ProxSSN

ProxGD

AManPG

ARPG

0 0.5 1 1.5 2 2.5 3

time elapsed (sec)

10-15

10-10

10-5

100

ProxSSN

ProxGD

AManPG

ARPG

Figure 5: The trajectories of the objective function values with respect to the wall-clock
time on the sparse least square regression (8) with m = 20, λ = 0.01. Left:
n = 2000; right: n = 3000.

By using a suitable discretization, such as finite differences or the sine pseudo-spectral and
Fourier pseudo-spectral (FP) method, we can reformulate the BEC problem as follows:

min
x∈CM

1

2
x∗Ax+

β

2

M∑
i=1

|xi|4, s.t. x ∈ SM , (39)

where SM = {x ∈ CM | ‖x‖2 = 1} with a positive integer M and A ∈ CM×M is a Hermitian
matrix. We refer to (Wu et al., 2017) for the details.

The ProxGD and ProxSSN are applied to problem (39) by setting

f(x) :=
1

2
x∗Ax+

β

2

M∑
i=1

|xi|4, h(x) = δSM (x).
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Figure 6: Comparisons of wall-clock time and the objective function values on the sparse
least square regression (8) with m = 30, λ = 0.01 for different n.
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Figure 7: The performance profiles on the sparse least square regression (8).

Since problem (39) can be seen as a smooth problem on the complex sphere, we do com-
parisons with the adaptive regularized Newton method (ARNT) in (Hu et al., 2018). All
parameters of ProxGD and ProxSSN follow the setup discussed in subsection 6.1 except
tol = 10−6. The parameters of ARNT are the same as in (Hu et al., 2018), we stop ARNT
when the Riemannian gradient norm is less than 10−6 or the maximum number of iterations
500 is reached. We take d = 2 and V (x, y) = 1

2x
2 + 1

2y
2. The BEC problem is discretized by

FP on the bounded domain (−16, 16)2 with β ranging from 500 to 1000 and Ω = 0, 0.1, 0.25.
Following the settings in (Wu et al., 2017), we use the mesh refinement procedure with the
coarse meshes (2k + 1)× (2k + 1)(k = 2, · · · , 5) to gradually obtain an initial solution point
on the finest mesh (26 + 1)× (26 + 1). all algorithms are tested with mesh refinement and
start from the same initial point on the coarsest mesh with

φa(x, y) =
(1− Ω)φ1(x, y) + Ωφ2(x, y)

‖(1− Ω)φ1(x, y) + Ωφ2(x, y)‖
, φb(x, y) =

φ1(x, y) + φ2(x, y)

‖φ1(x, y) + φ2(x, y)‖
,
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Figure 8: Comparisons of wall-clock time and the objective function values on the nonneg-
ative PCA problem (5) with p = 20 for different n.
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Figure 9: The performance profiles on nonnegative PCA problem (5).

where φ1(x, y) = 1√
π
e−(x2+y2)/2 and φ2(x, y) = x+iy√

π
e−(x2+y2)/2.

Table 2 gives detailed computational results. For the first column,“Initial” denotes the
type of the initial point, “a” and “b” are φa(x, y) and φb(x, y), respectively. For the iteration
numbers in our table, “iter” and “siter” denote the outer iterations and the average sub-
iterations, respectively. Note that ProxGD reaches the maximum iteration of 1000, which
shows that ProxGD does not converge to the required accuracy in all cases. ProxSSN
and ARNT find a point with almost the same objective function value, while our algorithm
ProxSSN is faster than ARNT in most cases. Figures 10 and 11 demonstrate the superiority
of ProxSSN over ARNT and ProxGD.

Table 4: Computational results of BEC

(β,Ω, Initial)
ProxSSN ProxGD ARNT

time obj iter (siter) time obj iter time obj iter (siter)
500 / 0.00 / a 0.17 9.38492745 2 (46.0) 10.75 9.38492745 1000 0.33 9.38492745 6 (17.3)
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(β,Ω, Initial)
ProxSSN ProxGD ARNT

time obj iter (siter) time obj iter time obj iter (siter)
500 / 0.10 / a 0.94 9.38492744 3 (133.3) 15.13 9.38492746 1000 2.45 9.38492744 7 (61.7)
500 / 0.25 / a 1.14 9.38492744 3 (133.3) 12.65 9.38492747 1000 4.74 9.38492744 15 (73.3)
500 / 0.00 / b 0.74 9.38492745 3 (133.3) 14.24 9.38492748 1000 1.21 9.38492745 7 (49.9)
500 / 0.10 / b 0.89 9.38492744 3 (133.3) 14.39 9.38492746 1000 2.23 9.38492744 8 (60.3)
500 / 0.25 / b 0.98 9.38492744 3 (133.3) 12.29 9.38492747 1000 3.50 9.38492744 11 (72.3)
600 / 0.00 / a 0.20 10.60175601 3 (95.0) 11.38 10.60175602 1000 0.36 10.60175601 6 (17.2)
600 / 0.10 / a 1.01 10.60175601 3 (133.3) 13.75 10.60175604 1000 2.99 10.60175601 8 (57.8)
600 / 0.25 / a 1.20 10.60175601 3 (133.3) 12.75 10.60175606 1000 5.09 10.60175601 14 (70.3)
600 / 0.00 / b 0.99 10.60175601 3 (133.3) 16.95 10.60175602 1000 1.75 10.60175601 6 (54.0)
600 / 0.10 / b 1.07 10.60175601 3 (133.3) 14.52 10.60175604 1000 3.64 10.60175601 11 (52.4)
600 / 0.25 / b 1.10 10.60175601 3 (133.3) 12.24 10.60175606 1000 4.61 10.60175601 10 (65.0)
700 / 0.00 / a 0.26 11.75508441 3 (95.0) 11.90 11.75508441 1000 0.42 11.75508441 6 (15.2)
700 / 0.10 / a 1.02 11.75508441 3 (133.3) 12.30 11.75508444 1000 4.05 11.75508441 6 (57.8)
700 / 0.25 / a 1.00 11.75508441 3 (133.3) 11.52 11.75508453 1000 4.81 11.75508441 12 (60.5)
700 / 0.00 / b 0.87 11.75508441 3 (133.3) 16.77 11.75508442 1000 1.78 11.75508441 6 (54.8)
700 / 0.10 / b 0.93 11.75508441 3 (133.3) 11.83 11.75508444 1000 4.95 11.75508441 9 (47.8)
700 / 0.25 / b 1.12 11.75508441 3 (133.3) 11.51 11.75508452 1000 4.93 11.75508441 10 (62.2)
800 / 0.00 / a 0.20 12.85654802 3 (95.3) 11.09 12.85654802 1000 0.47 12.85654802 6 (15.0)
800 / 0.10 / a 1.06 12.85654802 3 (133.3) 14.40 12.85654804 1000 3.51 12.85654802 12 (55.8)
800 / 0.25 / a 1.22 12.85654801 3 (133.3) 12.85 12.85654804 1000 5.24 12.85654801 8 (62.9)
800 / 0.00 / b 0.77 12.85654802 3 (133.3) 16.38 12.85654803 1000 1.71 12.85654802 6 (53.5)
800 / 0.10 / b 1.02 12.85654802 3 (133.3) 14.80 12.85654804 1000 4.52 12.85654802 9 (49.2)
800 / 0.25 / b 1.13 12.85654801 3 (133.3) 12.58 12.85654804 1000 6.63 12.85654801 14 (60.1)
900 / 0.00 / a 0.19 13.91448057 3 (91.3) 10.89 13.91448057 1000 0.57 13.91448057 6 (16.0)
900 / 0.10 / a 1.10 13.91448057 3 (133.3) 14.24 13.91448058 1000 5.89 13.91448057 14 (51.4)
900 / 0.25 / a 1.50 13.91448056 4 (150.0) 14.54 13.91448058 1000 7.22 13.91448056 15 (64.2)
900 / 0.00 / b 0.53 13.91448057 2 (100.0) 17.00 13.91448057 1000 2.21 13.91448057 6 (50.2)
900 / 0.10 / b 1.07 13.91448057 3 (133.3) 15.21 13.91448058 1000 7.55 13.91448057 10 (53.8)
900 / 0.25 / b 1.16 13.91448056 3 (133.3) 12.41 13.91448057 1000 8.21 13.91448056 11 (62.5)
1000 / 0.00 / a 0.23 14.93511997 2 (67.0) 8.41 14.93511997 1000 0.90 14.93511997 6 (22.7)
1000 / 0.10 / a 8.69 14.93511995 4 (150.0) 11.08 14.93511996 1000 10.38 14.93511995 14 (75.7)
1000 / 0.25 / a 4.90 14.93511986 5 (160.0) 11.39 14.93512017 1000 13.75 14.93511986 21 (96.2)
1000 / 0.00 / b 2.60 14.93511997 3 (133.3) 12.94 14.93511997 1000 3.98 14.93511997 10 (76.3)
1000 / 0.10 / b 9.34 14.93511995 4 (150.0) 11.92 14.93511996 1000 12.44 14.93511995 13 (77.9)
1000 / 0.25 / b 2.43 14.93511986 5 (160.0) 11.99 14.93512015 1000 17.62 14.93511986 18 (93.4)

7. Conclusion

This paper introduces a new concept of strong prox-regularity and validates it over
many existing interesting applications, including composite optimization problems with
weakly convex regularizer, smooth optimization problems on manifolds, and several com-
posite optimization problems on manifolds. Then a projected semismooth Newton method
is proposed for solving a class of nonconvex optimization problems equipped with strong
prox-regularity. The idea is to utilize the locally single-valued, Lipschitz continuous prop-
erties of the residual mapping. The global convergence and local superlinear convergence
results of the proposed algorithm are presented under standard conditions. Numerical re-
sults have convincingly demonstrated the effectiveness of our proposed method in various
nonconvex composite problems, including the sparse PCA problem, the nonnegative PCA
problem, the sparse least square regression, and the BEC problem.
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Figure 10: Comparisons of wall-clock time and the objective function values on the BEC
problem (39) with Ω = 0.2 and “b”.
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Jean-Jacques Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société
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