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Abstract

We propose data thinning, an approach for splitting an observation into two or more independent
parts that sum to the original observation, and that follow the same distribution as the original
observation, up to a (known) scaling of a parameter. This very general proposal is applicable to
any convolution-closed distribution, a class that includes the Gaussian, Poisson, negative binomial,
gamma, and binomial distributions, among others. Data thinning has a number of applications
to model selection, evaluation, and inference. For instance, cross-validation via data thinning
provides an attractive alternative to the usual approach of cross-validation via sample splitting,
especially in settings in which the latter is not applicable. In simulations and in an application to
single-cell RNA-sequencing data, we show that data thinning can be used to validate the results of
unsupervised learning approaches, such as k-means clustering and principal components analysis,
for which traditional sample splitting is unattractive or unavailable.

Keywords: Cross validation, sample splitting, clustering, principal component analysis

1. Introduction

As scientists fit increasingly complex models to their data, there is an ever-growing need for out-
of-box methods that can be used to validate these models. In many settings, the most natural
option is sample splitting, in which the n observations in a data set are split into a training set,
used to fit a model, and a test set, used to validate it (Hastie et al., 2009). Sample splitting can
also be applied to conduct inference after model selection (Rinaldo et al., 2019). Sample splitting
is flexible and intuitive, and is a vital tool for any practicing data analyst.

However, in settings where there is one parameter of interest per observation, or the parameter
of interest is a function of the n observations, sample splitting cannot be applied. For example,
when estimating a low-rank approximation to a matrix, there is one parameter of interest (a latent
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variable coordinate) for each of the n rows in the matrix. Similarly, in fixed-covariate regression
under model misspecification, the target parameter depends on the specific n observations included
in the data set (Buja et al., 2019). Finally, there may be settings in which we wish to draw
observation-specific inferences about each of our n observations; sample splitting does not allow
this.

In this paper, we consider an alternative to sample splitting that splits a single observation X
into independent parts that follow the same distribution as X. Crucially, the fact that we split a
single observation avoids the pitfalls of sample splitting in the situations mentioned above: we will
split every observation in the data to obtain a training set and a test set that each involve all n
observations.

The concept of splitting a single observation as an alternative to sample splitting has been
explored in several recent papers (Rasines and Young, 2022; Leiner et al., 2023; Oliveira et al.,
2021, 2022; Neufeld et al., 2022). We can split X ∼ N(µ, σ2) with known σ2 into two independent
Gaussian random variables (Rasines and Young, 2022; Leiner et al., 2023; Oliveira et al., 2021),
and X ∼ Poisson(λ) into two independent Poisson random variables (Neufeld et al., 2022; Leiner
et al., 2023; Oliveira et al., 2022). However, outside of these two distributions, no proposals are
available to split a random variable into independent parts that follow the same distribution as
the original random variable. Leiner et al. (2023) propose data fission, a general-purpose approach
to decompose X into two parts, X(1) and X(2), such that (i) X(1) and X(2) can together be used
to reconstruct X, and (ii) the joint distribution of

(
X(1), X(2)

)
is tractable. However, outside of

the special cases of the Gaussian and Poisson distributions, the proposal of Leiner et al. (2023)
leads to X(1) and X(2) that (a) are not independent, and (b) whose distributions may or may not
resemble that of X. As a consequence of both (a) and (b), unless the data are Gaussian- or Poisson-
distributed, data fission does not serve as a direct alternative to sample splitting, as out-of-the-box
tools can no longer be used for validation or inference. We elaborate on these points in Section 5.

In this paper, we propose data thinning, a recipe for decomposing a single observation X into
two parts, X(1) and X(2), such that (i) X = X(1) +X(2), (ii) X(1) and X(2) are independent, and
(iii) X(1) and X(2) follow the same distribution as X, up to a (known) scaling of a parameter.
Critically, properties (ii) and (iii) guarantee that this decomposition is straightforward to use in
applied settings. For instance, to evaluate the suitability of a model for X, we can fit it to X(1)

(since it follows the same distribution as X), and can validate it using X(2) (since it also follows
the same distribution, and furthermore is independent of X(1)). Our recipe can be applied to
any distribution that is convolution-closed (Joe, 1996): this includes the multivariate Gaussian,
Poisson, negative binomial, gamma, binomial, and multinomial distributions, among others. Thus,
our work drastically expands the set of distributions that can be split into independent parts, and
provides a unified lens through which to view seemingly unrelated approaches. Furthermore, data
thinning can be used to decompose X into more than two independent random variables.

We illustrate our proposal with the following example, which shows that a gamma random
variable can be thinned into M independent gamma random variables.

Example 1 (Gamma decomposition into M components, data thinning) Suppose that X ∼
Gamma(α, β), where β is unknown. We take (X(1), . . . , X(M)) = XZ, where Z ∼ Dirichlet(α/M, . . . , α/M).
Then X(1), . . . , X(M) are mutually independent, they sum to X, and each is marginally drawn from
a Gamma(α/M, β) distribution.

In other words, data thinning allows us to decompose a Gamma(α, β) random variable, for which
β is unknown, into M independent gamma random variables, X(1), . . . , X(M). Therefore, fitting a
model to X −X(m) and validating it using X(m) is straightforward.
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The rest of this paper is organized as follows. In Section 2, we briefly review the class of
convolution-closed distributions, and introduce a thinning procedure to split a single random vari-
able into two independent random variables, each of which follows the same distribution as the
original random variable (up to a scaling of the parameter(s)). We extend this thinning procedure
to split a single random variable into an arbitrary number of independent random variables in Sec-
tion 3. We elaborate on the comparison between sample splitting and data thinning in Section 4,
and in Section 5 we elaborate on the comparison between data fission (Leiner et al., 2023) and
data thinning. In Section 6, we focus on validating the results of clustering and low-rank matrix
approximations. These are two settings in which the usual cross-validation via sample splitting
approach cannot be directly applied (see, e.g. Owen and Perry, 2009; Fu and Perry, 2020), but
data thinning provides a simple alternative. An application to single-cell RNA-sequencing data is
in Section 7. We close with a discussion in Section 8. All proofs are in the appendix.

2. The Data Thinning Proposal

2.1 A Review of Convolution-Closed Distributions

We begin by defining a convolution-closed distribution (Joe, 1996; Jørgensen and Song, 1998).

Definition 1 (Convolution-closed) Let Fλ denote a distribution indexed by a parameter λ in
parameter space Λ. Let X ′ ∼ Fλ1 and X ′′ ∼ Fλ2 with X ′ ⊥⊥ X ′′. If X ′ + X ′′ ∼ Fλ1+λ2 whenever
λ1 + λ2 ∈ Λ, then Fλ is convolution-closed in the parameter λ.

Many well-known distributions are convolution-closed. While the Poisson(λ) distribution is
convolution-closed in its single parameter λ and the N(µ, σ2) distribution is convolution-closed in
the two-dimensional parameter (µ, σ2), other distributions, such as the gamma, are convolution-
closed in just one parameter with the other parameter(s) held fixed. Table 1 provides details
about some well-known convolution-closed distributions. The following definition provides a useful
property of most convolution-closed distributions.

Definition 2 (Linear expectation property) Let Fλ denote a distribution indexed by λ ∈ Λ.
We say that it satisfies the linear expectation property if, for X ∼ Fλ, E [X] is a linear function of
λ.

Remark 3 (Most convolution-closed distributions satisfy the linear expectation property)
Let Fλ be a convolution-closed distribution whose first moment exists for all λ ∈ Λ. By definition,
if X ′ ∼ Fλ1 and X ′′ ∼ Fλ2 and λ1 + λ2 ∈ Λ, then X ′ +X ′′ ∼ Fλ1+λ2. By properties of the expected
value, E[X ′ +X ′′] = E[X ′] + E[X ′′]. Thus, the expectation is additive in λ, and so, outside of con-
trived counterexamples, Fλ satisfies the linear expectation property. The linear expectation property
is satisfied for all distributions in Table 1.

Remark 4 (Not all convolution-closed distributions satisfy the linear expectation property)
The Cauchy(µ, γ) distribution is convolution-closed in the two-dimensional parameter (µ, γ), but
does not satisfy the linear expectation property because E[X] does not exist.

For a convolution-closed distribution Fλ, suppose that X ′ ∼ Fλ1 and X ′′ ∼ Fλ2 with
X ′ ⊥⊥ X ′′. Let Gλ1,λ2,x denote the conditional distribution of X ′ | X ′+X ′′ = x. The density of the
distribution Gλ1,λ2,x can be written down for any Fλ with a known density function (Jørgensen,
1992). Furthermore, it turns out that Gλ1,λ2,x has a simple closed form for several of the well-known
distributions from Table 1; see Table 2. For example, if Fλ is the Poisson(λ) distribution, then
Gλ1,λ2,x is the Binomial (x, λ1/(λ1 + λ2)) distribution.
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Table 1: A partial list of convolution-closed distributions. The last two rows contain multivariate
distributions. The results in each row are easily verifiable. The generalized Poisson and
Tweedie distributions are written in their additive exponential dispersion family parame-
terization; see Jørgensen and Song (1998) for details.

Distribution Notes

X ∼ Poisson(λ), where E[X] = λ and Var(X) = λ. Convolution-closed in λ.

X ∼ N(µ, σ2), where E[X] = µ and Var[X] = σ2. Convolution-closed in (µ, σ2).

X ∼ NegativeBinomial(r, p), where E[X] = r 1−p
p

and Var[X] = r 1−p
p2

. Convolution-closed in r if p is fixed.

X ∼ Gamma(α, β), where E[X] = α
β

and Var(X) = α
β2 . Convolution-closed in α if β is fixed.

X ∼ Binomial(r, p), where E[X] = rp and Var(X) = rp(1− p). Convolution-closed in r if p is fixed.

X ∼ InverseGaussian(µw, λw2) with E[X] = µw and Var(X) = w3µ3

w2λ
= wµ3

λ
. Convolution-closed in w if µ and λ are fixed.

X ∼ GeneralizedPoisson(λ, θ), see Jørgensen and Song (1998) for parameterization. Convolution-closed in λ if θ is fixed.

X ∼ Tweediep(λ, θ), see Jørgensen and Song (1998) for parameterization. Convolution-closed in λ if θ and p are fixed.

X ∼ Nk (µ,Σ), with E[X] = µ and Var(X) = Σ. Convolution-closed in (µ,Σ).

X ∼ Multinomialk (r, p), with E[X] = rp and Var(X) = r
(
diag(p)− ppT

)
. Convolution-closed in r if p is fixed.

2.2 Data Thinning

Recall from Section 2.1 that Gλ1,λ2,x is the conditional distribution of X ′ | X ′ + X ′′ = x, where
X ′ ∼ Fλ1 and X ′′ ∼ Fλ2 with X ′ ⊥⊥ X ′′. We now introduce our proposal.

Algorithm 1: Data thinning

Input : A realization x of X ∼ Fλ, where Fλ is convolution-closed in λ with parameter
space Λ. A scalar ε ∈ (0, 1) such that ελ ∈ Λ and (1− ε)λ ∈ Λ.

1 Draw X(1) | X = x ∼ Gελ,(1−ε)λ,x.

2 Let X(2) = X −X(1).

Output:
(
X(1), X(2)

)
.

We now introduce our main theorem, which is motivated by a proposal by Joe (1996) to con-
struct autoregressive time series processes with known marginal distributions.

Theorem 5 Suppose that we apply Algorithm 1 to a realization x of X ∼ Fλ. Then, the following
results hold: (i) X(1) ∼ Fελ and X(2) ∼ F(1−ε)λ; (ii) X(1) ⊥⊥ X(2); (iii) If Fλ satisfies the linear

expectation property (Definition 2), then E[X(1)] = εE[X] and E[X(2)] = (1− ε) E[X].

Theorem 5 is proven in Appendix A.1. The intuition for parts (i) and (ii) is as follows: if
X ∼ Fλ, then X could have arisen as the sum of two independent random variables X ′ ∼ Fλ1 and
X ′′ ∼ Fλ2 , with λ1 + λ2 = λ. Algorithm 1 works backwards to undo this sum by generating X(1)

and X(2) that follow the same distribution as X ′ and X ′′. Part (iii) follows from Definition 2. As
we will see in Section 4.1, ε ∈ (0, 1) is a tuning parameter that governs a tradeoff between how
much information is in X(1) as opposed to X(2).

Theorem 5 guarantees that the decomposition provided by Algorithm 1 satisfies the goals given
in Section 1: namely X = X(1)+X(2), X(1) ⊥⊥ X(2), and X(1) and X(2) follow the same distribution
as X, up to a (known) scaling of a parameter. Table 2 summarizes the data thinning proposal for
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several well-known distributions. However, Algorithm 1 and Theorem 5 apply well beyond the set
of distributions considered in Table 2.

Remark 6 In Table 2, we focus on distributions where the conditional distribution Gλ1,λ2,x has
a recognizable form. For distributions where this is not the case, standard numerical sampling
algorithms can be used to generate X(1) and X(2), so long as the conditional distribution can be
expressed up to a normalizing constant.

Remark 7 Some of the decompositions presented in Table 2 require knowledge of an additional
parameter that is not of primary interest. For example, thinning the N(µ, σ2) distribution requires
knowledge of σ2 (see also: Rasines and Young, 2022; Leiner et al., 2023). In Section 2.3, we explore
the implications of performing data thinning in the presence of an unknown nuisance parameter.

Remark 8 Table 2 indicates that thinning the Binomial(r, p) distribution or the Multinomial(r, p)
distribution requires that εr take on an integer value. This is because these distributions are not
infinitely divisible (Joe, 1996). This restriction becomes more limiting in the extension to multiple
folds given in Section 3, and prevents us from thinning the Bernoulli or categorical distributions.

Remark 9 The thinning recipe for the Gaussian can be shown to be equivalent, up to a simple
rescaling by ε, to a procedure for splitting a Gaussian random variable with known variance that
has been used in several recent papers (Rasines and Young, 2022; Leiner et al., 2023; Oliveira et al.,
2021; Tian and Taylor, 2018; Tian, 2020). We derive this equivalence in Section 5.

We now give an example of an application where data thinning is useful in practice.

Example 2 (Model validation using data thinning) Suppose we observe Xij for i = 1, . . . , n
and j = 1, . . . , d, where either each Xij is drawn independently from a univariate convolution-
closed distribution that satisfies the linear expectation property from Definition 2, or else each
row (Xi1, . . . , Xid)

T is drawn independently from a multivariate convolution-closed distribution that
satisfies the linear expectation property.

We wish to evaluate µ̂(X) as an estimator for E[X]. Computing a loss function such as mean-
squared error between µ̂(X) and X is unsatisfactory, since the loss function will take on a small
value if we overfit the mean. Instead, we apply Algorithm 1 with ε ∈ (0, 1) to either each element

or each row in X, such that each element Xij is thinned into X
(1)
ij and X

(2)
ij . We compute µ̂(X(1)),

which is an estimator of E[X(1)] = εE[X] (Theorem 5, part (iii)). We then compute a loss function
between µ̂(X(1)) and X(2). Since X(1) ⊥⊥ X(2) (Theorem 5, part (ii)), the loss function will not
take on small values due to overfitting.

In Example 2, if ε = 0.5, then E[X(1)] = E[X(2)] = 0.5 E[X]. Thus, µ̂(X(1)) is an estimator
of E[X(2)], and so devising a suitable loss function is straightforward. If ε 6= 0.5, then µ̂(X(1)) is
a plug-in estimator of ε

1−ε E[X(2)] (Theorem 5). The following example shows how a loss function
that takes into account this factor of ε can be constructed in practice.

Example 3 (Example 2 with mean squared error loss) Suppose we wish to use mean squared
error to define a loss function between µ̂(X(1)) and X(2) in Example 2. Since E[X(2)] = 1−ε

ε E[X(1)],
we compute the loss as

1

nd

∥∥∥∥X(2) − 1− ε
ε

µ̂(X(1))

∥∥∥∥2

F

,

where the factor of (1− ε)/ε turns an estimate of E[X(1)] into an estimate of E[X(2)].

We discuss the choice of ε in Section 4.1.
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Table 2: Details of data thinning for several well-known distributions, using the parameterizations
given in Table 1. While the exponential distribution itself is not convolution-closed in its
single parameter, recognizing it as a special case of the gamma distribution with known
α = 1 yields a decomposition. In all cases, the distribution of X(2) matches that of X(1),
with ε replaced by (1− ε), with X(1) ⊥⊥ X(2).

Distribution of X Generate X(1) | X = x as: Dist. of X(1) Notes

Poisson(λ) Draw X(1) | X = x ∼ Binomial(x, ε). Poisson(ελ)

N(µ, σ2) Draw X(1) | X = x ∼ N(εx, ε(1− ε)σ2). N(εµ, εσ2) σ2 must be known.

NegativeBinomial(r, p) Draw X(1) | X = x ∼ BetaBinomial(x, εr, (1− ε)r). NegativeBinomial(εr, p) r must be known.

Gamma(α, β) Draw Z ∼ Beta (εα, (1− ε)α), and let X(1) = x · Z. Gamma(εα, β) α must be known.

Exponential(λ) Draw Z ∼ Beta(ε, (1− ε)), and let X(1) = x · Z. Gamma(ε, λ)

Binomial(r, p) Draw X(1) | X = x ∼ Hypergeometric(εr, (1− ε)r, x). Binomial(εr, p) r must be known

εr must be integer.

Nk(µ,Σ) Draw X(1) | X = x ∼ N(εx, ε(1− ε)Σ). Nk(εµ, εΣ) Σ must be known.

Multinomialk(r, p) Draw X(1) | X = x ∼ Multinomialk(εr, p) r must be known.

MultivariateHypergeometric(x1, x2, . . . , xk, εr). εr must be integer.

2.3 Effect of Unknown Nuisance Parameters

For several of the distributions in Table 2, data thinning requires knowledge of a nuisance parameter.
For example, thinning a N(µ, σ2) distribution requires knowledge of σ2.

We now consider what happens when we perform data thinning on Gaussian data using an
incorrect value of the variance. We refer to this incorrect value as σ̃2.

Proposition 10 Suppose that we observe x from X ∼ N(µ, σ2). We draw X(1) | X = x ∼
N
(
εx, ε(1− ε)σ̃2

)
, for some σ̃2 that is not a function of x, and let X(2) = X − X(1). Then:

(i) X(1) ∼ N
(
εµ, ε2σ2 + ε(1− ε)σ̃2

)
, (ii) X(2) ∼ N

(
(1− ε)µ, (1− ε)2σ2 + ε(1− ε)σ̃2

)
, and (iii)

cov
(
X(1), X(2)

)
= ε(1− ε)

(
σ2 − σ̃2

)
.

Part (iii) of Proposition 10 indicates that if we apply data thinning with too little noise (σ̃2 < σ2),
then X(1) and X(2) are positively correlated. On the other hand, if we apply data thinning with
too much noise (σ̃2 > σ2), then X(1) and X(2) are negatively correlated. Similar results hold for
the negative binomial distribution and the gamma distribution.

Proposition 11 Suppose that we observe x from X ∼ NegativeBinomial(r, p). We draw X(1) |
X = x ∼ BetaBin (x, εr̃, (1− ε)r̃) for some r̃ that is not a function of x, and let X(2) = X −X(1).

Then cov
(
X(1), X(2)

)
= ε(1− ε)r

(
1−p
p

)2 (
1− r+1

r̃+1

)
.

Proposition 12 Suppose that we observe x from X ∼ Gamma(α, β). We let X(1) = x×Z, where
Z ∼ Beta (εα̃, (1− ε)α̃) for some α̃ that is not a function of x. We let X(2) = X − X(1). Then

cov
(
X(1), X(2)

)
= ε(1− ε) α

β2

(
1− α+1

α̃+1

)
.

Propositions 10–12 are proven in Appendix A.2. Figure 1 verifies these results empirically. The
results in this section assume that σ̃2, r̃, and α̃ are not a function of x. In practice, one might
estimate the unknown parameters σ2, r, and α using additional data.
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Figure 1: Left: We generate 100,000 realizations of X ∼ N(7, 5). For 50 values of σ̃2, we thin X
into X(1) and X(2) using σ̃2 instead of σ2 = 5. Center: We generate 100,000 realizations
of X ∼ NB(7, 0.7). For 50 values of r̃, we thin X into X(1) and X(2) using r̃ instead of
r = 7. Right: We generate 100,000 realizations of X ∼ Gamma(7, 5). For 50 values of
α̃, we thin X into X(1) and X(2) using α̃ instead of α = 7. All: In each panel, for each
value of the nuisance parameter, we display the empirical correlation between X(1) and
X(2) (red dots), along with the theoretical correlation suggested by Propositions 10–12
(blue lines). In all cases, we use ε = 0.44 for thinning.

3. Multifold Data Thinning

Data thinning involves decomposing X into X(1) and X(2), which each have the same distribution
as X (up to a known parameter scaling). It can be applied recursively to create M independent
data folds, X(1), . . . , X(M), that sum to X, as in the following example.

Example 4 (Recursive thinning of the normal distribution) Let x denote a realization of
X ∼ N(µ, σ2). Given ε1, ε2, ε3 ∈ (0, 1) with ε1+ε2+ε3 = 1, we first draw X(1) | X ∼ N

(
ε1X, ε1(1− ε1)σ2

)
.

Let X(2,3) = X −X(1). By Theorem 5,
(
X(1), X(2,3)

)
∼ N

(
ε1µ, ε1σ

2
)
×N

(
(1− ε1)µ, (1− ε1)σ2

)
.

We next draw X(2) | X(2,3) ∼ N
(

ε2
1−ε1X

(2,3), ε2
1−ε1 (1− ε2

1−ε1 )(1− ε1)σ2
)

, and let X(3) = X −
X(1) −X(2). By Theorem 5,

(
X(2), X(3)

)
∼ N(ε2µ, ε2σ

2)×N(ε3µ, ε3σ
2).

Furthermore, since
(
X(2), X(3)

)
is a function of X(2,3), the pair

(
X(2), X(3)

)
remains indepen-

dent of X(1). Thus,
(
X(1), X(2), X(3)

)
∼ N

(
ε1µ, ε1σ

2
)
×N(ε2µ, ε2σ

2)×N(ε3µ, ε3σ
2).

While Example 4 can be extended to create M > 3 folds, this recursive approach can be
cumbersome. In Example 1 of Section 1, we saw that, for the gamma distribution, there is a simple
way to create multiple folds without recursion. We will now provide a general form of this result.
Let Gλ1,λ2,...,λM ,x denote the joint distribution of (X1, . . . , XM ) | X1 +X2 + . . .+XM = x, where

Xm
ind.∼ Fλm , for m = 1, . . . ,M , and where Fλ is a convolution-closed distribution. The following

algorithm and theorem mimic Algorithm 1 and Theorem 5.

Algorithm 2: Multifold data thinning.

Input : A realization x of X ∼ Fλ, where Fλ is a convolution-closed distribution with
parameter space Λ. Scalars ε1, . . . , εM ∈ (0, 1) such that

∑M
m=1 εm = 1 and

εmλ ∈ Λ for m = 1, . . .M .
1 Draw

(
X(1), . . . , X(M)

)
∼ Gε1λ,ε2λ,...,εMλ,x.

Output:
(
X(1), . . . , X(M)

)
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Table 3: Details of how to perform multifold data thinning (Algorithm 2) for several common
univariate distributions, where where ε = (ε1, . . . , εM )T . In the decomposition of the
binomial distribution, εmr must be an integer. Each row can be verified using properties
of these distributions.

Distribution of X Generate
(
X(1), . . . , X(M)

)
| X = X as: Dist. of X(m)

Poisson(λ)
(
X(1), . . . , X(M)

)
| X = x ∼ Multinomial(x, ε1, . . . , εM ). Poisson(εmλ)

N(µ, σ2)
(
X(1), . . . , X(M)

)
| X = x ∼ N

(
µε, σ2diag(ε)− σ2εεT

)
, N(εmµ, εmσ2),

NegativeBinomial(r, p)
(
X(1), . . . , X(M)

)
| X = x ∼ DirichletMultinomial(X, ε1r, . . . , εMr). NegativeBinomial(εmr, p)

Gamma(α, β) Draw Z ∼ Dirichlet (ε1α, . . . , εMα), and and let
(
X(1), . . . , X(M)

)
= x · Z Gamma(εmα, β)

Exponential(λ) Draw Z ∼ Dirichlet(ε1, . . . , εM ), and let
(
X(1), . . . , X(M)

)
= x · Z. Gamma(εm, λ)

Binomial(r, p)
(
X(1), . . . , X(M)

)
| X = x ∼ MultivariateHypergeometric(ε1r, . . . , εMr, x). Binomial(εmr, p)

Theorem 13 Suppose we apply Algorithm 2 to a realization x of X ∼ Fλ, for a convolution-
closed distribution Fλ. Then, the following results hold: (i) X(m) ∼ Fεmλ for m = 1, . . . ,M ; (ii)
X(1), . . . , X(M) are mutually independent; (iii) X(1)+X(2)+· · ·+X(M) = X; and (iv) if Fλ satisfies
the linear expectation property (Definition 2), then E[X(m)] = εm E[X] for m = 1, . . . ,M .

The proof of Theorem 13 is included in Appendix A.1, and is a straightforward extension of that
of Theorem 5. The intuition for parts (i)-(iii) is as follows: we know that X ∼ Fλ could have arisen
as the sum of M mutually independent random variables X1, . . . , XM such that Xm ∼ Fεmλ. If we
draw

(
X(1), . . . , X(M)

)
|X = x ∼ Gε1λ,ε2λ,...,εMλ,x, then the joint distribution of

(
X(1), . . . , X(M)

)
equals the joint distribution of (X1, . . . , XM ), i.e. it is the joint distribution of M independent
random variables with distributions Fε1λ, . . . , FεMλ. Part (iv) follows directly from Definition 2.
We now revisit the case of the Gaussian distribution from Example 4.

Example 5 (Multifold thinning of the normal distribution) Let X ∼ N(µ, σ2) and let ε1, ε2, ε3 >
0 with

∑3
i=1 εi = 1. To generate M = 3 independent folds of the data, we drawX(1)

X(2)

X(3)

 | X = x ∼ N

([
ε1x
ε2x
ε3x

]
,

[
ε1(1− ε1)σ2 −ε1ε2σ2 −ε1ε3σ2

−ε1ε2σ2 ε2(1− ε2)σ2 −ε2ε3σ2

−ε1ε3σ2 −ε2ε3σ2 ε3(1− ε3)σ2

])
.

One can verify that this multivariate normal corresponds to Gε1λ,ε2λ,ε3λ,x. By Theorem 13, X(1), X(2),
and X(3) are independent and X(m) ∼ N(εmµ, εmσ

2) for m = 1, 2, 3. This distribution Gε1λ,ε2λ,ε3λ,x
is a degenerate multivariate normal distribution, which enforces the constraint that the realized
values of X(1), X(2), and X(3) sum to x.

Table 3 reveals that Gε1λ,ε2λ,...,εMλ,x in Algorithm 2 has a very simple form for every univariate
distribution in Table 2. We omit the multivariate distributions to avoid cumbersome notation.
Once again, in cases where the conditional distribution is not a recognizable distribution, if its
density is known up to a normalizing constant we can generate X(1), . . . , X(M) using sampling
techniques.

The role of the parameters ε1, . . . , εM in Algorithm 2 is discussed in Section 4.1. We now
consider the following extension of Example 2.

Example 6 (Cross validation using multifold thinning) In the setting of Example 2, we ap-
ply Algorithm 2 with parameters ε1, . . . , εM to either each element or each row of X such that each

element Xij is thinned into X
(1)
ij , . . . , X

(M)
ij .

8
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Then, for m = 1, . . . ,M , we first define X(−m) := X −X(m). We obtain µ̂
(
X(−m)

)
, which is

an estimator of E[X(−m)] = (1 − εm) E[X]. We then compute a loss function between µ̂
(
X(−m)

)
and X(m). For example, as in Example 3, we can compute the mean squared error between
εm

1−εm µ̂
(
X(−m)

)
and X(m). We evaluate the estimator µ̂(·) by averaging the loss across folds.

The advantage of multifold thinning (Example 6) over single fold thinning with ε = 1/M
(Example 2) is reduction of the variance of the loss function via averaging. We will demonstrate
the practical advantages of multifold thinning in Section 6.

4. Comparing Data Thinning and Sample Splitting

In comparing data thinning and sample splitting in a particular setting, there are two considerations.
First, we must figure out if each method is applicable. Then, in settings where both are applicable,
we must figure out if one method is preferable.

Data thinning requires an assumption that each entry in our data set is drawn from a specific
(but possibly different) convolution-closed distribution. Sample splitting requires no such paramet-
ric assumption. On the other hand, we cannot apply sample splitting if our task requires estimating
a parameter for every individual observation or drawing conclusions about specific observations.
For example, suppose that we wish to evaluate the performance of a clustering algorithm. After
sample splitting, clustering the observations in the training set does not yield cluster assignments
for the observations in the test set, and thus there is nothing to evaluate on the test set (see e.g. Gao
et al., 2022; Fu and Perry, 2020). Similarly, it is not clear how to use sample splitting to validate a
low-rank matrix approximation, for which a latent coordinate must be estimated for each of the n
observations (see, e.g. Owen and Perry, 2009). We focus on these examples, where sample splitting
is not an option, in Sections 6 and 7.

In Section 4.1, we show that the parameters ε1, . . . , εM in multifold data thinning (Algorithm 2)
control the allocation of information across folds. In Section 4.2, we use this information allocation
result to theoretically argue that sample splitting and data thinning achieve similar performance,
but that data thinning may be preferable in settings where the observations are not identically
distributed. In particular, we see that sample splitting is not an attractive choice for “fixed-
covariate” regression in the presence of high-leverage points. In Section 4.3, we empirically compare
data thinning and sample splitting in a setting where both are applicable.

4.1 Role of the Parameters ε1, . . . , εM in Multifold Data Thinning

In Algorithm 2, the parameters ε1, . . . , εM determine how the information in a random variable X
about an unknown parameter is allocated across folds of data.

Theorem 14 Suppose that we thin a random variable X using Algorithm 2 with parameters ε1, . . . , εM
to obtain X(1), . . . , X(M). Let IX(θ) denote the Fisher information contained in X about an un-
known parameter θ, i.e. a parameter in the distribution of X that does not appear in Gε1λ,...,εMλ,x.
Assume that this Fisher information exists. Then IX(m)(θ) = εmIX(θ) for m = 1, . . . ,M .

Remark 15 In the context of Theorem 14, the parameter θ may or may not be a function of the
convolution-closed parameter λ, but it must be a parameter that is unknown during the thinning
process. Below, we list a few examples where Theorem 14 applies and where it does not.

• Poisson distribution: Let X ∼ Poisson(λ), and suppose we thin X to obtain X(m) ∼
Poisson(εmλ). As λ is unknown during the thinning process, Theorem 14 says that IX(m)(λ) =
εmIX(λ). We can easily verify this by direct calculation: IX(λ) = 1

λ and IX(m)(λ) = εm
λ .

9
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• Binomial distribution: Let X ∼ Binomial(r, p), and suppose that we thin X to obtain
X(m) ∼ Binomial(εmr, p). Then IX(p) = r/(p(1 − p)), and direct calculation verifies that
IX(m)(p) = εmIX(p). On the other hand, Theorem 14 makes no claims about the parameter
r, since r must be known during thinning.

• Gaussian distribution: Let X ∼ N(µ, σ2), and suppose that we thin X to obtain X(m) ∼
N(εmµ, εmσ

2). Then direct computation verifies that IX(m)(µ) = εmIX(µ). However, Theo-
rem 14 makes no claims about the parameter σ2, since it must be known during thinning.

Theorem 14 implies that when choosing ε1, . . . , εM for Algorithm 2 or when choosing ε for
Algorithm 1, one should consider how much information to devote to the training task (i.e. model
fitting) as opposed to the testing task (i.e. model evaluation). In Example 2, as ε increases, the
quality of the estimator µ̂(X(1)) increases, but the information available for computing the loss
between this estimator and X(2) decreases.

Recall that applying Algorithm 1 to X with parameter ε = 1
M yields X(1) and X(2) with the

same distributions as X(m) and X−X(m) when we apply Algorithm 2 to X with ε1 = . . . = εM = 1
M .

Thus, the information allocation between X(m) and X −X(m) after multifold thinning is the same
as the information allocation between X(1) and X(2) after two-fold thinning with ε = 1

M . The
advantage of using multiple folds for model validation (i.e. Example 6 rather than Example 2)
comes from the reduction in variance that results from averaging the loss function across folds.

4.2 Theoretical Comparison to Sample Splitting

In this section, we focus on the case of two-fold thinning (Algorithm 1) for simplicity. Understanding
the way in which the parameter ε in Algorithm 1 partitions information about parameters of interest
helps us draw direct connections between data thinning (with parameter ε) and sample splitting
(with ε denoting the proportion of observations assigned to the training set).

Corollary 16 Suppose that we observe n independent and identically distributed (iid) random
variables X = (X1, . . . , Xn), where Xi ∼ Fλ. Assume that εn is an integer and that ελ ∈ Λ.
Consider the following two methods for splitting X into independent training and test sets.

• Sample splitting: Assign a specific set of εn observations to the training set, denoted
Xtrain

ss , and the remaining (1− ε)n observations to the test set, denoted Xtest
ss .

• Data thinning: For i = 1, . . . , n, thin Xi into X
(1)
i and X

(2)
i by applying Algorithm 1 with

parameter ε. Let Xtrain
dt =

(
X

(1)
1 , . . . , X

(1)
n

)
be the training set and let Xtest

dt =
(
X

(2)
1 , . . . , X

(2)
n

)
be the test set.

Let θ be an unknown parameter of interest, as in Theorem 14. Then, IXtrain
ss

(θ) = IXtrain
dt

(θ) =

εIX(θ), and IXtest
ss

(θ) = IXtest
dt

(θ) = (1− ε)IX(θ).

In Corollary 16, IXtrain
ss

(θ) takes on the same value for any specific allocation of datapoints to
the training set. This means that if we instead randomly allocate data points to the training set,
as is typical in practice, the information split remains identical to data thinning. Consequently,
we expect sample splitting and data thinning to have similar performance regarding inference on
unknown parameters in settings where both are options and where the datapoints are independent
and identically distributed. A similar point was made by Leiner et al. (2023), who view their data
fission technique as a “continuous analog” of sample splitting, since the requirement for sample
splitting that εn be an integer limits the choice of ε, especially when n is small.
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We next consider a setting where the observations are independent but not identically dis-
tributed, and thus the difference between data thinning and sample splitting is more pronounced.

Example 7 (Fixed-covariate regression) Suppose that we observe a fixed set of covariates Z1, . . . , Zn.

Suppose that Xi
ind.∼ N

(
βZi, σ

2
)

for i = 1, . . . , n, and let X = (X1, . . . , Xn). In this setting,

IXi(β) =
Z2
i
σ2 , meaning that observations with larger values of Z2

i (high-leverage points) contain
more information about β, the unknown parameter of interest. Let IXtrain

ss
(β) and IXtrain

dt
(β) be

defined as in Corollary 16, where the unknown parameter of interest is the slope β. Then

IXtrain
dt

(β) =
n∑
i=1

I
X

(1)
i

(β) =
n∑
i=1

ε
Z2
i

σ2
= εIX(β).

However,

IXtrain
ss

(β) =
∑
i∈train

IXi(β) =
∑
i∈train

Z2
i

σ2
6= εIX(β),

where train denotes the specific indices of the observations assigned to the training set. Thus,
while data thinning always allocates a fraction ε of the Fisher information to the training set, the
information allocation of sample splitting depends on the specific assignment of observations to the
training set.

Example 7 shows that IXtrain
ss (β) 6= IXtrain

dt (β) for a particular assignment of observations to the
training set. However, when we perform sample splitting, we typically randomly allocate datapoints
to the training set. Under such a procedure, IXtrain

ss (θ) from Example 7 becomes a random variable
that depends on the particular split of the data. If all permissible random splits of the data are

equally likely, then E
[
IXtrain

ss (θ)

]
= IXtrain

dt (θ), where the expected value is taken over all permissible

splits of the data. The same equality holds for the test set, i.e. E
[
IXtest

ss (θ)

]
= IXtest

dt (θ). Despite this

equivalence in the expected information allocation, Proposition 1 from Rasines and Young (2022)
provides clever insight that tells us why we might prefer the non-random information allocation
of data thinning in this setting. Remark 17 instantiates the general result of Rasines and Young
(2022) to the simple setting of Example 7.

Remark 17 (Effect on confidence interval width) In the context of Example 7, suppose that
our ultimate goal involves forming a confidence interval for β using the test set. If we are using a
maximum-likelihood estimator for β, then the width of the confidence interval computed on the test
set under sample splitting and data thinning are proportional, respectively, to the square roots of

1
IXtest

ss
(β) and 1

IXtest
dt

(β) . Jensen’s inequality yields the following result:

E

[
1

IXtest
ss

(β)

]
≥ 1

E
[
IXtest

ss
(β)
] =

1

IXtest
dt (β)

.

Thus, the confidence intervals for β computed using sample splitting will be wider, on average,
than those computed using data thinning in the setting where our observations are not identically
distributed. A natural corollary is that sample splitting will achieve lower power than data thinning
in this setting, as we will see in Section 4.3.
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4.3 Empirical Comparison to Sample Splitting

We now show empirically that sample splitting and data thinning achieve comparable performance
in settings where both are applicable and where the observations are independent and identically
distributed.

We let n = 100 and p = 20, and we generate 10, 000 realizations of Z ∈ Rn×p, where the
entries of Z are drawn independently from N(0, 1). For each realization, we then generate X | Z ∼
Nn (Zβ, In), where β1 = β2 = . . . = β5 = β∗ and β6 = β7 = . . . = β20 = 0. Our goal is to perform
model selection to identify the covariates with non-zero entries in β, and then to form confidence
intervals for the coefficients of the selected covariates.

As we cannot naively use the entire data set (Z,X) to do both model selection and inference,
we consider the following approach.

Step 1: Split the data into a training set and a test set.

Step 2: Perform forward stepwise regression on the training set to select a model that includes
some subset of the p = 20 covariates. We use the R function step with its default settings.

Step 3: Re-fit the selected model using the test set and report the standard confidence intervals
for each selected coefficient.

We carry out this process using two different methods.

Sample splitting: Randomly generate a set train ⊂ {1, . . . , n} with |train| = εn. Let {(Zi, Xi) : i ∈ train}
be the training set and let {(Zi, Xi) : i ∈ {1, . . . , n} \ train} be the test set.

Data thinning: Apply Algorithm 1 to each Xi for i = 1, . . . , n. Let
{(

Zi, X
(1)
i

)
: i ∈ {1, . . . , n}

}
be the training set and let

{(
Zi, X

(2)
i

)
: i ∈ {1, . . . , n}

}
be the test set.

We carry out each method using ε = 0.2, ε = 0.5, and ε = 0.8. For each method, we consider (i)
detection: the proportion of data sets for which Z3 appears in the selected model, and (ii) power :
the proportion of data sets for which the confidence interval for β3 does not include 0, among those
where Z3 appeared in the selected model. These metrics focus on one of the important covariates,
Z3, but the results are similar for each of the important covariates (i.e. Zj for j ∈ {1, . . . , 5}).
The results are shown in the top row of Figure 2. As expected, data thinning and sample splitting
achieve nearly identical results for these two metrics, with ε governing a tradeoff between detection
and power.

We then repeat the experiment, but we let n = 42 and we let Z be a fixed matrix that contains
a single row whose elements are drawn from N(5, 1) rather than N(0, 1). This corresponds to
having a single high-leverage observation in the data set that contains most of the information
about β. We only consider ε ≥ 0.5, since in this setting where n ≈ 2p, using a smaller value of
ε would complicate our ability to fit a linear regression model on the training set. As shown in
the bottom row of Figure 2, data thinning outperforms sample splitting in this setting, because for
any particular split, sample splitting either leaves very little information in the training set or very
little in the test set. The power results confirm the insight from Remark 17.

The general finding that data thinning outperforms sample splitting in this setting mirrors
findings from Leiner et al. (2023) and Rasines and Young (2022), which is not surprising in light
of Remark 9, which states that Gaussian data thinning proposal is equivalent (up to a simple
rescaling) to the Gaussian randomization or fission proposals of these prior papers. Thus, the
similar conclusions are not a coincidence, and the properties of data thinning seen in this setting
can also be interpreted as properties of (Gaussian) data fission.
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Figure 2: Comparison of data thinning and sample splitting, using the detection and power metrics
defined in Section 4.3. The top row shows the results of the large n setting where the
observations are independent and identically distributed (iid), and thus data thinning
and sample splitting achieve nearly identical results across values of ε. The bottom row
shows the results in the small n setting, in which the observations are not identically
distributed (non iid) and the presence of a high leverage point causes data thinning to
outperform sample splitting.

5. Comparing Data Thinning and Data Fission

As mentioned in Section 1, the data fission proposal of Leiner et al. (2023) provides an alternate set
of strategies to decompose a single realization X into X(1) and X(2). In this section, we compare
and contrast the two approaches.

5.1 Independent Decompositions

Leiner et al. (2023) provide a strategy for obtaining independent X(1) and X(2) only in the case
where X is Poisson or Gaussian.

In the case of the Poisson distribution, the proposal of Leiner et al. (2023) coincides exactly
with the proposal obtained from Algorithm 1 in this paper. This proposal follows from a classical
property of the Poisson distribution (see e.g. (Durrett, 2019), Section 3.7.2), and has recently been
applied in contexts related to that of this paper by Oliveira et al. (2022); Sarkar and Stephens
(2021); Gerard (2020); Chen et al. (2021) and Neufeld et al. (2022).

In the case of the Gaussian distribution, the proposal of Leiner et al. (2023) has also been used
by Tian and Taylor (2018), Oliveira et al. (2021), and Rasines and Young (2022), among others.
It does not follow directly from Algorithm 1 in this paper, since X 6= X(1) + X(2). However, in
Example 8, we show the proposal of Leiner et al. (2023) is a simple rescaling of the proposal in this
paper.

Example 8 (Comparison of two Gaussian decompositions) Consider the task of splitting
the N(µ, σ2) distribution into two independent normally-distributed random variables, with σ known.
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The data thinning proposal is given in Table 2, and leads to X(1) ∼ N(εµ, εσ2) and X(2) ∼
N((1− ε)µ, (1− ε)σ2), where X(1) +X(2) = X.

The data fission proposal is as follows: given a value of τ > 0, we draw Z ∼ N(0, σ2), and then
let X(1) = X + τZ and X(2) = X − 1

τZ. Then, X ′ ∼ N(µ, (1 + τ2)σ2) and X ′′ ∼ N(µ, (1 + 1
τ2

)σ2),
with X ′ ⊥⊥ X ′′. Under this decomposition, X ′ +X ′′ 6= X, but

1

1 + τ2
X ′ +

τ2

1 + τ2
X ′′ =

1

1 + τ2
(X + τZ) +

τ2

1 + τ2
(X − 1

τ
Z) = X.

We can easily verify that, if we let ε = 1
1+τ2

, then the random variables 1
1+τ2

X ′ and τ2

1+τ2
X ′′

obtained via data fission have the same distributions (both marginally and conditional on X = x)
as X(1) and X(2) obtained via data thinning. For example, we can easily verify that 1

1+τ2
X ′ ∼

N
(

1
1+τ2

µ, 1
1+τ2

σ2
)

= N
(
εµ, εσ2

)
. Thus, the two decompositions are identical, up to a scaling of

X(1) and X(2) by a (known) constant.

The main idea of Example 8 extends to the decomposition of the multivariate normal given in
Table 2 of this paper, and the corresponding decomposition from Leiner et al. (2023).

5.2 Non-independent Decompositions

With the exception of the Gaussian and Poisson distributions, the decompositions of Leiner et al.
(2023) do not yield X(1) and X(2) that are independent. Instead, the goal of Leiner et al. (2023)
is to obtain a decomposition such that the distributions of X(1) and X(2) | X(1) are tractable.
While in principle we can fit a model to X(1) and validate it using the conditional distribution
of X(2) | X(1), we will see in this section that this can be difficult to carry out in practice. In
particular, we note the following drawbacks of the non-independent decompositions of Leiner et al.
(2023).

(1) The distribution of X(1), and the conditional distribution of X(2)|X(1), need not resemble the
distribution of X. Thus, if the goal is to evaluate a potential model for X, it is not always
clear what model to fit to X(1). We will illustrate this drawback in Example 9.

(2) The parameters of interest are entangled in the conditional distribution of X(2) | X(1). We
will illustrate this issue in Example 10.

(3) The tuning parameter that governs the information trade-off between X(1) and X(2) can be
hard to interpret. For instance, in the case of the gamma decomposition in Example 9, the
tuning parameter is B ∈ {1, 2, . . .}, but in the case of the negative binomial distribution
in Example 10, it is ε ∈ (0, 1). These both contrast with Example 8, where the tuning
parameter was τ > 0. Whereas our Theorem 14 guarantees a specific, pre-specified allocation
of Fisher information between X(1) and X(2) after data thinning, the allocation of Fisher
information between X(1) and X(2) | X(1) after data fission can depend on the value of
unknown parameters. We will illustrate this final point in Example 9.

(4) The roles of X(1) and X(2) cannot be interchanged. For example, in the decomposition
of the Bernoulli(θ) distribution given in Leiner et al. (2023), the distributions of X(1) and
X(2) | X(1) each contain information about θ. However, the distribution of X(1) | X(2)

contains no information about θ. Furthermore, while Remark 1 in Leiner et al. (2023) provides
a strategy for obtaining multiple folds of training data for the data fission decompositions
that are constructed using the “conjugate prior” strategy, these folds are not marginally
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independent of one another (they are conditionally independent given X). Beyond these
specific decompositions, Leiner et al. (2023) do not provide a clear strategy for extending
their decompositions to the case of multiple folds. Thus, it is not clear in general how to use
data fission decompositions to carry out cross validation.

To illustrate points (1) and (3), we consider the gamma distribution.

Example 9 (Gamma decomposition, data fission approach) Suppose X ∼ Gamma(α, β).
For a tuning parameter B ∈ {1, 2, . . .}, Leiner et al. (2023) propose drawing Z = (Z1, . . . , ZB),

where Zi
ind.∼ Poisson(X), and thus each Zi marginally follows a NegativeBinomial(α, β/(β + 1))

distribution, and the Zi are independent conditional on X. Take X(1) = Z, and X(2) = X. Then,
the conditional distribution of X(2) | X(1) is Gamma(α +

∑B
i=1 Zi, β + B). Furthermore, while

IX(β) = α
β2 , direct calculation yields that IX(2)|X(1)(β) = α

β2+βB
.

This stands in notable contrast to Example 1 in Section 1, in which data thinning provides indepen-
dent (and gamma-distributed) random variables. Given that X(1) does not resemble X, it is not
clear how to apply this decomposition in the setting of Example 12 from Section 6, where we would
like to apply a clustering algorithm to X(1) to estimate the true cluster structure of X. Unless
B = 1, X(1) and X do not even have the same dimensions, which makes it difficult to know what
type of clustering algorithm to apply or how to interpret the results. Furthermore, the proportion
of Fisher information about β in X that is allocated to the test set X(2) | X(1) in Example 9
depends not only on the tuning parameter B, but also on the value of the unknown parameter β.
This is in contrast to data thinning, where Theorem 14 guarantees that this proportion will always
be equal to the tuning parameter ε2.

To illustrate point (2), we revisit Example 2 to see a concrete example in which data thinning
is straightforward but the proposal of Leiner et al. (2023) is difficult to use in practice.

Example 10 (A comparison of negative binomial decompositions) We observe
Xij ∼ NegativeBinomial (rij , pij) for i = 1, . . . , n and j = 1, . . . , p. Our goal is to evaluate a

function µ̂(X) as an estimator for E[X], where E[X]ij = rij
1−pij
pij

.

From Table 2, data thinning requires rij to be known, and yields X
(1)
ij ∼ NegativeBinomial (εrij , pij)

and X
(2)
ij ∼ NegativeBinomial ((1− ε)rij , pij), with X(1) ⊥⊥ X(2), E[X(1)] = εE[X], and E[X(2)] =

(1 − ε) E[X]. Thus, as in Example 2 and Example 3, µ̂
(
X(1)

)
is an estimator for εE[X], and we

can evaluate µ̂(X(1)) by computing the mean squared error between X(2) and 1−ε
ε µ̂

(
X(1)

)
.

For ε ∈ (0, 1), the data fission proposal of Leiner et al. (2023) draws X
(1)
ij | Xij ∼ Binomial(Xij , ε)

and sets X(2) = X −X(1). Under this decomposition,

X
(1)
ij ∼ NegativeBinomial

(
rij ,

pij
pij+ε(1−pij)

)
, and so E[X(1)] = εE[X]. Although marginally E[X(2)] =

(1 − ε) E[X], as X(1) and X(2) are not independent, we cannot simply use mean squared er-
ror loss between X(2) and 1−ε

ε µ̂
(
X(1)

)
to evaluate the estimator. Instead, we must construct a

loss function that evaluates µ̂
(
X(1)

)
as an estimator of E[X] in the conditional distribution of

X(2) | X(1), which is given by X
(2)
ij | X

(1)
ij ∼ NegativeBinomial

(
rij +X

(1)
ij , pij + ε− pijε

)
. As

E[X
(2)
ij | X

(1)
ij ] =

(
rij +X

(1)
ij

)(
1−pij−ε+εpij
pij+ε−εpij

)
is not a simple function of E[X], this is not a straight-

forward task. At a minimum, it involves disentangling the roles of the parameters rij and pij.

Furthermore, while at first glance it might appear that an advantage of data fission over data

thinning is that the former does not require knowledge of rij to obtain X
(1)
ij and X

(2)
ij , evaluating an
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estimator of E[X] using this conditional distribution will require knowing or accurately estimating
the nuisance parameters rij due to the aforementioned parameter entanglement issue.

Similar issues arise for other decompositions given in Leiner et al. (2023). For example, the
data fission decomposition of the binomial distribution yields a complicated unnamed distribution
for X(2) | X(1), which would be very difficult to use in the context of Example 11.

6. Simulation Study

6.1 Simulation Setup

In this section, we focus on the application of data thinning to cross-validation in two settings.
We contrast its performance to naive approaches that use the same data to both fit and validate
the models. Specifically, we consider Examples 11 and 12. In each of these examples, sample
splitting is not a viable option, as the parameters of interest have dimensions equal to the number
of observations. Furthermore, as pointed out in Section 5.2, applying data fission in these settings
is not straightforward.

Example 11 (Choosing the number of principal components on binomial data) We gen-
erate data with n = 250 observations and d = 100 dimensions. Specifically, for i = 1, . . . , n and

j = 1, . . . , d, we generate Xij
ind.∼ Binomial(r, pij) where r = 100 and p is an unknown n× d matrix

of probabilities. We construct logit(p) as a rank-K∗ = 10 matrix with singular values 5, 6, . . . , 14.
Additional details are provided in Section D. Our goal is to estimate K∗.

Example 12 (Choosing the number of clusters on gamma data) We generate data sets X ∈
Rn×d such that there are 100 observations in each of K∗ clusters, for a total of n = 100K∗ ob-

servations. Our objective is to estimate K∗. We let Xij
ind.∼ Gamma(λ, θci,j), for i = 1, . . . , n and

j = 1, . . . , d, where ci ∈ {1, 2, . . . ,K∗} indexes the true cluster membership of the ith observation.
The shape parameter λ is a known constant common across all clusters and all dimensions, whereas
the rate parameter θ is an unknown K∗×d matrix such that each cluster has its own d-dimensional
rate parameter. We generate data under two regimes: (1) a small d, small K∗ regime in which
d = 2 and K∗ = 4, and (2) a large d, large K∗ regime in which d = 100 and K∗ = 10. The values
of λ and θ are provided in Section D. A sample “small d, small K∗” data set is presented in Figure
3, alongside the output of data thinning with ε = 0.5.
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Figure 3: Left : A simulated data set in the d = 2, K∗ = 4 setting described in Example 12.
Center/Right : The result of data thinning with ε = 0.5.

6.2 Methods

We use Algorithm 3 to select the number of principal components in binomial data, as in Exam-
ple 11, using data thinning.

Algorithm 3: Evaluating binomial principal components with negative log-likelihood loss

Input : A positive integer K, a matrix X ∈ Zn×d[0,r] , where Xij
ind.∼ Binomial(r, pij), and

positive scalars ε(train) and ε(test) = 1− ε(train) such that ε(train)r, ε(test)r ∈ Z>0.
1 Apply data thinning to X to obtain X(train) and X(test), where

X
(train)
ij

ind.∼ Binomial
(
ε(train)r, pij

)
and X

(test)
ij

ind.∼ Binomial
(
ε(test)r, pij

)
.

2 Compute the singular value decomposition of the log-odds of X(train),

ÛD̂V̂ T = logit
{

(X(train) + 0.001)/(ε(train)r + 0.002)
}
.

Pseudo-counts prevent taking the logit of 0 or 1.

3 Construct the rank-K approximation of X(train), p(K) := expit
(
Û1:KD̂1:K V̂1:K

)
.

4 Compute the negative log-likelihood loss on X(test),

−
∑n

i=1

∑d
j=1 log f

(
X

(test)
ij

∣∣∣ε(test)r, p
(K)
ij

)
, where f(· | r, p) is the density function for the

Binomial(r, p) distribution.
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We use Algorithm 4 to select the number of clusters in gamma data, as in Example 12, using
data thinning.

Algorithm 4: Evaluating gamma clusters with negative log-likelihood loss

Input : A positive integer K, and X ∈ Rn×d>0 where Xij
ind.∼ Gamma (λ, θci,j). Here,

θ ∈ (0,∞)K
∗×d where θci,j is the true but unknown rate parameter for the cith

cluster in the jth dimension, ci ∈ {1, 2, . . . ,K∗}, and λ is the known shape
parameter. Also, positive scalars ε(train) and ε(test) = 1− ε(train).

1 Apply data thinning to X to obtain X(train) and X(test), where

X
(train)
ij

ind.∼ Gamma
(
ε(train)λ, θci,j

)
and X

(test)
ij

ind.∼ Gamma
(
ε(test)λ, θci,j

)
.

2 Run K-means on X(train) to estimate K clusters. Denote the cluster assignment of the ith
observation as ĉi.

3 Within each cluster, estimate the parameters using X(train) (Ye and Chen, 2017; Louzada

et al., 2019). Let λ̂(K) and θ̂(K) denote the K × d estimated parameter matrices.

4 Compute the loss on X(test) as −
∑n

i=1

∑d
j=1 log f

(
X

(test)
ij

∣∣∣λ̂(K)
ĉi,j

ε(test)/ε(train), θ̂
(K)
ĉi,j

)
, where

f(· | λ, θ) is the density function for the Gamma(λ, θ) distribution.

We apply Algorithms 3 and 4 in three different ways. First, we apply them without modification,
with ε(train) = 0.5 and ε(train) = 0.8. Next, we slightly modify these algorithms by replacing step 1
with multi-fold thinning (Algorithm 2) with M = 5 and ε1 = · · · = εM = 0.2. For m = 1, . . . ,M ,
we then perform steps 2–4 using X(train) = X −X(m), ε(train) = (M − 1)/M and X(test) = X(m),
ε(test) = 1/M . We then average the loss functions obtained across the M applications of step
4. Finally, we consider a naive method that re-uses data, by skipping step 1, and simply taking
X(train) = X(test) = X in steps 2–4 and ε(train) = ε(test) = 1 in step 4.

Our goal is to select the value of K that minimizes the loss function. Because data thinning
produces independent training and test sets, we expect that the data thinning approaches will
produce U-shaped loss function curves, as a function of K. By contrast, in the naive approach,
the full data X is used to fit the model and to compute the loss functions in Algorithms 3 and 4,
resulting in monotonically decreasing loss curves, as a function of K.

Other loss functions can be used in lieu of the negative log-likelihood loss in Algorithms 3 and
4. In Appendix E, we extend Algorithms 3 and 4 to the case of mean squared error loss, and show
similar results.

6.3 Results

Figure 4 displays the loss function for all three simulation settings as a function of K; results
have been averaged over 2, 000 simulated data sets and rescaled to the [0, 1] interval for ease of
comparison. The values of K with the lowest average loss function are circled on the plots. As
expected, the data thinning approaches in Figure 4 exhibit sharp minimum values, as opposed to
the monotonically decreasing curves produced by the naive method. The data thinning approaches
correctly select the true value of K = K∗ in all three settings, except for data thinning with
ε(train) = 0.5 in the binomial principal components setting. In that case, the low value of ε(train)

allocates too much information to the test set, resulting in inadequate signal from the weakest
principal components in the training set. Selecting a larger value of ε(train) remedies this issue, as
seen with ε(train) = 0.8.

We further investigate the role of ε(train) by repeating the simulation study using different values
of ε(train) for single-fold data thinning. In Figure 5, we plot the proportion of simulations that select
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Figure 4: The negative log-likelihood loss averaged over 2,000 simulated data sets, as a function of
K, for the naive method (purple), data thinning with ε(train) = 0.5 (red), data thinning
with ε(train) = 0.8 (blue), and multifold thinning with M = 5 folds (green). Each curve
has been rescaled to take on values between 0 and 1, for ease of comparison. The minimum
loss values for each method are circled, and K∗ is indicated by the vertical black line.

Figure 5: The proportion of simulations for which data thinning selects the true value of K∗ with
the negative log-likelihood loss, as a function of ε(train), for the simulation study described
in Section 6.1. The optimal value of ε(train) depends on the problem at hand.

the correct value of K∗ (i.e. the proportion of simulations in which the loss function is minimized
at K = K∗) in each of the three settings, as a function of ε(train). We find that in the gamma
clustering simulations, lower values of ε(train) are adequate. However, settings with weaker signal,
such as the binomial principal components example, require larger values of ε(train) to identify the
true latent structure. In all settings, as ε(train) approaches 1, performance begins to decay. This
is a consequence of inadequate information remaining in the test set under large values of ε(train),
and is consistent with the discussion of Section 4.1. These findings suggest that in practice, the
optimal value of ε(train) is context-dependent.

Finally, we examine the benefits of multifold data thinning over single-fold data thinning. Figure
6 displays histograms of the number of simulations that select each value of K. Here we only include
data thinning with ε(train) = 0.8 and multifold thinning with M = 5, so that both methods use
the same allocation of information between training and test sets. We see that multifold thinning
generally selects the correct value of K more often than single-fold data thinning, mirroring the
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Figure 6: The proportion of simulated data sets in which each candidate value of K is selected,
with the negative log-likelihood loss, under data thinning with ε(train) = 0.8 (blue) and
multifold thinning with M = 5 (green), for each of the simulation settings described
in Section 6.1. The true value of K∗ is indicated by the vertical black line. Multifold
thinning tends to select the true value of K more often than single-fold thinning.

improvement of M -fold cross-validation using sample splitting over single-fold sample splitting in
supervised settings. However, in the large gamma setting, the signal is strong enough that multifold
thinning does not provide a benefit over single-fold thinning.

7. Selecting the Number of Principal Components in Gene Expression Data

In this section, we revisit an analysis of a data set from a single-cell RNA sequencing experiment
conducted on a set of peripheral blood mononuclear cells. The data set is freely available from 10X
Genomics, and was previously analyzed in the “Guided Clustering Tutorial” vignette (Hoffman
et al., 2022) for the popular R package Seurat (Hao et al., 2021; Stuart et al., 2019; Satija et al.,
2015).

The data set X is a sparse matrix of non-negative integers, representing counts from 32, 738
genes in each of 2, 700 cells. We consider applying principal components analysis to learn a
low-dimensional representation of the data. In the Seurat vignette, filtering, normalization, log-
transformation, feature selection, centering, and scaling are applied to the data, yielding a trans-
formed matrix Ỹ ∈ R2638×2000. Details are provided in Section F.1. Finally, the singular value
decomposition of Ỹ is computed, such that Ỹ = UDV T . Here we let Uk represent the kth column
of the matrix U , and let U1:KD1:KV

T
1:K represent the rank-K approximation of Ỹ .

Our goal is to select the number of dimensions to use in this low-rank approximation. In the
Seurat vignette, the authors rely on heuristic solutions such as looking for an elbow in the plot of
the standard deviation of UKDK as a function of K; see Figure 7(a) (James et al., 2013). Based
on the elbow plot, the authors suggest retaining around 7 principal components. Other heuristic
approaches suggest as many as 12 principal components.

Before introducing the data thinning solution, we introduce a squared-error based formulation
that is mathematically equivalent to the traditional elbow plot (see Section F.2), but will facilitate
a direct comparison with data thinning. For K = 1, . . . , 20, we compute the sum of squared errors
between the matrix Ỹ and its rank-K approximation:

∥∥∥Ỹ − U1:KD1:KV
T

1:K

∥∥∥2

F
.
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Because the low-rank approximation U1:KD1:KV
T

1:K is computed using Ỹ , this loss function mono-
tonically decreases with K. A heuristic solution for deciding how many principal components to
retain involves looking for the point in which the slope of the curve in Figure 7(b) begins to flat-
ten. While this appears to happen around 5–7 principal components, which is consistent with the
finding from Figure 7(a), the exact number of principal components to retain is still unclear. We
now show that data thinning provides a principled approach for estimating the number of principal
components.

Single-cell RNA-sequencing data are often modeled as independent Poisson random variables
(Wang et al., 2018; Sarkar and Stephens, 2021). Thus, we assume that Xij ∼ Poisson(Λij). Starting
with the raw data matrix X ∈ Z2700×32738

≥0 , we perform Poisson data thinning with ε = 0.5 to obtain

a training set X(1) and a test set X(2), which are independent if the Poisson assumption holds.
Furthermore, as ε = 0.5, they are identically distributed. We then carry out the data processing
described in Section F.1 on X(1) to obtain Ỹ (1) ∈ R2638×2000. We obtain Ỹ (2) ∈ R2638×2000 by
applying the same data processing steps to X(2), but retaining only the features that were selected
on X(1), so that the rows and columns of Ỹ (1) and Ỹ (2) correspond to the same genes and cells.
Details are in Section F.1.

We compute the singular value decomposition on the training set, Ỹ (1) = U (1)D(1)(V (1))T . For a

range of values ofK, we then compute the sum of squared errors between Ỹ (2) and U
(1)
1:KD

(1)
1:K(V

(1)
1:K)T :∥∥∥Ỹ (2) − U (1)

1:KD
(1)
1:K(V

(1)
1:K)T

∥∥∥2

F
. (1)

The results are shown in Figure 7(c). As we are not computing and evaluating the singular value
decomposition using the same data, the plot of K vs. the loss function is not monotonically
decreasing in K. Instead, it reaches a clear minimum at K = 7, suggesting that the rank-7
approximation provides the best fit to the observed data.

While our analysis thus far assumes a Poisson model for single-cell RNA sequencing data, there
is evidence that a negative binomial model may be preferable in some settings (Choudhary and
Satija, 2022). Thus, we modified our analysis to use negative binomial thinning instead of Poisson
thinning. Details are provided in Appendix F.3, and the results are shown in Figure 7(d). This
modified analysis yields similar results: it suggests that we retain K = 5 principal components.

There are two potential reasons for the discrepancy between K = 5 and K = 7.

1. Suppose that we perform data thinning under the Poisson assumption, but the data are in
fact overdispersed relative to the Poisson distribution. Then there will be positive correlation
between X(1) and X(2). This could cause Poisson thinning to overestimate the number of
principal components to retain in the low-rank approximation of X.

2. The negative binomial thinning procedure injects more noise into X(1) than does the Poisson
thinning procedure. This could cause negative binomial thinning to miss out on true signal
in the data, and thus underestimate the number of principal components.

While either of these explanations is plausible, it is comforting to see that the two methods
provide similar estimates for K. The take home message is that, for a given distributional as-
sumption, data thinning provides a simple and non-heuristic way to select the number of principal
components.

Remark 18 (Choice of ε) If we had chosen ε 6= 0.5, then while E[X(2)] = 1−ε
ε E[X(1)], the rela-

tionship between E[Ỹ (1)] and E[Ỹ (2)] would depend on the details of the data processing described
in Section 2, and the loss function in (1) would need to be modified accordingly.
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Figure 7: Results for the data analysis in Section 7. (a) An “elbow plot” of the standard deviation of
the principal components, which reproduces the plot given in the Seurat guided clustering
tutorial. (b) Due to the relationship between the sum of squared errors and the standard
deviation of the principal components (see Section F.2), looking for an elbow in (a) is
equivalent to looking for an elbow in (b). (c) We perform Poisson data thinning to obtain
a training set (used to compute the singular value decompoistion) and a test set (used
to compute the sum of squared errors). The sum of squared errors is minimized at 7
principal components. (d) The negative binomial data thinning version of (c), which
shows a minimum in the loss function at 5 principal components.

8. Discussion

We have proposed data thinning, a new way to decompose a single observation into two or more
independent observations that sum to yield the original. This proposal applies to a very broad
class of distributions. Furthermore, we have compared data thinning to sample splitting, and have
shown that the former is applicable in many cases that the latter is not, and may be preferable
even when both are applicable.

In Section 2.3, we considered the impact of using the incorrect value of a nuisance parameter
when performing data thinning, but we did not consider what happens when the nuisance parameter
is estimated using the data itself. In future work, we will consider the theoretical and empirical
implications of performing data thinning with an estimated nuisance parameter. Furthermore,
we focused on convolution-closed distributions and thus used additive decompositions where X =
X(1) + X(2). For distributions with bounded support, such as the beta distribution, non-additive
decompositions are needed. We leave such decompositions to future work.

An R package implementing data thinning and scripts to reproduce the results in this paper
are available at https://anna-neufeld.github.io/datathin/.
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Appendix A. Proofs from Section 2

A.1 Proof of Theorem 5

Proof This proof is due to Joe (1996) and Jørgensen and Song (1998), but has been adapted
to fit our notation. Let x, our observed data, be a realization of a random variable X ∼ Fλ.
Let ε ∈ (0, 1) be chosen such that ελ and (1 − ε)λ are in the parameter space Λ. We draw
X(1) | X = x ∼ Gελ,(1−ε)λ,x, where this notation was defined in Section 2.1, and let X(2) = X−X(1).

Separately, let X ′ ∼ Fελ and X ′′ ∼ F(1−ε)λ be independent, and let Y = X ′ + X ′′. As Fλ is
a convolution-closed distribution, it follows that Y ∼ Fλ and thus we know that Y has the same
marginal distribution as X.

We first argue that the joint distribution of (X(1), X) is the same as the joint distribution of
(X ′, Y ). The conditional distribution of X(1) | X is the same as the conditional distribution of
X ′ | Y by definition of the distribution Gελ,(1−ε)λ,x. Furthermore, we have already noted that the

marginal distributions of X and Y are the same. Thus, the joint distribution of (X(1), X) is the
same as the joint distribution of (X ′, Y ).

As X(2) is deterministic given X(1) and X, the joint distribution of (X(1), X(2)) is the same
as the joint distribution of (X(1), X). Similarly, the joint distribution of (X ′, Y ) is the same as
the joint distribution of (X ′, X ′′). Thus, the joint distribution of (X(1), X(2)) is the same as the
joint distribution of (X ′, X ′′). As the joint distribution of X ′ and X ′′ is known to be the product
of independent distributions Fελ and F(1−ε)λ, this completes the proof of parts (i) and (ii) of
Theorem 5.

The final statement of Theorem 5 follows directly from Definition 2.

A.2 Proof of Proposition 10

Proof To prove (i), note that since X(1) | X = x is normally distributed and X is normally
distributed, a well-known property of the normal distribution tells us that the marginal distribution
of X(1) is normal. We then use the law of total expectation and the law of total variance to compute
its mean and variance.

E[X(1)] = E[E[X(1) | X]] = E[εX] = εµ

Var(X(1)) = Var
(

E
[
X(1) | X

])
+ E

[
Var

(
X(1) | X

)]
= Var (εX) + E

(
ε(1− ε)σ̃2

)
= ε2σ2 + ε(1− ε)σ̃2.

To prove (ii), note that the difference between two normally distributed variables (X and X(1)) is
normal. Then note that

E[X(2)] = E[X]− E[X(1)] = µ− εµ = (1− ε)µ.

Var(X(2)) = Var
(

E
[
X(2) | X

])
+ E

[
Var

(
X(2) | X

)]
= Var

(
E
[
X −X(1) | X

])
+ E

[
Var

(
X −X(1) | X

)]
= Var ((1− ε)X) + E

[
Var

(
X(1) | X

)]
= (1− ε)2σ2 + ε(1− ε)σ̃2,
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which completes the proof of (ii). Finally, to prove (iii), note that

2 Cov(X(1), X(2)) = Var(X)−Var(X(1))−Var(X(2))

= σ2 − ε2σ2 − ε(1− ε)σ̃2 − (1− ε)2σ2 − ε(1− ε)σ̃2

= 2ε(1− ε)
(
σ2 − σ̃2

)
.

A.3 Proof of Proposition 11

Proof Recall that if A ∼ BetaBinomial (r, α, β), then E[A] = rα
α+β and Var(A) = rαβ(α+β+r)

(α+β)2(α+β+1)
.

Then we can derive the marginal variance of X(1) using the law of total variance and the fact that
X(1) | X ∼ BetaBinomial(X, εr̃, (1− ε)r̃).

Var(X(1)) = E[Var(X(1) | X)] + Var(E[X(1) | X])

= E

[
Xε(1− ε)(r̃ +X)

(r̃ + 1)

]
+ Var (εX)

=
ε(1− ε)
r̃ + 1

(
r̃E [X] + E

[
X2
])

+ ε2 Var (X)

=
ε(1− ε)
r̃ + 1

(
r̃E [X] + Var(X) + E[X]2

)
+ ε2 Var (X) .

Next note that Var(X(2) | X) = Var(X − X(1) | X) = Var(X(1) | X) and that E[X(2) | X] =
(1− ε)X. Thus, we arrive at:

Var(X(2)) =
ε(1− ε)
r̃ + 1

(
r̃E [X] + Var(X) + E[X]2

)
+ (1− ε)2 Var (X) .

To derive the covariance, note that:

2 Cov(X(1), X(2)) = Var(X)−Var(X(1))−Var(X(2))

= Var(X)− 2
ε(1− ε)
r̃ + 1

(
r̃E [X] + Var(X) + E[X]2

)
−
(
ε2 + (1− ε)2

)
Var (X)

= −2
ε(1− ε)
r̃ + 1

(
r̃r

1− p
p

+ r
1− p
p2

+ r2 (1− p)2

p2

)
+ 2ε(1− ε)r1− p

p2

= 2ε(1− ε)r (1− p)2

p2

(
1− r + 1

r̃ + 1

)
.
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A.4 Proof of Proposition 12

Proof The proof structure is identical to those of Proposition 10 and Proposition 11. We start by
recalling that if A ∼ Gamma(α, β), then E[X] = α

β and Var(X) = α
β2 . Then:

Var(X(1)) = E
[
Var

(
X(1) | X

)]
+ Var

(
E
[
X(1) | X

])
= E [Var (XZ | X)] + Var (E [XZ | X])

= E
[
X2 Var (Z)

]
+ Var (X E [Z])

= E

[
X2

(
ε(1− ε)
α̃+ 1

)]
+ Var (Xε)

=
ε(1− ε)
α̃+ 1

(
Var(X) + E[X]2

)
+ ε2 Var (X) .

Similarly, we note that Var(X(2) | X) = Var(X −X(1) | X) = Var(X(1) | X), while E(X(2) | X) =
(1− ε)X. This allows us to do a similar derivation and arrive at:

Var(X(2)) = E
[
Var

(
X(2) | X

)]
+ Var

(
E
[
X(2) | X

])
=
ε(1− ε)
α̃+ 1

(
Var(X) + E[X]2

)
+ (1− ε)2 Var (X) .

Finally,

2 Cov(X(1), X(2)) = Var(X)−Var(X(1))−Var(X(2))

= Var(X)− 2
ε(1− ε)
α̃+ 1

(
Var(X) + E[X]2

)
−
(
ε2 + 1− 2ε+ ε2

)
Var(X)

= −2
ε(1− ε)
α̃+ 1

(
Var(X) + E[X]2

)
+ 2ε(1− ε) Var(X)

= −2
ε(1− ε)
α̃+ 1

(
α(1 + α)

β2

)
+ 2ε(1− ε) α

β2

= 2ε(1− ε) α
β2

(
1− α+ 1

α̃+ 1

)
.

Appendix B. Proof of Theorem 13

Proof The proof is nearly identical to that of Theorem 5. It extends ideas from Jørgensen and
Song (1998) and Joe (1996) to the setting of multiple folds.

Let x, our observed data, be a realization of random variable X ∼ Fλ. Let ε1, . . . , εM be chosen
such that

∑M
m=1 εm = 1, εm > 0, and εmλ is in the parameter space Λ for m = 1, . . . ,M .

Suppose we draw
(
X(1), . . . , X(M)

)
| X = x ∼ Gε1λ,ε2λ,...,εMλ,x, where Gε1λ,ε2λ,...,εMλ,x was

defined in Section 3.

Separately, let X1, X2, . . . , XM be mutually independent random variables, where Xm ∼ Fεmλ,
and let Y =

∑M
m=1Xm. As Fλ is a convolution-closed distribution, we know that Y ∼ Fλ and thus

Y has the same marginal distribution as X.
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The conditional joint distribution of (X(1), X(2), . . . , X(M)) | X is the same as the conditional
joint distribution of (X1, X2, . . . , XM ) | Y , by definition of the distribution Gε1λ,...,εMλ,x. Fur-
thermore, we have already seen that the marginal distributions of X and Y are the same. Thus,
the marginal joint distribution of (X(1), X(2), . . . , X(M)) is the same as the marginal joint dis-
tribution of (X1, X2, . . . , XM ). Furthermore, by construction, the marginal joint distribution of
(X1, X2, . . . , XM ) is that of M mutually independent random variables, where Xm ∼ Fεmλ. This
concludes the proof of Theorem 13, parts 1-3. Part 4 of Theorem 13 follows directly from Defini-
tion 2.

Appendix C. Proof of Theorem 14

To prove Theorem 14, we rely on Lemma 19 and Lemma 20.

Lemma 19 Suppose that we thin a random variable X ∼ Fλ using Algorithm 2 with ε1 = . . . =
εM = 1

M to obtain X(1), . . . , X(M). Let IX(θ) denote the Fisher information contained in X about
an unknown parameter θ (assume that this Fisher information exists). Then the Fisher information
contained in X(m) for m = 1, . . . ,M about θ, denoted IX(m)(θ), is equal to 1

M IX(θ).

Proof We began with a random variable X and we constructed
(
X(1), . . . , X(m)

)
without knowl-

edge of θ. We cannot create information from nothing. Thus, if I(X(1),...,X(m))(θ) denotes the

information about θ in the joint distribution of
(
X(1), . . . , X(m)

)
, then

I(X(1),...,X(m))(θ) ≤ IX(θ). (2)

To prove (2) formally, we can use the chain rule property of Fisher information to write I(X(1),...,X(m),X)(θ)

in two ways:

I(X(1),...,X(m),X)(θ) = I(X(1),...,X(m))(θ) + IX|(X(1),...,X(m))(θ) = I(X(1),...,X(m))|X(θ) + IX(θ).

Since θ is unknown during the thinning process, the distribution
(
X(1), . . . , X(m)

)
| X must not

involve θ, so I(X(1),...,X(m))|X(θ) = 0. This implies that

I(X(1),...,X(m))(θ) + IX|(X(1),...,X(m))(θ) = IX(θ),

and since Fisher information is non-negative, (2) follows.
Separately, since X = X(1) + . . .+X(m), we can reconstruct X from

(
X(1), . . . , X(m)

)
, and so

a fundamental property of Fisher information tells us that

IX(θ) = I∑M
m=1X

(m)(θ) ≤ I(X(1),...,X(m))(θ). (3)

Combining (2) and (3), we have that

IX(θ) = I(X(1),...,X(m))(θ).

Finally, as X(1), . . . , X(M) are independent and identically distributed,

IX(θ) = I(X(1),...,X(M))(θ) =

M∑
m=1

IX(m)(θ) = MIX(1)(θ).
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It follows immediately that IX(1)(θ) = 1
M IX(θ). Similarly, IX(m)(θ) = 1

M IX(θ) for m = 2, . . . ,M .

Lemma 20 In the setting of Lemma 19, the Fisher information contained in
∑K

m=1X
(m) for

K < M , denoted I∑K
m=1X

(m)(θ), is equal to K
M IX(θ).

Proof The convolution-closed property of Fλ says that
∑K

m=1X
(m) ∼ FK

M
λ. As

∑K
m=1X

(m) is a

function of X(1), . . . , X(K), we have that

I(X(1),...,X(K))(θ) ≥ I∑K
m=1X

(m)(θ).

We can construct a random variable Y ∼ FK
M
λ with the same distribution as

∑K
m=1X

(m) by

applying Algorithm 2 to X with ε1 = K/M and ε2 = 1−K/M and calling the first fold of data Y .
We then can thin Y with ε1 = . . . = εK = 1

K to obtain Y (1), . . . , Y (K), whose joint and marginal

distributions are equal to X(1), . . . , X(K) (independent random variables that follow F 1
M
λ). This

allows us to rewrite the inequality above as

I(Y (1),...,Y (K))(θ) = I(X(1),...,X(K))(θ) ≥ I∑K
m=1X

(m)(θ) = IY (θ). (4)

By the same logic that was given in the proof of Lemma 19, we know that we can produce
I(Y (1),...,Y (K)) from Y without knowing θ. Thus, Y (1), . . . , Y (K) cannot contain more information

about θ than Y . Thus, we have that

I(Y (1),...,Y (K))(θ) = I(X(1),...,X(K))(θ) ≤ I∑K
m=1X

(m)(θ) = IY (θ), (5)

where the last equality holds since two random variables with the same distribution contain the
same amount of information about θ. Combining the inequalities in (4) and (5) yields

I∑K
m=1X

(m)(θ) = I(X(1),...,X(K))(θ).

Finally, we note that

I∑K
m=1X

(m)(θ) = I(X(1),...,X(K))(θ) =

K∑
m=1

IX(m)(θ) =
K

M
IX(θ),

where the second equality follows from independence, and the third from Lemma 19. This com-
pletes the proof.

We now proceed with the proof of Theorem 14.

Proof For simplicity, assume that εm is a rational number for m = 1, . . . ,M . Then, we can
rewrite ε1, . . . , εM as K1

M∗ ,
K2
M∗ , . . . ,

KM
M∗ for integers M∗,K1, . . . ,KM . Further assume that 1

M∗λ is

in the parameter space Λ for our model. Then, for m = 1, . . . ,M , X(m) has the same distribution
as
∑Km

j=1 X̃
(j), where X̃(1), . . . , X̃(M∗) are random variables that we would obtain if we thinned X

into M∗ equally sized folds. By Lemma 20, IX(m)(θ) = I∑Km
j=1 X̃

(j)(θ) = Km
M∗ IX(θ) = εmIX(θ).
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Remark 21 The proof of Theorem 14 assumes that (i) εm is rational for m = 1, . . . ,M , and that
(ii) 1

M∗λ ∈ Λ for the common denominator M∗. Among the distributions in Table 2, only the
Binomial(r, p) and the Multinomial(r, p) have relevant restrictions on the parameter space Λ. To
be able to thin one of these distributions with parameter εm, we must have that εmr is a positive
integer. Thus, εm = Zm

r for some integer Zm, i.e. (i) is satisfied. Adopting the notation of the
proof of Theorem 14, we note that Km = Zm and that M∗ = r = λ. Thus, the requirement that
λ
M∗ is in the parameter space (i.e. that it is a positive integer) follows immediately, since λ

M∗ = 1.

Appendix D. Simulation Study Supporting Details

In this section, we provide additional details about the simulation studies described in Section 6.1.
For Example 11, in which we select the number of principal components for binomial data,

we use the following setup. For K∗ = 10, we compute θ = UDV T where U is a n ×K∗ random
orthogonal matrix, D is a K∗×K∗ diagonal matrix with diagonal elements equal to 5, 6, . . . , 14, and

V is a d×K∗ random orthogonal matrix. Then, pij =
exp (θij)

1+exp (θij)
for i = 1, . . . , n and j = 1, . . . , d.

For Example 12, in which we select the number of clusters in gamma-distributed data, we use
the following setup.

In the small d, small K∗ clustering setting described in Example 12, observations from each

cluster are generated as Xij
ind∼ Gamma(λ, θci,j) where λ = 20,

θ =


0.5 5
5 0.5
10 10
0.5 0.5

 ,
and ci ∈ {1, 2, 3, 4} is the true cluster membership for the ith observation.

In the large d, large K∗ clustering setting described in Example 12, observations from each

cluster are generated as Xij
ind∼ Gamma(λ, θci,j) where λ = 2, the K∗ × d matrix θ is constructed

such that for j = 1, . . . , d and k = 1, . . . ,K∗,

θkj =

{
0.1 if k ≤ 9 and 10k − 9 ≤ j ≤ 10k + 10,

1 otherwise,

and ci ∈ {1, 2, . . . , 10} is the true cluster membership for the ith observation.

Appendix E. Simulation with Mean Squared Error Loss Function

E.1 Methods

As an alternative to the negative log-likelihood loss used in Section 6, here we consider applying a
mean squared error loss. To do this, we simply replace the negative log likelihood from Step 4 of
Algorithms 3 and 4 with the mean squared error, defined as

1

nd

n∑
i=1

d∑
j=1

(
X

(test)
ij − ε(test)rp

(K)
ij

)2
(6)

in the case of Algorithm 3 and

1

nd

n∑
i=1

d∑
j=1

(
X

(test)
ij − ε(test)

ε(train)
µ̂

(K)
ĉi,j

)2

(7)
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Figure 8: The mean squared error loss averaged over 2,000 simulated data sets, as a function of K,
for the naive method (purple), data thinning with ε(train) = 0.5 (red), data thinning with
ε(train) = 0.8 (blue), and multifold thinning with 5 folds (green). Each curve has been
rescaled to take on values between 0 and 1, for ease of comparison. The minimum loss
values for each method are circled, and K∗ is indicated by the vertical black line.

in the case of Algorithm 4.

After replacing the loss functions, these algorithms can be applied directly to obtain simulation
results for data thinning, and with slight modification to obtain results for multi-fold data thinning
and the naive method, as described in Section 4.2.

E.2 Results

In Figure 8, we plot the average mean squared error curves, as a function of K. As with the
negative log-likelihood loss, data thinning approaches produce curves with sharp minimum values
at or near K = K∗, as opposed to the naive method’s monotonically-decreasing curves.

In Figure 9, we plot the proportion of simulations that select the correct value of K∗ using the
mean squared error loss, as a function of ε(train). Results are largely similar to Figure 5.

Finally, we compare multi-fold to single-fold thinning, under the mean squared error loss, in
Figure 10. As in Figure 6, we find that multi-fold thinning tends to select the correct value of K
more often than single-fold thinning.

Appendix F. Details for the Real Data Analysis in Section 7

F.1 Preprocessing

We first explain in detail the preprocessing done to the matrix X in the Seurat tutorial.

(1) Initial data filtering: We initially filter the data such that only cells with between 200 and
2500 total counts remain (with fewer than 5% of the counts coming from from mitochondrial
genes) and only genes that are expressed in at least 200 cells remain. This reduces the size
of X from 2, 700× 32, 738 to 2, 638× 13, 714
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Figure 9: The proportion of simulations for which data thinning selects the true value of K∗ with
the mean squared error loss, as a function of ε(train), for the simulation study described
in Section 6.1. The optimal value of ε(train) depends on the problem at hand.

Figure 10: The proportion of simulated data sets in which each candidate value of K is selected,
with the mean squared error loss, under data thinning with ε(train) = 0.8 (blue) and
multifold thinning with M = 5 (green), for each of the simulation settings described
in Section 6.1. The true value of K∗ is indicated by the vertical black line. Multifold
thinning tends to select the true value of K more often than single-fold thinning.
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(2) Log normalization: Next, the data are normalized and log transformed, such that

Yij = log

(
Xij∑13714

t=1 Xit

× 10, 000 + 1

)
.

(3) Feature selection: Following this transformation, the top 2000 highly variable genes are se-
lected using the function FindVariableFeatures from the Seurat package. The goal of the
function is to find a subset of features with high cell-to-cell variation after accounting for the
inherent mean-variance relationship, as these are most likely to be interesting in downstream
analysis, and it implements methodology from Stuart et al. (2019).

(4) Centering and scaling: Finally, the columns of the subsetted matrix Y ∈ R2638×2000 are
centered and scaled to obtain the matrix Ỹ .

After these preprocessing steps, the principal components of Ỹ are computed.

We now explain the preprocessing for X(1) and X(2) that we use for our Poisson data thinning
alternative to the Seurat tutorial. We follow the same four steps as above, but we are careful to
specify what we do on the training set X(1) as opposed to the test set X(2).

(1) Initial data filtering: We perform the initial data filtering from Step (1) above on X(1). We
then subset X(2) to include the same genes and cells as those in X(1). After this step, X(1)

and X(2) are both in Z2638×13258
≥0 .

(2) Log normalization: We normalize and log-transform both X(1) and X(2), such that:

Y
(1)
ij = log

(
X

(1)
ij∑13258

t=1 X
(1)
it

× 10, 000 + 1

)
, Y

(2)
ij = log

(
X

(2)
ij∑13258

t=1 X
(2)
it

× 10, 000 + 1

)
.

We note that these random variables are still independent and identically distributed under
our Poisson assumption.

(3) Feature selection: We then apply the Seurat function FindVariableFeatures to the matrix
Y (1) to select the top 2000 highly variable genes (Stuart et al., 2019). We subset both Y (1)

and Y (2) to contain only these genes, such that Y (1), Y (2) ∈ R2638×2000.

(4) Centering and scaling: We center and scale the columns of the subsetted Y (1) to obtain Ỹ (1).
We also center and scale the columns of the subsetted Y (2) to obtain Ỹ (2).

After these preprocessing steps, the principal components of Ỹ (1) are computed, and the loss
function is computed using Ỹ (2).

The negative binomial data thinning analysis, presented in Figure 7(d), follows exactly the same
steps as above, but the Poisson data thinning step is replaced with negative binomial data thinning.
Details are given in Appendix F.3.

F.2 Equivalence Between Standard Deviation and Sum of Squared Errors

We now explain the identity that makes Figure 7(a) and Figure 7(b) mathematically equivalent.
In Section 7, we defined

SSEK(Ỹ ) =
∥∥∥Ỹ − U1:KD1:KV

T
1:K

∥∥∥2

F
.
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We see that:∥∥∥Ỹ − U1:KD1:KV
T

1:K

∥∥∥2

F
= ‖Ỹ ‖22 − 2trace

(
Ỹ TU1:KD1:KV

T
1:K

)
+ trace

(
V1:KD

T
1:KU

T
1:KU1:KD1:KV

T
1:K

)
= ‖Ỹ ‖2F − trace

(
DT

1:KD1:K

)
=
∥∥∥Ỹ ∥∥∥2

F
−

K∑
j=1

D2
jj .

Thus, if we compute SSEK(Ỹ ) for K = 1, . . . , 20, since
∥∥∥Ỹ ∥∥∥2

F
is fixed, we can easily obtain the

values of
∑K

j=1D
2
jj for K = 1, . . . , 20. By taking the differences between these values for K and

K + 1, we obtain DKK for K = 1, . . . , 20. Finally, we note that the standard deviation of the Kth
principal component (UKDKK) can be written as√

(DKKUK)T (DKKUK) =
√
D2
KK .

Since the standard deviation of the Kth principal component (plotted in Figure 7(a)) can be
obtained directly from the sums of squared error plotted in Figure 7(b), we say that the two plots
are mathematically equivalent.

F.3 Negative Binomial Thinning

For the negative binomial analysis in Section 7, we assume that Xij ∼ NegBin(µij , bj), where

here we adopt the parameterization such that E[Xij ] = µij and Var(Xij) = µij +
µ2ij
bj

. We refer

to bj as the overdispersion parameter, and we note that it is equivalent to the size parameter r
in the parameterization of the negative binomial distribution used in the rest of this paper (e.g.
Table 2 and Proposition 11). As in Choudhary and Satija (2022), we assume that the overdispersion
parameters bj are gene-specific, but not cell specific.

In order to use negative binomial thinning (Table 2), rather than Poisson thinning, to ob-
tain X(1) and X(2), we need to estimate the gene-specific overdispersion parameters bj . We do
this following the methodology of Hafemeister and Satija (2019), implemented in the R package
sctransform, which assumes a smooth relationship between the average expression for each gene
and the overdispersion parameters for each gene. As these estimates are computed using the data
X, the results in Proposition 11 do not apply exactly. However, the results in Proposition 11 heuris-
tically tell us that negative binomial thinning should perform reasonably well if these estimated
overdispersion parameters are close to the “true” overdispersion parameters.

We refer interested readers to Neufeld et al. (2023) for more information on negative binomial
data thinning in this context, as well as simulations showing that negative binomial data thin-
ning performs well with estimated overdispersion parameters. We leave the matter of theoretical
guarantees on the performance of data thinning with estimated nuisance parameters to future work.
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