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Abstract

Imagine a learner L who tries to infer a hidden concept from a collection of observations.
Building on the work of Ferri et al. (2022), we assume the learner to be parameterized by
priors P (c) and by c-conditional likelihoods P (z|c) where c ranges over all concepts in a
given class C and z ranges over all observations in an observation set Z. L is called a
MAP-learner (resp. an MLE-learner) if it thinks of a collection S of observations as a ran-
dom sample and returns the concept with the maximum a-posteriori probability (resp. the
concept which maximizes the c-conditional likelihood of S). Depending on whether L as-
sumes that S is obtained from ordered or unordered sampling resp. from sampling with
or without replacement, we can distinguish four different sampling modes. Given a target
concept c∗ ∈ C, a teacher for a MAP-learner L aims at finding a smallest collection of ob-
servations that causes L to return c∗. This approach leads in a natural manner to various
notions of a MAP- or MLE-teaching dimension of a concept class C. Our main results
are as follows. First, we show that this teaching model has some desirable monotonicity
properties. Second we clarify how the four sampling modes are related to each other. As
for the (important!) special case, where concepts are subsets of a domain and observations
are 0,1-labeled examples, we obtain some additional results. First of all, we character-
ize the MAP- and MLE-teaching dimension associated with an optimally parameterized
MAP-learner graph-theoretically. From this central result, some other ones are easy to
derive. It is shown, for instance, that the MLE-teaching dimension is either equal to the
MAP-teaching dimension or exceeds the latter by 1. It is shown furthermore that these di-
mensions can be bounded from above by the so-called antichain number, the VC-dimension
and related combinatorial parameters. Moreover they can be computed in polynomial time.

1. Introduction

In formal models of machine learning we have a concept class C of possible concepts/hy-
potheses, an unknown target concept c∗ ∈ C and training data given by correctly labeled
random examples. In formal models of machine teaching a collection T (c∗) of labeled
examples is instead carefully chosen by a teacher T in a way that the learner can reconstruct
the target concept c∗ from T (c∗). In recent years, the field of machine teaching has seen
various applications in fields like explainable AI as in H̊avardstun et al. (2023), trustworthy
AI as in Zhu et al. (2018) and pedagogy as in Shafto et al. (2014).
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Various models of machine teaching have been proposed, e.g. the classical teaching
model in Shinohara and Miyano (1991) and in Goldman and Kearns (1995), the optimal
teacher model in Balbach (2008), the recursive teaching in Zilles et al. (2011), the preference-
based teaching in Gao et al. (2017), or the no-clash teaching in Kirkpatrick et al. (2019)
and in Fallat et al. (2022). These models differ mainly in the restrictions that they impose
on the learner and the teacher in order to avoid unfair collusion or cheating. The common
goal is to keep the size of the largest teaching set, maxc∈C |T (c)|, as small as possible.

There are also other variants using probabilities, from Muggleton (1996) where examples
are sampled based on likelihoods for a target concept, to Shafto et al. (2014) who calls this
pedagogical sampling and leads into the Bayesian Teaching of Eaves and Shafto (2016) and
of Yang and Shafto (2017), to the Bayesian learners of Zhu (2013) with a proper teacher
selecting examples.

In this paper we continue this line of research and consider the probabilistic model
that had been described in the abstract. This model is inspired by and is an extension of
the model that was introduced in Ferri et al. (2022). As already observed in Ferri et al.
(2022), the condition for collusion-avoidance from Goldman and Mathias (1996) may here
be violated, i.e., the learner may first reconstruct a concept c1 from some given observations
but, after having received additional observations, switch to another concept c2 even if the
new observations have given additional support to c1. Like the authors of Ferri et al. (2022),
we would like to argue that this should not be considered as collusion or cheating as long
as the parameters assigned to the learner reflect some factual information about the world.
In our paper the parameters can be freely chosen, and thus in order to disallow collusion
one would have to impose more restrictions on the model, for instance a notion of natural
parameterization. However, that is not our focus in this paper, which is rather on finding
lower bounds on the teaching dimension that are even valid in the most liberal model of
MAP-teaching.

As already outlined in the abstract, we will distinguish between four distinct sam-
pling modes: ordered sampling with replacement ((O,R)-mode), unordered sampling with
replacement ((O,R)-mode), ordered sampling without replacement ((O,R)-mode) and un-
ordered sampling without replacement ((O,R)-mode). The smallest number d such that
every c∗ ∈ C can be taught to a given MAP-learner L by a collection of at most d ob-
servations is denoted by MAP-TDα,β

L (C) where (α, β) ∈ {O,O} × {R,R} indicates the

underlying sampling mode. Then MAP-TDα,β(C) = minL MAP-TDα,β
L (C) is the corre-

sponding parameter with an optimally parameterized learner L. The analogous notation is
used for MLE-learners. Our main results are as follows:

1. The MAP-teaching model has two desirable and quite intuitive monotonicity proper-
ties. Loosely speaking, adding new observations (making Z larger) leads to smaller
MAP-TD while adding new concepts (making C larger) leads to larger MAP-TD. See
Section 3.2 for details.

2. The sampling modes (O,R) and (O,R) are equivalent. The sampling modes (O,R),
(O,R) and (O,R) are pairwise incomparable (i.e., which one leads to smaller values
of MAP-TDL(C) depends on the choice of C and L). Note that incomparability of
the modes (α, β) and (α′, β′) does not rule out the possibility that MAP-TDα,β(C) ≤
MAP-TDα′,β′(C) for each concept class C. See Section 3.3 for details.
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3. As for the (important!) special case, where concepts are subsets of a domain and
observations are 0,1-labeled examples, we obtain some additional results, the first of
which is the central one:

(a) For a (properly defined) bipartite graph G(C)α,β associated with C and (α, β) 6=
(O,R), one gets1

MAP-TDα,β(C) = SMN(G(C)α,β) . (1)

If we replace G(C)α,β by a slightly modified graph, we obtain the corresponding
result for MLE-TD at the place of MAP-TD.2 Fig. 1 visualizes this result. See
Sections 4 and 5.1 for details.

(b) The MLE-teaching dimension is either equal to the MAP-teaching dimension or
exceeds the latter by 1. See Section 5.2 for details.

(c) The MAP- and the MLE-teaching dimension can be bounded from above by the
so-called antichain number, the VC-dimension and related combinatorial param-
eters. See Section 5.3 for details.

(d) Moreover the MAP- and the MLE-teaching dimension can be computed in poly-
nomial time from a natural encoding of the underlying concept class. See Sec-
tion 5.4 for details.

2. Definitions and Notations

We first fix some general notation. Afterwards, in Sections 2.1, 2.2, and 2.3, the MAP- and
MLE-based teaching model is introduced, step-by-step.

Mappings. The restriction of a mapping f : A → B to a subset A′ ⊆ A will be denoted
by f↓A′ . Suppose that B is a set that is equipped with a size function which associates a
size |b| with each b ∈ B. Then the order of a mapping f : A → B is defined as the size of
the largest element in the image of f , i.e., the order of f equals maxa∈A |f(a)|.

Graphs and Matchings. For a graph G = (V,E) and a set U ⊆ V , we denote by Γ(U)
the set of vertices which are adjacent to at least one vertex in U . If G = (V1, V2, E) is the
bipartite graph with vertex sets V1 and V2 and with edge set E ⊆ V1 × V2, then U ⊆ V1

implies (of course) that Γ(U) ⊆ V2. A matching M in a bipartite graph G = (V1, V2, E) can
be viewed as a (partially defined and injective) function M : V1 → V2 with the property
that (v,M(v)) ∈ E for each v having an M -partner. If V1 is saturated by M , i.e., every
vertex in V1 has an M -partner, then this function is fully defined.

VC-Dimension, Vapnik and Chervonenkis (1971). Let C be a family of subsets of
some ground set X. For c ∈ C and x ∈ X, we also write c(x) = 1 if x ∈ c and c(x) = 0 if
x /∈ c. We say that S ⊆ X is shattered by C if, for every b : S → {0, 1}, there is some c ∈ C
that coincides with b on S. The VC-dimension of C is defined as∞ if there exist arbitrarily
large shattered sets, and it is defined as the size of a largest shattered set otherwise.

1. SMN(G) denotes the saturating matching number of a bipartite graph G (formally defined in Section 4)
2. Some bounds on MLE-TD numbers in terms of SMN numbers are already found in Ferri et al. (2022),

but no results that hold with equality (as in (1)) are proven there.

3



Simon and Telle

rep
rep

ord ord ordord

SMN MAP

Figure 1: For any binary concept class C ⊆ 2X and 0, 1-labeled examples as observations,
the tree visualizes the identities in (1). Using the same color for the two leftmost
leaves in the MAP-subtree is justified by the equivalence of the modes (O,R)
and (O,R) as shown in Corollary 19. A parameter represented by a leaf in the
MAP-subtree has the same value as the parameter represented by a leaf of the
same color in the SMN-subtree, as shown in Theorems 25, 27, 28 and Corollary
26. The parameters represented in the SMN-subtree are ordered as indicated by
the rightmost diagram, with lowest value on top and highest value at bottom.
We will see later, in Theorem 20, that parameters represented in different colors
can generally have different values.

2.1 Concept Classes

Let C be a finite set of size at least 2, let Z be another non-empty finite set and let |= be
a relation on C × Z. We refer to C as a concept class and to Z as a set of observations. If
c |= z, then we say that the concept c is consistent with the observation z. We say that c
is consistent with a set (resp. multiset) A of observations, which is written as c |= A, if c is
consistent with every z ∈ A. The notation c |= z with z = (z1, . . . , zn) ∈ Zn is understood
analogously. For each c ∈ C, we define

Zc = {z ∈ Z : c |= z} .

Example 1 (Positive Examples as Observations) Let Z = X be a set of examples
and let C be a family of subsets of X. Let the consistency relation be given by

∀c ∈ C, x ∈ X : c |= x⇔ x ∈ c .

Note that Zc = c in this setting, i.e., concepts are identified with the sets of observations
they are consistent with.

Example 2 (Labeled Examples as Observations) Let Z = X × {0, 1} be a set of la-
beled examples and let C be a family of subsets of X. Let the consistency relation be given
by

∀c ∈ C, (x, b) ∈ Z : c |= (x, b)⇔ (b = 1 ∧ x ∈ c) ∨ (b = 0 ∧ x /∈ c) . (2)

Note that Zc = {(x, 1) : x ∈ c} ∪ {(x, 0) : x /∈ c} in this setting. It follows that |Zc| = |X|
for all c ∈ C.
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We will occasionally identify a set c ⊆ X with the corresponding 0, 1-valued function so
that c(x) = 1 for x ∈ c and c(x) = 0 for x ∈ X \ c. The equivalence in (2) can then be
written in the form c |= (x, b)⇔ b = c(x).

Example 3 (Labeled Examples and Probabilistic Concepts) Let Z = X×{0, 1} be
again a set of labeled examples and let C be a family of functions from X to [0, 1]. Let the
consistency relation be given by

∀c ∈ C, x ∈ X : c |= (x, 1)⇔ c(x) > 0 and c |= (x, 0)⇔ c(x) < 1 .

Intuitively we should think of c(x) as the probability that c assigns label 1 to instance x. If
all concepts c ∈ C were 0, 1-valued, we would again be in the setting of Example 2.

Note that within Examples 1 and 2, we have that

∀c, c′ ∈ C : c 6= c′ ⇒ Zc 6= Zc′ (3)

so that each concept c ∈ C is uniquely determined by the full set Zc of observations that
c is consistent with. Of course this will not necessarily be the case if the concepts are
probabilistic as in Example 3.

2.2 Variants of Sampling

As formalized in the definitions below, we distinguish between ordered and unordered sam-
pling and we may have sampling with or without replacement.

Definition 1 (Sampling with Replacement) Let Q = (q(z))z∈Z be a collection of prob-
ability parameters, i.e., q(z) ≥ 0 and

∑
z∈Z q(z) = 1. For n ≥ 0, we define n-fold (ordered

resp. unordered) Q-sampling with replacement as the following random procedure:

1. Choose z1, . . . , zn independently at random according to Q.

2. In case of ordered sampling, return the sequence (z1, . . . , zn) whereas, in case of un-
ordered sampling, return the multiset {z1, . . . , zn}.3

Let z = (z1, . . . , zn) ∈ Zn be a sequence that contains k distinct elements, say z′1, . . . , z
′
k,

and let ni denote the number of occurrences of z′i in z. Let Az ⊆ Z be the corresponding
multiset. The probability that z (resp. Az) is obtained from n-fold ordered (resp. unordered)

Q-sampling with replacement is henceforth denoted by PO,R(z|Q) (resp. by PO,R(Az|Q)).
With these notations, the following holds:

PO,R(z|Q) =

n∏
i=1

q(zi) =

k∏
i=1

q(z′i)
ni and PO,R(Az|Q) =

n!

n1! . . . nk!
·
k∏
i=1

q(z′i)
ni . (4)

Definition 2 (Sampling without Replacement) Let Q = (q(z))z∈Z be a collection of
probability parameters. Let N+(Q) be the number of z ∈ Z such that q(z) > 0. For 0 ≤
n ≤ N+(Q), we define n-fold (ordered resp. unordered) Q-sampling without replacement
as the following random procedure:

3. If n = 0, then the empty sequence resp. the empty multiset is returned,
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1. Choose z1 at random according to Q.

2. For i = 2, . . . , n do the following:
Choose zi ∈ Z \ {z1, . . . , zi−1} at random where, for each z ∈ Z \ {z1, . . . , zi−1}, the

probability for zi = z equals q(z)
1−(q(z1)+...+q(zi−1)) .4

3. In case of ordered sampling, return the sequence (z1, . . . , zn) whereas, in case of un-
ordered sampling, return the set {z1, . . . , zn}.

Let z = (z1, . . . , zn) ∈ Zn be a repetition-free sequence and let Az ⊆ Z be the cor-
responding set. For a permutation σ of 1, . . . , n, we define zσ = (zσ(1), . . . , zσ(n)). The
probability that z (resp. Az) is obtained from n-fold ordered (resp. unordered) Q-sampling

without replacement is henceforth denoted by PO,R(z|Q) (resp. by PO,R(Az|Q)). With
these notations, the following holds:

PO,R(z|Q) =
n∏
i=1

q(zi)

1− (q(z1) + . . .+ q(zi−1))
and PO,R(Az|Q) =

∑
σ

PO,R(zσ|Q) , (5)

where σ ranges over all permutations of 1, . . . , n.
We introduce the following notation:

• ZO,R = Z∗ denotes the set of sequences over Z (including the empty sequence).

• ZO,R denotes the set of multisets over Z (including the empty multiset).

• ZO,R denotes the set of repetition-free sequences over Z (including the empty se-
quence).

• ZO,R = 2Z denotes the powerset of Z.

The pairs (α, β) ∈ {O,O}×{R,R} are called sampling modes. We use the symbol ∅ not
only to denote the empty set but also to denote the empty multiset or the empty sequence.
If A is a finite set or multiset, then |A| denotes its size where, in case of a multiset, the
multiple occurrences of elements are taken into account. The length of a finite sequence z
is denoted by |z|.

Remark 3 (Trivial Identities) Suppose that Q = (q(z))z∈Z is collection of probability
parameters. Then, for each sampling mode (α, β), we have that Pα,β(∅|Q) = 1. Moreover,

if all parameters q(z) with z ∈ Z are strictly positive, then PO,R(Z|Q) = 1.

We close this section with a more or less obvious result whose proof will be given for sake
of completeness.

Remark 4 Let z1, . . . , zn be a sequence with pairwise distinct elements from Z. Let p1 >
p2 > . . . > pn be a strictly decreasing sequence of strictly positive parameters such that∑n

i=1 pi ≤ 1. For each permutation σ of [n], consider the parameter collection Qσ =
(qσ(zi))i=1,...,n given by qσ(zi) = pσ(i). Then the identity permutation is the unique maxi-

mizer of PO,R(z1, . . . , zn|Qσ).

4. Note that the probability parameters for z ∈ Z\{z1, . . . , zi−1} are the same as before up to normalization.
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Proof According to (5), we have

PO,R(z1, . . . , zk|Qσ) =

n∏
i=1

qσ(zi)

1− (qσ(z1) + . . .+ qσ(zi−1))

=
n∏
i=1

pσ(i)

1− (pσ(1) + . . .+ pσ(i−1))
=

∏n
i=1 pi∏n

i=1(1− (pσ(1) + . . .+ pσ(i−1))

The product in the numerator is the same for all permutations σ. The following assertions
are equivalent:

1. σ∗ is the identity permutation.

2. The sequence pσ∗(1), . . . , pσ∗(n) is strictly decreasing.

3. For each permutation σ 6= σ∗ and each i ∈ [n], we have that

pσ∗(1) + . . .+ pσ∗(i−1) ≥ pσ(1) + . . .+ pσ(i−1)

and, for at least one i ∈ [n], this inequality is strict.

4. The permutation σ∗ is the unique maximizer of PO,R(z1, . . . , zk|Qσ).

The remark now is immediate from the equivalence of the first and the fourth statement.

2.3 MAP- and MLE-based Teaching

An MLE-learner will always choose a hypothesis from a class C that maximizes the like-
lihood of a given set of observations. MAP-learners are a bit more general because they
additionally bring into play priors (P (c))c∈C . The notion of likelihood depends on how the
observations are randomly sampled. We proceed with the formal definition of MAP- and
MLE-learners and their teachers:

Definition 5 (MAP- and MLE-Learner) A MAP-Learner L for C is given by (and
henceforth identified with) parameters P (z|c) ≥ 0 and P (c) > 0 for z ∈ Z and c ∈ C such
that ∑

c∈C
P (c) = 1 and ∀c ∈ C :

∑
z∈Z

P (z|c) = 1 .

The parameters P (c) are referred to as priors. The parameters P (z|c), referred to as c-
conditional likelihoods, must satisfy the following validity condition:

c 6|= z ⇒ P (z|c) = 0 . (6)

Set Z+
c (L) := {z ∈ Z : P (z|c) > 0} and N+(C,L) = minc∈C |Z+

c (L)|.5 L can be in
four different sampling modes (depending on the assumed kind of sampling). These modes
determine the form of L’s input and the choice of its output as will be detailed below.

5. Because of the validity condition, Z+
c (L) is a subset of Zc = {z ∈ Z : c |= z}.
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(O,R)-mode: For every n ≥ 0 and every sequence a ∈ Zn, we denote by PO,R(a|c) the
probability that a is obtained from n-fold ordered P (·|c)-sampling with replacement.
Given a sequence a ∈ ZO,R, L returns the concept arg!maxc∈C

[
P (c) · PO,R(a|c)

]
if it

exists, and a question mark otherwise.6

(O,R)-mode: For every n ≥ 0 and and every multiset A ⊆ Z of size n, we denote by

PO,R(A|c) the probability that A is obtained from n-fold unordered P (·|c)-sampling

with replacement. Given a multiset A ∈ ZO,R, L returns the concept

arg!maxc∈C

[
P (c) · PO,R(A|c)

]
if it exists, and a question mark otherwise.

(O,R)-mode: For every 0 ≤ n ≤ N+(C,L), and every repetition-free sequence a ∈ Zn,

we denote by PO,R(a|c)) the probability that a is obtained from n-fold ordered P (·|c)-
sampling without replacement. Given a repetition-free sequence a ∈ ZO,R with |a| ≤
N+(C,L), L returns the concept arg!maxc∈C

[
P (c) · PO,R(a|c)

]
if it exists, and a

question mark otherwise. If |a| > N+(C,L), then also a question mark is returned.

(O,R)-mode: For every 0 ≤ n ≤ N+(C,L), and every set A ⊆ Z of size n, we denote

by PO,R(A|c) the probability that A is obtained from n-fold unordered P (·|c)-sampling

without replacement. Given a set A ∈ ZO,R with |A| ≤ N+(C,L), L returns the

concept arg!maxc∈C

[
P (c) · PO,R(A|c)

]
if it exists, and a question mark otherwise. If

|A| > N+(C,L), then also a question mark is returned.

An MLE-learner is a MAP-learner with uniform priors (so that the factor P (c) in the above
arg!max-expressions can be dropped).

Definition 6 (Teacher) Suppose that L is a MAP-learner for C that is in sampling mode
(α, β) ∈ {O,O} × {R,R}. A (successful) teacher for L is a mapping T which assigns to
each concept c0 ∈ C an input I = T (c0) for L such that L(I) = c0. In other words:

1. I ∈ Zα,β and, if β = R, then |I| ≤ N+(C,L).

2. c0 = arg!maxc∈C
[
P (c) · Pα,β(I|c)

]
.

A couple of observations are in place here.

Remark 7 Suppose that L is a MAP-learner for C which is in sampling mode (α, β) ∈
{O,O} × {R,R}. Suppose that T is a teacher for L. Then the following holds for all
c, c′ ∈ C:

L(T (c)) = c , Pα,β(∅|c) = 1 , Pα,β(T (c)|c) > 0 , c |= T (c) and (c 6= c′ ⇒ T (c) 6= T (c′)) .
(7)

Moreover, if L is an MLE-learner and T is a teacher for L, then T (c) 6= ∅.

6. The operator arg!maxc∈C f(c) returns the unique maximizer c∗ ∈ C of f(c) provided that it exists.
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Proof L(T (c)) = c is an immediate consequence of Definitions 5 and 6. It now follows
that, if T (c) = T (c′), then c = L(T (c)) = L(T (c′)) = c′. In other words, c 6= c′ implies that
T (c) 6= T (c′). 0-fold sampling conditioned to c yields ∅ regardless of how c is chosen. It
follows that Pα,β(∅|c) = 1. Assume now for contradiction that Pα,β(T (c′)|c′) = 0. But then
c′ cannot be the unique maximizer of Pα,β(T (c′)|c) ·P (c) in C. This is in contradiction with
L(T (c′)) = c′. Assume for contradiction that T (c) contains an observation z ∈ Z such that
c 6|= z. It follows that Pα,β(T (c)|c) = 0, which is in contradiction with Pα,β(T (c)|c) > 0.
Thus c |= T (c). Finally, suppose that the priors are uniform, i.e., P (c) = 1/|C| for every
c ∈ C. Assume for contradiction that T (c0) = ∅ for some c0 ∈ C. For every c ∈ C, we have
P (c) · Pα,β(∅|c) = P (c) = 1/|C|. Hence c0 cannot be unique maximizer of P (c) · Pα,β(∅|c)
in C. This is in contradiction with L(T (c0)) = c0.

Here is the definition of the parameter that is in the focus of our interest:

Definition 8 (MAP- and MLE-Teaching Dimension) Suppose that L is a MAP-learner
for C who is in sampling mode (α, β). The MAP-teaching dimension of C given L and

(α, β), denoted as MAP-TDα,β
L (C), is defined as the smallest number d such that there ex-

ists a teacher of order d for L, respectively as ∞ if there does not exist a teacher for L. The
MAP-teaching dimension of C with respect to sampling mode (α, β) is then given by

MAP-TDα,β(C) := min
L

MAP-TDα,β
L (C) ,

where L ranges over all MAP-learners for C. Similarly, the MLE-teaching dimension of C
with respect to sampling mode (α, β) is given by MLE-TDα,β(C) := minL MAP-TDα,β

L (C)
with L ranging over all MLE-learners for C.

The parameter MAP-TDα,β(C) equals the number of observations needed to teach an
optimally parameterized learner. It represents an information-theoretic barrier that can-
not be broken regardless of how the learner is parameterized. Of course, this parameter
will generally be smaller than the parameter MAP-TDα,β

L (C) associated with a “naturally
parameterized” learner. We close this section by mentioning the inequality

MAP-TDα,β(C) ≤ MLE-TDα,β(C) ,

which (for trivial reasons) holds for each choice of C and (α, β).

3. Basic Results on the MAP-Based Teaching Model

In Ferri et al. (2022), the authors used a more restrictive condition in place of the validity
condition. However, as we will see in Section 3.1, in the context of MAP-learners and their
teachers, both conditions lead essentially to the same results. In Section 3.2, we discuss two
natural monotonicity properties and thereafter, in Section 3.3, we note the equivalence of
(O,R)- and the (O,R)-mode and prove the pairwise incomparability of the modes (O,R),
(O,R) and (O,R).
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3.1 Validity and Strong Validity

We will refer to
c 6|= z ⇔ P (z|c) = 0

as the strong validity condition for the parameters (P (z|c))z∈Z,c∈C . This is the condition
that the authors of Ferri et al. (2022) had imposed on the c-conditional likelihoods associated
with a MAP-learner. We will see that each L satisfying the validity condition has a “close
relative” Lε that satisfies the strong validity condition. Here comes the definition of Lε:

Definition 9 (ε-Shift) Let L be given by parameters P (c) and P (z|c) with c ∈ C and
z ∈ Z such that the validity condition is satisfied but the strong validity condition is not.
We say that Lε (with 0 < ε ≤ 1/2) is the ε-shift of L if Lε is given by the parameters P (c)
and Pε(z|c) where

Pε(z|c) =


(1− ε) · P (z|c) if z ∈ Z+

c (L)
ε

|Zc\Z+
c (L)| if z ∈ Zc \ Z+

c (L)

0 if z ∈ Z \ Zc
.

For convenience, we set Pε(z|c) = P (z|c) if already L satisfies the strong validity condition.

Note that Lε satisfies the strong validity condition because Pε(z|c) = 0 iff z 6∈ Zc and
Zc = {z ∈ Z : c |= z}. A learner and its ε-shift are related as follows:

Lemma 10 Let L be a MAP-learner for C whose parameters satisfy the validity condition.
Then the following holds for each (α, β) ∈ {O,O}× {R,R} and all sufficiently small ε > 0:
each teacher for L in sampling mode (α, β) is also a teacher for Lε in sampling mode (α, β).

Proof Suppose that L and Lε are both in sampling mode (α, β). Consider a teacher T for
L. We claim that the following holds:

∀c0, c ∈ C : lim
ε→0

Pα,βε (T (c0)|c) = Pα,β(T (c0)|c) . (8)

This would imply that, for every c0 ∈ C and sufficiently small ε, we have

c0 = arg!maxc∈C P
α,β(T (c0)|c) = arg!maxc∈C P

α,β
ε (T (c0)|c) ,

which, in turn, implies that T is a teacher for Lε. We still have to verify (8). This can be
done by means of a simple continuity argument. Note first that

∀c ∈ C, z ∈ Z : lim
ε→0

Pε(z|c) = P (z|c) .

Since Pα,Rε (T (c0)|c) is a polynomial (and hence a continuous function) in the variables
Pε(z|c) with z ∈ T (c0), we may conclude that (8) is true in case of β = R. Suppose
now that (α, β) = (O,R) and T (c0) = (z1, . . . , zn), which implies that n ≤ N+(C,L) and
z1, . . . , zn ∈ Z+

c (L). The function

PO,Rε (T (c0)|c) =

n∏
i=1

Pε(zi|c)
1− (Pε(z1|c) + . . .+ Pε(zi−1|c))

10
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is a rational function in the variables Pε(zi|c) for i = 1, . . . , n. Hence we can apply the
continuity argument again but, in addition, we must rule out that the denominator, 1 −
(Pε(z1|c) + . . . + Pε(zi−1|c)), converges to 0 when ε approaches 0. This, however, can be
ruled out as follows:

• Set ρ := 1
2 ·minc∈C,z∈Z+

c (L) P (z|c) and note that 0 < ρ ≤ minc∈C,z∈Z+
c (L) Pε(z|c). The

latter inequality holds because of Pε(z|c) = (1− ε) · P (z|c) and ε ≤ 1/2.

• Because of n ≤ N+(C,L), the set {z1, . . . , zn−1} cannot contain all elements of Z+
c (L).

• Therefore 1 − (Pε(z1|c) + . . . + Pε(zi−1|c) ≥ ρ for all i = 1, . . . , n and the limit for
ε→ 0 cannot be equal to 0.

We may therefore conclude that (8) is true in case of (α, β) = (O,R). The proof in case of
(α, β) = (O,R) is similar.

Corollary 11 With the notation from Definition 9, we have

MAP-TDα,β
L (C) = MAP-TDα,β

Lε
(C)

for all sufficiently small ε > 0.

3.2 Monotonicity Properties

It is clear, intuitively, that adding concepts without adding observations should make the
teaching problem harder. Conversely, adding observations without adding concepts should
make the teaching problem easier. In this section, we formalize these statements and prove
them. All results in this section are formulated in terms of MAP-TD. But the corresponding
results with MLE-TD in place of MAP-TD hold as well.

We say that (C ′, Z ′, |=′) is an extension of (C,Z, |=) if C ⊆ C ′, Z ⊆ Z ′ and, for all c ∈ C
and z ∈ Z, we have that c |= z if and only if c |=′ z.

So far, we used a notation (e.g. MAP-TDα,β(C) instead of MAP-TDα,β(C,Z, |=)) which
made a dependence on (C,Z, |=) explicit for C only (because the corresponding Z and the
corresponding relation |= were clear from context). In this section, there is some danger of
confusion and, consequently, we use a notation which makes the dependence on the whole
triple (C,Z, |=) more explicit.

Definition 12 Let (C ′, Z ′, |=′) be an extension of (C,Z, |=) with Z ′ = Z. Let L be a MAP-
learner for (C ′, Z, |=′) with parameters P (c′) > 0 and P (z|c′) for c′ ∈ C ′ and z ∈ Z. Set
P (C) =

∑
c∈C P (c). The MAP-learner with parameters P (c)/P (C) and P (z|c) for c ∈ C

and z ∈ Z, denoted by L↓C , is called the restriction of L to subclass C.

The parameters of a MAP-learner L for (C ′, Z, |=′) must satisfy the validity condition.
Clearly the parameters of L↓C satisfy the validity condition too. Moreover, for each c ∈ C,
we have that Z+

c (L↓C) = Z+
c (L). These observations can be used for showing the following

result:

11
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Lemma 13 (Concept-Class Monotonicity) With the assumptions and notation as in
Definition 12, the following holds for each sampling mode (α, β):

MAP-TDα,β
L↓C

(C,Z, |=) ≤ MAP-TDα,β
L (C ′, Z, |=′) .

Proof Let T : C ′ → Zα,β be a teacher for L and let T↓C denote its restriction to subclass
C. Clearly the order of T↓C is upper-bounded by the order of T . It suffices to show that
T↓C is a teacher for L↓C . To this end, we have to show the following:

(a) If β = R then, for all c ∈ C, we have that |T↓C(c)| ≤ N+(C,L↓C).

(b) For all c0 ∈ C, c ∈ C\{c0}, we have that P (c)·Pα,β(T↓C(c0)|c) < P (c0)·Pα,β(T↓C(c0)|c0).

Of course, since T is teacher for L, we know that the following hold:

(a’) If β = R then, for all c′ ∈ C ′, we have that |T (c′)| ≤ N+(C ′, L).

(b’) For all c′0 ∈ C ′, c′ ∈ C ′\{c′0}, we have that P (c′)·Pα,β(T (c′0)|c′) < P (c′0)·Pα,β(T (c′0)|c′0).

The following calculation verifies (a) under the assumption that β = R:

|T↓C(c)| = |T (c)| ≤ N+(C ′, L) = min
c′∈C′

|Z+
c′ (L)|

≤ min
c∈C
|Z+
c (L)| = min

c∈C
|Z+
c (L↓C)| = N+(C,L↓C) .

Suppose that c0 ∈ C and c ∈ C \ {c0}. Then (b) can be verified as follows:

P (c)·Pα,β(T↓C(c0)|c) = P (c)·Pα,β(T (c0)|c) < P (c0)·Pα,β(T (c0)|c0) = P (c0)·Pα,β(T↓C(c0)|c0) .

Here the first and the last equation hold because c0 ∈ C and therefore T↓C(c0) = T (c0).

Corollary 14 If (C ′, Z ′, |=′) is an extension of (C,Z, |=) with Z = Z ′, then

MAP-TDα,β(C,Z, |=) ≤ MAP-TDα,β(C ′, Z, |=′) .

Definition 15 Let (C ′, Z ′, |=′) be an extension of (C,Z, |=) with C ′ = C. Let L be a
MAP-learner for (C,Z, |=) with parameters P (c) and P (z|c) for c ∈ C and z ∈ Z. The
MAP-learner with parameters P↑Z′(c) = P (c) and

P↑Z′(z
′|c) =

{
P (z′|c) if z′ ∈ Z
0 otherwise

,

denoted by L↑Z′, is called the extension of L to superset Z ′.

The parameters of a MAP-learner L for (C,Z, |=) must satisfy the validity condition.
It is easy to check that, therefore, the parameters of L↑Z′ satisfy the validity condition too.
Moreover, for each c ∈ C, we have that

{z′ ∈ Z ′ : P↑Z′(z′|c) > 0} = {z ∈ Z : P (z|c) > 0} = Z+
c (L) ,

which implies that N+(C,L↑Z′) = N+(C,L). These observations can be used for showing
the following result:

12
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Lemma 16 (Observation-Set Monotonicity) With the assumptions and the notation
as in Definition 15, the following holds for each sampling mode (α, β):

MAP-TDα,β
L (C,Z, |=) ≥ MAP-TDα,β

L↑Z′(C,Z
′, |=′) .

Proof Let T : C → Zα,β be a teacher for L. It is sufficient to show that T is also a teacher
for L↑Z′ (albeit a teacher for L↑Z′ who does not make use of observations in Z ′ \ Z). To
this end, we have to show the following:

(a) If β = R then, for all c ∈ C, we have that |T (c)| ≤ N+(C,L↑Z′).

(b) For all c0 ∈ C, c ∈ C \{c0}, we have that P (c) ·Pα,β↑Z′ (T (c0)|c) < P (c0) ·Pα,β↑Z′ (T (c0)|c0).

Assertion (a), assuming β = R, is obtained by

|T (c)| ≤ N+(C,L) = N+(C,L↑Z′) ,

where the first inequality holds because T is a teacher for L. Suppose that c0 ∈ C and
c ∈ C \ {c0}. Assertion (b) is obtained by

P (c) ·Pα,β↑Z′ (T (c0)|c) = P (c) ·Pα,β(T (c0|c) < P (c0) ·Pα,β(T (c0)|c0) = P (c0) ·Pα,β↑Z′ (T (c0)|c0) ,

where the first and the last equation holds because T (c0) ⊆ Z so that the likelihoods of
observations in Z ′ \Z do not come into play. The inequality in the middle holds because T
is a teacher for L.

Corollary 17 If (C ′, Z ′, |=′) is an extension of (C,Z, |=) with C = C ′, then

MAP-TDα,β(C,Z, |=) ≥ MAP-TDα,β(C,Z ′, |=′) .

3.3 A Comparison of the Sampling Modes

We say that the sampling mode (α, β) dominates the sampling mode (α′, β′) if, for ev-

ery concept class C and every MAP-learner L for C, we have that MAP-TDα,β
L (C) ≤

MAP-TDα′,β′

L (C). We say they are equivalent if they mutually dominate each other, i.e., if

MAP-TDα,β
L (C) = MAP-TDα′,β′

L (C) holds for every choice of C and L. We say, they are
incomparable if none of them dominates the other one. We start with an easy observation:

Remark 18 The sampling modes (O,R) and (O,R) are equivalent.

Proof Consider a concept class C and a MAP-learner L for C. Let a ∈ Zn be a sequence
of k distinct elements with multiplicities n1, . . . , nk, respectively. Denote by A the corre-
sponding multiset. An inspection of (4) shows that the following holds for each c ∈ C:

PO,R(A|c) =
n!

n1! . . . nk!
· PO,R(a|c) . (9)

13
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Let a′ be a sequence obtained from a by a permutation of the components. Since a′ also
consists of k distinct elements with multiplicities n1, . . . , nk, respectively, equation (9) also
holds with a′ in place of a. It therefore easily follows that a teacher T for L, with L being
in sampling mode (O,R), can be converted into a teacher T ′ of the same order for L with
L being in sampling mode (O,R), and vice versa:

• Suppose that T is given. If T (c) = a, then define T ′(c) = A where A is the multiset
induced by a.

• Suppose that T ′ is given. If T ′(c) = A then define T (A) = a where a is an (arbitrarily
chosen) sequence containing the same elements as A with the same multiplicities.

It follows from this discussion that MAP-TDO,R
L (C) = MAP-TDO,R

L (C), which concludes
the proof.

Corollary 19 MAP-TDO,R(C) = MAP-TDO,R(C) and MLE-TDO,R(C) = MLE-TDO,R(C).

We now turn our attention to the incomparability results:

Theorem 20 The sampling modes (O,R), (O,R) and (O,R) are pairwise incomparable.

In order to prove the theorem, we will consider triples (C,Z, |=) with C = {c1, c2, c3},
Z = {z1, z2, z3} and ci |= zj for all 1 ≤ i, j ≤ 3. An important role will be played by
concepts of the form c±∆ with parameters given by

P (z1|c±∆) = p+ ∆ , P (z2|c±∆) = p−∆ and P (z3|c±∆) = 1− 2p . (10)

The following Facts 1–4, which pave the way for the proof of Theorem 20, can be proven
by using the derivation rules of analysis. For sake of completeness, these proofs are given
in the appendix.

Fact 1: Suppose that 0 ≤ |∆| < p < 1/2. Let c±∆ be the concept whose parameters are

given by (10). Then PO,R(z1, z2|c±∆) and PO,R(z1, z2|c±∆) are both strictly decreas-
ing when |∆| is increased, which implies that ∆ = 0 is the unique maximizer.

Fact 2: Suppose that 0 ≤ |∆| < p < 1/2. Let c±∆ be the concept whose parameters are
given by (10). Then

PO,R(z1, z2|c±∆)− PO,R(z1, z2|c±0)


= 0 if ∆ ∈ {0, p2

1−p}
> 0 if 0 < ∆ < p2

1−p
< 0 otherwise

. (11)

Fact 3: Suppose that 0 ≤ ∆ < p < 1/2. Let c±∆ be the concept whose parameters are
given by (10). Then

PO,R(z1, z1, z2|c±∆)− PO,R(z1, z1, z2|c±0)


= 0 if ∆ ∈

{
0, 1

2(
√

5− 1)p
}

> 0 if 0 < ∆ < 1
2(
√

5− 1)p
< 0 otherwise

. (12)
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Fact 4: Suppose that 0 < p < 1/2 and 1 ≤ t < 1−p
p . Let c(t) be the concept whose

parameters are given by

c(t)(z1) = pt , c(t)(z2) = p/t and c(t)(z3) = 1− pt− p/t . (13)

Then PO,R(z1, z2|c(t)) is strictly increasing with t.

A couple of more intuitive remarks are in place here. Fact 1 tells us that, in sampling
modes (O,R) and (O,R), the better a concept explains observations z1, z2 (in the maximum
likelihood sense), the more evenly it splits the available probability mass 2p among them.
We will refer to an application of Fact 1 as applying the “even-split argument”. In sampling
mode (O,R), however, the even split does not maximize the likelihood of these observations.
The likelihood of z1, z2 becomes larger if the probability assigned to z1 is slightly larger than
the probability assigned to z2. See (11). A similar remark applies to the sampling mode
(O,R) and the sequence z1, z1, z2. See (12). Fact 4 is concerned with sampling mode
(O,R) and a multiplicative decomposition of p2 into pt (the probability assigned to z1)
and p/t (the probability assigned to z2) with t ≥ 1. According to Fact 4, the likelihood of
{z1, z2} becomes larger when the scaling factor t ≥ 1 is increased. Note that this is not in
contradiction with the even-split argument, because pt+p/t is itself strictly increasing with
t so that the even-split argument does not apply.

We would furthermore like to note that the c-conditional likelihood of a (multi-)set
or sequence of observations becomes larger if one of the relevant c-conditional likelihood
parameters is increased while the others are fixed. We refer to this way of arguing as
applying the “monotonicity argument”.
Theorem 20 is a direct consequence of the following three lemmas.

Lemma 21 Consider the triple (C,Z, |=) with C = {c1, c2, c3}, Z = {z1, z2, z3} and ci |= zj
for all 1 ≤ i, j ≤ 3. Let L be an MLE-learner for C with parameters given by

P (z|c) c1 c2 c3

z1 p+ ∆1 p+ ∆2 p

z2 p−∆1 p−∆2 p

z3 1− 2p 1− 2p 1− 2p

,

where 0 < ∆1 <
p2

1−p < ∆2 = 1
2(
√

5− 1)p < p ≤ 0.4.7 Then

MLE-TDO,R
L (C) = 3 , MLE-TDO,R

L (C) = 2 and MLE-TDO,R
L (C) =∞ . (14)

Proof It is obvious that, in any mode of sampling, the concept c2 can be taught by
observation z1 and the concept c3 can be taught by observation z2. An inspection of (11)
and (12) reveals that

PO,RL (z1, z2|c1) > PO,RL (z1, z2|c3) > PO,RL (z1, z2|c2) ,

PO,RL (z1, z1, z2|c1) > max{PO,RL (z1, z1, z2|c2), PO,RL (z1, z1, z2|c3)} .

7. The constraint p ≤ 0.4 has the effect that p
1−p

< 1
2
(
√

5− 1).
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It follows that c1 can be taught in (O,R)-mode (resp. in (O,R)-mode) by the sequence z1, z2

(resp. by the sequence z1, z1, z2). We will argue now that there are no shorter sequences
for teaching c1 and that, in (O,R)-mode, c1 cannot be taught at all. An application of the
monotonicity argument yields that c1 cannot be taught by a single observation (regardless
of the sampling mode). The same remark holds for 2 observations except, possibly, for
observations z1, z2. But, by the even-split argument, it is the concept c3 that assigns the
highest probability to the sequence (z1, z2) ∈ ZO,R resp. to the set {z1, z2} ∈ ZO,R. Thus
(O,R) is the only sampling mode in which c1 can be taught by 2 observations. It follows
that, in (O,R)-mode, c1 cannot be taught at all.8 We may conclude from this discussion
that the identities in (14) are valid.

Lemma 21 implies that (O,R) does not dominate (O,R) and (O,R) does not dominate
any of the other sampling modes. The next result leads to some more no-domination results:

Lemma 22 Consider the triple (C,Z, |=) with C = {c1, c2, c3}, Z = {z1, z2, z3} and ci |= zj
for all 1 ≤ i, j ≤ 3. Let L be an MLE-learner for C with the parameters P (z|c) given by

P (z|c) c1 c2 c3

z1 p p+ ∆ p−∆

z2 p p−∆ p+ ∆

z3 1− 2p 1− 2p 1− 2p

,

where 0 < ∆ < p2

1−p < p < 1/2. Then

MLE-TDO,R
L (C) = MLE-TDO,R

L (C) = 2 and MLE-TDO,R
L (C) =∞ . (15)

Proof Clearly the concept c2 can be taught by observation z1 and the concept c3 can be
taught by observation z2 in any mode of sampling. The concept c1 cannot be taught by
a single observation. But it can be taught by the sequence (z1, z2) in (O,R)-mode and by
the set {z1, z2} in (O,R)-mode (application of the even-split argument). We finally discuss
teachability of c1 in (O,R)-mode. An application of the monotonicity argument yields that
c1 cannot be taught in (O,R)-mode by two observations except, possibly, by the observa-

tions (z1, z2) or (z2, z1) in ZO,R. But an inspection of (11) reveals that it is the concept
c2 (resp. c3) that assigns the highest probability to (z1, z2) (resp. to (z2, z1)). It follows
that, in (O,R)-mode, the concept c1 cannot be taught at all. We may conclude from this
discussion that the identities in (15) are valid.

Lemma 22 implies that (O,R) does not dominate any of the other sampling modes. The
next result implies (O,R) does not dominate (O,R).

8. Here we make use of the fact that, if Zc = Z for each c ∈ C, then PO,R(Z|c) = 1 for each c ∈ C. Note
that this rules out the possibility of having teaching sets of size 3 = |Z|.
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Lemma 23 Consider the triple (C,Z, |=) with C = {c1, c2, c3}, Z = {z1, z2, z3} and ci |= zj
for all 1 ≤ i, j ≤ 3. Let L be an MLE-learner for C with parameters P (z|c) given by

P (z|c) c1 c2 c3

z1 sp p sp+ ε

z2 p/s p p/s− ε
z3 1− sp− p/s 1− 2p 1− sp− p/s

,

where 0 < p < 1
2 , 1 < s ≤ 1−p

p and 0 < ε < min{1− sp, p/s}. Then

MLE-TDO,R
L (C) = 2 < MLE-TDO,R

L (C) . (16)

Proof Clearly, the concept c2 can be taught by observation z2 and c3 can be taught by
observation z1 in any mode of sampling. It is obvious that c1 cannot be taught by a single
observation (regardless of the sampling mode). In (O,R)-mode, the concept c1 cannot be
taught by sequences of length 2 because c1 is for none of them the unique maximizer:

• PO,RL (z1, z2|c1) = p2 = PO,RL (z1, z2|c2).

• PO,RL (z1, z3|c1) < PO,RL (z1, z3|c3) and PO,RL (z2, z3|c1) < PO,RL (z2, z3|c2).9

However, in (O,R)-mode, the concept c1 can be taught by the set {z1, z2}:

• Concept c1 distributes the probability mass sp+ p/s (slightly) more evenly on z1 and

z2 than the concept c3. By the even-split argument, we obtain PO,R({z1, z2}|c1) >

PO,R({z1, z2}|c3).

• Recall from Fact 4 that c(t), with t ≥ 1, denotes the concept which assigns probability
pt to z1, probability p/t to z2 and the remaining probability mass to z3. Note that

c1 = c(s) and c2 = c(1). According to Fact 4, the function PO,R(z1, z2|c(t)) is strictly

increasing with t. Hence PO,R({z1, z2}|c1) > PO,R({z1, z2}|c2).

The identities in (16) are immediate from this discussion.

Putting the above three lemmas together, we obtain Theorem 20.

4. MAP-Based Teaching and Saturating Matchings

Suppose that C is a concept class with observation set Z and consistency relation |=. The
bipartite graph G(C) = (C,Z,E) with

E = {(c, z) ∈ C × Z : c |= z}

is called the consistency graph (associated with C). Let Zα,β with (α, β) ∈ {O,O} ×
{R,R} be the notation that was introduced in Section 2.2. The bipartite graph G(C)α,β =
(C,Zα,β, Eα,β) with

Eα,β = {(c, ζ) ∈ C ×Zα,β : c |= ζ}

9. These are two applications of the monotonicity argument. Note that s+ 1
s
> 2 for all s > 1.
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is called the extended consistency graph (associated with C). The graph resulting from
G(C)α,β by the removal of the vertex ∅ from the second vertex class Zα,β will be denoted

by G(C)α,β6=∅ . We denote by SMN(G(C)α,β) the smallest possible order of a C-saturating

matching in G(C)α,β. Analogously, SMN(G(C)α,β6=∅ ) denotes the smallest possible order of

a C-saturating matching in G(C)α,β6=∅ . For ease of later reference, we make the following
observation:

Remark 24 Suppose that T : C → Zα,β is a mapping which satisfies

∀c, c′ ∈ C : (c |= T (c)) ∧ (c 6= c′ ⇒ T (c) 6= T (c′)) . (17)

Then T is of order at least SMN(G(C)α,β). Moreover, if T satisfies (17) and ∅ is not in

the image of T , then T is of order at least SMN(G(C)α,β6=∅ ).

Proof If T satisfies (17), then T represents a C-saturating matching in G(C)α,β. If addi-

tionally ∅ is not in the image of T , then T represents a C-saturating matching in G(C)α,β6=∅ .

Here is the main result of this section:

Theorem 25 For each sampling mode (α, β), we have

MAP-TDα,β(C) ≥ SMN(G(C)α,β) and MLE-TDα,β(C) ≥ SMN(G(C)α,β6=∅ ) . (18)

Moreover, for (α, β) = (O,R), this holds with equality.

Proof Let L be a MAP-learner for C and let (α, β) denote its sampling mode. Let T be
a teacher for L. Recall from (7) that T satisfies (17). Moreover, if L is an MLE-learner for
C, then T (c) 6= ∅ for all c ∈ C. Now an application of Remark 24 yields (18).

We move on and prove that MLE-TDO,R(C) ≤ SMN(G(C)O,R6=∅ ). Suppose that M is a C-

saturating matching in G(C)O,R6=∅ that is of order SMN(G(C)O,R6=∅ ). For each c ∈ C and z ∈ Z,

let n(z, c) denote the number of occurrences of z in the multiset M(c) and let n(c) = |M(c)|.
Consider a learner L with uniform priors (= MLE-learner) and the parameters P (z|c) =
n(z,c)
n(c) . Note that these parameters satisfy the validity condition. It suffices to show that M

represents a teacher for L, i.e., we have to show that

∀c∗ ∈ C : c∗ = arg!maxc∈C P
O,R(M(c∗)|c) .

To this end, we pick a concept c from C \ {c∗}, and proceed by case analysis:

Case 1: M(c∗) and M(c) contain the same elements of Z (albeit with different multiplici-
ties)10.
Denote these elements by z1, . . . , zk. Let n := n(c∗), ni = n(zi, c

∗). Then pi := ni/n

10. The multiplicities cannot be the same because M : C → ZO,R is a matching.
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is the relative frequency of zi in M(c∗). Let qi denote the relative frequency of zi in
M(c), which implies that q 6= p. It follows that

PO,R(M(c∗)|c∗) =
n!

n1! . . . nk!
·
k∏
i=1

pni
i and PO,R(M(c∗)|c) =

n!

n1! . . . nk!
·
k∏
i=1

qni
i .

A straightforward calculation shows that PO,R(M(c∗)|c∗) > PO,R(M(c∗)|c) iff

k∑
i=1

pi log

(
pi
qi

)
> 0 . (19)

The left-hand side is the Kullback-Leibler divergence (= KLD) between p and q.
Since the KLD is non-negative and 0 only if q = p, the condition (19) is satisfied.

Case 2: M(c∗) contains an element that is not contained in M(c).
Then the c-conditional likelihood of M(c∗) equals 0.

Case 3: All elements in M(c∗) are contained in M(c), but M(c) contains an element that
is not contained in M(c∗).
Then the c-conditional likelihood of M(c∗) can be expressed as Pr(E1) ·Pr(E2|E1) for
the following two events:

E1: n(c∗)-fold c-sampling yields only elements from M(c∗).

E2: n(c∗)-fold c-sampling yields M(c∗).

Since M(c) contains an element that is not contained in M(c∗), we have Pr(E1) < 1.
It follows from the analysis of Case 1 that Pr(E2|E1) is upper-bounded by the c∗-
conditional likelihood of M(c∗).

We may conclude from the above discussion that c∗ = arg!maxc∈C P
O,R(M(c∗)|c). Thus M

can be seen as a teacher for L. It follows that MLE-TDO,R(C) ≤ SMN(G(C)O,R6=∅ ).

The inequality MAP-TDO,R(C) ≤ SMN(G(C)O,R) can be obtained in a similar fashion. We

start with a C-saturating matching M in G(C)O,R that is of order SMN(G(C)O,R). If M
does not assign ∅ to any concept, we can proceed as before. Otherwise, if M(c0) = ∅ for
some c0 ∈ C, we still use a similar reasoning but with a slight modification of the parameter
collection of the learner L:

• The priors are given by setting P (c0) = 1+ε
|C| and by letting the remaining |C| − 1

concepts evenly share the remaining probability mass (still almost uniform priors).

• The parameters P (z|c) are chosen as before.

We can again view the matching M as a teacher for L. Since PO,R(∅|c) = 1 for all c ∈ C,
we obtain

arg!maxc∈C

(
P (c) · PO,R(∅|c)

)
= arg!maxc∈C P (c) = c0 .

For the remaining concepts, the reasoning is as before provided that ε > 0 s sufficiently
small: this is an easy continuity argument which exploits that the priors converge to the
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uniform distribution on C if ε approaches 0.

Clearly

SMN(G(C)O,R) ≤ min{SMN(G(C)O,R), SMN(G(C)O,R)}
≤ max{SMN(G(C)O,R),SMN(G(C)O,R)} ≤ SMN(G(C)O,R)

and

SMN(G(C)O,R6=∅ ) ≤ min{SMN(G(C)O,R6=∅ ),SMN(G(C)O,R6=∅ )}

≤ max{SMN(G(C)O,R6=∅ ), SMN(G(C)O,R6=∅ )} ≤ SMN(G(C)O,R6=∅ ) .

Combining this with Theorem 25 and with Corollary 19, we immediately obtain the following
result:

Corollary 26

1. MAP-TDO,R(C) = SMN(G(C)O,R) ≤ SMN(G(C)O,R) ≤ MAP-TDO,R(C).

2. MLE-TDO,R(C) = SMN(G(C)O,R6=∅ ) ≤ SMN(G(C)O,R6=∅ ) ≤ MLE-TDO,R(C).

Hence we get MAP-TDO,R(C) ≤ MAP-TDO,R(C) and MLE-TDO,R(C) ≤ MLE-TDO,R(C)
despite the fact that (O,R) does not dominate (O,R).

5. On Concepts Taught by Labeled Examples

In this section, we will restrict ourselves to triples (C,Z, |=) of the form as described in
Example 2, i.e., C is a family of subsets of a domain X, Z = X × {0, 1} and |= is given
by (2).

We will see that, for each triple (C,Z, |=) of this special form and for each sampling mode
(α, β) except (O,R), we have MAP-TDα,β(C) = SMN(G(C)α,β). For (α, β) = (O,R), this
is already known from Theorem 25. For the other sampling modes, (O,R) and (O,R), it
will be shown in Section 5.1, Since the modes (O,R) and (O,R) are equivalent, we see that,
for triples of the special form, the MAP-teaching dimensions of C are fully determined by
the saturating matching numbers associated with G(C).

In Section 5.2 we explore how MAP- and MLE-learners are related. For a given collection
of conditional likelihoods, it can make much of a difference whether we commit ourselves
to uniform priors or not. However, in the case of optimally parameterized learners, the
freedom for choosing a non-uniform prior is of minor importance only: it turns out that the
MLE-teaching dimension exceeds the MAP-teaching dimension at most by 1.

In Section 5.3, we will see that the MLE-TDO,R(C) is upper bounded by the so-called
antichain number of C, by the VC-dimension of C and by the no-clash teaching dimension
of C. These upper bounds are then, all the more, valid for all parameters MAP-TDα,β(C)
(no matter how the sampling mode (α, β)) is chosen).

In Section 5.4, we will show that the saturating matching numbers associated with G(C)
(and hence the MAP-teaching dimensions of C) can be computed in polytime.
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5.1 Saturating Matching Number Revisited

We start with the two main results of this section.

Theorem 27 Suppose that (C,Z, |=) is of the form as described in Example 2. Then

MAP-TDO,R(C) = SMN(G(C)O,R) and MLE-TDO,R(C) = SMN(G(C)O,R6=∅ ).

Proof The ≥-direction of the claimed equalities is covered by Theorem 25. We have to show

the ≤-direction. We may restrict ourselves to proving MLE-TDO,R(C) ≤ SMN(G(C)O,R6=∅ )

because the proof for MAP-TDO,R(C) ≤ SMN(G(C)O,R) is quite similar and uses the same
kind of arguments that we had used in the final part of the proof of Theorem 25.
Set m = |X|, d+ = SMN(G(C)O,R) and let M : C → ZO,R\{∅} be a C-saturating matching

in G(C)O,R of order d+. For every c ∈ C, we set d(c) = |M(c)|. Note that 1 ≤ d(c) ≤ d+.

If d+ = m, then we are done because MLE-TDO,R(C) cannot exceed m. We may assume
therefore that d+ ≤ m − 1. Let 0 < ε ≤ 1

2 be a small real number (where the meaning of
“small” will become clear from what follows). For each c ∈ C, we set

U0(c) := {(x, b) ∈ Z : c(x) 6= b} , U1(c) := {(x, b) ∈ Z : c(x) = b ∧ (x, b) /∈M(c)} (20)

and U(c) = U0(c) ∪ U1(c). Note that, for each c ∈ C, the set Z partitions into M(c), U0(c)
and U1(c). For each c ∈ C and each (x, b) ∈ Z, we set

P ((x, b)|c) =


1−ε
d(c) if (x, b) ∈M(c)
ε

m−d(c) if (x, b) ∈ U1(c)

0 if (x, b) ∈ U0(c)

. (21)

Let L be the MLE-learner given by (21). We aim at showing that the matching M : C →
ZO,R \{∅} can be seen as a teacher for L. To this end, it suffices to show that the condition

∀c 6= c0 ∈ C : PO,R(M(c0)|c0) > PO,R(M(c0)|c) (22)

is satisfied provided that ε is sufficiently small. We briefly note that |M(c)|+ |U1(c)| = m ≥
d+ and ε ≤ 1/2, and proceed with two claims which will help us to verify (22).

Claim 1: Call a subset of Z c-rare if it contains a (low probability) element from U(c)
while missing a (high probability) element from M(c). Suppose that d ≤ d+. Then the
probability that d-fold P (·|c)-sampling without replacement leads to a c-rare sample
is smaller than dε divided by 1−ε

d(c) and, therefore, smaller than 2dd(c)ε.

Proof of Claim 1: The total P (·|c) probability mass of U(c) is ε whereas any element
of M(c) has a P (·, c)-probability of 1−ε

d(c) . For k = 1, . . . , d, let Ek be the event that,

within trial k, a point from U(c) is sampled although at least one point from M(c) has
not been sampled before. It suffices to upper-bound the probability of E1 ∨ . . . ∨ Ed.
The probability of Ek is obviously smaller than ε divided by 1−ε

d(c) and therefore smaller

than d(c)ε
1−ε ≤ 2d(c)ε. An application of the union bound yields an additional factor d.

Claim 2: Suppose that d ≤ d(c). Then a sample of size d which contains an element from
U1(c) is c-rare (because it necessarily must miss an element from M(c)).
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Setting c = c0 and d = d(c0), we infer from the above claims that PO,R(M(c0)|c0) > 1 −
2d(c0)2ε. Consider now an arbitrary, but fixed, concept c1 ∈ C\{c0}. Then M(c1) 6= M(c0).
We proceed by case analysis:

Case 1: Neither M(c0) ⊂M(c1) nor M(c1) ⊂M(c0).

Then M(c0) is a c1-rare sample. Hence PO,R(M(c0)|c1) < 2d(c0)d(c1)ε.

Case 2: M(c0) ⊂M(c1).
We apply a symmetry argument. Every sample containing d(c0) elements of M(c1)
has the same chance for being obtained from d(c0)-fold P (·|c1)-sampling without re-
placement. Hence

PO,R(M(c0)|c1) ≤
(
d(c1)

d(c0)

)−1

≤ 1

d(c1)
≤ 1

2
,

where the last two inequalities follow from 1 ≤ d(c0) ≤ d(c1)− 1.

Case 3: M(c1) ⊂M(c0).
We may assume that M(c0) ⊆M(c1) ∪ U1(c1) because, otherwise, we obtain directly

PO,R(M(c0)|c1) = 0. We apply again a symmetry argument. Every sample containing
M(c1) and d(c0) − d(c1) elements of U1(c1) has the same chance for being obtained
from d(c0)-fold P (·|c1)-sampling without replacement. Hence

PO,R(M(c0)|c1) ≤
(

m− d(c1)

d(c0)− d(c1)

)−1

.

The latter expression is upper-bounded by 1
2 because 1 ≤ d(c0)− d(c1) < m− d(c1),

d(c1) ≤ d(c0)− 1 ≤ m− 2 and, therefore, m− d(c1) ≥ 2.

It becomes obvious from this discussion that condition (22) is satisfied provided that ε is
sufficiently small.

Theorem 28 Suppose that (C,Z, |=) is of the form as described in Example 2. Then

MAP-TDO,R(C) = SMN(G(C)O,R) and MLE-TDO,R(C) = SMN(G(C)O,R6=∅ ).

Proof The ≥-direction of the claimed equalities is covered by Theorem 25. We have to show

the ≤-direction. We may restrict ourselves to proving MLE-TDO,R(C) ≤ SMN(G(C)O,R6=∅ )

because the proof for MAP-TDO,R(C) ≤ SMN(G(C)O,R) is quite similar and uses the same
kind of arguments that we had used in the final part of the proof of Theorem 25.

Set m = |X|, d+ = SMN(G(C)O,R6=∅ ) and let M : C → ZO,R\{∅} be a C-saturating matching

in G(C)O,R6=∅ of order d+. If d+ = m, then we are done because MLE-TDO,R(C) cannot ex-

ceed m. We may assume therefore that d+ ≤ m− 1. For every c ∈ C, we set d(c) = |M(c)|.
Note that 1 ≤ d(c) ≤ d+. We fix for each concept c ∈ C a sequence zc1, . . . , z

c
m consisting

of all elements of Zc subject to the constraint that zc1, . . . , z
c
d(c) = M(c), i.e., this sequence

must start with M(c). In the sequel, we will specify the parameter set of an MLE-learner
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of C. We do this in two stages. In Stage 1, we make a preliminary definition which already
achieves that each c∗ ∈ C is a (not necessarily unique) maximizer of PO,R(M(c∗|c)). In
Stage 2, we make some infinitesimal changes of the parameter set (by bringing a small
parameter ε > 0 into play) so that, after these changes have taken place, each c∗ ∈ C will

be a unique maximizer of PO,R(M(c∗|c)). This would imply that M can be viewed as a
teacher for L, which would complete the proof. Details follow.
We enter Stage 1 of the parameter construction. Let L be the MLE-learner whose param-
eters are given by

P (z|c) =


2−i if 1 ≤ i ≤ d(c) and z = zci
2−d(c)

m−d(c) if d(c) + 1 ≤ i ≤ m and z = zci
0 if z ∈ Z \ Zc

.

In other words, given c, L assigns probability mass 2−i to the i-the element of the sequence
M(c) and distributes the remaining probability mass, 2−d(c), evenly on the elements of
Zc \M(c). Note that the c-conditional likelihood of an element in M(c) is at least 2−d(c)

while the probability of an element in Zc \M(c) equals 2−d(c)

m−d(c) ≤ 2−d(c) with equality only

if d(c) = m− 1. It is easy to determine the c-conditional likelihood of M(c):

PO,R(M(c)|c) =

∏d(c)
i=1 2−i∏d(c)−1
i=1 2−i

= 2−d(c) .

The middle term contains in the numerator the product of the c-conditional likelihoods of
zc1, . . . , z

c
d(c), respectively. In the denominator, it contains the product of the correspond-

ing normalization factors: if zc1, . . . , z
c
j haven been sampled within the first j trials, then

the remaining probability mass equals 1 −
∑j

i=1 2−i = 2−j . Let us now fix an arbitrary
target concept c∗ ∈ C and see how the c∗-conditional likelihood of M(c∗) relates to the
c-conditional likelihood of M(c∗) for some other concept c ∈ C \ {c∗}. We aim at showing

that PO,R(M(c∗)|c) ≤ PO,R(M(c∗)|c∗). We may assume that c |= M(c∗) because, other-

wise, we would obtain PO,R(M(c∗)|c) = 0, and we were done. For sake of simplicity, we set
d := d(c∗) and zi := zc

∗
i for i = 1, . . . , d.

Let us briefly discuss the case that M(c) and M(c∗) are equal as sets. Then there ex-
ists a permutation σ such that M(c) = zσ(1), . . . , zσ(d). Since M is a matching, σ cannot

be the identity permutation. It follows that PO,R(M(c∗)|c∗) > PO,R(M(c∗)|c) because
(P (zi|c∗))i=1,...,d = (2−i)i=1,...,d is a strictly decreasing sequence while (P (zi|c))i=1,...,d (as a
non-identity permutation of (2−i)i=1,...,d) is not.11

From now, we assume that M(c) and M(c∗) are different even when viewed as sets. Let
j be the number of z ∈ Z occurring in M(c) and in M(c∗). We can make the pessimistic
assumption that the sequence M(c) starts with z1, . . . , zj because this will lead to the

largest conceivable value of PO,R(M(c∗)|c).12 The remaining observations zj+1, . . . , zd(c)

must then be members of Zc \M(c). Remember that for each z ∈ Zc \M(c) we have that

P (z|c) = 2−d(c)

m−d(c) . The term PO,R(M(c∗)|c) can be expressed as a product of two terms.

11. Compare with Remark 4.
12. This brings the j largest c-conditional likelihoods into play and puts them in the most effective position.
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The first one (resp. second one) is the contribution of the first j trials (resp. the last d− j
trials). Since M(c) starts with z1, . . . , zj , the first term is simply T1 := 2−j . The second
term has the following form

T2 :=

(
2−j

m−j

)d−j
2−j

(
2−j − 2−j

m−j

)(
2−j − 2 2−j

m−j

)
. . .
(

2−j − (d− j − 1) 2−j

m−j

) .

As usual, the numerator contains the product of the c-conditional (here: uniform) like-
lihoods while the denominator contains the product of the corresponding normalization
factors. T2 looks terrifying at first glance, but luckily there is a lot of cancellation and T2

can be rewritten as follows:

T2 =
1

(m− j)d−j
(

1− 1
m−j

)(
1− 2

m−j

)
. . .
(

1− d−j−1
m−j

)
=

1

(m− j)(m− j − 1)(m− j − 2) . . . (m− d+ 1)
.

Remember that d = d(c∗) ≤ m− 1. It follows that m− d+ 1 ≥ 2 and therefore

T2 ≤ 2−(d−j) and PO,R(M(c∗)|c) = T1 · T2 ≤ 2−d

with equality only if either j = d or d = m− 1 and j = m− 2. Note that j = d if and only
if the sequence M(c) starts with the sequence M(c∗) = z1, . . . , zd.
We enter now Stage 2 of the parameter construction, in which we make some infinitesimal
changes of the parameters that we have used so far. In order to distinguish the new pa-
rameter collection from the old one, the new parameters are denoted by Pε(z|c). They are
defined as follows:

Pε(z|c) =


2−i if 1 ≤ i ≤ d(c)− 1 and z = zci
2−i + ε if i = d(c) and z = zci
2−d(c)−ε
m−d(c) if d(c) + 1 ≤ i ≤ m and z = zci

0 if z ∈ Z \ Zc

.

The main difference to the old parameter collection is the “extra-bonus” ε that c assigns
to the last element zcd(c) of the sequence M(c). Now the total probability mass assigned
to zc1, . . . , z

c
d(c) is by the amount of ε greater than before, so that only probability mass

2−d(c) − ε is left for Zc \M(c). Again, this probability mass is shared evenly among the
elements of Zc \M(c). Here comes the central observation:

Claim: If ε > 0 is sufficiently small, then the following implications are valid:

PO,R(M(c∗)|c∗) > PO,R(M(c∗)|c) ⇒ PO,Rε (M(c∗)|c∗) > PO,Rε (M(c∗)|c) ,

PO,R(M(c∗)|c∗) = PO,R(M(c∗)|c) ⇒ PO,Rε (M(c∗)|c∗) > PO,Rε (M(c∗)|c) .

Proof of the Claim: The first implication is based on a simple continuity argument. The
second implication can be verified as follows. Remember from the discussion in Stage

24



MAP- and MLE-Based Teaching

1 that PO,R(M(c∗)|c∗) = PO,R(M(c∗)|c) can occur only if either M(c) starts with
M(c∗) = z1, . . . , zd or if d = m − 1 and j = m − 2. In the former case, the effect of
Pε(zd|c∗) = P (zd|c∗) + ε and Pε(zd|c) = P (zd|c) will be that

PO,Rε (M(c∗)|c∗) > PO,R(M(c∗)|c∗) = PO,R(M(c∗)|c) = PO,Rε (M(c∗)|c) ,

as desired. In the latter case, we have M(c∗) = z1, . . . , zm−1 and either M(c) =
z1, . . . , zm−2 or M(c) = z1, . . . , zm−2, zm. In the latter case, we obtain

PO,Rε (M(c∗)|c∗) > PO,R(M(c∗)|c∗) = PO,R(M(c∗)|c) > PO,Rε (M(c∗)|c) ,

which is again the desired result. Suppose therefore that M(c∗) = z1, . . . , zm−1 and
M(c) = z1, . . . , zm−2. Here the situation is less clear, because the ε-bonus will af-
fect not only the c∗-conditional likelihood of M(c∗) but also the c-conditional likeli-
hood. We therefore compute both quantities and compare them afterwards. Clearly

PO,Rε (M(c∗)|c∗) = 2−(m−1) + ε. The term PO,Rε (M(c∗)|c) can be expressed as a prod-
uct of two terms, The first one (resp. second one) is the contribution of the first m−2
trials (resp. the last trial). Since M(c) = z1, . . . , zm−2, the first term clearly equals
2−(m−2) + ε. Note that 2−(m−2) − ε is the probability mass remaining for, and evenly
shared by, zm−1 and zm. The second term equals therefore

Pε(zm−1|c)
2−(m−2) − ε

=

(
2−(m−2) − ε

)
/2

2−(m−2) − ε
=

1

2
.

It follows that

PO,Rε (M(c∗)|c) =
1

2
·
(

2−(m−2) + ε
)

= 2−(m−1) +
ε

2
,

which is less than PO,Rε (M(c∗)|c∗) = 2−(m−1) + ε. This completes the proof of the
claim.

The above discussions show that we can view M a teacher for the learner L with parameter
collection (Pε(z|c))z∈Z,c∈C . This completes the proof of the theorem.

Combining Theorems 27 and 28 with what we already know about saturating matching
numbers, we obtain the following result:

Corollary 29 Suppose that (C,Z, |=) is of the form as described in Example 2 and (α, β) 6=
(O,R). Then

MAP-TDα,β(C) = SMN(G(C)α,β) and MLE-TDα,β(C) = SMN(G(C)α,β6=∅ ) .

Moreover

MAP-TDO,R(C) ≥ max{MAP-TDO,R(C),MAP-TDO,R(C)} ,
MLE-TDO,R(C) ≥ max{MLE-TDO,R(C),MLE-TDO,R(C)} .
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The first assertion of the corollary implies the correctness of the results which are visu-
alized in Fig. 1. The following result provides some supplementary information:

Theorem 30 Let (α, β) and (α′, β′) be two different sampling modes. There exists a concept
class C such that SMN(G(C)α

′,β′) 6= SMN(G(C)α,β).

Proof We present the proof for (α, β) = (O,R) and (α′, β′) = (O,R).13 Let X =
{x1, . . . , xm}, let Z = X × {0, 1}, let Cm be the powerset of X and let |= be given by (2).

Let Z2 (resp. Z ′2) be the set of all A ∈ ZO,R (resp. A ∈ ZO,R) such that |A| ≤ 2. A simple
counting argument shows that |Z ′2| < |Z2|. Consider the bipartite graph G with vertex sets
Cm and Z2 and with an edge (c, A) if and only if c |= A. Each vertex in Z2 has degree at
least D := 2m−2 whereas each vertex in Cm has degree d := 1 + 2m+ 1

2(m− 1)m. Suppose
that m is sufficiently large such that d ≤ D. Fix an arbitrary subset S of Z2. It follows
that

|Γ(S)| ≥ D

d
· |S| ≥ |S|

so that G satisfies Hall’s condition. It follows that G admits a Z2-saturating matching,
say M . Let C be the set of concepts in Cm having an M -partner. By construction:
SMN(G(C)O,R) = 2. For cardinality reasons, namely |C| = |M | = |Z2| > |Z ′2|, we have

SMN(G(C)O,R) > 2.

Theorem 30 implies that the parameters with different colors in Fig. 1 can generally
have different values.

5.2 MAP- versus MLE-Learners

Suppose that L is an MLE-learner for C. Let L′ be a MAP-learner that differs from
L only by having non-uniform priors, i.e., the conditional likelihoods are the same. The
following example demonstrates that the gap between MAP-TDα,β

L (C) and MAP-TDα,β
L′ (C)

can become arbitrarily large.14

Example 4 Let X = {x1, . . . , xm}, Z = X × {0, 1}, C = {{x1}, . . . , {xm}} ∪ {∅} and let
|= be given by (2). Consider the MLE-learner L be given by the parameters

P ((xi, c(xi))|c) =
1

m

for each c ∈ C and i = 1, . . . ,m. We assume for simplicity that the sampling mode (α, β)
of L equals (O,R), but the following reasoning (mutatis mutandis) applies to any other
sampling mode as well. Clearly, for each k ∈ [m], the concept {xk} can be taught by the
single observation (xk, 1). However ∅ can only be taught by the full set A0 := {(xi, 0) : i =
1, . . . ,m} of observations that ∅ is consistent with: as long as some (xk, 0) is missing in
a set A ⊂ A0, we have that P (A|∅) = P (A|{xk}) so that ∅ is not the unique maximizer

13. The proof for the other choices of (α, β) and (α′, β′) is similar.
14. This example uses a concept class, namely singletons plus empty set, which is often used to demonstrate

that the classical teaching model from Shinohara and Miyano (1991); Goldman and Kearns (1995) may
assign an inappropriately high teaching dimension to a trivial concept class.
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of P (A|c). We may conclude from this discussion that MAP-TDα,β
L (C) = m. Let L′ be

a MAP-learner that differs from L only by having for ∅ a higher prior than for the other
concepts in C. Then the concept {xk} can still be taught by the single observation (xk, 1).
But now also the concept ∅ ∈ C can be taught in a trivial fashion by ∅ ∈ 2Z . We may
conclude that MAP-TDα,β

L′ (C) = 1.

In contrast to Example 4, the next result shows that, in case of optimally parameterized
learners, the advantage of MAP-learners over MLE-learners is anything but dramatic:

Theorem 31 Suppose that (C,Z, |=) is of the form as described in Example 2 and (α, β) 6=
(O,R). Then

MAP-TDα,β(C) ≤ MLE-TDα,β(C) ≤ 1 + MAP-TDα,β(C) . (23)

Moreover, there exist concept classes C ′ and C ′′ such that

MLE-TDα,β(C ′) = MAP-TDα,β(C ′) and MLE-TDα,β(C ′′) = 1 + MAP-TDα,β(C ′′) .
(24)

Proof Clearly MAP-TDα,β(C) ≤ MLE-TDα,β(C). In order to obtain (23), it suffices there-

fore to show that MLE-TDα,β(C) ≤ 1+MAP-TDα,β(C), or equivalently, that SMN(G(C)α,β6=∅ ) ≤
1 + SMN(G(C)α,β). We present the proof for (α, β) = (O,R).15 For sake of brevity, set

m := |X|, G = G(C)O,R and d := SMN(G). Since SMN(G 6=∅) ≤ m, we may assume that
d ≤ m − 2. Let M : C → 2Z be a C-saturating matching of order d in G. If M does
not assign ∅ to any concept in C, then SMN(G6=∅) ≤ d. Otherwise, if M(c0) = ∅ for some
c0 ∈ C, then we may arbitrarily pick a set A ⊂ X of size d+ 1 and replace the M -partner
∅ of c0 by the set B = {(a, c0(a)) : a ∈ A}. The resulting matching now witnesses that
SMN(G6=∅) ≤ d+ 1.
We still have to specify concept classes C ′ and C ′′ which satisfy (24). As for C ′, there are
plenty of choices, e.g., C ′ = {{xi} : i = 1, . . . ,m} satisfies

MLE-TDα,β(C ′) = MAP-TDα,β(C ′) = 1 .

In order to specify an appropriate class C ′′, we assume again that (α, β) = (O,R) and
proceed as follows. Let X = {x1, . . . , xm}, let Z = X × {0, 1}, let Cm be the powerset of
X and let |= be given by (2). Let Z≤d (resp. Z ′≤d) be the set of subsets (resp. non-empty
subsets) of Z of size at most d. Consider the bipartite graph G with vertex sets Cm and
Z≤d an edge (c, A) if and only if c |= A. If m is sufficiently large (while d is kept fixed),
G admits a Z≤d-saturating matching, say M . Let C ′′ be the set of concepts in Cm having

an M -partner. By construction: SMN(G(C ′′)O,R) = d. For cardinality reasons, namely

|C ′′| = |M | = |Z≤d| > |Z≤d| − 1 = |Z ′≤d|, we have SMN(G(C ′′)O,R6=∅ ) > d, which implies that

SMN(G(C ′′)O,R6=∅ ) = d+ 1.

15. The proof for the other choices of (α, β) is similar.
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5.3 Parameters Bounding MLE-TD from Above

Since MLE-TD can never be smaller than MAP-TD, it follows that MLE-TDO,R(C) is
the largest among the parameters occurring in Corollary 29. Hence upper bounds on

MLE-TDO,R(C) are, all the more, upper bounds on the other parameters. For this rea-
son, we confine ourselves to MLE-learners and to sampling mode (O,R) in what follows. In
order to simplify notation, we will write

• 2Z instead of ZO,R,

• MLE-TD(C) instead of MLE-TDO,R(C),

• G+(C) instead of G(C)O,R6=∅ .

Among the parameters that bound MLE-TD(C) from above are the antichain number
of C, the VC-dimension of C and the so-called no-clash teaching dimension of C. We begin
with the definition of the antichain number:

Definition 32 (Antichain Mapping and Antichain Number) T : C → 2Z is called
an antichain mapping for C if the following holds:

1. Each concept c ∈ C is consistent with T (c).

2. The sets (T (c))c∈C form an antichain, i.e.,

∀c1 6= c2 ∈ C : T (c1) 6⊆ T (c2) ∧ T (c2) 6⊆ T (c1) .

The smallest possible order of an antichain mapping for C is called the antichain number
of C and denoted by AN(C).

It is well-known that the antichain number is upper-bounded by the VC-dimension:

Theorem 33 (Mansouri et al. (2022)) Suppose that the concept class C is a family of
subsets of a finite domain X. Then AN(C) ≤ VCdim(C).

We proceed with the definition of the teaching dimension in the so-called no-clash model of
teaching:

Definition 34 (No-clash Teaching Dimension Kirkpatrick et al. (2019); Fallat et al. (2022))
A mapping T : C → 2Z is called clash-free on C if it satisfies the following:

1. Each c ∈ C is consistent with T (c).

2. If c1 6= c2 ∈ C, then c1 is inconsistent with T (c2) or c2 is inconsistent with T (c1).16

The no-clash teaching dimension of C, denoted as NC-TD(C), is the smallest possible order
of a mapping T : C → 2Z that is clash-free on C.

16. The situation that c1 is consistent with T (c2) and c2 is consistent with T (c1) would be called a clash of
c1 and c2. This explains why the mapping T is called clash-free.
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Theorem 35 Suppose that (C,Z, |=) is of the form as described in Example 2. Then
MLE-TD(C) ≤ AN(C) and MLE-TD(C) ≤ NC-TD(C).

Proof Because MLE-TD(C) = SMN(G+(C)), it suffices to show that SMN(G+(C)) is
upper-bounded by AN(C) and NC-TD(C). An antichain mapping T : C → 2Z clearly
satisfies (17) and does not have ∅ in its image. Thus, an application of Remark 24 yields
AN(C) ≥ SMN(G+(C)). A clash-free mapping T : C → 2Z must be of order at least 1.
There can be at most one concept c in C such that T (c) = ∅. Suppose that T (c) = ∅.
Consider an arbitrary, but fixed, concept c′ ∈ C \ {c}. Since c′ is consistent with (the
empty sample) T (c) and T is clash-free, the concept c must be inconsistent with T (c′). Let
us redefine T (c) as a singleton set {(x, b)} such that b = c(x). This modification of T is
still clash-free and leaves the order of T unchanged. Moreover, after this modification, T
satisfies (17) and does not have ∅ in its image. Now another application of Remark 24
yields NC-TD(C) ≥ SMN(G+(C)).

The inequality MLE-TD(C) ≤ NC-TD(C) had been proven already in Ferri et al. (2022).
The proof given there does not make use of saturating matching numbers and is more
complicated. Because AN(C) ≤ VCdim(C), we immediately obtain the following result:

Corollary 36 Suppose that (C,Z, |=) is of the form as described in Example 2. Then
MLE-TD(C) ≤ VCdim(C).

5.4 Computational Considerations

We will show in the course of this section that SMN(G+(C)) (and related quantities) can
be computed in time poly(|C|, |X|) from a given (finite) concept class C ⊆ 2X . The cen-
tral observation will be that, in order to find a C-saturating matching of minimum order
in G+(C), we do not need to compute the (possibly exponentially large) bipartite graph
G+(C). All pieces of information about G+(C) that we need in the course of the algorithm
can be efficiently extracted from the much smaller bipartite graph G(C).

We start with a lemma that is particularly interesting when we have a bipartite graph
whose first vertex set, V1, is much smaller than its second vertex set, V2:

Lemma 37 Let G = (V1, V2, E) with E ⊆ V1 × V2 be a bipartite graph. Let O be an oracle
that, upon request (v, k) with v ∈ V1 and k ∈ [|V1|], returns min{degG(v), k} distinct neigh-
bors of v.17 Then there is an oracle algorithm AO which computes a maximum matching in
G and has a time bound that is polynomial in |V1|.

Proof For sake of brevity, we set n = |V1|. Let V ′1 ⊆ V1 be the set of vertices in V1 with
less than n neighbors, and let V ′′1 = V1 \ V ′1 be the set of remaining vertices in V1, i.e., the
vertices with at least n neighbors. The algorithm AO proceeds as follows:

1. For each v ∈ V1, it sends the request (v, n) to O and receives a list of all neighbors if
v ∈ V ′1 , resp. a list of n distinct neighbors if v ∈ V ′′1 .

17. The oracle O can be implemented efficiently if, for instance, G is represented by the adjacency lists for
the vertices in V1 and there is direct access to each of these lists.
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2. Let G′ be the subgraph of G that is induced by V ′1 and Γ(V ′1). Let MAX-MATCH
be a standard polynomial-time algorithm for maximum matching computation. AO

applies MAX-MATCH to G′ and MAX-MATCH returns a maximum matching M ′ in
G′.

3. AO augments M ′ to a V1-saturating matching in a greedy fashion: for each v ∈ V ′′1 ,
it inspects the list of n distinct neighbors of v and matches v with the first neighbor
which had not been matched before.

Note that G′ has at most n(n−1) vertices. Moreover, among n neighbors of a vertex v ∈ V ′′1 ,
there must be at least 1 neighbor which is not already matched with another vertex in V1.
It easily follows that AO returns a maximum matching in poly(|V1|) time.

With a bipartite graph G = (V1, V2, E), we associate the bipartite graph

G+ = (V1, 2
V2 \ {∅}, E+) with E+ = {(v,B) ∈ V1 × 2V2 \ {∅} : {v} ×B ⊆ E} . (25)

In other words: the pair (v,B) with v ∈ V1 and ∅ ⊂ B ⊆ V2 is an edge in E+ iff, for every
v′ ∈ B, the pair (v, v′) is an edge in E.

Theorem 38 Given a bipartite graph G = (V1, V2, E), a V1-saturating matching of mini-
mum order in G+ (resp. an error message if a V1-saturating matching does not exist) can
be computed in polynomial time.

Proof We consider first the problem of computing a V1-saturating matching of minimum

order in G+. Let us fix some notation. For ` = 1, . . . , |V2|, let G(`) = (V1, V
(`)

2 , E(`)) be the
bipartite graph given by

V
(`)

2 = {B ⊆ V2 : 1 ≤ |B| ≤ `}) and E
(`)
2 = {(v,B) ∈ V1 × V (`)

2 : {v} ×B ⊆ E} .

In other words, G(`) is the subgraph of G+ induced by V1 and V
(`)

2 . Given G, ` ∈ [|V2|],
k ∈ [|V1|] and v ∈ V1, it is easy to compute a list of min{deg(v), k} distinct neighbors
of v in G(`). It follows from Lemma 37 that, given G and ` ∈ [|V2|], we can compute in
poly(|V1|, |V2|) steps a maximum matching M` in G(`). Let `+ be the minimum ` such that
M` is of size |V1|, respectively `+ = 1 + |V2| if none of the M` saturates V1. If `+ ≤ |V2|,
then M`+ is the desired V1-saturating matching of minimum order in G+. If `+ = |V2|+ 1,
we may report error because G+ does not admit a V1-saturating matching.

Corollary 39 Suppose that (C,Z, |=) is of the form as described in Example 2. Then the
following objects can be computed in polynomial time:

• the bipartite consistency graph G(C) with vertex sets C and Z

• the (identical) parameters SMN(G+(C)) and MLE-TD(C)

• a C-saturating matching M in G+(C) of order SMN(G+(C))
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• parameters representing an MLE-learner L for C and a teacher T for L who is of
order MLE-TD(C)

Proof Given C, the set Z and the bipartite graph G(C) can clearly be computed in poly-
nomial time. We may now apply Theorem 38 to the bipartite graph G = G(C). Then G+

in Theorem 38 equals G+(C). Hence the algorithm sketched in the proof of Theorem 38
can be used for finding a C-saturating matching M in G+(C) of minimum order (which is
order SMN(G+(C))). As a byproduct, the parameter SMN(G+(C)) is now known as well.
As for the specification of an appropriate MLE-learner L, we may use the parameter setting
that is found in the proof of Theorem 25. As also shown in that proof, M (already known
to be computable from C in polynomial time) represents a teacher of order MLE-TD(C)
for L. This completes the proof of the corollary.

It is straightforward to extend Corollary 39 from sampling mode (O,R) to other sampling
modes, and from MLE-TD to MAP-TD. The main point is to adjust the definition of G+

in (25) so that G(C)+ becomes identical to G(C)α,β6=∅ resp. to G(C)α,β. We omit the details.

Open Problems and Future Work. What are “natural parameterizations” of MAP-
or MLE-learners? Does MAP-based teaching of naturally parameterized learners force the
teacher to present observations/examples which illustrate the underlying target concept in
an intuitively appealing way?

Acknowledgements We would like to thank the reviewers for their very useful comments
and suggestions.

Appendix A. Proof of Facts 1–4

Fact 1: Suppose that 0 ≤ |∆| < p < 1/2. Let c±∆ be the concept whose parameters

are given by (10). Then PO,R(z1, z2)|c±∆) and PO,R(z1, z2|c±∆) are both strictly
decreasing when |∆| is increased.

Proof The assertion is obvious for PO,R(z1, z2)|c±∆) = (p+∆)(p−∆) = p2−∆2. Consider
now the function

h(∆) := PO,R(z1, z2|c±∆) =
(p+ ∆)(p−∆)

1− p−∆
+

(p−∆)(p+ ∆)

1− p+ ∆
=

2(1− p)(p2 −∆2)

(1− p)2 −∆2
,

where the last equation can be obtained by a straightforward calculation. Another straight-
forward, but tedious, calculation shows that

h′(∆) = −4(1− p)(1− 2p)∆

((1− p)2 −∆2)2
.

Hence the function h(∆) is strictly increasing for ∆ < 0 and strictly decreasing for ∆ > 0.
It is therefore strictly decreasing when |∆| is increased.
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Fact 2: Suppose that 0 ≤ ∆ < p < 1/2. Let c±∆ be the concept whose parameters are
given by (10). Then

PO,R(z1, z2|c±∆)− PO,R(z1, z2|c±0)


= 0 if ∆ ∈ {0, p2

1−p}
> 0 if 0 < ∆ < p2

1−p
< 0 otherwise

.

Proof We set

h(∆) := PO,R(z1, z2|c±∆) =
(p+ ∆)(p−∆)

1− p−∆
=

p2 −∆2

1− p−∆

and observe that

PO,R(z1, z2|c±∆)− PO,R(z1, z2|c±0) = h(∆)− h(0)

=
(1− p)(p2 −∆2)− (1− p−∆)p2

(1− p−∆)(1− p)

=
∆(p2 − (1− p)∆)

(1− p−∆)(1− p)
.

The denominator of the latter expression is strictly positive. Moreover

∆(p2 − (1− p)∆)


= 0 if ∆ ∈ {0, p2

1−p}
> 0 if 0 < ∆ < p2

1−p
< 0 otherwise

,

which accomplishes the proof of Fact 2.

Fact 3: Suppose that 0 ≤ ∆ < p < 1/2. Let c±∆ be the concept whose parameters are
given by (10). Then

PO,R(z1, z1, z2|c±∆)− PO,R(z1, z1, z2|c±0)


= 0 if ∆ ∈ {0, 1

2

√
5− 1)p}

> 0 if 0 < ∆ < 1
2(
√

5− 1)p
< 0 otherwise

.

Proof Let 0 < δ < 1 be given by ∆ = δp and note that

PO,R(z1, z1, z2|c±δp) = (p+ δp)2 · (p− δp) = (1 + δ)2 · (1− δ) · p3 = (1 + δ − δ2 − δ3) · p3 .

It follows that

PO,R(z1, z1, z2|c±δp)− PO,R(z1, z1, z2|c±0) = δ · (1− δ − δ2) · p3 .

Furthermore

δ · (1− δ − δ2)


= 0 if δ ∈

{
0, 1

2(
√

5− 1)
}

> 0 if 0 < δ < 1
2(
√

5− 1)
< 0 otherwise

.

We may conclude from this discussion that (12) is valid.
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Fact 4: Suppose that 0 < p < 1/2 and 1 ≤ t < 1−p
p . Let c(t) be the concept whose

parameters are given by (13). Then PO,R(z1, z2|c(t)) is strictly increasing with t.

Proof Set

h(t) :=
PO,R(z1, z2|c(t))

p2
=

1

1− pt
+

1

1− p/t
=

1

1− pt
+

t

t− p

=
(t− p) + (1− pt)t

(1− pt)(t− p)
=

2t− pt2 − p
(p2 + 1)t− pt2 − p

.

It suffices to show that h(t) is strictly increasing with t. To this end, we compute the first
derivative:

h′(t) =
(2− 2pt) · ((p2 + 1)t− pt2 − p)− (2t− pt2 − p)(p2 + 1− 2pt)

(1− pt)2 · (t− p)2
.

The denominator is strictly positive. After an application of the distributive law and some
cancellation, the numerator has the form

f(t) := p(1− p2)(t2 − 1) .

Hence the numerator equals 0 for t = 1 and is strictly positive for t > 1. It follows that
h(t) with t ≥ 1 is strictly increasing.
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