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Abstract

In this paper, we provide a strategy to determine the eigenvalue decay rate (EDR) of
a large class of kernel functions defined on a general domain rather than Sd. This class of
kernel functions include but are not limited to the neural tangent kernel associated with
neural networks with different depths and various activation functions. After proving that
the dynamics of training the wide neural networks uniformly approximated that of the
neural tangent kernel regression on general domains, we can further illustrate the minimax
optimality of the wide neural network provided that the underground truth function f ∈
[HNTK]s, an interpolation space associated with the RKHS HNTK of NTK. We also showed
that the overfitted neural network can not generalize well. We believe our approach for
determining the EDR of kernels might be also of independent interests.

Keywords: Neural tangent kernel, eigenvalue decay rate, early stopping, non-parametric
regression, reproducing kernel Hilbert space

1. Introduction

Deep neural networks have achieved incredible success in a variety of areas, from image
classification (He et al., 2016; Krizhevsky et al., 2017) to natural language processing (De-
vlin et al., 2019), generative models (Karras et al., 2019), and beyond. The number of
parameters appearing in modern deep neural networks is often ten or hundreds of times
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larger than the sample size of the data. It is widely observed that large neural networks
possess smaller generalization errors than traditional methods. This “benign overfitting
phenomenon” brings challenges to the usual bias-variance trade-off doctrine in statistical
learning theory. Understanding the mysterious generalization power of deep neural networks
might be one of the most interesting statistical problems.

Although the training dynamics of neural networks is highly non-linear and non-convex,
the celebrated neural tangent kernel (NTK) theory (Jacot et al., 2018) provides us a way
to study the generalization ability of over-parametrized neural networks. It is shown that
when the width of neural networks is sufficiently large (i.e., in the over-parameterized or
lazy trained regime), the training dynamics of the neural network can be well approximated
by a simpler kernel regression method with respect to the corresponding NTK. Conse-
quently, it offers us a way to investigate the generalization ability of the over-parametrized
neural network by means of the well established theory of generalization in kernel regres-
sion (Caponnetto and De Vito, 2007; Andreas Christmann, 2008; Lin et al., 2018).

However, to obtain the generalization results in kernel regression, the eigenvalue de-
cay rate (EDR) of the kernel (see (3) and below) is an essential quantity that must be
determined a priori. Considering the NTKs associated with two-layer and multilayer fully-
connected ReLU neural networks, Bietti and Mairal (2019) and the subsequent work Bietti
and Bach (2020) showed that the EDR of the NTKs is i−(d+1)/d when the inputs are uni-
formly distributed on Sd. Consequently, Hu et al. (2021) and Suh et al. (2022) claimed that
the neural network can achieve the minimax rate n−(d+1)/(2d+1) of the excess risk. However,
their assumption on the input distribution is too restrictive, and can hardly be satisfied in
practice, so it is of interest to determine the EDR of the NTKs for general input domains
and distributions. As far as we know, few works have studied the EDR of the NTKs beyond
the case of uniform distribution on Sd. More recently, focusing on one dimensional data over
an interval, Lai et al. (2023) showed that the EDR of the NTK associated with two-layer
neural networks is i−2 and thus the neural network can achieve the minimax rate n−2/3 of
the excess risk. However, their approach of determining the EDR, which relies heavily on
the closed form expression of the NTK, can not be generalized to d-dimensional inputs or
the NTK associated with multilayer neural networks.

In this work, we study the EDR of the NTKs associated with multilayer fully-connected
ReLU neural networks on a general domain in Rd with respect to a general input distri-
bution µ satisfying mild assumptions. For this purpose, we develop a novel approach for
determining the EDR of kernels by transformation and restriction. As a key contribution,
we prove that the EDR of a dot-product kernel on the sphere remains the same if one
restricts it to a subset of the sphere, which is a non-trivial generalization of the result in
Widom (1963). Consequently, we can show that the EDR of the NTKs is i−(d+1)/d for gen-
eral input domains and distributions. Moreover, after proving the uniform approximation of
the over-parameterized neural network by the NTK regression, we show the statistical op-
timality of the over-parameterized neural network trained via gradient descent with proper
early stopping. In comparison, we also show that the overfitted neural network can not
generalize well.
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1.1 Related works

The EDR of NTKs The spectral properties of NTK have been of particular interests to
the community of theorists since Jacot et al. (2018) introduced the neural tangent kernel.
For example, noticing that the NTKs associated with fully-connected ReLU networks are
inner product kernels on the sphere, several works utilized the theory of the spherical har-
monics (Dai and Xu, 2013; Azevedo and Menegatto, 2014) to study the eigen-decomposition
of the NTK (Bietti and Mairal, 2019; Ronen et al., 2019; Geifman et al., 2020; Chen and
Xu, 2020; Bietti and Bach, 2020). In particular, Bietti and Mairal (2019) and Bietti and
Bach (2020) showed that the EDR of the NTKs associated with the two-layer and multilayer
neural network is i−(d+1)/d if the inputs are uniformly distributed on Sd. However, their
analysis depends on the spherical harmonics theory on the sphere to derive the explicit
expression of the eigenvalues, which cannot be extended to general input domains and dis-
tributions. Recently, considering two-layer ReLU neural networks on an interval, Lai et al.
(2023) showed that the EDR of the corresponding NTK is i−2. However, their technique
relies heavily on the explicit expression of the NTK on R and can hardly be extended to
NTKs defined on Rd or NTKs associated with multilayer wide networks.

The generalization performance of over-parameterized neural networks Though
now it is a common strategy to study the generalization ability of over-parameterized neural
networks through that of the NTK regression, few works state it explicitly or rigorously. For
example, Du et al. (2018); Li and Liang (2018); Arora et al. (2019a) showed that the training
trajectory of two-layer neural networks converges pointwisely to that of the NTK regressor;
Du et al. (2019); Allen-Zhu et al. (2019a); Lee et al. (2019) further extended the results to the
multilayer networks and ResNet. However, if one wants to approximate the generalization
error of over-parameterized neural network by that of the NTK regressor, the approximation
of the neural network by the kernel regressor has to be uniform. Unfortunately, the existing
two works (Hu et al., 2021; Suh et al., 2022) studying the generalization error of over-
parameterized neural networks overlooked the aforementioned subtle difference between
the pointwise convergence and uniform convergence, so there might be some gaps in their
claims. To the best of our knowledge, Lai et al. (2023) might be one of the first works who
showed the two-layer wide ReLU neural networks converge uniformly to the corresponding
NTK regressor.

The high-dimensional setting It should be also noted that several other works tried to
consider the generalization error of NTK regression in the high-dimensional setting, where
the dimension of the input diverges as the number of samples tends to infinity. These works
include the eigenvalues of NTK, the “benign overfitting phenomenon”, the “double descent
phenomenon”, and the generalization error. For example, Frei et al. (2022), Nakkiran et al.
(2019) and Liang and Rakhlin (2020) have shown the benign overfitting and double descent
phenomena, while Fan and Wang (2020) and Nguyen et al. (2021) have investigated the
eigenvalue properties of NTK in the high-dimensional setting. Furthermore, recent works
by Montanari and Zhong (2022) have examined the generalization performance of neural
networks in the high-dimensional setting. However, it has been suggested by Rakhlin and
Zhai (2018); Beaglehole et al. (2022) that there may be differences between the traditional
fixed-dimensional setting and the high-dimensional setting. In this work, we focus solely on
the fixed-dimensional setting.
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1.2 Our contributions

The main contribution of this paper is that we determine the EDR of the NTKs associated
with multilayer fully-connected ReLU neural networks on Rd with respect to a general input
distribution µ satisfying mild assumptions. We develop a novel approach for determining
the EDR of kernels by means of algebraic transformation and restriction to subsets: if the
kernel can be transformed to a dot-product kernel on the sphere, its EDR on a general
domain coincides with the EDR of the resulting dot-product kernel with respect to the
uniform distribution over the entire sphere, while the latter can be determined more easily
by the theory of spherical harmonics. In particular, we show that the EDR of the considered
NTKs is i−(d+1)/d, which coincides with that of the NTKs on the sphere. Besides, we also
prove that the NTKs are strictly positive definite. As a key technical contribution, we prove
that the EDR of a dot-product kernel on the sphere remains the same if one restricts it to a
subset of the sphere, provided that the EDR of the kernel satisfies a very mild assumption.
This result is a non-trivial generalization of the result on shift-invariant kernels in Widom
(1963) and its proof involves fine-grained harmonic analysis on the sphere. We believe that
our approach is also of independent interest in the research of kernel methods.

Another contribution of this paper is that we rigorously prove that the over-parameterized
multilayer neural network trained by gradient descent can be approximated uniformly by
the corresponding NTK regressor. Combined with the aforementioned EDR result, this
uniform approximation allows us to characterize the generalization performance of the neu-
ral network through the well-established kernel regression theory. The theoretical results
show that proper early stopping is essential for the generalization performance of the neural
networks, which urges us to scrutinize the widely reported “benign overfitting phenomenon”
in deep neural network literature.

1.3 Notations

For two sequences an, bn, n ≥ 1 of non-negative numbers, we write an = O(bn) (or an =
Ω(bn)) if there exists absolute constant C > 0 such that an ≤ Cbn (or an ≥ Cbn). We also
denote an � bn (or an = Θ(bn)) if an = O(bn) and an = Ω(bn). For a function f : X → R, we
denote by ‖f‖∞ = supx∈X |f(x)| the sup-norm of f . We denote by Lp(X ,dµ) the Lebesgue
Lp-space over X with respect to µ.

2. Analysis of Eigenvalue Decay Rate

The neural tangent kernel (NTK) theory (Jacot et al., 2018) has been widely used to explain
the generalization ability of neural networks, which establishes a connection between neural
networks and kernel methods (Caponnetto and De Vito, 2007; Bauer et al., 2007). In the
framework of kernel methods, the spectral properties, in particular the eigenvalue decay rate,
of the kernel function are crucial in the analysis of the generalization ability. Although there
are several previous works (Bietti and Mairal, 2019; Chen and Xu, 2020; Geifman et al.,
2020; Bietti and Bach, 2020) investigating the spectral properties of NTKs on the sphere,
their results are limited to the case where the input distribution is uniform on the sphere.
Therefore, we would like to determine the spectral properties of NTKs on a general domain
with a general input distribution. In this section, we provide some general results on the
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asymptotic behavior of the eigenvalues of certain type of kernels. As a consequence, we are
able to determine the eigenvalue decay rate of NTKs on a general domain.

2.1 The integral operator and the eigenvalues

Let X be a Hausdorff space and µ be a Borel measure on X . In the following, we always
consider a continuous positive definite kernel k(x, x′) : X × X → R such that∫

X
k(x, x)dµ(x) <∞. (1)

We denote by L2 = L2(X ,dµ) and H the reproducing kernel Hilbert space (RKHS) associ-
ated with k. Introduce the integral operator T = Tk;X ,µ : L2 → L2 by

(Tf)(x) =

∫
X
k(x, x′)f(x′)dµ(x′). (2)

It is well-known (Andreas Christmann, 2008; Steinwart and Scovel, 2012) that T is self-
adjoint, positive and trace-class (hence compact). Consequently, we can derive the spectral
decomposition of T and also the Mercer’s decomposition of k as

T =
∑
i∈N

λi 〈·, ei〉L2 ei, k(x, x′) =
∑
i∈N

λiei(x)ei(x
′), (3)

where N ⊆ N is an index set (N = N if the space is infinite dimensional), (λi)i∈N is the
set of positive eigenvalues (counting multiplicities) of T in descending order and (ei)i∈N
are the corresponding eigenfunction, which are an orthonormal set in L2(X ,dµ). To em-
phasize the dependence of the eigenvalues on the kernel and the measure, we also denote
by λi(k;X ,dµ) = λi. We refer to the asymptotic rate of λi as i tends to infinity as the
eigenvalue decay rate (EDR) of k with respect to X and µ.

In the kernel regression literature, the EDR of the kernel is closely related to the capacity
condition of the corresponding reproducing kernel Hilbert space (RKHS) and affects the
rate of convergence of the kernel regression estimator (see, e.g., Caponnetto and De Vito
(2007); Lin et al. (2018)). Particularly, a power-law decay that λi � i−β is often assumed
in the literature and the corresponding minimax optimal rate depends on the exponent β.
Therefore, it would be helpful to determine such decay rate for a kernel of interest.

2.2 Preliminary results on the eigenvalues

In this subsection, we present some preliminary results on the eigenvalues of T , which allow
us to manipulate the kernel with algebraic transformations to simplify the analysis. Let us
first define the scaled kernel (ρ� k)(x, x′) = ρ(x)k(x, x′)ρ(x′) for some function ρ : X → R.
It is easy to see the following:

Proposition 1 Let ρ : X → R be a measurable function such that ρ�k satisfies (1). Then,

λi(ρ� k;X ,dµ) = λi(k;X , ρ2dµ). (4)

Furthermore, if ρ is bounded, we can further estimate the eigenvalues using the minimax
principle on the eigenvalues of self-adjoint compact positive operators.
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Lemma 2 Let a measurable function ρ : X → R satisfy 0 ≤ c ≤ ρ2(x) ≤ C. Then,

cλi(k;X ,dµ) ≤ λi(ρ� k;X ,dµ) ≤ Cλi(k;X ,dµ), ∀i = 1, 2, . . . .

Consequently, if ν is another measure on X such that 0 ≤ c ≤ dν
dµ ≤ C, then

cλi(k;X ,dµ) ≤ λi(k;X , dν) ≤ Cλi(k;X ,dµ), ∀i = 1, 2, . . . . (5)

Now, we consider the transformation of the kernel. Let X1,X2 be two sets, ϕ : X1 → X2

be a bijection and k2 be a kernel over X2. We define the pull-back kernel ϕ∗k2 over X1 by

(ϕ∗k2)(x1, x
′
1) = k2(ϕ(x1), ϕ(x′1)).

Moreover, suppose X1 is a measurable space with measure µ1, we define the push-forward
measure µ2 = ϕ∗µ1 on X2 by µ2(A) = µ1(ϕ−1(A)). Then, it is easy to see that:

Proposition 3 Let X1,X2 be two measurable spaces, ϕ : X1 → X2 be a measurable injection,
µ1 be a measure on X1 and µ2 = ϕ∗µ1. Suppose k2 is a kernel over X2 and k1 = ϕ∗k2

satisfies (1). Then,

λi(k1;X1, dµ1) = λi(k2;X2,dµ2). (6)

Finally, this lemma deals with the case of the sum of two kernels of different EDRs,
which is a direct consequence of Lemma 50.

Lemma 4 Let k1, k2 be two positive definite kernels on X . Suppose λi(k1;X ,dµ) � λ2i(k1;X , dµ)
and λi(k2;X ,dµ) = O (λi(k1;X , dµ)) as i→∞. Then,

λi(k1 + k2;X ,dµ) � λi(k1;X , dµ).

2.3 Eigenvalues of kernels restricted on a subdomain

Suppose we are interested in λi(k1;X1, dµ1). If k1 = ϕ∗k2 for some transformation ϕ and
the EDR of k2 with respect to some measure σ on X2 is known or can be easily obtained,
Then, it is tempting to combine Proposition 3 and Lemma 2 to obtain the EDR of k1 with
respect to µ1. However, in many cases ϕ(X1) is a proper subset of X2 and µ2 = ϕ∗µ1 is
only supported on ϕ(X1), so the Radon derivative dµ2

dσ is not bounded from below (that
is, c = 0) and the lower bound in (5) vanishes, which is exactly the case of the NTK that
we are interested in. Fortunately, we can still provide such a lower bound if the kernel
satisfies an appropriate invariance property. Considering translation invariant kernels (that
is, k(x, x′) = g(x− x′)), the following result based on Widom (1963) is very inspiring.

Proposition 5 (Widom (1963)) Let Td = [−π, π)d be the d-dimensional torus and

k(x, x′) =
∑
n∈Zd

cne
in·xe−in·x

′

be a translation invariant kernel on Td. Suppose further that cn satisfies (i) cn ≥ 0; (ii)
with all ni fixed but ni0, cn, as a function of ni0, is nondecreasing between −∞ and some
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n̄ = n̄(i0) and nonincreasing between n̄ and ∞; (iii) if |n|, |m| → ∞ and |n| = O(|m|),
then cm = O(cn); (iv) if |n|, |m| → ∞ and |n| = o(|m|), then cm = o(cn). Then, for a
bounded non-zero Riemann-integrable function ρ, we have

λi(k;Td, ρ2dx) � λi(k;Td,dx).

However, the above result is not applicable to our case since the NTKs we are interested
in is not translation invariant on the torus, but rotation invariant on the sphere. Never-
theless, inspired by this result, we establish a similar result for dot-product kernels on the
sphere as one of our main contribution. Let Sd ⊂ Rd+1 be the d-dimensional unit sphere
and σ be the Lebesgue measure on Sd. We recall that a dot-product kernel k(x, x′) is a
kernel that depends only on the dot product u = 〈x, x′〉 of the inputs. Thanks to the theory
of spherical harmonics (Dai and Xu, 2013), the eigenfunctions of the integral operator T
and also the Mercer’s decomposition of k can be explicitly given by

k(x, x′) =

∞∑
n=0

µn

an∑
l=1

Yn,l(x)Yn,l(x
′), (7)

where {Yn,l, n ≥ 0, l = 1, . . . , an} is an orthonormal basis formed by spherical harmonics,

an =
(
n+d
n

)
−
(
n−2+d
n−2

)
is the dimension of the space of order-n spherical harmonics, and

µn an eigenvalue of T with multiplicity an. To state our result, let us first introduce the
following condition on the asymptotic decay rate of the eigenvalues.

Condition 6 Let (µn)n≥0 be a decreasing sequence of positive numbers.

(a) Define N(ε) = max{n : µn > ε}. For any fixed constant c > 0, N(cε) = Θ(N(ε)) as
ε→ 0; suppose ε, δ → 0 with ε = o(δ), then N(δ) = o(N(ε)).

(b) 4d+1µn ≥ 0 for all n, where 4 is the forward difference operator in Definition 55.

(c) There is some constant q ∈ N+ and D > 0 such that for any n ≥ 0,

d∑
l=0

(
ñ+ l

l

)
4lµñ ≤ Dµn, where ñ = qn. (8)

Remark 7 Condition 6 is a mild condition on the decay rate and Theorem 8 only requires
that Condition 6 holds in the asymptotic sense, so this requirement is quite general. For
instance, this requirement is satisfied if

• µn � n−β for some β > d.

• µn � exp
(
−c1n

β
)

for some c1, β > 0.

• µn � n−β(lnn)p for c0 > 0, β > d and p ∈ R, or β = d and p > 1.

Furthermore, our decay rate condition aligns with existing theory, as similar conditions
(ii)-(iv) are also needed in Widom (1963).
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Theorem 8 Let k(x, x′) be a dot-product kernel on Sd whose corresponding eigenvalues
in the decomposition (7) are (µn)n≥0. Assume that there is a sequence (µ̃n)n≥0 satisfying
Condition 6 such that µn � µ̃n. Then, for a bounded non-zero Riemann-integrable function
ρ on Sd, we have

λi(k;Sd, ρ2dσ) � λi(k;Sd, dσ). (9)

As our main technical contribution, this theorem is a non-trivial generalization of the
result in Widom (1963), adapting it from the torus to the sphere. Following the basic idea
of Widom (1963), we establish the theorem by proving first the main lemma (Lemma 22),
but now the approach of Widom (1963) is not applicable since the eigen-system differs
greatly. To prove the main lemma, we utilize refined harmonic analysis on the sphere,
incorporating the technique of Cesaro summation and the left extrapolation of eigenvalues,
which necessitates the subtle requirement of Condition 6. Detailed proof can be found in
Section 4.

Theorem 8 shows that the EDR of a dot-product kernel with respect to a general measure
is the same as that of the kernel with respect to the uniform measure. Combined with the
results in Section 2.2, it provides a new approach to determine the EDR of a kernel on
a general domain. One could first transform the kernel to a dot-product kernel on the
sphere with respect to some measure; then use Theorem 8 to show that the decay rate of
the resulting dot-product kernel remains the same if we consider the uniform measure on
the sphere instead; and finally determine the decay rate of the dot-product kernel on the
entire sphere by some analytic tools. This approach enables us to determine the EDR of
the NTKs corresponding to multilayer neural networks on a general domain.

2.4 EDR of NTK on a general domain

A bunch of previous literature (Bietti and Mairal, 2019; Chen and Xu, 2020; Geifman et al.,
2020; Bietti and Bach, 2020) have analyzed the RKHS as well as the spectral properties of
the NTKs on the sphere by means of the theory of spherical harmonics. However, these
results require the inputs to be uniformly distributed on the sphere and hence do not apply to
general domains with general input distribution. Therefore, it is of our interest to investigate
the eigenvalue properties of the NTKs on a general domain with a general input distribution
since it is more realistic. To the best of our knowledge, only Lai et al. (2023) considered
a non-spherical case of an interval on R and the EDR of the NTK corresponding to a
two-layer neural network, but their techniques are very restrictive and can not be extended
to higher dimensions or multilayer neural networks. Thanks to the results established in
previous subsections, we can determine the EDR of the NTKs on a general domain using
the established results on their spectral properties on the whole sphere.

Let us focus on the following explicit formula of the NTK, which corresponds to a
multilayer neural network defined later in Section 3.1. Introduce the arc-cosine kernels (Cho
and Saul, 2009) by

κ0(u) =
1

π
(π − arccosu) , κ1(u) =

1

π

[√
1− u2 + u(π − arccosu)

]
. (10)
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Then, we define the kernel KNT on Rd by

KNT(x, x′) = ‖x̃‖‖x̃′‖
L∑
r=0

κ
(r)
1 (ū)

L−1∏
s=r

κ0(κ
(s)
1 (ū)) + 1, (11)

where L ≥ 2 is the number of hidden layers, x̃ = (x, 1)/‖(x, 1)‖, ū = 〈x̃, x̃′〉 and κ
(r)
1

represents r-times composition of κ1, see, e.g., Jacot et al. (2018); Bietti and Bach (2020).
First, we show that KNT is strictly positive definite, the proof of which is deferred to
Section B.1.

Proposition 9 KNT is strictly positive definite on Rd, that is, for distinct points x1, . . . , xn ∈
Rd, the kernel matrix’s smallest eigenvalue λmin

(
KNT(xi, xj)

)
n×n > 0.

Theorem 10 Let µ be a probability measure on Rd with Riemann-integrable density p(x)
such that p(x) ≤ C(1 + ‖x‖2)−(d+3)/2 for some constant C. Then, the EDR of KNT on Rd
with respect to µ is

λi(K
NT;Rd, dµ) � i−

d+1
d . (12)

Remark 11 The condition on the density p(x) is satisfied by many common distributions,
such as sub-Gaussian distributions or distributions with bounded support. Moreover, the
result on the EDR can also be established for the NTKs corresponding to other activations
(including homogeneous activations such as ReLUα(x) = max(x, 0)α and leaky ReLU) and
other network architectures (such as residual neural networks), as long as the corresponding
kernel can be transformed to a dot-product kernel on the sphere.

Proof [of Theorem 10] Let us denote Sd+ =
{
y = (y1, . . . , yd+1) ∈ Sd : yd+1 > 0

}
and intro-

duce the homeomorphism Φ : Rd → Sd+ by x 7→ x̃/‖x̃‖, where x̃ = (x, 1) ∈ Rd+1. It is easy
to show that the Jacobian and the Gram matrix are given by

JΦ =
1

‖x̃‖

(
Id
0

)
− x̃xT

‖x̃‖3
, G = (JΦ)TJΦ =

1

‖x̃‖2
Id −

xxT

‖x̃‖4
, detG = ‖x̃‖−2(d+1).

Defining the homogeneous NTK KNT
0 on Sd by

KNT
0 (y, y′) :=

L∑
r=0

κ
(r)
1 (u)

L−1∏
s=r

κ0(κ
(s)
1 (u)), u =

〈
y, y′

〉
, (13)

it is easy to verify that

K1(x, x′) := Φ∗KNT
0 =

l∑
r=0

κ
(r)
1 (ū)

l−1∏
s=r

κ0(κ
(s)
1 (ū)), KNT = ‖x‖ �K1 + 1.

Therefore, Proposition 1 and then Proposition 3 yields

λi(‖x‖ �K1;X , dµ) = λi(K1;X , ‖x̃‖2dµ) = λi

(
KNT

0 ;Sd,Φ∗(‖x̃‖2dµ)
)
.

9
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Moreover, denoting σ̃ = Φ∗(‖x̃‖2dµ) and p(x) = dµ
dx , we have dσ̃ = p(x)‖x̃‖2Φ∗(dx). On

the other hand, the canonical uniform measure σ on Sd+ is given by dσ = |detG|
1
2 Φ∗(dx),

so we have

q(y) :=
dσ̃

dσ
= |detG|−

1
2 ‖x̃‖2p(x) = ‖x̃‖d+3p(x), y ∈ Sd+.

Therefore, the condition on p(x) implies that q(y) is Riemann-integrable and upper bounded.
Now, the EDR of the dot-product kernel KNT

0 on Sd with respect to dσ is already estab-

lished in Bietti and Bach (2020) that λi(K
NT
0 ;Sd, dσ) � i−

d+1
d , so Theorem 8 shows that

λi
(
KNT

0 ;Sd, dσ̃
)
� i−

d+1
d . Finally, the proof is completed by applying Lemma 4 to show

that the extra constant does not affect the EDR.

3. Application: Optimal Rates of Over-parameterized Neural Networks

In this section, using the spectral properties of the NTK obtained in the previous section,
we derive the optimal rates of over-parameterized neural networks by combining the NTK
theory and the kernel regression theory. Let d be fixed, X ⊆ Rd and µ be a sub-Gaussian1

probability distribution supported on X with upper bounded Riemann-integrable density.
Suppose we are given i.i.d. samples (x1, y1), (x2, y2), . . . , (xn, yn) ∈ X × R generated from
the model y = f∗(x) + ε, where x ∼ µ, f∗ : X → R is an unknown regression function and
the independent noise ε is sub-Gaussian.

In terms of notations, we denote X = (x1, . . . , xn) and y = (y1, . . . , yn)T . For a kernel
function k : X × X → R, we write k(x,X) = (k(x, x1), . . . , k(x, xn)) and k(X,X) =(
k(xi, xj)

)
n×n.

3.1 Setting of the neural network

We are interested in the following fully connected ReLU neural network f(x;θ) with L-
hidden layers of widths m1,m2, . . . ,mL, where L ≥ 2 is fixed. The network includes bias
terms on the first and the last layers. To ensure that the final predictor corresponds to the
kernel regressor, we consider a special mirrored architecture. In detail, the network model
is given by the following:

α(1,p)(x) =
√

2
m1
σ
(
A(p)x+ b(0,p)

)
∈ Rm1 , p ∈ {1, 2} ,

α(l,p)(x) =
√

2
ml
σ
(
W (l−1,p)α(l−1,p)(x)

)
∈ Rml , l ∈ {2, 3, . . . , L} , p ∈ {1, 2} ,

g(p)(x;θ) = W (L,p)α(L,p)(x) + b(L,p) ∈ R, p ∈ {1, 2} ,

f(x;θ) =

√
2

2

[
g(1)(x;θ)− g(2)(x;θ)

]
∈ R.

Here, α(l,p) represents the hidden layers; l ∈ {1, 2, . . . , L}, p ∈ {1, 2} stand for the index of
layers and parity respectively; σ(x) := max(x, 0) is the ReLU activation (applied element-
wise); parameters A(p) ∈ Rm1×d, W (l,p) ∈ Rml+1×ml , b(0,p) ∈ Rm1 , b(L,p) ∈ R, where we set

1. That is, µ(
{
x ∈ Rd : ‖x‖ ≥ t

}
) ≤ 2 exp

(
−t2/C2

)
, ∀t ≥ 0 for some constant C > 0.

10
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mL+1 = 1; and we use θ to represent the collection of all parameters flatten as a column vec-
tor. Letting m = min(m1,m2, . . . ,mL), we assume that max(m1,m2, . . . ,mL) ≤ Cwidthm
for some constant Cwidth.

Initialization Considering the mirrored architecture, we initialize the parameters in one
parity to be i.i.d. normal and set the parameters in the other parity be the same as the
corresponding ones. More precisely,

A
(1)
i,j ,W

(l,1)
i,j , b

(0,1)
i , b(L,1) i.i.d.∼ N(0, 1), for l = 0, 1, . . . , L,

W (l,2) = W (l,1), A(2) = A(1), b(0,2) = b(0,1), b(L,2) = b(L,1).

Such kind of “mirror initialization” ensures that the model output is always zero at initial-
ization, which is also considered in Lai et al. (2023).

Training Neural networks are often trained by the gradient descent (or its variants) with
respect to the empirical loss L(θ) = 1

2n

∑n
i=1(f(xi;θ)−yi)2. For simplicity, we consider the

continuous version of gradient descent, namely the gradient flow for the training process.
Denote by θt the parameter at the time t ≥ 0, the gradient flow is given by

θ̇t = −∇θL(θt) = − 1

n
∇θf(X;θt)(f(X;θt)− y) (14)

where f(X;θt) = (f(x1;θt), . . . , f(xn;θt))
T and ∇θf(X;θt) is an M × n matrix where M

is the number of parameters. Finally, let us denote by f̂NN
t (x) := f(x;θt) the resulting

neural network predictor.

3.2 Uniform convergence to kernel regression

Although the gradient flow (14) is a highly non-linear and hard to analyze, the celebrated
neural tangent kernel (NTK) theory (Jacot et al., 2018) provides a way to approximate
the gradient flow by a kernel regressor when the width of the network tends to infinity,
which is also referred to as the lazy training regime. Introducing a random kernel function
Kt(x, x

′) = 〈∇θf(x;θt),∇θf(x′;θt)〉, it is shown that Kt(x, x
′) concentrates in probabil-

ity to a deterministic kernel KNT called the neural tangent kernel (NTK). Consequently,
the predictor f̂NN

t (x) is well approximated by the kernel regressor f̂NTK
t (x) given by the

following gradient flow:

d

dt
f̂NTK
t (x) = −KNT(x,X)(f̂NTK

t (X)− y), (15)

where f̂NTK
t (X) = (f̂NTK

t (x1), . . . , f̂NTK
t (xn))T . Thanks to the mirrored architecture, we

have f̂NN
t (x) ≡ 0 at initialization and thus we also have f̂NTK

t (x) ≡ 0. The recursive formula
of the NTK also enables us to give explicitly (Jacot et al., 2018; Bietti and Bach, 2020) the
formula of KNT in (11).

Although previous works (Lee et al., 2019; Arora et al., 2019b; Allen-Zhu et al., 2019b)
showed that the neural network regressor f̂NN

t (x) can be approximated by f̂NTK
t (x), most of

these results are established pointwisely, namely, for fixed x, supt≥0

∣∣∣f̂NTK
t (x)− f̂NN

t (x)
∣∣∣ is

small with high probability. However, to analyze the generalization performance of f̂NN
t (x),

11
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the convergence is further needed to be uniform over x ∈ X . Consider the simple case of two-
layer neural network, Lai et al. (2023) rigorously showed such uniform convergence. With
more complicated analysis, we prove the uniform convergence of f̂NN

t (x) to f̂NTK
t (x) for

multilayer neural networks. To state our result, let us denote by λ0 = λmin

(
KNT(X,X)

)
the minimal eigenvalue of the kernel matrix, which, by Proposition 9, can be assumed to
be positive in the following.

Lemma 12 Denote MX =
∑n

i=1 ‖xi‖2 and Br =
{
x ∈ Rd : ‖x‖ ≤ r

}
for r ≥ 1. There ex-

ists a polynomial poly(·) such that for any δ ∈ (0, 1) and k > 0, when m ≥ poly(n,MX , λ
−1
0 ,

‖y‖, ln(1/δ), k) and m ≥ rk, with probability at least 1 − δ with respect to random initial-
ization, we have

sup
t≥0

sup
x∈Br

∣∣∣f̂NTK
t (x)− f̂NN

t (x)
∣∣∣ ≤ O(r2m−

1
12

√
lnm).

Lemma 12 shows that as m tends to infinity, f̂NN
t (x) can be approximated uniformly

by f̂NTK
t (x) on a bounded set, which is also allowed to grow with m. Consequently, we can

study the generalization performance of the neural network in the lazy training regime by
that of the corresponding kernel regressor.

To establish Lemma 12, it is essential to demonstrate the uniform convergence of the
kernel Kt(x, x

′) towards KNT(x, x′). This is achieved by first establishing the Hölder conti-
nuity of Kt(x, x

′) and KNT(x, x′), and then applying an ε-net argument in conjunction with
the pointwise convergence. Since the detailed proof is laborious, it is deferred to Section A.

3.3 The optimal rates of the over-parameterized neural network

With the uniform convergence of the neural network to the kernel regressor established and
the eigenvalue decay rate of the NTK determined, we can now derive the optimal rates of
the over-parameterized neural network. Let us denote by H = HNTK the RKHS associated
with the NTK (11) on X . We introduce the integral operator T in (2) and recall its spectral
decomposition in (3). The kernel regression literature often introduce the interpolation
spaces of the RKHS to characterize the regularity of the regression function (Steinwart and
Scovel, 2012; Fischer and Steinwart, 2020). For s ≥ 0, we define the interpolation space
[H]s by

[H]s =

{ ∞∑
i=1

aiλ
s/2
i ei

∣∣∣ ∞∑
i=1

a2
i <∞

}
⊆ L2, (16)

which is equipped with the norm
∥∥∥∑∞i=1 aiλ

s/2
i ei

∥∥∥
[H]s

:=
(∑∞

i=1 a
2
i

)1/2
. It can be seen that

[H]s is a separable Hilbert space with
(
λ
s/2
i ei

)
i≥1

as its orthonormal basis. We also have

[H]0 = L2 and [H]1 = H. Moreover, when s ∈ (0, 1), the space [H]s also coincides with the
space (L2,H)s,2 defined by real interpolation (Steinwart and Scovel, 2012). We also denote

by BR([H]s) =
{
f ∈ [H]s | ‖f‖2[H]s ≤ R

}
. Then, we derive the following optimal rates of

the neural network from the optimality result in the kernel regression (Lin et al., 2018).

12
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Proposition 13 Suppose f∗ ∈ BR([H]s) ∩ L∞ for constants s > 1
d+1 and R > 0. Let us

choose top = top(n) � n(d+1)/[s(d+1)+d]. Then, there exists a polynomial poly(·) such that
for any δ ∈ (0, 1), when n is sufficiently large and the width m ≥ poly(n, ln(1/δ), λ−1

0 ), with
probability at least 1− δ with respect to random samples and random initialization,∥∥∥f̂NN

top − f
∗
∥∥∥2

L2
≤ C

(
ln

12

δ

)2

n
− s(d+1)
s(d+1)+d , (17)

where the constant C > 0 is independent of δ, n. Moreover, the convergence rate in (17)
achieves the optimal rate in BR([H]s).

The results in the kernel regression literature also allows us to provide the following
sup-norm learning rate.

Proposition 14 Under the settings of Proposition 13, suppose further that s ≥ 1 and X
is bounded. Then, when n is sufficiently large, with probability at least 1− δ,∥∥∥f̂NN

top − f
∗
∥∥∥2

∞
≤ C

(
ln

12

δ

)2

n
− (s−1)(d+1)

s(d+1)+d ,

where the constant C > 0 is independent of δ, n.

Remark 15 Proposition 13 shows the minimax optimality of wide neural networks, where
optimal rate is also adaptive to the relative smoothness of the regression function to the
NTK. Our result extends the result in Lai et al. (2023) to the scenario of d > 1 and
L > 1, and also distinguishes with Hu et al. (2021); Suh et al. (2022) in the following
aspects: (1) The critical uniform convergence (Lemma 12) is not well-supported in these
two works, as pointed out in Lai et al. (2023); (2) They have to assume the data distribution
is uniform on the sphere, while we allow X to be a general domain; (3) They introduce an
explicit `2 regularization in the gradient descent and approximate the training dynamics by
kernel ridge regression (KRR), while we consider directly the kernel gradient flow and early
stopping serves as an implicit regularization, which is more natural. Moreover, our gradient
method can adapt to higher order smoothness of the regression function and do not saturate
as KRR (Li et al., 2023b) or consequently their `2-regularized neural networks.

Moreover, using the idea in Caponnetto and Yao (2010), we can also show that the
cross validation can be used to choose the optimal stopping time. Let us further assume
that Suppµ is bounded and y ∈ [−M,M ] almost surely for some M and introduce the
truncation LM (a) = min{|a|,M} sgn(a). Suppose now we have ñ extra independent samples
(x̃1, ỹ1), . . . , (x̃ñ, ỹñ), where ñ ≥ cvn for some constant cv > 0. Let Tn be a set of stopping
time candidates, we can choose the empirical stopping time by cross validation

t̂cv = arg min
t∈Tn

ñ∑
i=1

[
LM

(
f̂NN
t (x̃i)

)
− ỹi

]2
. (18)

Proposition 16 Under the settings of Proposition 13 and the further assumptions given
above, let Tn =

{
1, Q, . . . , QblnQ nc

}
for arbitrary fixed Q > 1 and t̂cv be chosen from (18).

13
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Define f̂NN
cv (x) = LM

(
f̂NN
t̂cv

(x)
)

. Then, there exists a polynomial poly(·) such that when n

is sufficiently large and m ≥ poly(n, ln(1/δ), λ−1
0 ), one has∥∥∥f̂NN

cv − f∗
∥∥∥2

L2
≤ C

(
ln

12

δ

)2

n
− s(d+1)
s(d+1)+d

with probability at least 1 − δ with respect to random samples and initialization, where the
constant C > 0 is independent of δ, n.

Early stopping, as an implicit regularization, is necessary for the generalization of neural
networks. The following proposition, which is a consequence of the result in Li et al. (2023a),
shows overfitted multilayer neural networks generalize poorly.

Proposition 17 Suppose further that the samples are distributed uniformly on Sd and the
noise is non-zero. Then, for any ε > 0 and δ ∈ (0, 1), there is some c > 0 such that when
n and m is sufficiently large, one has that

E
[
lim inf
t→∞

∥∥∥f̂NN
t − f∗

∥∥∥2

L2

∣∣∣ X] ≥ cn−ε
holds with probability at least 1− δ.

Remark 18 Proposition 17 seems to contradict with the “benign overfitting” phenomenon (e.g.,
Bartlett et al. (2020); Frei et al. (2022)). However, we point out that in these works the
dimension d of the input diverges with the sample size n, while in our case d is fixed, so the
setting is different. In fact, in the fixed-d scenario, several works have argued that overfit-
ting is harmful (Rakhlin and Zhai, 2018; Beaglehole et al., 2022; Li et al., 2023a) and our
result is consistent with theirs.

Remark 19 The requirement of uniformly distributed samples on the sphere is due to the
technical condition of the embedding index in Li et al. (2023a), which is critical for more
refined analysis in the kernel regression (Fischer and Steinwart, 2020). With this condition,
the requirement of s in Proposition 13 can further be relaxed to s > 0. We hypothesize that
this embedding index condition is also satisfied for the NTK on a general domain, but we
would like to leave it to future work since more techniques on function theory are needed.

4. Proof of the Result on the Eigenvalues

In this section we provide the proof of our key result, Theorem 8. The proof idea follows
the same line as Widom (1963): we first establish the key lemma (Lemma 22) and then
use the decomposition of domains on the sphere to show Theorem 8. The key technical
contribution here lies in the proof of Lemma 22 where we apply a refined analysis on
bounding the spherical harmonics using the Cesaro summation.

For a compact self-adjoint operator T , we denote by N±(ε, T ) the count of eigenvalues
of T that is strictly greater (smaller) than ε (−ε). We denote by PΩ the operator of the
multiplication of the characteristic function 1Ω. For convenience, we will use C to represent
some positive constant that may vary in each appearance in the proof.
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4.1 Spherical harmonics

Let us first introduce spherical harmonics and some properties that will be used. We refer
to Dai and Xu (2013) for more details. Let σ be the Lebesgue measure on Sd and L2(Sd)
be the (real) Hilbert space equipped with the inner product

〈f, g〉L2(Sd) =
1

ωd

∫
Sd
fg dσ.

By the theory of spherical harmonics, the eigen-system of the Laplace-Beltrami opera-
tor ∆Sd , the spherical Laplacian, gives an orthogonal direct sum decomposition L2(Sd) =⊕∞

n=0Hdn(Sd), where Hdn(Sd) is the restriction of n-degree homogeneous harmonic polyno-
mials with d + 1 variables on Sd and each element in Hdn(Sd) is an eigen-function of ∆Sd
with eigenvalue −n(n+ d− 1). This gives an orthonormal basis

{Yn,l, l = 1, . . . , an, n = 1, 2, . . . }

of L2(Sd), where an =
(
n+d
n

)
−
(
n−2+d
n−2

)
� nd−1 is the dimension ofHdn(Sd) and Yn,l ∈ Hdn(Sd).

We also notice that ∑
n≤N

an = CNN+d + CN−1
N−1+d � N

d. (19)

Moreover, the summation

Zn(x, y) =

an∑
l=1

Yn,l(x)Yn,l(y) (20)

is invariant of selection of orthonormal basis Yn,l and Zn’s are called zonal polynomials.
When d ≥ 2, we have

Zn(x, y) =
n+ λ

λ
Cλn(u), u = 〈x, y〉 , λ =

d− 1

2
, (21)

where Cλn is the Gegenbauer polynomial.

The key property of spherical harmonics is the following Funk-Hecke formula (Dai and
Xu, 2013, Theorem 1.2.9).

Proposition 20 (Funk-Hecke formula) Let d ≥ 3 and f be an integrable function such
that

∫ 1
−1 |f(t)|(1− t2)d/2−1dt is finite. Then for every Yn ∈ Hdn(Sd),

1

ωd

∫
Sd
f(〈x, y〉)Yn(y)dσ(y) = µn(f)Yn(x), ∀x ∈ Sd, (22)

where µn(f) is a constant defined by µn(f) = ωd
∫ 1
−1 f(t)C

λ
n(t)

Cλn(1)
(1− t2)

d−2
2 dt.

We also need the following theorem relating to the Cesaro sum of zonal polynomials.
Readers may refer to Section D.3 for a definition of the Cesaro sum.
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Proposition 21 Let

Kn =
1

Adn

n∑
k=0

Adn−k
k + λ

λ
Cλk (u), (23)

be the d-Cesaro sum of k+λ
λ Cλk . Then,

0 ≤ Kn(u) ≤ Cn−1(1− u+ n−2)−(λ+1), ∀n ≥ 1 (24)

for some positive constant C.

Proof Please refer to Dai and Xu (2013, Theorem 2.4.3 and Lemma 2.4.6).

4.2 Dot-product kernel on the sphere

Comparing (22) with (2), the Funk-Hecke formula shows that Yn is an eigenfunction of
any dot-product kernel k(x, y) = f(〈x, y〉) on the sphere. Therefore, a dot-product kernel
k(x, y) always admits the following Mercer and spectral decompositions

k(x, y) =

∞∑
n=0

µn

an∑
l=1

Yn,l(x)Yn,l(y), T =

∞∑
n=0

µn

an∑
l=1

Yn,l ⊗ Yn,l. (25)

Here we notice that µn is an eigenvalue having multiplicity an and it should not be confused
with λi where multiplicity are counted. In the view of (25), we may connect a dot-product
kernel as well as the corresponding integral operator with the sequence (µn)n≥0.

Moreover, since each µn is of multiplicity an, (19) gives

N+(ε, T ) =
∑

n≤N(ε)

an � N(ε)d, (26)

where N(ε) = max{n : µn > ε} as defined in Condition 6 (a). This gives a simple relation
between the asymptotic rates λi and µn.

4.3 The main lemma

The following main lemma is essential in the proof of our final result, which is a spherical
version of the main lemma in Widom (1963). Since the eigen-system is now given by the
spherical harmonics, the approach in Widom (1963) can not be applied. The proof is now
based on refined harmonic analysis on the sphere with the technique of Cesaro summation
and the left extrapolation of eigenvalues.

Lemma 22 Let T be given by (25) with the descending eigenvalues µ = (µn)n≥0. Suppose
further that (µn)n≥0 satisfies Condition 6. Let Ω1,Ω2 be two disjoint domains with piecewise
smooth boundary. Then, we have

N±(ε, PΩ1TPΩ2 + PΩ2TPΩ1) = o(N+(ε, T )), as ε→ 0. (27)
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Proof
Let δ > ε > 0 and δ will be determined later. Take Mδ = min{n : µn ≤ δ} ≤ Mε =

min{n : µn ≤ ε}. Using Lemma 61 for p = d+ 1 with Condition 6, we can first construct a
sequence µ(1) as the left extrapolation of µ at qMε, then construct a sequence µ(2) as the
left extrapolation of the residual sequence µ−µ(1) at qMδ, and denote µ(3) = µ−µ(1)−µ(2),
where q is the integer specified in Condition 6 Then, the three sequences satisfy

µn = µ(1)
n + µ(2)

n + µ(3)
n , 4d+1µ(i)

n ≥ 0, i = 1, 2, 3;

µ
(1)
0 = Ld+1

qMε
µ ≤ DµMε ≤ Dε;

µ(2)
n = 0, ∀n ≥ qMε, µ

(2)
0 = Ld+1

qMδ
(µ− µ(1)) ≤ Ld+1

qMδ
µ ≤ Dδ;

µ(3)
n = 0, ∀n ≥ qMδ,

(28)

where the control Ld+1
qMδ

µ ≤ CµM comes from (8). Now, we define Ti to be the integral

operator associated with µ(i), that is, Ti =
∑∞

n=0 µ
(i)
n
∑an

l=1 Yn,l ⊗ Yn,l. Let N+
i (ε) be the

count of eigenvalues of PΩ1TiPΩ2 + PΩ2TiPΩ1 greater than ε. By Lemma 51 we have

N+((2D + 1)ε, PΩ1TPΩ2 + PΩ2TPΩ1) ≤ N+
1 (2Dε) +N+

2 (ε) +N+
3 (0). (29)

For N+
1 (2Dε), we notice that ‖T1‖ ≤ Dε and hence

‖PΩ1T1PΩ2 + PΩ2T1PΩ1‖ ≤ 2Dε,

which implies that

N+
1 (2Dε) = 0. (30)

For N+
3 (0), since µ

(3)
n 6= 0 only when n < qMδ, so

N+
3 (0) ≤ 2Rank(T3) ≤ 2

∑
n<qMδ

an ≤ 2Cqd
∑
n<Mδ

an = 2CN+(δ, T ), (31)

where we use (19) in the third inequality and
∑

n<Mδ
an = N+(δ, T ) (notice that µn is an

eigenvalue of multiplicity an).
It remains to bound N+

2 (ε). First, by definition of the HS-norm and Simon (2015,
Theorem 3.8.5), we have

ε2N+
2 (ε) ≤ ‖PΩ1T2PΩ2 + PΩ2T2PΩ1‖

2
HS = 2

∫
Ω1

∫
Ω2

∣∣∣∣∣∑
n

µ(2)
n Zn(x, y)

∣∣∣∣∣
2

dydx =: 2I. (32)

Fixing an interior point e of Ω2, we introduce an isometric transform Re,x such that Re,xe =
x. It can be taken to be the rotation over the plane spanned by e, x if they are not parallel,
to be the identity map if x = e and to be reflection if x = −e. Then, since Re,x is isometric
and Zn(x, y) depends only on 〈x, y〉, we have

I =

∫
Ω1

∫
Ω2

∣∣∣∣∣∑
n

µ(2)
n Zn(x, y)

∣∣∣∣∣
2

dydx =

∫
Ω1

∫
Ω2

∣∣∣∣∣∑
n

µ(2)
n Zn(R−1

e,xx,R
−1
e,xy)

∣∣∣∣∣
2

dydx
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=

∫
Ω1

∫
Ω2

∣∣∣∣∣∑
n

µ(2)
n Zn(e,R−1

e,xy)

∣∣∣∣∣
2

dydx =

∫
Ω1

∫
R−1
e,xΩ2

∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dydx

=

∫∫
Sd×Sd

1
{
x ∈ Ω1, y ∈ R−1

e,xΩ2

} ∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dxdy

=

∫
Sd

(∫
Sd

1 {x ∈ Ω1, Re,xy ∈ Ω2} dx

) ∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dy

=

∫
Sd
|{x ∈ Ω1 : Re,xy ∈ Ω2}|

∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dy

≤
∫
Sd
|{x ∈ Ω1 : Re,xy ∈ Ω2}|

∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dy

≤ C
∫
Sd

arccos 〈y, e〉

∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dy,

where the last inequality comes from Proposition 52. Let η > 0 (which will be determined
later), we decompose the last integral into two parts:

I = I1 + I2 =

∫
〈y,e〉>1−η

+

∫
〈y,e〉<1−η

arccos 〈y, e〉

∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dy.

For I1, using the estimation arccosu ≤ C
√

1− u, we obtain

I1 ≤
∫
〈y,e〉>1−η

Cη
1
2

∣∣∣∣∣∑
n

µ(2)
n Zn(e, y)

∣∣∣∣∣
2

dy ≤ Cη
1
2

∫
Sd

∣∣∣∣∣∑
n

µnZn(e, y)

∣∣∣∣∣
2

dy = Cη
1
2

∑
n

an(µ(2)
n )2.

Using (28), we get

I1 ≤ Cη
1
2

∑
n

an(µ(2)
n )2 ≤ Cη

1
2

∑
n<qMε

an(µ
(2)
0 )2 ≤ Cη

1
2 qd

∑
n<Mε

an(µ
(2)
0 )2

≤ Cη
1
2N+(ε, T )δ2, (33)

where we use (19) again in the third inequality.
For I2, recalling (21) and denoting u = 〈y, e〉, we have

I2 =

∫ 1−η

−1

∣∣∣∣∣∑
n

µ(2)
n

n+ λ

λ
Cλn(u)

∣∣∣∣∣
2 (

1− u2
) d−2

2 arccosudu,

where λ = d−1
2 . Using summation by parts (Proposition 58), we obtain∑

n

µ(2)
n

k + λ

λ
Cλn(u) =

∑
n

4d+1µ(2)
n AdnKn(u),
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where Kn is the d-Cesaro sum of Cλk (u) as in (23). Moreover, (24) in Proposition 21 yields∣∣∣∣∣∑
n

µn
k + λ

λ
Cλn(u)

∣∣∣∣∣ =
∑
n

4d+1µ(2)
n AdnKn(u) ≤ C(1− u)−(λ+1)

∑
n

Adn4d+1µ(2)
n

= C(1− u)−(λ+1)µ0,2 ≤ C(1− u)−(λ+1)δ,

where the last but second equality comes from Proposition 57. Plugging this estimation
back into I2, we obtain

I2 ≤ Cδ2

∫ 1−η

−1
(1− u)−2(λ+1)

(
1− u2

) d−2
2 (1− u)1/2du ≤ Cδ2η−

d−1
2 . (34)

Now we obtain the estimations (33) and (34). Taking η = N+(δ, T )−
2
d , we have

I ≤ I1 + I2 ≤ Cδ2N+(ε, T )
d−1
d ,

so (32) yields

N+
2 (ε) ≤ C

(
δ

ε

)2

N+(ε, T )
d−1
d . (35)

Finally, plugging (30), (35) and (31) into (29), we have

N+((2D + 1)ε, PΩ1TPΩ2 + PΩ2TPΩ1) ≤ 2N+(δ, T ) + C

(
δ

ε

)2

N+(ε, T )
d−1
d .

Now, (26) allows us to derive a similar condition on N+(ε, T ) as (a) in Condition 6. There-

fore, taking δ = εN+(ε, T )
1
4d so that ε = o(δ), we obtain N+(δ, T ) = o (N+(ε, T )), so

N+((2D + 1)ε, PΩ1TPΩ2 + PΩ2TPΩ1) ≤ o
(
N+(ε, T )

)
+ CN+(ε, T )

2d−1
2d = o

(
N+(ε, T )

)
.

Since D is a fixed constant and N+(ε/(2D+1), T ) = Θ(N+(ε, T )), replacing ε by ε/(2D+1)
yields the desired result.

The proof of the case N−(ε, PΩ1TPΩ2 + PΩ2TPΩ1) is similar.

4.4 The main result

The following is a direct corollary of Lemma 2. We present it here since it will be frequently
used later.

Corollary 23 Suppose Ω1 ⊆ Ω2. Then, N+(ε, PΩ1TPΩ1) ≤ N+(ε, PΩ2TPΩ2).

We first prove the following lemma about dividing a domain into isometric subdomains,
which will be used recursively in the proof later.
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Lemma 24 Let T be the same in Lemma 22. Let S ⊆ Sd and suppose N+(ε, PSTPS) �
N+(ε, T ) as ε → 0. Suppose further that Ω ⊆ Sd is a subdomain with piecewise smooth
boundary and there exists isometric copies Ω1, . . . ,Ωm of Ω such that their disjoint union
(with a difference of a null-set) is S. Then, there is some constant c > 0 such that for small
ε,

cN+(ε, T ) ≤ N+(ε, PΩTPΩ) ≤ N+(ε, T ). (36)

Proof The upper bound follows from Corollary 23. Now we consider the lower bound.
Since Ω1, . . . ,Ωm form a disjoint cover of S, we have

PSTPS = (

m∑
i=1

PΩi)T (

m∑
j=1

PΩj ) =
∑
i

PΩiTPΩi +
∑
i<j

(
PΩiTPΩj + PΩjTPΩi

)
.

Using Lemma 51, we get

N+(2ε, T ) ≤ N+(ε,
∑
i

PΩiTPΩi) +
∑
i<j

N+

(
1

C2
m

ε, PΩiTPΩj + PΩjTPΩi

)
,

and thus

N+(ε,
∑
i

PΩiTPΩi) ≥ N+(2ε, PSTPS)−
∑
i<j

N+

(
1

C2
m

ε, PΩiTPΩj + PΩjTPΩi

)
.

Noticing the fact that Ωi are disjoint and isometric with Ω, for the left hand side we
obtain

N+(ε,
∑
i

PΩiTPΩi) =
∑
i

N+(ε, PΩiTPΩi) = mN+(ε, PΩTPΩ).

On the other hand, by Lemma 22,

N+

(
1

C2
m

ε, PΩiTPΩj + PΩjTPΩi

)
= o

(
N+

(
1

C2
m

ε, T

))
= o

(
N+(ε, T )

)
,

where we notice that N+(cε, T ) � N+(ε, T ) for fixed c > 0 by (a) in Condition 6. Plugging
in the two estimation and using N+(ε, T ) � N+(ε, PSTPS), we obtain

N+(ε, PΩTPΩ) ≥ 1

m
N+(2ε, PSTPS)− o

(
N+(ε, T )

)
≥ cN+(2ε, T )− o

(
N+(ε, T )

)
≥ cN+(ε, T )− o

(
N+(ε, T )

)
,

which proves the desired lower bound.

After all these preparation, we can prove Theorem 8:
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Proof of Theorem 8 Let T be the integral operator associated with k. We start with the
case of ρ = 1S is the indicator of an open set S and µn = µ̃n. Then from Proposition 1 it
suffices to consider PSTPS . Since the asymptotic behavior of N+(ε,A) determines uniquely
λi(A), it suffices to prove that N+(ε, PSTPS) � N+(ε, T ).

We take the sequence U0, V0, U1, V1, · · · ⊆ Sd of subdomains given in Proposition 53 and
prove that N+(ε, PUiiTPUi) � N+(ε, T ) by induction. The initial case follows from U0 = Sd.
Suppose N+(ε, Ui) � N+(ε, T ), by Lemma 24 and the fact that there are isometric copies
of Vi whose disjoint union is Ui, we obtain N+(ε, PViTPVi) � N+(ε, T ). Moreover, since
Vi ⊆ Ui+1, by Corollary 23 again, we have

N+(ε, PViTPVi) ≤ N+(ε, PUi+1TPUi+1) ≤ N+(ε, T )

and thus N+(ε, PUi+1TPUi+1) � N+(ε, T ).
Now we have shown that N+(ε, PUiTPUi) � N+(ε, T ). Since S is an open set and

diam Ui → 0, we can find some Ui ⊆ S, and hence N+(ε, PSTPS) � N+(ε, T ) by Corol-
lary 23.

For the general case of µn, let T− and T+ be the integral operators defined similarly
to (25) by the sequences c1µ̃n and c2µ̃n respectively. Then, T− � T � T+ and thus
PΩT−PΩ � PΩTPΩ � PΩT+PΩ, implying that

λi (PST−PS) ≤ λi (PSTPS) ≤ λi (PST+PS)

and the results are obtained immediately from the previous case.
Finally, suppose ρ is a bounded Riemann-integrable function that is non-zero. The

upper bound is proven by Lemma 2 with boundedness of ρ. For the lower bound, we assert
that there is an open set Ω such that ρ(x)2 ≥ c > 0 on Ω. Then, by Lemma 2 again, we
conclude that

λi(k; Sd, ρ2dσ) ≥ λi(k; Ω, ρ2dσ) ≥ cλi(k; Ω,dσ) � λi(k;Sd, dσ)

Now we prove the assertion. Since ρ is Riemann-integrable, the set of discontinuity is a
null-set. If ρ(x) = 0 for all the continuity point, then ρ(x) = 0, a.e., which contradicts to
the assumption that ρ is non-zero. So there is a continuity point x0 such that ρ(x0) > 0,
and Ω can be taken as a small neighbour of x0.

4.5 Discussion on Condition 6

In this subsection, we discuss some sufficient conditions that Condition 6 holds. The first
proposition shows the basic relation between the difference and the derivative if µn is given
by a function f , which is a direct consequences of (58)

Proposition 25 Suppose µn = f(n) for some function f(x) defined on R≥0. Then,

(1) If (−1)pf (p)(x) ≥ 0, ∀x ≥ N0, then 4pµn ≥ 0, ∀n ≥ N0.

(2) If (−1)p+1f (p+1)(x) ≥ 0, ∀x ≥ N0, then 4pµn ≤ f (p)(n), ∀n ≥ N0.

The next lemma shows that bounding the highest order term in (8) is sufficient.
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Lemma 26 If
(
n+d
d

)
4dµn ≤ Bn holds for a decreasing sequence Bn for all n ≥ 0. Then,(

n+l
l

)
4lµn ≤ d

lBn holds for all 1 ≤ l ≤ d. Consequently, if Bqn ≤ D′µn for some q ∈ N+

and D′ > 0, then (8) holds.

Proof We prove the result by induction. Suppose the statement holds for l + 1, then(
n+ l

l

)
4lµn =

(
n+ l

l

)∑
k≥n
4l+1µk ≤

(
n+ l

l

)∑
k≥n

d

l + 1
Bk

(
k + l + 1

l + 1

)−1

≤
(
n+ l

l

)
d

l + 1
Bn
∑
k≥n

(
k + l + 1

l + 1

)−1

=

(
n+ l

l

)
d

l + 1
Bn

n!(l + 1)!

l(n+ l)!
=
d

l
Bn.

Combining the previous two results yields the following corollary.

Corollary 27 Suppose µn = f(n) for some function f(x) defined on R≥0. Then a sufficient
condition that (b,c) in Condition 6 holds for n ≥ N0 is that

(−1)d+1f (d+1)(x) ≥ 0 and (−1)dxdf (d)(qx) ≤ D′f(x), ∀x ≥ N0 (37)

for some q ∈ N+ and D′ > 0.

Proposition 28 For each of the following formulations of µn, there is a sequence (µn)n≥0

that Condition 6 is satisfied and the formulation holds when n is sufficiently large.

• µn = c0n
−β for c0 > 0 and β > d;

• µn = c0 exp
(
−c1n

β
)

for c0, c1, β > 0;

• µn = c0n
−β(lnn)p for c0 > 0, β > d and p ∈ R, or β = d and p > 1.

Proof The condition (a) is obviously satisfied by these asymptotic rates. We verify (b,c)
by Corollary 27 when n ≥ N0 for some large N0 and take a left extrapolation of µn as in
Lemma 61 so the conditions hold for all n ≥ 0.

• For µn = f(n) = c0n
−β, we have (−1)pf (p)(x) = c0(β)px

−(β+p), where (β)p = β(β +
1) · · · (β + p− 1), so (37) holds for q = 1 and D′ = (β)p.

• For µn = f(n) = c0 exp
(
−c1n

β
)
, it is easy to show that

(−1)pf (p)(x) � c0(c1β)pxp(β−1) exp
(
−c1x

β
)

as x→∞,

so (37) holds if we take q = 2 since the exponential term is dominating.
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• For µn = f(n) = c0n
−β(lnn)p, we have

(−1)pf (p)(x) � c0(β)px
−(β+p)(lnx)p as x→∞,

so (37) still holds for q = 1.

5. Conclusion

In this paper, we develop a novel approach for determining the eigenvalue decay rate (EDR)
of certain kernels using transformation and restriction. Using this approach, we determine
the EDR of the NTKs associated with multilayer fully-connected ReLU neural networks
on a general domain. Combining this result with the uniform approximation of the neural
network by the NTK regression, we determine the generalization performance of the over-
parameterized neural network through the kernel regression theory. The theoretical results
show that proper early stopping is essential for the generalization performance of the neural
networks, which urges us to scrutinize the widely reported “benign overfitting phenomenon”
in deep neural network literature.

For future directions, it is natural to extend our results to the NTKs associated with
other neural network architectures, such as convolutional neural networks and residual
neural networks. Also, it would be of great interest to see if these results can be extended
to the large dimensional data where d ∝ ns for some s > 0 instead of the fixed d here.
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Appendix A. Uniform Convergence of the Neural Network to Kernel
Regression

In this section we will prove Lemma 12. Applying Proposition 3.2 and Proposition 3.3
in Lai et al. (2023), it suffices to show Proposition 45, that is, the kernel Kt converges
uniformly to KNT. This rest of this section is organized as follows: We first introduce
some more preliminaries; in Section A.1, we discuss some properties of the network at
initialization; in Section A.2, we analyze the effect of small perturbation during training
process of the network; we then prove the lazy regime approximation of the neural network
in Section A.3; we also show the Hölder continuity of KNT in Section A.4; finally, we prove
the kernel uniform convergence in Section A.5.

Further notations Let us denote B̃R =
{
x ∈ Rd : x̃ ≤ R

}
for R ≥ 1. For a vector

v = (v1, v2, · · · , vm) ∈ Rm, we use ‖v‖2 (or simply ‖v‖) to represent the Euclidean
norm. Additionally, if we have a univariate function f : R → R, we define f(v) =
(f(v1), f(v2), · · · , f(vm)) ∈ Rm. We denote by ‖M‖2 and ‖M‖F the spectral and Frobenius
norm of a matrix M respectively. Also, we use ‖ · ‖0 to represent the number of non-zero
elements of a vector or matrix. For matrices A ∈ Rn1×n2 and B ∈ Rn2×n1 , we define
〈A,B〉 = Tr

(
ABT

)
. We remind that 〈M ,M〉 = ‖M‖2F in this way.

Network Architecture Let us recall the neural network in the main text. Since it can
be shown easily that the bias term b(0,p) in the first layer can be absorbed into A(p) if we
append an 1 at the last coordinate of x, we denote W (0,p) = (A(p) b(0,p)), x̃ = (xT , 1)T ∈
Rd × {1} ⊂ Rd+1 and consider the following equivalent neural network:

α(0,p)(x) = α̃(0,p)(x) = x̃ ∈ Rd+1,

α̃(l,p)(x) =
√

2
ml
W (l−1,p)α(l−1,p)(x) ∈ Rml ,

α(l,p)(x) = σ
(
α̃(l,p)(x)

)
∈ Rml ,

g(p)(x;θ) = W (L,p)α(L,p)(x) + b(L,p) ∈ R,

f(x;θ) =

√
2

2

[
g(1)(x;θ)− g(2)(x;θ)

]
∈ R.

(38)

for p = 1, 2 and l = 1, · · · , L. Recall that the integers m1,m2, · · · ,mL are the width of
L-hidden layers and mL+1 = 1 is the width of output layer. Additionally, we have set
m = min(m1,m2, · · · ,mL) and made the assumption that max(m1,m2, . . . ,mL) ≤ Cmm
for some absolute constant Cm. By setting m0 = d + 1 for convenience, we have W (l,p) ∈
Rml+1×ml for l ∈ {0, 1, 2, · · · , L}.

For p = 1, 2, we define g
(p)
t (x) = g(p)(x;θt) and ft(x) = f(x;θt). Similarly, we also add

a subscript t for all the related quantities (including those defined afterwards) to indicate
their values at time t during the training process.

The neural tangent kernel Let us consider the following neural network kernel

Kt(x, x
′) =

〈
∇θf(x;θt),∇θf(x′;θt)

〉
.
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Then, the gradient flow can be written as (Jacot et al., 2018)

ḟ(x;θt) = − 1

n
Kt(x,X) (f(X;θt)− y) .

As shown in Jacot et al. (2018), as the width m goes to infinity, the kernel Kt converges
to the deterministic neural tangent kernel KNT. With the mirrored architecture given by
(38), we can express the kernel Kt(x, x

′) as follows:

Kt(x, x
′) = 〈∇θf(x;θt),∇θf(x;θt)〉 =

2∑
p=1

〈∇θ(p)f(x;θt),∇θ(p)f(x;θt)〉

=
1

2

2∑
p=1

〈
∇θ(p)g

(p)
t (x),∇θ(p)g

(p)
t (x′)

〉
=

1

2

(
K

(1)
t (x, x′) +K

(2)
t (x, x′)

)
,

where K
(p)
t (x, x′) =

〈
∇θ(p)g

(p)
t (x),∇θ(p)g

(p)
t (x′)

〉
is the neural network kernel of g

(p)
t for

p = 1, 2, which is a vanilla neural network. Consequently, due to the mirror initialization,

we have K
(1)
0 (x, x′) = K

(2)
0 (x, x′) = K0(x, x′).

An expanded matrix form Sometimes it is convenient to write the neural network (38)
in an expanded matrix form as introduced in Allen-Zhu et al. (2019b). Let us define the
activation matrix

D(l,p)
x =

{
Id+1, l = 0;

diag
(
σ̇
(
α̃(l,p)(x)

))
, l ≥ 1,

∈ Rml×ml

for p = 1, 2, where Id+1 is the identity matrix. Then, we have

α̃(l,p)(x) =

√
2

ml
W (l−1,p)D(l−1,p)

x α̃(l−1,p)(x), α(l,p)(x) =

√
2

ml
D(l,p)
x W (l−1,p)α(l−1,p)(x).

To further write it as product of matrices, we first introduce the following notation to
avoid confusion since matrix product is not commutative. For matrices A0,A1, · · · ,AL, we
define the left multiplication product

b∏
i=a

Ai =

{
1, 0 ≤ b < a ≤ L;

AbAb−1 · · ·Aa+1Aa, 0 ≤ a ≤ b ≤ L.

Since real number multiplication is commutative, the notation introduced above is compat-
ible with the traditional usage when A0,A1, · · · ,AL degenerate into real numbers. In this
way, we have

α̃(l,p)(x) =

(
l∏

r=1

√
2

mr
W (r−1,p)D(r−1,p)

x

)
x̃, α(l,p)(x) =

(
l∏

r=1

√
2

mr
D(r,p)
x W (r−1,p)

)
x̃.

(39)

25



Li, Yu, Chen and Lin

Using the above expressions, we can obtain

g(p)(x) = W (L,p)α(L,p)(x) + b(L,p) = W (L,p)

(
L∏

r=l+1

√
2

mr
D(r,p)
x W (r−1,p)

)
α(l,p)(x) + b(L,p)

=

(
L∏

r=l+1

√
2

mr
W (r,p)D(r,p)

x

)
W (l,p)α(l,p)(x) + b(L,p).

Finally, we use the above results to calculate the gradient ∇W (l,p)g(p)(x). To simplify
notation, we define:

α̃(l,p)
x = α̃(l,p)(x), α(l,p)

x = α(l,p)(x), γ(l,p)
x =

(
L∏

r=l+1

√
2

mr
W (r,p)D(r,p)

x

)T
∈ Rml+1 .

(40)

Then we can obtain

g(p)(x) = γ(l,p),T
x W (l,p)α(l,p)

x + b(L,p),

which can lead to

∇W (l,p)g(p)(x) = γ(l,p)
x α(l,p),T

x , l = 0, 1, · · · , L, p = 1, 2. (41)

Also, it is worth noting that for two vectors a and b, we have∥∥abT∥∥2

F
= Tr

(
abTbaT

)
= Tr

(
aTabTb

)
= ‖a‖22‖b‖

2
2.

Consequently, we can get ∥∥∥∇W (l,p)g(p)(x)
∥∥∥

F
=
∥∥∥γ(l,p)

x

∥∥∥
2

∥∥∥α(l,p)
x

∥∥∥
2
. (42)

A.1 Initialization

Since our neural network is mirrored, we can focus only on one part g(p)(x) of the network

at initialization. For notational simplicity, we omit the superscript p for W
(l,p)
t and other

notations in the following if there is no ambiguity. And unless otherwise stated, it is
understood that the conclusions hold for both p = 1 and p = 2.

Since K
(p)
0 corresponds to the tangent kernel of a vanilla fully connected neural network,

Arora et al. (2019b, Theorem 3.1) shows the following convergence result.

Lemma 29 (Convergence to the NTK at initialization) There exist some positive ab-
solute constants C1 > 0 and C2 ≥ 1 such that if ε ∈ (0, 1), δ ∈ (0, 1) and m ≥ C1ε

−4 ln(C2/δ),
then for any fixed z, z′ such that ‖z‖ ≤ 1 and ‖z′‖ ≤ 1, with probability at least 1− δ with
respect to the initialization, we have∣∣∣K(p)

0

(
z, z′

)
−KNT

(
z, z′

)∣∣∣ ≤ ε.
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Letting ε = m−1/5 in the previous lemma, we can get the following corollary:

Corollary 30 There exist some positive absolute constants C1 > 0 and C2 ≥ 1 such that
if δ ∈ (0, 1) and m ≥ C1 (ln(C2/δ))

5, then for any fixed z, z′ ∈ B̃R, with probability at least
1− δ with respect to the initialization, we have∣∣∣K(p)

0

(
z, z′

)
−KNT

(
z, z′

)∣∣∣ = O
(
R2m−1/5

)
.

Now we further provide some bounds about the magnitudes of weight matrices and
layer outputs. The following is a standard estimation of Gaussian random matrix, which is
a direct consequence of Vershynin (2010, Corollary 5.35).

Lemma 31 At initialization, there exists a positive absolute constant C, such that when
m ≥ C, with probability at least 1− exp(−Ω(m)) with respect to the initialization, we have∥∥∥W (l)

0

∥∥∥
2

= O
(√
m
)
, l ∈ {0, 1, . . . , L} .

Noticing that
∥∥∥D(l)

x

∥∥∥
2
≤ 1 and combining Lemma 31 with (39), (40) and (42), we have:

Lemma 32 There exists a positive absolute constant C, such that when m ≥ C, with
probability at least 1−exp(−Ω(m)) with respect to the initialization, for any l ∈ {0, 1, · · · , L}
and x ∈ B̃R, we have∥∥∥α̃(l)

x,0

∥∥∥
2

= O(R),
∥∥∥α(l)

x,0

∥∥∥
2

= O(R),
∥∥∥γ(l)

x,0

∥∥∥
2

= O(1) and ‖∇W (l)g0(x)‖F = O(R).

Lemma 31 and Lemma 32 provide some upper bounds, and the subsequent lemma
provides a lower bound. It is important to note that the previous lemma holds uniformly
for x ∈ B̃R, while the following lemma only holds pointwisely.

Lemma 33 (Lemma 7.1 in Allen-Zhu et al. (2019b)) There exists a positive absolute
constant C such that when m ≥ C, for any fixed z ∈ B̃R, with probability at least 1 −
exp(−Ω(m)) with respect to the initialization, we have

∥∥∥α(l)
z,0

∥∥∥
2

= Θ(R) for l ∈ {0, 1, · · · , L}.

A.2 The training process

In this subsection we will show that as long as the parameters and input do not change
much, some the relative quantities can also be bounded. We still focus on one parity in this
subsection and suppress the superscript p for convenience.

The most crucial result we will obtain in this subsection is the following proposition:

Proposition 34 Fix z, z′ ∈ B̃R and T ⊆ [0,∞). Suppose that
∥∥∥W (l)

t −W
(l)
0

∥∥∥
F

= O(m1/4)

holds for all t ∈ T and l ∈ {0, 1, · · · , L}. Then there exists a positive absolute constant C
such that when m ≥ C, with probability at least 1− exp

(
−Ω(m5/6)

)
, for any x, x′ ∈ X such

that ‖x− z‖2, ‖x′ − z′‖2 ≤ O(1/m), we have

sup
t∈T

∣∣∣K(p)
t (x, x′)−K(p)

0 (z, z′)
∣∣∣ = O

(
R2m−1/12

√
lnm

)
.
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The proof of this proposition will be presented at the end of this subsection. Combining
this proposition with Corollary 30, we can derive the following corollary:

Corollary 35 Fix z, z′ ∈ B̃R and let δ ∈ (0, 1), T ⊆ [0,∞). Suppose that
∥∥∥W (l)

t −W
(l)
0

∥∥∥
F

=

O(m1/4) holds for all t ∈ T and l ∈ {0, 1, · · · , L}. Then there exist some positive absolute
constants C1 > 0 and C2 ≥ 1 such that with probability at least 1 − δ, for any x, x′ ∈ X
such that ‖x− z‖2, ‖x′ − z′‖2 ≤ O(1/m), we have

sup
t∈T

∣∣∣K(p)
t (x, x′)−KNT(z, z′)

∣∣∣ = O
(
R2m−1/12

√
lnm

)
, when m ≥ C1 (ln(C2/δ))

5 .

To prove Proposition 34, we need to introduce some necessary lemmas. In Lemma 32,

we have provided upper bounds for the norms of α̃
(l)
x,0, α

(l)
x,0, γ

(l)
x,0 and ∇W (l)g0(x) at initial-

ization. Next, we aim to prove that under perturbations in the parameters and the input,
the corresponding changes in these quantities will also be small.

In fact, similar lemmas can be found in Allen-Zhu et al. (2019b), although they have
different conditions compared to the lemmas in this paper. For example, in Allen-Zhu et al.
(2019b), the input points are constrained to lie on a sphere, the input and output layers are
not involved in training, and each hidden layer has the same width.

However, the most crucial point is that Allen-Zhu et al. (2019b) did not consider the
impact of small perturbations in the input, which is vital for proving uniform convergence.
In fact, the slight perturbation between x and z can be regarded as taking a slight pertur-
bation on W (0), with other W (l) fixed. Additionally, since this paper fixes the number of
layers L, there is no need to consider the impact of L on the bounds. This simplifies the
proof of the corresponding conclusions.

Inspired by Allen-Zhu et al. (2019b, Lemma 8.2), we can prove the following lemma:

Lemma 36 Let ∆ = O(1/
√
m), τ ∈

[
∆
√
m,O

(√
m/(lnm)3

)]
, T ⊆ [0,∞) and fix z ∈ B̃R.

Suppose that
∥∥∥W (l)

t −W
(l)
0

∥∥∥
F
≤ τ holds for all t ∈ T and l ∈ {0, 1, · · · , L}. Then there ex-

ists a positive absolute constant C such that with probability at least 1−exp
(
−Ω(m2/3τ2/3)

)
,

for all t ∈ T , l ∈ {0, 1, · · · , L} and x ∈ B̃R such that ‖x− z‖2 ≤ ∆, we have

(a)
∥∥∥α̃(l)

x,t − α̃
(l)
z,0

∥∥∥
2

= O(Rτ/
√
m) and thus

∥∥∥α̃(l)
x,t

∥∥∥
2

= O(R);

(b)
∥∥∥D(l)

x,t −D
(l)
z,0

∥∥∥
0

= O(m2/3τ2/3) and
∥∥∥(D(l)

x,t −D
(l)
z,0

)
α̃

(l)
x,t

∥∥∥
2

= O(Rτ/
√
m);

(c)
∥∥∥α(l)

x,t −α
(l)
z,0

∥∥∥
2

= O(Rτ/
√
m) and thus

∥∥∥α(l)
x,t

∥∥∥
2

= O(R),

when m is greater than the positive constant C.

Proof We use mathematical induction to prove this lemma. When l = 0, it can be

easily verified that D
(0)
x,t −D

(0)
z,0 = O and

∥∥∥α̃(l)
x,t − α̃

(l)
z,0

∥∥∥
2

=
∥∥∥α(0)

x,t −α
(0)
z,0

∥∥∥
2

= ‖x̃− z̃‖2 =

‖x− z‖2 ≤ ∆ ≤ τ/
√
m, where O represents the zero matrix, x̃ and z̃ are extended vectors

with an additional coordinate of 1. Thus, all the statements hold for l = 0. Now we assume
that this lemma holds for l = k ∈ {0, 1, · · · , L− 1}.
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(a) First of all, we can decompose α̃
(k+1)
x,t − α̃(k+1)

z,0 as following:

α̃
(k+1)
x,t − α̃(k+1)

z,0 =

√
2

mk+1
W

(k)
t α

(k)
x,t −

√
2

mk+1
W

(k)
0 α

(k)
z,0

=

√
2

mk+1

(
W

(k)
t −W (k)

0

)
α

(k)
x,t +

√
2

mk+1
W

(k)
0

(
α

(k)
x,t −α

(k)
z,0

)
.

From the above equation, we can deduce that (a) holds for l = k + 1 by the induction
hypothesis and Lemma 32.

(b) Let us consider the following choices in Lemma 37:

g =
α̃

(k+1)
z,0√

2/mk+1

∥∥∥α(k)
z,0

∥∥∥
2

=
W

(k)
0 α

(k)
z,0∥∥∥α(k)

z,0

∥∥∥
2

, g′ =
α̃

(k+1)
x,t − α̃(k+1)

z,0√
2/mk+1

∥∥∥α(k)
z,0

∥∥∥
2

.

It follows that g ∼ N(0, I) if we fix α
(k)
z,0 and only consider the randomness of W

(k)
0 . Also,

we have ‖g′‖2 ≤ O(τ/
√
m) · O(

√
m) ≤ O(τ) holds for all x ∈ B̃R such that ‖x− z‖2 ≤ ∆

since we have previously shown that
∥∥∥α(k)

z,0

∥∥∥
2

= Θ(R) in Lemma 33. Therefore, we can

choose δ = Θ(τ) such that ‖g′‖2 ≤ δ. Then, we can obtain

g + g′ =
α̃

(k+1)
x,t√

2
mk+1

∥∥∥α(k)
z,0

∥∥∥
2

, D′ = D
(k+1)
x,t −D(k+1)

z,0 and u =

(
D

(k+1)
x,t −D(k+1)

z,0

)
α̃

(k+1)
x,t√

2
mk+1

∥∥∥α(k)
z,0

∥∥∥
2

,

where D′ and u are defined as in Lemma 37. By applying Lemma 37, we can get ‖D′‖0 ≤
O(m2/3τ2/3) and ‖u‖2 ≤ O(δ), which establish the conclusion of part (b).

(c) Further, the third statement can be directly obtained from the following inequality:∥∥∥α(k+1)
x,t −α(k+1)

z,0

∥∥∥
2
≤
∥∥∥D(k+1)

z,0

(
α̃

(k+1)
x,t − α̃(k+1)

z,0

)∥∥∥
2

+
∥∥∥(D(k+1)

x,t −D(k+1)
z,0

)
α̃

(k+1)
x,t

∥∥∥
2
.

Thus, the proof of this lemma is complete.

In the proof of Lemma 36, we use the following result:

Lemma 37 (Allen-Zhu et al. (2019b) Claim 8.3) Suppose each entry of g ∈ Rm fol-

lows gi
i.i.d.∼ N(0, 1). For any δ > 0, with probability at least 1 − exp

(
−Ω(m2/3δ2/3)

)
, the

following proposition holds:
Select g′ ∈ Rm such that ‖g′‖2 ≤ δ. Let D′ = diag(D′kk) be a diagonal matrix, where the

k-th diagonal element D′kk follows

D′kk = 1
{(
g + g′

)
k
≥ 0
}
− 1 {gk ≥ 0} , k ∈ [m].

If we define u = D′(g + g′), then it satisfies the following inequalities:

‖u‖0 ≤
∥∥D′∥∥

0
≤ O

(
m2/3δ2/3

)
and ‖u‖2 ≤ O(δ).
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Inspired by Allen-Zhu et al. (2019b, Lemma 8.7), we then have the following lemma:

Lemma 38 Let ∆ = O(1/
√
m), τ ∈

[
∆
√
m,O

(√
m/(lnm)3

)]
, T ⊆ [0,∞) and fix z ∈ B̃R.

Suppose that
∥∥∥W (l)

t −W
(l)
0

∥∥∥
F
≤ τ holds for all t ∈ T and l ∈ {0, 1, · · · , L}. Then there ex-

ists a positive absolute constant C such that with probability at least 1−exp
(
−Ω(m2/3τ2/3)

)
,

for all t ∈ T , l ∈ {0, 1, · · · , L} and x ∈ B̃R such that ‖x− z‖2 ≤ ∆, we have∥∥∥γ(l)
x,t − γ

(l)
z,0

∥∥∥
2

= O
(
m−1/6τ1/3

√
lnm

)
and thus

∥∥∥γ(l)
x,t

∥∥∥
2

= O(1)

when m is greater than the positive constant C.
By using Lemma 36 and Lemma 38, we can prove the following lemma:

Lemma 39 Let ∆ = O(1/
√
m), τ ∈

[
∆
√
m,O

(√
m/(lnm)3

)]
, T ⊆ [0,∞) and fix z ∈ B̃R.

Suppose that
∥∥∥W (l)

t −W
(l)
0

∥∥∥
F
≤ τ holds for all t ∈ T and l ∈ {0, 1, · · · , L}.

Then there exists a positive absolute constant C such that with probability at least 1 −
exp
(
−Ω(m2/3τ2/3)

)
, for all t ∈ T , l ∈ {0, 1, · · · , L} and x ∈ B̃R such that ‖x− z‖2 ≤ ∆,

we have

‖∇W (l)gt(x)−∇W (l)g0(z)‖F = O
(
Rm−1/6τ1/3

√
lnm

)
and thus ‖∇W (l)gt(x)‖F = O(R).

when m is greater than the positive constant C.

Proof Recalling (41), we have ∇W (l)gt(x) = γ
(l)
x,t α

(l),T
x,t . Then, we have

‖∇W (l)gt(x)−∇W (l)g0(z)‖F =
∥∥∥γ(l)

x,tα
(l),T
x,t − γ

(l)
z,0α

(l),T
z,0

∥∥∥
F

≤
∥∥∥γ(l)

x,t − γ
(l)
z,0

∥∥∥
2

∥∥∥α(l)
x,t

∥∥∥
2

+
∥∥∥γ(l)

z,0

∥∥∥
2

∥∥∥α(l)
x,t −α

(l)
z,0

∥∥∥
2
≤ O

(
Rm−1/6τ1/3

√
lnm

)
by Lemma 38, Lemma 36 and Lemma 32.

After preparing these tools, now we are ready to give the proof of Proposition 34.

Proof of Proposition 34 By applying Lemma 39 with ∆ = O(1/m) ≤ O(1/
√
m) and

τ � m1/4 ≥ ∆
√
m, with probability at least 1 − exp

(
−Ω(m5/6)

)
, for all x ∈ B̃R such that

‖x− z‖2 ≤ O(1/m), we can obtain the following result

‖∇W (l)gt(x)−∇W (l)g0(z)‖F = O
(
Rm−1/12

√
lnm

)
and ‖∇W (l)gt(x)‖F = O(R).

The same conclusion holds if we replace x and z with x′ and z′. Thus, we have∣∣∣K(p)
t (x, x′)−K(p)

0 (z, z′)
∣∣∣ ≤ L∑

l=0

∣∣〈∇W (l)gt(x),∇W (l)gt(x
′)
〉
−
〈
∇W (l)g0(z),∇W (l)g0(z′)

〉∣∣
≤

L∑
l=0

[
‖∇W (l)gt(x)‖F

∥∥∇W (l)gt(x
′)−∇W (l)g0(z′)

∥∥
F

+ ‖∇W (l)gt(x)−∇W (l)g0(z)‖F
∥∥∇W (l)g0(z′)

∥∥
F

] = O
(
Rm−1/12

√
lnm

)

holds for all t ∈ T with probability at least 1− exp
(
−Ω(m5/6)

)
when m is large enough.
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A.3 Lazy regime

In this subsection, we will prove that during the process of gradient descent training, the
parameters do not change much. Therefore, the conditions for the lemmas stated in the
previous subsection are satisfied. Since training relies on the structure of the neural network,
in this subsection, we will no longer omit the superscript p (although the corresponding
conclusions also hold for non-mirror neural networks).

Let λ0 = λmin(KNT(X,X)) and u(t) = ft(X) − y. Denote M̃X =
∑n

i=1 ‖x̃i‖2. Since
we will show the positive definiteness of the NTK in Proposition 9, we can assume that
λ0 > 0 hereafter. Similar to Lemma F.8 and Lemma F.7 in Arora et al. (2019b), we have
the following lemmas:

Lemma 40 Let δ ∈ (0, 1) and t ∈ [0,∞). Suppose that
∥∥∥W (l,p)

s −W (l,p)
0

∥∥∥
F

= O(m1/4)

holds for all s ∈ [0, t], l ∈ {0, 1, · · · , L} and p ∈ {1, 2}. Then there exists a polynomial
poly(·) such that when m ≥ poly

(
n, λ−1

0 , ln(1/δ)
)
, with probability at least 1− δ, we have

‖u(s)‖2 ≤ exp

(
−λ0

n
s

)
‖u(0)‖2 = exp

(
−λ0

n
s

)
‖y‖2, for all s ∈ [0, t]. (43)

Proof Denote λ̃0(s) = λmin

(
Ks(X,X)

)
. By Weyl’s inequality, we can get∣∣∣λ̃0(s)− λ0

∣∣∣ ≤ ∥∥Ks(X,X)−KNT(X,X)
∥∥

2
≤
∥∥Ks(X,X)−KNT(X,X)

∥∥
F

≤ 1

2

2∑
p=1

n∑
i,j=1

∣∣∣K(p)
s (xi, xj)−KNT(xi, xj)

∣∣∣.
Applying Corollary 35 with δ′ = δ/(2n2) to each difference, with probability at least 1 −
2n2δ′ = 1− δ, we can obtain the following bound for all s ∈ [0, t]:∣∣∣λ̃0(s)− λ0

∣∣∣ ≤ n2O
(
m−1/12

√
lnm

)
≤ n2O

(
m−1/15

)
≤ λ0

2
,

when m ≥ C1

[(
n2λ−1

0

)15
+
(
ln
(
C2n

2/δ
))5]

for some positive absolute constants C1 > 0

and C2 ≥ 1. This implies that λ̃0(s) ≥ λ0/2 holds for all s ∈ [0, t]. Therefore, we have

d

ds
‖u(s)‖2 = − 2

n
u(s)TKs(X,X)u(s) ≤ −λ0

n
‖u(s)‖2,

which implies (43) by standard ODE theory. Finally, by choosing

poly
(
n, λ−1

0 , ln(1/δ)
)

= C1

[(
n2λ−1

0

)15
+ (2n+ ln(1/δ) + lnC2)5

]
we can complete the proof of this lemma.

31



Li, Yu, Chen and Lin

Lemma 41 Fix l ∈ {0, 1, · · · , L}, p ∈ {1, 2} and let δ ∈ (0, 1), t ∈ [0,∞). Suppose that for
s ∈ [0, t], we have

‖fs(X)− y‖2 ≤ exp

(
−λ0

4n
s

)
‖y‖2 and∥∥∥W (l′,p′)

s −W (l′,p′)
0

∥∥∥
F
≤
√
m

(lnm)3
, for all (l′, p′) 6= (l, p).

Then there exists a polynomial poly(·) such that when m ≥ poly
(
n, M̃X , ‖y‖2, λ

−1
0 , ln(1/δ)

)
,

with probability at least 1− δ, we have sups∈[0,t]

∥∥∥W (l,p)
s −W (l,p)

0

∥∥∥
F

= O
(
nM̃X‖y‖2/λ0

)
.

Proof First of all, recalling (14) we have∥∥∥W (l,p)
t0
−W (l,p)

0

∥∥∥
F

=

∥∥∥∥∫ t0

0
dW (l,p)

s

∥∥∥∥
F

≤
∫ t0

0

∥∥∥∥∥ 1

n
√

2

n∑
i=1

(fs(xi)− yi)∇W (l,p)g(p)
s (xi)

∥∥∥∥∥
F

ds

≤ 1

n
√

2

n∑
i=1

sup
0≤s≤t0

∥∥∥∇W (l,p)g(p)
s (xi)

∥∥∥
F

∫ t0

0
‖fs(X)− y‖2 ds

≤ O
(
‖y‖
λ0

) n∑
i=1

sup
0≤s≤t0

∥∥∥∇W (l,p)g(p)
s (xi)

∥∥∥
F
. (44)

for all t0 ∈ [0, t]. Suppose that

s0 = min
{
s ∈ [0, t] :

∥∥∥W (l,p)
s −W (l,p)

0

∥∥∥
F
≥
√
m/(lnm)3

}
exists, then

∥∥∥W (l′,p′)
s −W (l′,p′)

0

∥∥∥
F
≤
√
m/(lnm)3 holds for all s ∈ [0, s0], l′ ∈ {0, 1, · · · , L}

and p′ ∈ {1, 2}. Applying Lemma 39 with ∆ = 0 and τ =
√
m/(lnm)3, we know that for

any i ∈ [n], with probability at least 1 − exp
(
−Ω
(
m/(lnm)2

))
≥ 1 − exp

(
−Ω(m5/6)

)
, we

have
n∑
i=1

sup
s∈[0,s0]

∥∥∥∇W (l,p)g(p)
s (xi)

∥∥∥
F

= O(M̃X).

Plugging it back to (44), with probability at least 1− n exp
(
−Ω(m5/6)

)
, we obtain∥∥∥W (l,p)

s0 −W (l,p)
0

∥∥∥
F

= O(nM̃X‖y‖/λ0),

which contradicts to
∥∥∥W (l,p)

s0 −W (l,p)
0

∥∥∥
F
≥
√
m/(lnm)3 when m ≥ C1

(
nM̃X‖y‖2λ

−1
0

)5
for

some positive constant C1.

Now we show that
∥∥∥W (l′,p′)

s −W (l′,p′)
0

∥∥∥
F
≤
√
m/(lnm)3 holds for all s ∈ [0, t] and any

(l′, p′). The desired bound then follows from applying Lemma 39 again for the interval [0, t].
Also, it is easy to check that there exists a positive absolute constant C such that when

m ≥ C2 ln(n/δ)6/5, we have 1− n exp
(
−Ω(m5/6)

)
≥ 1− δ. Finally, by choosing

poly
(
n, λ−1

0 , ln(1/δ)
)

= C

[(
nM̃X‖y‖2λ

−1
0

)5
+ (n+ ln(1/δ))2 + 1

]
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for some positive absolute constant C > 0, we can complete the proof.

The following lemma is the key lemma that we aim to prove in this subsection. It
serves as the prerequisite for establishing the conclusions of the lemmas in the preceding
and subsequent subsections.

Lemma 42 (Lazy regime) There exists a polynomial poly(·) such that for any δ ∈ (0, 1),
with probability at least 1− δ, for all p ∈ {1, 2} and l ∈ {0, 1, · · · , L}, we have

sup
t≥0

∥∥∥W (l,p)
t −W (l,p)

0

∥∥∥
F

= O(m1/4).

when m ≥ poly
(
n, M̃X , ‖y‖2, λ

−1
0 , ln(1/δ)

)
.

Proof Let us assume that

t0 = min
{
t ≥ 0 : ∃l, p such that

∥∥∥W (l,p)
t −W (l,p)

0

∥∥∥
F
≥ m1/4 or ‖u(t)‖ ≥ exp

(
−λ0
4n t

)
‖y‖

}
exists. Then, for all t ∈ [0, t0], we have

‖u(t)‖ ≤ exp

(
−λ0

4n
t

)
‖y‖ and

∥∥∥W (l,p)
t −W (l,p)

0

∥∥∥
F
≤ m1/4 for all l, p.

According to Lemma 41 and Lemma 40, we know that there exists a polynomial poly(·)
such that with probability at least 1− δ, we have

‖u(t0)‖ ≤ exp

(
−λ0

2n
t0

)
‖y‖ and

∥∥∥W (l,p)
t0
−W (l,p)

0

∥∥∥
F

= O

(
nM̃X‖y‖

λ0

)
for all l, p

when m ≥ poly
(
n, ‖y‖2, λ

−1
0 , ln(1/δ)

)
, which contradicts to the definition of t0 when m ≥

C
(
nM̃X‖y‖2λ

−1
0

)5
for some positive absolute constant C > 0.

We also have a simple corollary:

Corollary 43 There exists a positive absolute constant M and C such that when m ≥M ,
with probability at least 1− exp

(
−Ω(m5/6)

)
,

|fmt (x)| ≤ C‖x̃‖, ∀x ∈ Rd, ∀t ≥ 0.

Proof Recall that

fmt (x) =

√
2

2
[W

(L,1)
t α

(L,1)
t (x)−W (L,2)

t α
(L,2)
t (x)].

Since with probability at least 1− exp
(
−Ω(m5/6)

)
we have∥∥∥W (l,p)

0

∥∥∥
2
≤ O(

√
m),

∥∥∥D(l,p)
x,t

∥∥∥
2
≤ 1, sup

t≥0

∥∥∥W (l,p)
t −W (l,p)

0

∥∥∥
2
≤ O(m

1
4 ),

the corollary is proved by Lemma 31 and Lemma 42
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A.4 Hölder continuity of KNT

For convenience, let us first introduce the following definition of Hölder spaces (Adams and
Fournier, 2003). For an open set Ω ⊂ Rp and a real number α ∈ [0, 1], let us define a
semi-norm for f : Ω→ R by

|f |0,α = sup
x,y∈Ω, x 6=y

|f(x)− f(y)|/‖x− y‖α

and define the Hölder space by C0,α(Ω) =
{
f ∈ C(Ω) : |f |0,α <∞

}
, which is equipped

with norm ‖f‖C0,α(Ω) = supx∈Ω |f(x)|+ |f |α. Then it is easy to show that

(a) C0,α(Ω) ⊆ C0,β(Ω) if β ≤ α;

(b) if f, g ∈ C0,α(Ω), then f + g, fg ∈ Cα(Ω);

(c) if f ∈ C0,α(Ω1) and g ∈ C0,β(Ω2) with Ran g ⊆ Ω1, then f ◦ g ∈ C0,αβ(Ω2).

Consequently, using the formula (11), we can show the following proposition:

Proposition 44 We have KNT ∈ C0,s(B̃R×B̃R) with s = 2−L. Particularly, there is some
absolute constant C > 0 such that for any x, x′, z, z′ ∈ B̃R,∣∣KNT(x, x′)−KNT(z, z′)

∣∣ ≤ CR2
∥∥(x, x′)− (z, z′)

∥∥s. (45)

Proof Let us recall (11). Since KNT is symmetric, by triangle inequality it suffices to
prove that KNT(x0, ·) ∈ C0,s(B̃R) with

∣∣KNT(x0, ·)
∣∣
0,s

bounded by a constant independent
of x0. Now, the latter is proven by

(a) x 7→ ū = 〈x̃/‖x̃‖, x̃0/‖x̃0‖〉 ∈ C0,1(B̃R), where the bound of the Hölder norm is inde-
pendent of x0;

(b) as functions of ū, both
√

1− ū2 and arccos ū belong to C0,1/2([−1, 1]), and thus κ0, κ1 ∈
C0,1/2([−1, 1]);

(c) the expression of NTK together with the properties of Hölder functions.

A.5 The kernel uniform convergence

Proposition 45 (Kernel uniform convergence) Denote Br = {x ∈ Rd : 1 ≤ ‖x̃‖ ≤
r}. There exists a polynomial poly(·) such that for any δ ∈ (0, 1), as long as m ≥
poly

(
n, M̃X , λ

−1
0 , ‖y‖, ln(1/δ), k

)
and m ≥ rk, with probability at least 1− δ we have

sup
t≥0

sup
x,x′∈Br

∣∣Kt(x, x
′)−KNT(x, x′)

∣∣ ≤ O(r2m−
1
12

√
lnm

)
.
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Proof First, by Lemma 42, we know that there exists a polynomial poly1(·) such that for

any δ ∈ (0, 1), when m ≥ poly1

(
n, M̃X , ‖y‖, λ−1

0 , ln(1/δ)
)

, then with probability at least

1− δ/2, for all p ∈ {1, 2} and l ∈ {0, 1, · · · , L}, we have

sup
t≥0

∥∥∥W (l,p)
t −W (l,p)

0

∥∥∥
F

= O(m1/4).

Next, we condition on this event happens.

Since Br ⊂ Rd is bounded, for any ε > 0 we have an ε-net Nε (with respect to ‖·‖2) of
B̃R such that the cardinality |Nε| = O(rdε−d) (Vershynin, 2018, Section 4.2). Specifically,

we choose ε = m−2L and thus ln |Nε| = O(lnm) if m ≥ rk and m ≥ poly3(k). Denote by

Bz,z′(ε) =
{

(x, x′) : ‖x− z‖ ≤ ε,
∥∥x′ − z′∥∥ ≤ ε, x, x′ ∈ B̃R} .

Then, fixing z, z′ ∈ Nε, for any (x, x′) ∈ Bz,z′(ε), we have∣∣Kt(x, x
′)−KNT(x, x′)

∣∣ ≤ ∣∣Kt(x, x
′)−KNT(z, z′)

∣∣+
∣∣KNT(z, z′)−KNT(x, x′)

∣∣.
Then, noticing that Kt = (K

(1)
t + K

(2)
t )/2, we control the two terms on the right hand

side by Corollary 35 and Proposition 44 respectively, deriving that with probability at least
1− δ/

(
2|Nε|2

)
, for all t ≥ 0, we have

sup
(x,x′)∈Bz,z′ (ε)

|Kt(x, x
′)−KNT(z, z′)| = O

(
r2m−1/12

√
lnm

)
,

∣∣KNT(z, z′)−KNT(x, x′)
∣∣ = O(r2ε2−L) = O(r2m−1),

if m ≥ C1 ln
(
C2|Nε|2/δ

)5
for some positive absolute constants C1 > 0 and C2 ≥ 1.

And there also exists a polynomial poly2(·) such that when m ≥ poly2(ln(1/δ)), we have

m ≥ C1 ln
(
C2|Nε|2/δ

)5
, since ln |Nε| = O(lnm). Combining these two terms, we have

sup
t≥0

sup
(x,x′)∈Bz,z′ (ε)

∣∣Kt(x, x
′)−KNT(x, x′)

∣∣ = O
(
r2m−1/12

√
lnm

)
if m ≥ poly2(ln(1/δ)).

Combining all of the above results and applying the union bound for all pair z, z′ ∈ Nε,
with probability at least 1− δ, we have

sup
t≥0

sup
x,x′∈Br

∣∣Kt(x, x
′)−KNT(x, x′)

∣∣ = O
(
r2m−1/12

√
lnm

)

if m ≥ poly1

(
n, M̃X , ‖y‖2, λ

−1
0 , ln(1/δ)

)
+ poly2(ln(1/δ)) + poly3(k).
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d = 3 d = 4 d = 5

Distribution L = 2 L = 3 L = 4 L = 2 L = 3 L = 4 L = 2 L = 3 L = 4

U(−1, 1) 1.31 1.31 1.30 1.25 1.24 1.22 1.23 1.20 1.17
U(0, 1) 1.33 1.33 1.32 1.26 1.26 1.25 1.14 1.13 1.12

Triangular 1.34 1.33 1.32 1.21 1.23 1.22 1.22 1.16 1.13
Clipped normal 1.28 1.30 1.28 1.26 1.24 1.21 1.11 1.09 1.06

Table 1: Eigenvalue decay rates of NTK, where each entry of x is drawn independently
from multiple distributions. Triangular: p(x) = 1 + x, x ∈ [−1, 0], p(x) = 1 − x,
x ∈ [0, 1]; Clipped normal: standard normal clipped into (−10, 10).

Appendix B. Auxiliary Results on the NTK

B.1 Positive definiteness

The following proposition is an elementary result on the power series expansion of the
arc-cosine kernels.

Proposition 46 We have the following power series expansion for κ0 and κ1 in (10):

κ0(u) =
1

2
+

1

π

∞∑
r=0

(
1
2

)
r

(2r + 1)r!
u2r+1, κ1(u) =

1

π
+

1

2
u+

1

π

∞∑
r=1

(
1
2

)
r−1

2(2r − 1)r!
u2r, (46)

where (a)p := a(a+ 1) . . . (a+ p− 1) represents the rising factorial and both series converge
absolutely for u ∈ [−1, 1].

Lemma 47 (Lemma B.1 in Lai et al. (2023)) Let f : [−1, 1] → R be a continuous
function with the expansion f(u) =

∑∞
n=0 anu

n, u ∈ [−1, 1] and k(x, y) = f(〈x, y〉) be the
associated inner-product kernel on Sd. If an ≥ 0 for all n ≥ 0 and there are infinitely many
an > 0, then k is positive definite on Sd+.

Proof [of Proposition 9] Following the proof of Theorem 10, we introduce the transforma-
tion Φ and the homogeneous NTK KNT

0 . Plugging Proposition 46 into (13), by Lemma 47
we can show that KNT

0 is strictly positive definite on Sd+ = Φ(Rd). Consequently, the posi-
tive definiteness of KNT follows from the fact that Φ is bijective and ‖x̃‖ ≥ 1.

B.2 Numerical experiments

We provide some numerical experiments on the eigenvalue decay of the neural tangent
kernel. We approximate the eigenvalue λi by the eigenvalue λi(K) of the regularized sample
kernel matrix for n much larger than i. Then, we estimate eigenvalue decay by fitting a log
least-square lnλi = r ln i+ b. We skip the first several eigenvalues since they do not reflect
the asymptotic decay. We report the results in Figure 1 on page 37 and Table 1 on page
36. The results match our theoretical prediction and justify our theory.
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Figure 1: Eigenvalue decay of NTK under uniform distribution on [−1, 1]d, where i is se-
lected in [50, 200] and n = 1000. The dashed black line represents the log least-
square fit and the decay rates r are reported.

Appendix C. Omitted proofs

Proof of Proposition 13 Theorem 10 shows the eigenvalue decay rate ofKNT is (d+1)/d.
Therefore, the results in Lin et al. (2018) implies the lower rate and that the gradient flow
of NTK satisfies ∥∥∥f̂NTK

top − f∗
∥∥∥
L2
≤ C

(
ln

6

δ

)
n
− 1

2
sβ
sβ+1 (47)

with probability at least 1− δ, where β = (d+ 1)/d.
On the other hand, since µ is sub-Gaussian,

∑n
i=1 ‖xi‖2 ≤ Cn2 for probability at least

1 − δ if n ≥ poly(ln(1/δ)). From yi = f∗(xi) + εi, f
∗ ∈ L∞ and εi is sub-Gaussian, we

have ‖y‖ ≤ 2Cn for probability at least 1 − δ as long as n ≥ poly(ln(1/δ)). Then, taking
k = 1/48 and r = mk in Lemma 12, when m ≥ poly(n, λ−1

0 , ln(1/δ)), with probability 1−3δ
we have

sup
t≥0

sup
x∈Br

∣∣∣f̂NTK
t (x)− f̂NN

t (x)
∣∣∣ ≤ Cm− 1

24

√
lnm ≤ Cn−1
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as long as we take a larger power of n in the requirement of m. Consequently,∥∥∥(f̂NN
top − f

∗)1Br

∥∥∥
L2
≤
∥∥∥(f̂NN

top − f̂
NTK
top )1Br

∥∥∥
L2

+
∥∥∥(f̂NTK

top − f∗)1Br
∥∥∥
L2
≤ 1

n
+ C

(
ln

12

δ

)
n
− 1

2
sβ
sβ+1 .

Now, ∥∥∥f̂NN
top − f

∗
∥∥∥
L2
≤
∥∥∥(f̂NN

top − f
∗)1Br

∥∥∥
L2

+
∥∥∥f̂NN

top 1B{
r

∥∥∥
L2

+
∥∥∥f∗1B{

r

∥∥∥
L2
,

where the first term is already bounded. Noticing that µ is sub-Gaussian and r = m1/48,
by Corollary 43 we bound the second term by∥∥∥f̂NN

top 1B{
r

∥∥∥
L2
≤
∥∥∥Cm‖x̃‖1B{

r

∥∥∥
L2
≤ Cm−1 ≤ Cn−1

and the third term by ∥∥∥f∗1B{
r

∥∥∥
L2
≤ ‖f∗‖L∞µ(B{

r)
1/2 ≤ Cn−1.

Plugging these bounds into the above inequality, we finish the proof.

C.1 Choosing stopping time with cross validation

Before proving Proposition 16, we introduce a modified version of Caponnetto and Yao
(2010, Theorem 3).

Proposition 48 Let δ ∈ (0, 1) and ε > 0. Suppose f̂t is a family of estimators indexed

by t ∈ Tn such that with probability at least 1 − δ, it holds that
∥∥∥f̂tn − f∗∥∥∥

L2
≤ ε for some

tn ∈ Tn. Then, by choosing t̂cv by cross validation (18), with probability at least 1 − 2δ, it
holds that ∥∥∥f̂t̂cv − f∗∥∥∥L2

≤ 2ε+

(
160M2

ñ
ln

2|Tn|
δ

)1/2

. (48)

Proof of Proposition 16 The choice of Tn guarantees that there is tn ∈ Tn such that
top ≤ tn ≤ Qtop for top = n(d+1)/[s(d+1)+d] and that |Tn| ≤ logQ n + 1 ≤ C lnn. Then, by
Proposition 13 we know that∥∥∥f̂tn − f∗∥∥∥

L2
≤ C

(
ln

12

δ

)
n
− 1

2
sβ
sβ+1 .

Consequently, by Proposition 48, we conclude that

∥∥∥f̂t̂cv − f∗∥∥∥L2
≤ C

(
ln

12

δ

)
n
− 1

2
sβ
sβ+1 +

(
160M2

cvn
ln
C lnn

δ

)1/2

≤ C
(

ln
12

δ

)
n
− 1

2
sβ
sβ+1

as long as n is sufficiently large.
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Appendix D. Auxiliary Results

D.1 Self-adjoint compact operator

For a self-adjoint compact positive operator A on a Hilbert space, we denote by λn(A) the
n-th largest eigenvalue of A. The following minimax principle is a classic result in functional
analysis.

Lemma 49 (Minimax principle) Let A be a self-adjoint compact positive operator. Then

λn(A) = sup
V⊆H

dimV=n

inf
x∈V
‖x‖=1

〈Ax, x〉 .

Lemma 50 (Weyl’s inequality for operators) Let A,B be self-adjoint compact posi-
tive operators. Then

λi+j−1(A+B) ≤ λi(A) + λj(B), i, j ≥ 1. (49)

Lemma 51 Let A1, . . . , Ak be self-adjoint and compact. Suppose ε =
∑k

i=1 εi. Denote by
N±(ε, T ) the count of eigenvalues of T that is strictly greater(smaller) than ε (−ε). We
have

N±(ε,
k∑
i=1

Ai) ≤
k∑
i=1

N±(εi, Ai), (50)

Proof Widom (1963, Lemma 5).

D.2 Subdomains on the sphere

Let d(x, y) = arccos 〈x, y〉 be the geodesic distance on the sphere. The first proposition
deals with the “overlapping area” after rotation of two subdomains.

Proposition 52 Let Ω1,Ω2 ⊂ Sd be two disjoint domains with piecewise smooth boundary.
Fix two points e, y ∈ Sd. Suppose that for any x ∈ Sd, Re,x is an isometric transformation
such that Re,xe = x. Then, there exists some M such that

|{x ∈ Ω1 : Re,xy ∈ Ω2}| ≤Md(y, e) = M arccos 〈y, e〉 , (51)

Proof Let r = d(y, e). Since Re,x is isometric, we have

r = d(y, e) = d(Re,xy,Re,xe) = d(Re,xy, x).

Therefore, if r < d(x, ∂Ω1), noticing that x ∈ Ω1, we have Re,xy ∈ Bx(r) ⊂ Ω1, and hence
Re,xy /∈ Ω2. Therefore,

{x ∈ Ω1 : Re,xy ∈ Ω2} ⊆ {x ∈ Ω1 : d(x, ∂Ω1) ≤ r} .
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The latter is a tube of radius r of ∂Ω1 as defined in Weyl (1939). Moreover, since ∂Ω1 is
piecewise smooth, the results in Weyl (1939) show that there is some constant M such that

|{x ∈ Ω1 : d(x, ∂Ω1) ≤ r}| ≤Mr,

giving the desired estimation.

This following proposition provides a decomposition of the sphere.

Proposition 53 There exists a sequence of subdomains U0, V0, U1, V1, · · · ⊆ Sd with piece-
wise smooth boundary such that

(1) U0 = Sd;

(2) There are disjoint isometric copies Vi,1, . . . , Vi,ni of Vi such that Ui =
⋃ni
j=1 Vi,ni ∪ Z,

where Z is a null-set;

(3) Vi ⊆ Ui+1 after some isometric transformation;

(4) diam Vi → 0.

Proof Let us denote by Sp,r =
{
x ∈ Sd | 〈x,p〉 > cos r

}
the spherical cap centered at p

with radius r, and Sr = Sed+1,r, where ed+1 is the unit vector for the last coordinate.
First, let V0 =

{
x = (x1, . . . , xd+1) ∈ Sd

∣∣ xi > 0, i = 1, . . . , d+ 1
}
. Then, by reflection,

there are 2d+1 isometric copies of Ω such that their disjoint union is whole sphere minus
equators, which is a null set.

To proceed, taking p = 1√
d+1

(1, . . . , 1), for any points x ∈ V0, we have

〈x,p〉 =
1√
d+ 1

(x1 + · · ·+ xd+1) ≥ 1√
d+ 1

.

Therefore, V0 ⊂ Sp,r1 for r1 = arccos 1√
d+1

< π
2 and we may take U1 = Sr1 .

Now suppose we have Ui = Sri with ri <
π
2 . Using polar coordinate, we have the

parametrization

x1 = sin θ1 · · · sin θd, x2 = sin θ1 · · · cos θd, . . . , xd = sin θ1 cos θ2, xd+1 = cos θ1, (52)

where θd ∈ [0, 2π] and θj ∈ [0, π], j = 1, . . . , d − 1. Then, the spherical cap is given by
Sr = {x | θ1 < r}. Let us consider the slice

Vi =
{
x ∈ Sd

∣∣∣ θ1 < r, θj ∈ (0,
π

2
), j = 2, . . . , d− 1, θd ∈

(
−π

4
,
π

4

)}
⊂ Sr,

Then, by rotation over θd and reflection over θj , j = 2, . . . , d − 1 we can find 2d isometric
copies of Vi such that their disjoint union is only different with Sri by the union of the
boundaries of Vi’s, which a null-set.

Now, we find some ri+1 < ri such that Vi ⊂ Ui+1 = Sp,ri+1 . Let us take the point
p = (p1, . . . , pd+1) by

pd+1 = cos η, pd = · · · = p2 =
1√
d− 1

sin η, p1 = 0,
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where η ∈ (0, ri) will be determined later. Suppose now x ∈ Vi is given by (52). We obtain
that 〈p, x〉 = cos η cos θ1 + sin η√

d−1
(xd + · · ·+ x2). Noticing that θj ∈ [0, π2 ] and |θd| ≥ π

4 , we

have xd + · · ·+ x2 ≥ sin θ1 cos θd ≥ 1√
2

sin θ1. Therefore,

〈p, x〉 ≥ cos η cos θ1 + a sin η sin θ1, a =
1√

2(d− 1)
,

≥ min (cos η, cos η cos ri + a sin η sin ri) , since θ1 ∈ (0, ri),

=

{
cos η, tan η > 1−cos ri

a sin ri
,

cos ri cos η + (a sin ri) sin η, otherwise.

We know that the second term is maximized by tan η0 = a tan ri and

cos ri cos η0 + a sin ri sin η0 =
√

cos2 ri + a2 sin2 ri.

On one hand, if tan η0 ≤ 1−cos ri
a sin ri

, we take η = η0 and the minimum is taken by the second

term, so 〈p, x〉 ≥
√

cos2 ri + a2 sin2 ri and Vi ⊂ Sp,ri+1 for ri+1 = arccos
√

cos2 ri + a2 sin2 ri.
In this case, we have

sin2 ri+1 = 1− (cos2 ri + a2 sin2 ri) = (1− a2) sin2 ri. (53)

On the other hand, if tan η0 = a tan ri >
1−cos ri
a sin ri

, we take η = arctan 1−cos ri
a sin ri

. Then, the
minimum is taken by the first term and 〈p, x〉 ≥ cos η, implying V ⊂ Sp,ri+1 for ri+1 = η.
In this case, we have

tan ri+1 = tan η =
1− cos ri
a sin ri

< a tan ri. (54)

Considering both cases (53),(54) and noticing that a = 1√
2(d−1)

∈ (0, 1), we conclude

that ri+1 < ri and ri → 0.

D.3 Cesaro sum

We will use Cesaro sum in our analysis of dot-product kernels. We also refer to Dai and Xu
(2013, Section A.4).

Definition 54 Let p ≥ 0. The p-Cesaro sum sn of a sequence ak is defined by

spn =
1

Apn

n∑
k=0

Apn−kak, Apk :=

(
k + p

k

)
. (55)

Definition 55 (Difference) Let a = (ak)k≥0 be a sequence. We define the difference
operator on sequence by

(40a)k = ak, (4a)k = ak − ak+1, 4p+1a = 4(4pa). (56)

We often write (4pa)k = 4pak. It is easy to see that 4pak =
∑p

r=0

(
k
r

)
(−1)rak+r.
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Definition 56 (Tail sum) Let a = (ak)k≥0 be a sequence. Assuming all the following
summations are absolutely convergent, we define the tail sum operator on sequence by

(S0a)k = ak, (Sa)k =
∑
r≥k

ar, Sp+1a = S(Spa). (57)

We often write (Spa)k = Spak.

The following is an elementary proposition about the connection between tail sum and
difference.

Proposition 57 We have (a) Span =
∑∞

k=0A
p−1
k an+k; (b) S4an = 4San = an; (c)

Consequently,
∑∞

k=0A
p
k4

p+1an+k = (Sp+14p+1a)n = an.

We have the following summation by parts formula, see also Dai and Xu (2013, (A.4.8)).

Proposition 58 (Summation by parts) Let ak, bk be two sequence and p ∈ N. Then,

∞∑
k=0

akbk =
∞∑
k=0

4p+1bk

k∑
j=0

Apk−jaj =
∞∑
k=0

4p+1bkA
p
ks
p
k,

where spk is the p-Cesaro mean of ak.

For a function f : [a, b] → R, we can define similarly 4f(x) = f(x) − f(x + 1) and
4p+1f(x) = 4pf(x)−4pf(x+ 1). The following elementary lemma provides a connection
between the difference and the derivative of the function.

Lemma 59 Let p ∈ N. Suppose f ∈ Cp([a, a+ p]), then

4pf(a) = (−1)p
∫

[0,1]p
f (p)(a+ t1 + · · ·+ tp)dt1 · · · dtp. (58)

Proposition 60 Suppose that µk = c0(k + 1)−β, k ≥ 0. Letting (β)p := β(β + 1) · · · (β +
p− 1), then

0 < 4pµk ≤ c0(β)p(k + 1)−(β+p).

Proof Apply the previous lemma with f(x) = c(x+ 1)−β and f (p)(x) = (−1)pc0(β)p(x+
1)−(β+p).

Lemma 61 Let µ = (µk)k≥0 be a sequence such that 4pµk ≥ 0, ∀k ≥ 0 for some p ≥ 0.
Given N ≥ 0, we can construct a left extrapolation sequence (µ̃k)k≥0 such that

(1) µ̃k = µk for k ≥ N and µ̃k ≤ µk for k < N ;

(2) 4pµ̃k ≥ 0, ∀k ≥ 0;

(3) Let µ̄k = µk − µ̃k be the residual sequence, then 4pµ̄k ≥ 0, ∀k ≥ 0;
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(4) The leading term satisfies

µ̃0 = LpNµ :=

p−1∑
l=0

AlN4lµN .

We remark that the LpN is in the same form as the LHS of (8) in Condition 6.

Proof We define µ̃k recursively by its p-differences. Let 4pµ̃k = 0 for k < N and
4pµ̃k = 4pµk for k ≥ N . Then, summing up the terms iteratively yields (1), (2) and also
the recursive formula:

4p−sµ̃N−r =
s−1∑
l=0

Alr4p−s+lµN , s = 1, . . . , p, r = 0, . . . , N − 1,

which gives (4). The last statement (3) follows from the fact that4pµ̄k = 4pµk−4pµ̃k ≥ 0.
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