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Abstract
Expanding the language coverage of speech technology has the potential to improve access
to information for many more people. However, current speech technology is restricted to
about one hundred languages which is a small fraction of the over 7,000 languages spoken
around the world. The Massively Multilingual Speech (MMS) project increases the number
of supported languages by 10-40x, depending on the task while providing improved accuracy
compared to prior work. The main ingredients are a new dataset based on readings of
publicly available religious texts and effectively leveraging self-supervised learning. We built
pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic
speech recognition model for 1,107 languages, speech synthesis models for the same number
of languages, as well as a language identification model for 4,017 languages. Experiments
show that our multilingual speech recognition model more than halves the word error rate of
Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction
of the labeled data. The MMS models and tooling for data pre-processing are available at
https://github.com/pytorch/fairseq/tree/master/examples/mms.
Keywords: multilingual speech processing, self-supervised learning, language expansion,
neural networks

1. Introduction

Speech technology has made much progress over the past decade (Chan et al., 2015; Graves
et al., 2006; Baevski et al., 2020b; Radford et al., 2022) and has been integrated into many
consumer products, such as home assistants and smartphones. Despite this progress, speech
technology is still absent for the vast majority of the over 7,000 languages spoken around the
world (Lewis et al., 2016). Moreover, many of these languages are at risk of disappearing
by the end of this century and the narrow language coverage of current technology may
contribute to this trend (Bromham et al., 2021).

Speech models have traditionally been built by training models on large amounts of
labeled training data which is only available for a small number of languages. More recently,
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Figure 1: Illustration of where the languages supported by MMS are spoken around the
world: MMS models support speech-to-text and text-to-speech for 1,107 languages as well as
language identification for 4,017 languages.

self-supervised speech representations have dramatically lowered the amount of labeled data
required to build speech systems (van den Oord et al., 2018; Schneider et al., 2019; Baevski
et al., 2020b). But despite this progress, prominent recent work still only supports about 100
languages (Radford et al., 2022; Zhang et al., 2023a). Prior work attempting to scale beyond
100 languages suffers under a very high error rate (Black, 2019; Li et al., 2022). This means
that speech technology works disproportionally well for a small number of languages and for
the remaining 98%+ languages, there are models with very poor performance or there is not
speech technology at all.

To help level the playing field, we build a new dataset comprising a moderate amount of
labeled data for 1,107 languages and another dataset of unlabeled speech in 3,809 languages
(§3). We leverage this data to pre-train wav2vec 2.0 models supporting several times
more languages than any known prior work (§4) and then fine-tune these models to build a
multilingual speech recognition model supporting 1,107 languages (§5), language identification
models for 4,017 languages (§6) and text-to-speech models for 1,107 languages (§7).

The Massively Multilingual Speech (MMS) project aims to expand speech technology
to many more people and we hope that it can be a small contribution to preserving the
languages diversity of this world. Figure 1 illustrates the location where the languages
supported in this work are spoken and which tasks we cover for each language.
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2. Related Work

Multilingual Speech Datasets. Current multilingual speech datasets with transcriptions
are drawn from a variety of domains, including Wikipedia (Ardila et al., 2020; Conneau
et al., 2022), political speech (Wang et al., 2021), audiobooks (Pratap et al., 2020c) to name
a few. They are limited to about 100 languages with some datasets only containing data
for European languages (Wang et al., 2021; Pratap et al., 2020c). Multilingual datasets
without transcriptions include VoxLingua107 (Valk and Alumäe, 2020) spanning data in 107
languages, or VoxPopuli (Wang et al., 2021) which contains large amounts of unlabeled data
for European languages. Leong et al. (2022) covers 56 low-resource languages and 428 hours
of data.

Compared to prior work utilizing read versions of the New Testament Black (2019),
MMS covers many more languages (58% more for MMS-lab and over five times more for
MMS-unlab) and our alignments are of much higher quality which leads to better models
as we show in §3.3.1. We also use the resulting data to train self-supervised models, build
speech recognition systems as well as language identification models while as Black (2019)
focused on speech synthesis.

Multilingual Automatic Speech Recognition (ASR). Prior work on multilingual
speech recognition includes both non-neural methods (Burget et al., 2010; Lin et al., 2009),
hybrid neural and HMM models (Heigold et al., 2013) and more recently neural systems (Cho
et al., 2018; Toshniwal et al., 2018; Kannan et al., 2019; Li et al., 2019). Li et al. (2021)
built multilingual ASR for up to 15 languages, Pratap et al. (2020a); Lugosch et al. (2022);
Tjandra et al. (2022b) trained and explored several strategies for 50+ languages. There is
also the recent ML-SUPERB challenge which provides an evaluation framework for up to
143 languages for ASR and LID Shi et al. (2023).

Whisper (Radford et al., 2022) mines 680K hours of data from the web and their
model supports the transcription of 99 different languages. Zhang et al. (2023a) trained
a multilingual ASR model based on YouTube audio data and successfully scaled to 100
languages. A notable exception is Li et al. (2022) who created ASR for 1,909 languages by
mapping the phoneme-like output of an eight language multilingual model to appropriate
phonemes for the language of interest. In contrast, MMS uses actual paired speech and text
for over 1,100 languages and present a comparison to their approach below (§3.3.2).

Spoken Language Identification (LID). Whisper (Radford et al., 2022) also supports
language identification and can distinguish between 99 different languages. Fan et al. (2021)
utilizes wav2vec 2.0 for language identification using the API17-OLR dataset that consists
of ten Asian languages. Later, Tjandra et al. (2022a) demonstrated that a cross-lingual
self-supervised model can improve language identification performance by training a language
identification model for 26 languages using a proprietary dataset. Babu et al. (2022) fine-tunes
a pre-trained model to perform LID for 107 languages using the VoxLingua-107 dataset (Valk
and Alumäe, 2020). In this work, we scale the number of languages to over 4,000 which to
our knowledge is the broadest coverage spoken language identification model so far.

Multilingual Text-To-Speech (TTS). Speech synthesis has been undergoing a transition
from controlled settings to the generation of more diverse speech, with multilinguality being a
crucial aspect (Casanova et al., 2022; Zhang et al., 2023b). However, the lack of multilingual
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training data, particularly for low-resource languages, presents a common obstacle in scaling
TTS to more languages. To address data scarcity, prior work explored various approaches
including byte encoding to unify text representations which was evaluated on English, Spanish,
and Chinese (Li et al., 2019) Further studies explored other input representations, including
phonemes (Zhang et al., 2019) and phonological features (Staib et al., 2020).

Additionally, various modeling schemes have been developed to encourage knowledge
sharing between languages, such as parameter generation networks (Nekvinda and Dusek,
2020) and leveraging unpaired speech or text data for pre-training (Saeki et al., 2023b,a).
Despite these efforts, most prior work still covers a small number of languages but there are
a few efforts which scaled to 46 languages (He et al., 2021) or use unsupervised techniques to
scale to 101 languages (Saeki et al., 2023b). Meyer et al. (2022) also builds VITS models
based on readings of the Bible but their work is limited to ten African languages.

Other Speech Processing Tasks. Speech processing is a broad field and there are many
other tasks than ASR, LID and TTS which would benefit from more multilingual systems.
However, most efforts on evaluating multilingual systems are focused on ASR or LID (Shi
et al., 2023). The Zero Resource Speech Challenge provides a range of interesting tasks such
as ABX discrimination but these tasks are only available for English (Dunbar et al., 2021).
Query-by-example (QbE) speech search is the task of retrieving utterances relevant to a given
spoken query (Kamper et al., 2019) and it could be interesting to make this task available in
many more languages. There is also work on multilingual keyword spotting which is the task
of identifying whether a particular word was spoken in an utterance (Mazumder et al., 2021).

Multilingual NLP. Multilinguality has been a very active research area in NLP where
researchers introduced cross-lingually pre-trained sentence encoders (Conneau and Lample,
2019) spanning 100 languages, or pre-trained multilingual sequence to sequence models (Liu
et al., 2020) applied to machine translation. Multilingual machine translation models have
also been scaled to 200 languages (NLLB Team et al., 2022) and even 1,000 languages (Bapna
et al., 2022a).

3. Dataset Creation

Our work leverages two new datasets to expand the language coverage of speech technology.
In this section, we first detail how we create a labeled dataset which includes speech audio
paired with corresponding text in 1,107 languages (MMS-lab; 44.7K hours; §3.1). Second,
we discuss the creation of an unlabeled dataset for which we only have audio recordings and
no corresponding text. This dataset spans 3,809 languages (MMS-unlab; 7.7K total hours;
§3.2).

We also use an unlabeled version of MMS-lab for pre-training and language identification.
This spans a larger number of languages, as we can also use unlabeled audio from our
data source (MMS-lab-U; 1,362 languages; 55K hours). Figure 2 compares the datasets to
existing corpora. A full list of the languages supported is available at https://github.com/
facebookresearch/fairseq/tree/main/examples/mms.
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(b) Unlabeled Datasets.

Figure 2: Dataset Overview. MMS-lab, MMS-lab-U and MMS-unlab compared to existing
multilingual speech corpora in terms of the supported languages and dataset size. We compare
to BABEL (Gales et al., 2014), CMU Wilderness (Black, 2019), CommonVoice (Ardila et al.,
2020), Dhwani (Javed et al., 2022), FLEURS (Conneau et al., 2022), M-AILABS (M-
AILABS, 2018), MLS (Pratap et al., 2020c), VoxLingua107 (Valk and Alumäe, 2020), and
VoxPopuli (Wang et al., 2021) .

3.1 Paired Data for 1,107 Languages (MMS-lab)

We obtain speech data and transcriptions for 1,107 languages by aligning New Testament
texts obtained from online sources (§3.1.1) using the following steps:

1. Download and preprocess both the speech audio and the text data (§3.1.2).

2. Apply a scalable alignment algorithm which can force align very long audio files with
text and do this for data in 1000+ languages (§3.1.3).

3. Initial Data Alignment: we train an initial alignment model using existing multilingual
speech datasets covering 8K hours of data in 127 languages and use this model to align
data for all languages (§3.1.4).

4. Improved Data Alignment: we train a second alignment model on the newly aligned
data for which the original alignment model has high confidence and generate the
alignments again. The new alignment model supports 1,130 languages and 31K hours
of data including the data used in step 3 (§3.1.5).

5. Final data filtering: we filter the low-quality samples of each language based on a
cross-validation procedure. For each language, we train a monolingual ASR model on
half of the aligned data to transcribe the other half of the data. We retain only samples
for which the transcriptions are of acceptable quality (§3.1.6).

6. We partition the data into training, development and test portions (§3.1.7).
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3.1.1 Data Source

The MMS-lab dataset is based on recordings of people reading the New Testament in different
languages. The New Testament consists of 27 books and a total of 260 chapters. Each
chapter is divided into a number of verses which can be between one and several sentences
long. Specifically, we obtain data from Faith Comes By Hearing1, goto.bible and bible.com.
This includes the original text data as we well as the corresponding audio recording.

Basic Data Characteristics. The data sources provide 1,626 audio recordings of the New
Testament in 1,362 languages, totaling 55K hours and we refer to this data as the MMS-lab-U
dataset.2 Out of these, both text and audio is available for 1,306 different recordings in
1,130 languages and a total of 49K hours, which we focus on for MMS-lab. For 99 languages,
we have multiple recordings. Each recording provides separate audio files for each chapter
and the duration of each chapter is on average 6.7 minutes but there is significant variance,
depending on the language and chapter. Recordings are almost always single speaker which
makes it well suited for building speech synthesis systems (§7). However, speakers are often
male which may introduce unwanted biases into machine learning models which we analyze
below (§8.1).

Multiple Scripts or Dialects per Language. When there are multiple recordings per
language, we found that some recordings differ in the used writing script, e.g., for Serbian
there are recordings using the Latin script and another which uses Cyrillic.3 Recordings can
also differ in the spoken dialect, e.g., for the Poqomchi’ language there are recordings with
western and eastern dialects.

Depending on the downstream task, we handle these cases differently: for language
identification, we merge the different recordings regardless of writing script or dialect, for
speech synthesis models, we choose one recording per dialect/script to avoid introducing
additional speakers into the training data, and for automatic speech recognition, we combine
all the recordings within the same script/dialect into one and treat them as different languages,
e.g., srp-script:latin, srp-script:cyrillic.

Micro and Macro Language Distinction. When there is a micro and macro language
distinction, then we generally keep micro languages as distinct languages. However, for
languages which are part of benchmarks we use for evaluation, e.g., FLEURS (Conneau
et al., 2022), we deviate from this policy if the respective benchmark only contains the macro
language, by merging the micro languages. For example, Azerbaijani is a macro language
and MMS-lab provides data for two associated micro languages, North Azerbaijani and
South Azerbaijani. For ASR, our evaluation benchmarks also keep the same distinction and
so we model both micro languages separately, however, for LID, one of our benchmarks,
VoxLingua-107 (Valk and Alumäe, 2020), only contains the macro language, and therefore,
for LID only, we merge both micro languages into a single macro language.

Recordings with Background Music. Some of the recordings contain background music
and we refer to these as drama recordings. In our final MMS-lab dataset, 38% of languages

1. https://www.faithcomesbyhearing.com/
2. For the audio files with no paired text, we perform VAD and segment them into smaller files.
3. Specifically, we measure the correlation of the character frequency distribution for all pairs of the recordings

and examine recordings with a correlation lower than 0.99 further.
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are represented solely by a drama recording and 11% have both drama recordings and
recordings without background music (non-drama recordings). For speech synthesis, we
apply pre-processing to remove background music (§7).

While this data source covers a lot of languages, it requires careful curation to make
it usable for building high-quality models which presents unique challenges given the large
number of languages. We detail the steps we take in the remainder of this section.

Potential Biases. The MMS-lab data covers many languages but it also has potential
for biases that we would like to acknowledge: the data is from narrow and biased domain
(religion) and most recordings are from a single speaker that is almost always male. This
poses the risk of transcriptions and other biases towards religion as well as poor performance
on non-male speakers. We analyze some of the biases in more detail in §8 and find that
models trained on the data show only small biases.

3.1.2 Data Pre-processing

Speech. The original audio files are available in MP3 stereo format using a 22/24/44 kHz
sampling rate. We convert all of them to a single channel and 16 kHz sampling rate.

Text Normalization. We design a generic text normalization pipeline that works well
across the languages we consider. First, we perform Unicode NFKC normalization4 and
lower case all characters. NFKC normalization helps to make sure the character encoding
is consistent. Next, we remove HTML tags such as "&gt;" or "nbsp;". We also remove
punctuation and try to perform this carefully by including characters for which we are
confident that they are in fact punctuation.5

We noticed that some recordings have a relatively high rate of brackets in the text: our
criteria is recordings where at least 3% of verses contain brackets which resulted in about 50
recordings. We listened to a few instances of each recording to verify whether the text in
the brackets is present in the audio or not. In many cases, we noticed that the text in the
brackets was not spoken and we removed the brackets and the text within.

3.1.3 Scalable Forced Alignment

The chapter recordings from the data source can be up to 43 minutes long which cannot be
directly used by current machine learning algorithms: we use Transformer models which
require large amounts of GPU memory and their computational complexity is quadratic
in the input size. We therefore segment the data into smaller units so it can be used by
standard algorithms. Forced alignment determines which parts of the audio correspond to
which parts of the text.

Given this alignment, the data can be segmented in different ways. In our case, we segment
the data into individual verses which are typically a single sentence but can sometimes contain
several sentences. The average duration of a verse is about 12 seconds. Figure 3 illustrates
how the alignments enable creating verse-level audio segments for each chapter recording. In
this section we detail how we perform efficient forced alignment on GPUs.

4. For example, there are two ways to represent Ç (Latin C with combining cedilla): splitting it into Latin
capital C and combining cedilla (NFKD), or having a single Unicode character C with cedilla (NFKC).

5. We obtain an initial set of punctuation characters from the respective Unicode category.

7



Pratap et al.

1This morning Tom was going to school. 2Suddenly, it started raining heavily. 3Tom had to go back home.

1This morning Tom was going to school. 2Suddenly, it started raining heavily. 3Tom had to go back home.

Alignment Step

Splits the long audio file into verse level segments

Figure 3: Illustration of Data Alignment. Forced alignment enables segmenting audio
recordings and corresponding text into smaller segments that can be used to train machine
learning models.

Generating Posterior Probabilities. Forced alignment requires posterior probabilities
from an acoustic model which we use for alignment (§3.1.4). This acoustic model is a
Transformer which requires substantial amounts of memory to store activations which makes
it infeasible to use for long audio files. As a workaround, we chunk the audio files into 15
second segments, generate posterior probabilities for each audio frame using the alignment
model, and then concatenate these posterior probabilities into a single matrix again. The
acoustic model is trained with Connectionist Temporal Classification (CTC; Graves et al.
2006).

Forced Alignment using CTC. Next, we perform forced alignment which finds the most
likely path in the posterior probabilities for a given input audio sequence of length T and a
text transcription of length L. These posterior probabilities require O(T ×L) memory and a
path will be of length T . This path is computed using the Viterbi algorithm. There are open
source libraries implementing the algorithm on CPU (Kürzinger et al., 2020; Kahn et al.,
2022), however, the CPU versions are slow to run, particularly on long recordings, as we will
show below.

Efficient Forced Alignment on GPUs. In order to make force alignment efficient for
our purpose, we implemented a GPU version that computes the Viterbi path memory in
a memory efficient way. Storing all O(T × L) forward values for the Viterbi algorithm is
infeasible on GPUs due to memory constraints. We therefore only store forward values for the
current and the previous time-step and regularly transfer the computed backtracking matrices
to CPU memory. This reduces the required GPU memory to O(L) compared to O(T × L)
and enables forced alignment for very long audio sequences at high speed. Appendix A
illustrates the algorithm and an implementation is available as part of TorchAudio (Yang
et al., 2021).6

6. https://github.com/pytorch/audio
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Figure 4: Efficiency of Forced Alignment Implementations. The MMS implementation
runs on GPU and can process long audio sequences in reasonable time compared to CPU
alternatives.

some respectable houseprovided
text

i shall rent a room in some respectable house

some respectable house

i shall rent a room in some respectable house

Figure 5: Illustration of the 〈∗〉 Token in Forced Alignment. We show the text to
which we would like to align the audio at the top and what is actually spoken at the bottom
in italics. Left: erroneous alignment when the provided text is incomplete. The word some
is aligned incorrectly. Right: using 〈∗〉 token at the beginning enables correct alignment of
the provided text.

Figure 4 shows that the forced alignment implementation scales much better to longer
sequences than CPU alternatives such as ctc-segmentation (Kürzinger et al., 2020), a popular
segmentation library used in ESPNet (Watanabe et al., 2018), SpeechBrain (Ravanelli et al.,
2021) and Flashlight (Kahn et al., 2022).

Robust Alignment for Noisy Transcripts. For many recordings, speakers introduce
the chapter name and the version of the New Testament before reading the first verse,
however, the corresponding text does not contain this information. This is problematic for
forced alignment because the algorithm will still try to align the beginning of the audio to the
text which can result in incorrect alignments. Another challenge is that numbers are generally
spelled as digits in the text whereas our alignment model is trained on existing corpora which
follow common practice of spelling numbers out fully (§3.1.4). Spelling numbers out requires
language-specific and hand-crafted tooling which is not available for the 1,107 languages we
consider.

To enable robust alignment in both cases, we introduce a star token (〈∗〉; Pratap et al.
2022; Cai et al. 2022) to which audio segments can be mapped if there is no good alternative
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Text

आप कैसे ह( 
Mandarin Chinese

Hindi

Language

你叫什么名字

Arabic

Qué música te gusta

French

Spanish

Je suis ravi de vous rencontrer

كتلباقم يرورس يعاودنم

Que musica te gusta

nijiaoshenmemingzi

Je suis ravi de vous rencontrer

mndwa'y srwry mqabltk

uroman

aap kaise haim

Table 1: Illustration of Text Encoding for Forced Alignment. Example outputs of
uroman (Hermjakob et al., 2018).

in the text.7 We insert 〈∗〉 at the beginning of the text data of each chapter and replace
numerical digits with 〈∗〉 throughout. The posterior probability for this token is set to one.
After alignment, we add back the original digits and the subsequent data filtering often
removes segments where the audio contains additional information not present in the aligned
text (§3.1.6). Figure 5 illustrates how adding the 〈∗〉 token helps to improve alignment when
the paired text does not cover the beginning of the audio.

3.1.4 Initial Data Alignment

Acoustic Model. To perform the forced alignment, prior work typically uses acoustic
models trained on data in the same language. For example, for the eight languages of the
MLS dataset Pratap et al. (2020c) the authors used acoustic models trained on existing data
for these languages. However, our setting includes many languages for which no datasets or
acoustic models exist. We therefore train a multilingual acoustic model on FLEURS (Conneau
et al., 2022) and CommonVoice 8.0 (Ardila et al., 2020) to learn a shared representation
across languages which we hope to generalize to unseen languages. The multilingual model
is based on fine-tuning XLS-R (Babu et al., 2022) using a total 8K hours of data covering
127 languages.

Text Encoding. The text data is represented using the uroman transliteration tool (Her-
mjakob et al., 2018) which maps different writing scripts to a common Latin script repre-
sentation.8 This is done using character descriptions based on Unicode tables and a large
number of additional heuristics and it has language-specific romanization rules for some
languages. Prior work (Black, 2019) used Unitran (Yoon et al., 2007; Qian et al., 2010;
Black, 2019) which converts UTF-8 encoded text into a phonetic transcription in either
WorldBet (Hieronymus, 1993) or X-SAMPA (Wells, 1995).

Inspired by Black (2019), we initially investigated X-SAMPA but found that uroman
led to similar quality results and we decided to use uroman since it is easier to interpret
compared to International Phonetic Alphabet (IPA) based symbols generated by Unitran.
Table 1 shows some example outputs from uroman. We lowercase all the letters of the

7. This is different from an OOV token or silence token in an HMM topology, which model a certain type of
acoustic behavior and are independent from other in-vocabulary tokens.

8. https://www.isi.edu/~ulf/uroman.html
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uroman output and retain only a to z characters as well as the apostrophe character to train
acoustic models for forced alignment (§ 3.1.3).

3.1.5 Improved Data Alignment

To improve the alignments, we use a subset of good-quality samples to train a new alignment
model. Samples are selected based on a score which is the length-normalized difference
between the probability of the forced alignment path P (Y aligned | X) and the probability of
greedy decoding from the alignment model P (Y greedy | X). The former is constrained by
the text used in the alignment and the latter is unconstrained. A large difference between
these two quantities may indicate that the alignment is incorrect.9 Concretely, the score is

1

T
logP (Y aligned | X)− logP (Y greedy | X) (1)

where T is the length of the audio. The score can vary from − inf, indicating low quality
samples, to 0, indicating high quality samples. After manual inspection of sample quality
and their corresponding score for several languages, we select −0.2 as the threshold and
choose samples with scores greater than this threshold. The improved alignment model is
trained on a total of 31K hours in 1,130 languages which includes the data we used for the
initial alignment model.10 We use this new model to re-generate verse level alignments for
our data.

3.1.6 Final Data Filtering

After generating the improved alignments, we noticed that some samples are still of low
quality. Some recordings are not entirely faithful to the text and speakers sometimes add
their own interpretation or paraphrase parts of the text. This will negatively impact ASR
and TTS models trained on the data and we therefore perform a final data filtering step to
improve data quality as much as possible.

We we train monolingual ASR models on half of the the aligned samples of each recording,
measure performance on the remaining half and remove samples which have a character error
rate (CER) in excess of 10%. This removes about 1.7% of all samples across all languages.

High CER may be due to low quality samples in either half of the data, that is the
training data of the ASR model or the data being evaluated. To help ensure we use recordings
that are generally of good quality, we remove 3837 recordings which have CER in excess of
5% on the development set. We retain a total of 1,239 recordings covering 1,107 languages.

3.1.7 Creating train/dev/test splits

The recordings often contain only a single speaker which makes it challenging to measure
generalization performance of models trained on this data. This is why we evaluate models
trained on MMS-lab data on existing benchmarks as much as possible in the remainder of
this paper. The advantage of this is that it side steps the aforementioned issues and it also
enables us to better understand how the data can be useful in other domains.

9. It may also indicate that the alignment model is of poor quality but in practice we found that the metric
identifies many incorrect alignments.

10. This model is available at https://github.com/facebookresearch/fairseq/tree/main/examples/mms
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Figure 6: MMS-lab: Amount of Speech Data across Languages. We show the size
of the training data sets and name some of the 1,107 languages.

However, existing benchmarks only cover a small fraction of the languages in MMS-lab
and in order to be able to develop models for all languages, we split the aligned recordings
into train/dev/test splits. We aim to make the content of the splits as disjoint from each
other as possible and use a similar split across different recordings. To do so, we try to use
different books for each split and use the same books for each split across recordings and
languages as much as possible.

Concretely, we use the book Mark (MRK) as development set, the book John (JHN)
as test set and the remaining books for training. For the 147 recordings where not all 260
chapters are available, we deviate from this and make a best effort split by books depending
on which books are available in the respective recording. In this case, we aim to have at least
10% of all available data in the development set and the test set each, or at most two hours
of data in each set, whichever is less.

The final dataset contains 44.7K hours of paired speech data where we use 36.8K hours
for training (82.3%), 3.5K hours for development (7.8%) and 4.4K hours for testing (9.9%).
For each language, the train split contains an average of 32 hours (stddev=19), the dev
split contains an average of 3.1 hours (stddev=1.8) and test split an average of 3.9 hours
(stddev=2.3). Figure 6 shows the data distribution across languages.

3.2 Unpaired Data for 3,809 Languages (MMS-unlab)

Data Source. The data source for this dataset is Global Recordings Network which
provides recordings of Bible stories, evangelistic messages, scripture readings, and songs
in more than 6,255 languages and dialects.11 The audio files are not accompanied by a
corresponding text transcription but the source makes clear which language is being spoken.
We group the data by language, combining dialects of the same language resulting in a total
of 3,860 languages and 9,345 hours of audio.

11. https://globalrecordings.net/
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Figure 7: MMS-unlab: Amount of Speech Data across Languages. We show the
size of the training data sets and name a few of the 3,809 languages.

Pre-processing. We convert the audio files to single channel and a sample rate of 16kHz.
Next, we use inaSpeechSegmenter (Doukhan et al., 2018), a CNN-based audio segmentation
model, to identify segments of speech, music, noise and silence in the audio. If two segments
of speech are separated by intermediate segments containing music or noise, then we consider
joining these segments if the intermediate segment is no longer than 20% of all segments
together. This is to build samples that are of longer duration and still contain mostly speech.
The remaining non-speech segments are discarded.

Next, we randomly split the speech segments into portions of between 5.5 and 30 seconds.
This makes the data usable for training downstream models and creates a length distribution
of the samples that is in line with other datasets such as FLEURS where the average sample
length is about 12 seconds.

Dataset Split. Finally, we split the samples of each language randomly into 80% training
data, 10% development data, and 10% test data. We also remove 51 languages for which we
have less than 5 minutes of training data to ensure we have sufficient data to train models.
The final dataset comprises a total of 7.7K hours of data in 3,809 languages. The training
portion is 6.2K hours and there are 770 hours for the valid and test sets each. For each
language, the train set contains an average of 97 minutes (stddev=177.4), and the dev/test
sets contain an average of 12.1 minutes (stddev=22.3). Figure 7 shows the data distribution
across languages.

3.3 Comparison to Existing Broad Coverage Approaches and Other Datasets

In this section, we present a comparison to two related studies which aimed to expand speech
technology to many languages. The CMU Wilderness project (Black, 2019) also used New
Testament data to build speech synthesis models for 699 languages (§3.3.1) and ASR-2K (Li
et al., 2022) focused on automatic speech recognition for nearly two thousand languages
(§3.3.2). Finally, we assess the viability of the new data for building machine learning models
by comparing the performance of ASR models trained on MMS-lab to models trained on an
existing dataset in an out-of-domain setting (§3.3.3).
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Figure 9: MMS-lab vs. Common Voice. Char-
acter Error Rate on FLEURS dev set for ASR
models trained on Common Voice (CV) data and
MMS-lab data for 18 languages.

3.3.1 CMU Wilderness Dataset

The most comparable prior work is the CMU Wilderness project which used data from
similar sources (Black, 2019). To better understand how our data creation process compares
to their method, we conduct a best effort side-by-side reproduction of their process and use
the resulting data to train monolingual ASR models under the same settings.12

To compare the effectiveness of their data creation method to ours (§3.1), we take the
original data from our data source and apply either our protocol or the protocol of Black
(2019). For languages where multiple recordings exist, we only use the recordings used in the
CMU Wilderness dataset to enable a better comparison. Next, we use the resulting data to
fine-tune XLS-R models (Babu et al., 2022) for monolingual ASR and then measure accuracy
in terms of character error rate on the FLEURS dev set.

Figure 8 shows that the MMS-lab data preparation process results in better quality
ASR models compared to CMU Wilderness with improvements between 2.1%-4.7% CER,
depending on the language. Our alignment procedure also retains a much larger amount
of the training data compared to the CMU Wilderness protocol: for Telugu, there are 26.5
hours of data, MMS-lab retains 26.2 hours compared to 11.1 hours for the CMU Wilderness
process. For English, we start with 17.3 hours, MMS-lab retains 17 hours vs. 10.6 hours for
CMU Wilderness.

3.3.2 ASR-2K

The most comparable multilingual ASR work to ours is ASR-2K (Li et al., 2022) which
covers 1,909 languages. Their approach is based on mapping the output of an eight language
multilingual model to appropriate phonemes for the language of interest. In contrast,
MMS-lab has actual paired speech and text data.

12. We reproduced the data by following the steps outlined at https://github.com/festvox/datasets-CMU_
Wilderness
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ASR-2K reports average character error rate (CER) on 34 languages of Common Voice
6.0 and uses a language model for decoding. MMS-lab covers 22 out of these 34 languages
and we use it to train monolingual ASR models without language models. The monolingual
models trained on MMS-lab dataset obtain an average CER of 9.6 on 22 languages. ASR-2K
reports CER 50.9 on 34 languages. While not a like for like comparison, this difference
suggest that MMS-lab enables higher quality ASR models. We stress that this is a best effort
comparison and does not enable strong conclusions.13

3.3.3 Other Existing Datasets

The MMS-lab dataset covers a large number of languages but it also has potential downsides:
it is both from a particular narrow domain and most recordings are from a single speaker.
This may lead to poor performance on other domains or when the systems are applied to
unseen speakers.

To get a better sense of both issues, we train monolingual ASR models by finetuning
XLSR (Babu et al., 2022) on MMS-lab and evaluate these models on the FLEURS benchmark.
For comparison, we train another set of ASR models on labeled data from Common Voice
which is an existing dataset and does not have the aforementioned downsides: the domain is
general and the data contains multiple speakers. We control the amount of training data of
both datasets by using exactly ten hours of training data and one hour of development data
from both datasets.

Figure 9 shows that models trained on CommonVoice perform better on 18 languages of
FLEURS (average CER 9.3 vs. 12.2) but the models MMS-lab still enable good performance.14

This is despite the fact that MMS-lab utterances are often from a single speaker and are
from a very narrow domain. While there is certainly higher quality data for head languages,
this result suggests that the quality of the MMS-lab data can enable high quality speech
systems for a large number of other languages.

4. Cross-lingual Self-supervised Speech Representation Learning

As a first step, we train a self-supervised model of speech representations(Baevski et al., 2020b;
Hsu et al., 2021b; Chen et al., 2022a) on the data outlined above as well as other existing
public corpora. We use wav2vec 2.0 for pre-training on unlabeled data which we later use as
the basis for several downstream speech tasks (Baevski et al. 2020b; §4.1). The resulting
models were pre-trained on 1,406 languages which is over four times the number of languages
of known prior work (Zhang et al. 2023a; §4.2). The increased language coverage results
in better performance for both ASR and LID compared to XLS-R (Babu et al. 2022; §4.3)
which covered 128 languages and is publicly available.

13. We could not obtain a per-language break down of the ASR-2K results.
14. Spanish (spa), Catalan (cat), Polish (pol), German (deu), Portoguese (por), Russian (rus), Ukrainian

(ukr), Turkish (tur), Swahili (swh), French (fra), Dutch (nld), Farsi (fas), English (eng), Welsh (cym),
Luganda (lug), Arabic (ara), Tamil (tam), Thai (tha).
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4.1 Method: wav2vec 2.0 and XLS-R

Our work builds on Babu et al. (2022) who pretrain wav2vec models on data from multiple
languages. The wav2vec project created a series of models for learning self-supervised speech
representations (Schneider et al., 2019; Baevski et al., 2020a,b) from unlabeled speech data.
The resulting models can then be used to solve downstream speech tasks by fine-tuning
them on labeled data or by tackling these tasks without labeled data using unsupervised
learning (Baevski et al., 2021; Liu et al., 2022).

The most prominent one is wav2vec 2.0 (Baevski et al., 2020b) which enables building
speech recognition models with only ten minutes of labeled data and even no labeled
data at all (Baevski et al., 2021). The basic architecture of wav2vec 2.0 is as follows: a
convolutional feature encoder f : X 7→ Z maps raw audio X to latent speech representations
z1, . . . , zT which are input to a Transformer g : Z 7→ C to output context representations
c1, . . . , cT (Baevski et al., 2020a). Each zt represents 25ms of audio strided by 20ms and the
Transformer architecture follows BERT (Vaswani et al., 2017; Devlin et al., 2019).

During training the feature encoder representations are discretized to q1, . . . , qT with a
quantization module Z 7→ Q to represent the targets in the objective. The quantization
module uses a Gumbel softmax to choose entries from the codebooks and the chosen entries
are concatenated (Jegou et al., 2011; Jang et al., 2016; Baevski et al., 2020a).

The model is trained by solving a contrastive task over masked feature encoder outputs.
At training time, spans of ten time steps with random starting indices are masked. The
objective requires identifying the true quantized latent qt for a masked time-step within a set
of K = 100 distractors sampled from other masked time steps. The objective is augmented by
a codebook diversity penalty to encourage the model to use all codebook entries (Dieleman
et al., 2018).

XLSR and XLS-R train wav2vec 2.0 on many different languages from several datasets
to obtain cross-lingual representations (Conneau et al., 2020a; Babu et al., 2022). In order
to balance the training data, two data sampling steps are performed. First, for each dataset,
we sample the data for the different languages L from a distribution pl ∼

(
nl
N

)βL where
l = 1, . . . , L, nl is the amount of unlabeled data for each language in the dataset, N is the
total amount of training in the dataset, and βL is the upsampling factor which controls the
trade-off between high- and low-resource languages during pretraining. Second, we balance
the different datasets by treating each dataset as a language in the above sampling scheme
with a sampling parameter βD.

4.2 Pre-training Setup

Hyperparameters. We largely follow prior work in training cross-lingual wav2vec 2.0
models (Conneau et al., 2020a; Babu et al., 2022) and use the wav2vec 2.0 implementation
available in fairseq (Ott et al., 2019) to train models with roughly 300M and 1B parameters
(Table 2). To make efficient use of GPU memory, we use a fully sharded backend (Rajb-
handari et al., 2021) as well as activation checkpointing (Chen et al., 2016) implemented in
FairScale (Baines et al., 2021).

Our models are optimized with Adam (Kingma and Ba, 2015) and the learning rate is
warmed up for the first 32K steps followed by polynomial decay to zero for the remainder
of training. Training audio sequences are cropped to a maximum of 320K samples, or 20
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Model #langs Datasets B M F A #params

Prior work
XLSR-53 53 MLS, CV, BBL 24 1024 4096 16 317M
VP-100K 23 VP-100K 24 1024 4096 16 317M
XLS-R (0.3B) 128 VP-400K, MLS, CV, VL, BBL 24 1024 4096 16 317M
XLS-R (1B) 128 VP-400K, MLS, CV, VL, BBL 48 1024 4096 16 965M

MMS (0.3B) 1,406 MMS-lab, VP-400K, MLS, CV, VL, BBL 24 1024 4096 16 317M
MMS (1B) 1,406 MMS-lab, VP-400K, MLS, CV, VL, BBL 48 1024 4096 16 965M

Table 2: Self-supervised Models. Details of our models including prior work: XLSR-
53 (Conneau et al., 2020a), VP-100K (Wang et al., 2021), XLS-R (Babu et al., 2022) and
the MMS models: the number of languages (#langs), pretraining data (Datasets), the
number of Transformer blocks (B), the number of hidden states (M), the inner dimension
of feed-forward blocks (F ), the number of attention heads (A) and the total number of
parameters (#params).

seconds, and all models were pre-trained for a total of one million updates on A100 GPUs
with 80GB of memory. The MMS (0.3B) model was trained with an effective batch size of
2.3 hours of data across 48 GPUs and the MMS (1B) model was trained with an effective
batch size of 3.5 hours on 64 GPUs.

Data. The pre-training data covers about 491K hours in 1,406 languages. This data is
drawn from six training corpora with different characteristics, including the corpora used in
XLS-R (Babu et al., 2022):

• MMS-lab-U: 1,362 languages comprising 55K hours (§3.1).

• Multilingual Librispech (MLS): 8 European languages of read books totaling 50K
hours (Pratap et al., 2020c)

• CommonVoice (CV): 89 languages totaling 8.8 hours of read text; we use v9.0 of the
corpus (Ardila et al., 2020))

• VoxLingua-107 (VL): 107 languages totaling 5.3K hours of YouTube content (Valk and
Alumäe, 2020)

• BABEL (BBL): 17 African and Asian languages totaling about 1K hours of conversa-
tional telephone data (Gales et al., 2014)

• VoxPopuli (VP): 371K hours of unlabeled speech data in 23 languages derived from
European Parliament event recordings (Wang et al., 2021)

Pre-training only uses the speech audio and none of the transcriptions and we balance
the data following the strategy outlined in §4.1 using βL = βD = 0.5
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Figure 10: MMS vs. XLS-R. Character error rate (CER) on 61 FLEURS languages when
fine-tuning multilingual ASR models on MMS-lab data. We report average performance on
FLEURS dev data.

4.3 Comparison to XLS-R

To better understand how the MMS models compare to XLS-R we fine-tuned both for
automatic speech recognition on the 61 languages of the FLEURS benchmark for which
MMS-lab provides training data. Models are evaluated without a language model and
we report the average character error rate (CER) on FLEURS development data over all
languages.

Figure 10 shows that the MMS models perform better: for the 300M size, MMS has
0.6 lower CER than XLS-R, and for the 1B size, the difference is 0.7 CER. More capacity
helps to improve performance: for XLS-R the error rate decreases by 3.2 CER absolute when
scaling the number of parameters from 300M to 1B and for MMS-lab there is a 3.0 CER
improvement.

MMS pre-trains on over ten times the number of languages of XLS-R and this improves
performance, particularly on low resource languages (Figure 11) such as Amharic (amh), Lao
(lao) or Malayalam (mal). Compared to XLS-R, the pre-training data of MMS covers the
following languages which improve: Chewa (nya), Fulah (ful) and Oromo (orm). However,
improvements at low resource languages result in a small degradation in some of the high-
resource languages such as English (eng) or Spanish (spa) but there are also other languages
such as Tajik (tgk) or Welsh (cym) which perform less well.

Equipped with this new pre-trained model we now investigate the use of MMS-lab and
MMS-unlab for several downstream tasks.

5. Automatic Speech Recognition

We first turn to the task of transcribing speech in up to 1,107 different languages. We use
the labeled dataset we collected (§3.1) to fine-tune our pre-trained models (§4) for ASR.
We first outline our modeling approach (§5.1) and then scale the number of languages for
multilingual ASR from 61 to 1,107 in order to better understand the impact of supporting
more languages (§5.2). Next, we compare our models to existing multilingual work (§5.3),
and build robust multilingual models supporting 1,162 languages trained on several existing
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Figure 11: MMS vs. XLS-R Breakdown. We show the absolute character error rate
difference between multilingual ASR models based on XLS-R and MMS models with 1B
parameters. Positive values indicate better performance of MMS and negative values better
performance of XLS-R. Models are fine-tuned on MMS-lab data and evaluated on the
development sets of 61 FLEURS languages.

corpora as well as the MMS-lab data (§5.4). Finally, we evaluate our multilingual models on
all languages they support (§5.5).

5.1 Modeling and Training Approach

We train multilingual speech recognition models by fine-tuning our pre-trained MMS (1B)
model (§4) using labeled data, similar to Baevski et al. (2020b). To output transcriptions,
we add a linear layer on top of the model which maps to an output vocabulary which is the
set of letters in the labeled training data of all languages considered in a particular setting.
Next, we fine-tune the entire model with the Connectionist Temporal Classification (CTC)
criterion (Graves et al., 2006).

Optimization. We use Adam (Kingma and Ba, 2015) with exponential decay rates β1 = 0.9,
β2 = 0.98 to train model weights using a tri-stage schedule where the learning rate is warmed
up for the first 10% of updates, held constant for the next 40% updates, and then decayed in
the final 50% updates. We experimented with different learning rates (1× 10−4, 7× 10−4,
3× 10−4 1× 10−5, 7× 10−6, 3× 10−6, 1× 10−6) and number of updates (50K, 100K, 200K,
300K). Unless otherwise mentioned, we fine-tune models for a total of 50K updates with a
batch size of 0.8 hours of data using 16 A100 GPUs with 80GB of memory.

Language-specific Adapters, Head and Fine-Tuning (LSAH). In addition to train-
ing dense models which share all parameters across languages, we also consider adding adapter
modules (Houlsby et al., 2019) to models where we use a different set of adapter weights
for each language. Specifically, we introduce adapters at every block of the transformer,
and the adapter is added after the last feed-forward block. The adapter module consists
of a LayerNorm Ba et al. (2016) layer, a downward linear projection followed by a ReLU
activation and an upward linear projection; the inner dimension of the projections is 16.
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Figure 12: Scaling Multilingual ASR to 1,107 Languages. We fine-tune both dense
and LSAH models with 61, 128, 256, 512 and 1,107 languages on MMS-lab data and show
average CER on 61 languages of FLEURS and 49 languages of CommonVoice. LSAH models
have language-specific adapter modules and output layers.

For each language, using an adapter increases the number of parameters by 2M or about
2% of the total number of parameters without adapters. We then perform a second stage of
fine-tuning for each language where we introduce a randomly initialized linear layer mapping
to the specific output vocabulary of a language in addition to language-specific adapter and
fine-tune these additional parameters only for another 2K updates on the labeled data of the
respective language.

5.2 Scaling Multilingual ASR to 1,107 Languages

We first analyze training multilingual ASR models with an increasing number of languages by
scaling from 61 to 1,107 languages, roughly doubling the number of languages at every step.
Models are trained on the labeled data of MMS-lab by fine-tuning the MMS (1B) pre-trained
model (§4) and we consider training models with and without language specific adapters and
output layers. Each setting is evaluated on the 61 FLEURS languages covered by MMS-lab
(FLEURS-61) as well as the 49 languages of CommonVoice covered by MMS-lab (CV-49).
Results are reported on the development sets of FLEURS and CommonVoice in terms of
Character Error Rate without a language model.

Figure 12 shows that performance degrades quickly for dense models which have no language-
specific parameters: for FLEURS-61, CER increases by 5.1 when moving from 61 to 1,107
languages and for CV-49, there is a 2.1 CER increase. This is mainly due to languages being
confused with each other which results in large performance drops for certain languages.
Language-specific parameters (LSAH) alleviate this issue and show only very little degradation
(0.4 CER for FLEURS-61 and 0.2 CER for CV-49).

In summary, this shows that scaling multilingual ASR models to over one thousand
languages is feasible and that there is little performance degradation when coupled with
language-specific parameters.
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#lang labeled train FLEURS-54
data (h) dev test

Prior Work
Whisper medium 99 680K - 50.1
Whisper large-v2 99 680K - 44.3

This Work
MMS 61 3K 20.9 20.7
MMS (LSAH) 61 3K 19.0 19.1
MMS 1,107 45K 24.8 24.8
MMS (LSAH) 1,107 45K 18.7 18.7

Table 3: Comparison to Whisper. We report average WER on the 54 languages of
the FLEURS benchmark supported by both Whisper and MMS (FLEURS-54). MMS is a
CTC-based model and to enable a fairer comparison we use n-gram models trained on web
data when comparing to Whisper whose decoder is a neural sequence-model that serves as a
language model and was trained on billions of web tokens.

5.3 Comparison to Other Work

Next, we present comparisons to other recent related work on multilingual ASR: Whisper (Rad-
ford et al., 2022) uses large quantities of labeled web data to train a model supporting 99
languages (§5.3.1) and Google USM (Zhang et al., 2023a) builds multilingual ASR models
supporting 100 languages by pre-training on YouTube data (§5.3.2).

5.3.1 Whisper

Whisper is a multilingual model trained on 680K hours of weakly labeled audio data from
the web and able to transcribe speech in 99 languages (Radford et al., 2022). The model
uses a sequence to sequence architecture (Sutskever et al., 2014) which has a neural sequence
model as decoder that acts in part like a language model. The decoder has been trained on
the target side text of the labeled training data which likely amounts to several billions of
words of text from the web.15

In contrast, MMS is a CTC model whose decoder is a simple linear layer mapping to a
set of characters (§5.1). When comparing CTC models to models with sequence-model based
decoders, the former are typically paired with an external language model to enable a fairer
comparison. We therefore train simple n-gram models on web data (Common Crawl) for
each language and use it during inference time (CC LM; Heafield 2011; Conneau et al. 2020b;
NLLB Team et al. 2022); Appendix B details the training procedure. We evaluate both
models on the 54 languages of FLEURS supported by both Whisper and MMS (FLEURS-54)
and report word error rate except for Thai, Lao, Burmese and Khmer where we use character
error rate.16

15. Assuming 10K words of text per hour of paired speech data, the decoder was trained on about 6.8B
words.

16. We follow Whisper’s evaluation methodology but add Khmer to the list of languages where evaluation is
in terms of CER because there is no standard tokenization we are aware of.
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FLEURS-102
dev test

Prior Work
w2v-BERT (Chen et al., 2022b) - 12.3
Maestro-U (Chen et al., 2022b) - 8.7
USM (Zhang et al., 2023a) - 6.9
USM-M (Zhang et al., 2023a) - 6.5
USM-M-adapter (Zhang et al., 2023a) - 6.7

This Work
MMS FL-102 (LSAH) + LM 6.3 6.3

Table 4: Comparison to Google USM. We report average CER on the 102 languages
of FLEURS and use n-gram models together with our CTC acoustic models. USM-M is
an RNN-T model which uses both unlabeled text as well as labeled speech data during
pre-training and for MMS we use unlabeled text to train language models for inference.

The results (Table 3) show that MMS reduces the word error rate of Whisper by a relative
58% while supporting over 11 times the number of languages. Moreover, MMS was trained
on 44.7K hours of labeled data compared to 680K for Whisper.17 A reduced version of
MMS trained on 61 languages can still outperform Whisper to a similar degree while being
trained on only about 3K hours of labeled training data. Overall, MMS (LSAH) outperforms
Whisper on 31 out of the 54 languages. Appendix C provides a per-language breakdown of
the results.

5.3.2 Google USM

This model is pre-trained on 12M hours of proprietary YouTube audio spanning 300 languages
and then fine-tuned to perform ASR for up to 100 languages on a labeled dataset of 90K
hours (Zhang et al., 2023a) which results in large improvements over Whisper.18 In a best
effort comparison, we adopt the USM setup where the authors fine-tune their pre-trained
model on the labeled FLEURS data. We follow the same training regime as outlined above
(§5.1) but fine-tune this model for a total of 300K updates. Results are in terms of character
error rate.19

There are several important differences between their approach and MMS: first, USM
uses an RNN-T model (Chan et al., 2015) which has a built-in neural language model

17. The non-English portion of the Whisper training data is still 117K hours and covers less than 100
languages, while MMS-lab is less than half the size and covers 11 times the number of languages.

18. We were not able to obtain the list of languages involved in their comparison to Whisper and therefore
resort to a comparison not involving the labeled YouTube data. This has the downside of removing the
impact of the labeled datasets of each approach in the comparison.

19. Zhang et al. (2023a) did not perform any additional pre-processing on the reference transcriptions when
reporting CER which enables a comparison to their results [Yu Zhang, personal communication 5 May
2023].
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while as MMS is a CTC-based acoustic model.20 Second, some of the USM models were
pre-trained on large quantities of unlabeled text as well as 20K hours of labeled audio data
(USM-M/USM-M-adapter) while as MMS is pre-trained only on unlabeled speech data.

To enable a fairer comparison, we use n-gram language models trained on unlabeled text
during inference: for each language, we use either an n-gram model trained on CommonCrawl
or a model trained on the transcriptions of the FLEURS training set, depending on dev set
performance and data availability. Appendix B details the training procedure.

Table 4 shows that MMS performs very competitively compared to USM. We note that the
approaches have significant differences in the model architecture and uses of unlabeled/labeled
data, however, we believe that the result convinces the reader that a simple CTC model
paired with n-gram models can perform very competitively to more advanced architectures
and more elaborate pre-training procedures. Appendix D shows a per-language breakdown
of the results.

5.4 Robust Multilingual ASR Models

In this section, we turn to building multilingual ASR models on data from multiple domains
following a similar approach as prior work for English-only models (Likhomanenko et al.,
2020; Chan et al., 2021; Hsu et al., 2021a). We fine-tune the pre-trained MMS (1B) model
on MMS-lab, FLEURS, CommonVoice, VoxPopuli, and MLS data to support 1,162 language
and perform 300K updates; we denote this as multi-domain training. During fine-tuninig,
the data of each language and dataset is balanced similar to pre-training (§4.2; using βD = 0
and βL = 0.3). The validation set for this model is the concatenation of the dev sets of each
dataset for every language.

We evaluate this single model on FLEURS, CommonVoice, VoxPopuli and MLS. For
FLEURS we measure average CER on the 102 languages of FLEURS, for CommonVoice
WER over 76 languages, for VoxPopuli WER over 14 languages and for MLS WER over eight
languages. We also fine-tune MMS (1B) on each benchmark individually (single-domain
training).21 During inference, we use n-gram models trained on CommonCrawl data.

Table 5 shows that the multi-domain model (MMS-lab+FL+CV+VP+MLS) can perform
very competitively in several settings: For both FLEURS and CommonVoice it outperforms
prior work as well the single-domain baselines and for VoxPopuli and MLS it is slightly worse
than the single-domain baselines. For VoxPopuli, the MMS model it is outperformed by
Maestro which supports a much smaller number of languages and on MLS other approaches
are better which attribute to a focus on fewer languages. Whisper results are not strictly
comparable due to the different normalization but it appears to perform better on MLS due
to a focus on head languages. Overall, this demonstrates that a combined model supporting
well over 1,000 languages can perform in aggregate competitively on a range of benchmarks.
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#lang FLEURS CV VP MLS

Prior Work
VoxPopuli (Wang et al., 2021) 1 15.3
Maestro (Chen et al., 2022b) 14 8.1
RNN-T 1B (Li et al., 2021) 15 7.9
Whisper (Radford et al., 2022) 99 ∗13.6 ∗7.3
ML-IO (Tjandra et al., 2022b) 70 7.5
USM-M (Zhang et al., 2023a) 102 6.5

This Work - Single-Domain training
FL 102 6.4
CV 76 19.7
VP 14 10.3
MLS 8 8.7

This Work - Multi-Domain training
MMS-lab+FL+CV+VP+MLS 1,162 6.2 19.6 10.6 9.0

Table 5: Evaluation of MMS on Multilingual Benchmarks. MMS is fine-tuned on
MMS-lab, FLEURS, CommonVoice, Voxpopuli and MLS. We report CER on FLEURS and
WER on the other benchmarks. Results are averaged over all languages of a benchmark
and (∗) indicates results with a different data normalization which does not enable a strict
comparison to other results (Radford et al., 2022). Our models use n-gram language models
trained on Common Crawl during inference. For each approach, we show the number of
languages an individual models supports and some prior results are based on multiple models,
e.g., Wang et al. (2021).

5.5 Evaluation on 1,107 Languages

Finally, we evaluate the multi-domain model trained on MMS-lab, FLEURS, CommonVoice,
VoxPopuli and MLS on the test sets of all 1,107 languages in MMS-lab. We measure character
error rate and group languages into six geographical regions covered by MMS-lab: Asia,
North America, South America, Europe, Africa and the Pacific region. In order to get a
broader sense of quality, we measure the number of languages for which CER ≤ 5. This
indicates for how many languages the model makes on average no more than one error in
twenty characters. While this measure is very coarse, it enables us to get a sense of quality
across such a large number of languages.

Table 6 shows that our model meets the CER quality threshold for 96% of the 1,107
languages. The region with the lowest rate is Africa at 91% and we attribute this in part
to different writing scripts. We note that this metric is by far not perfect as it imposes the
same threshold for every language which may not be appropriate due to different character

20. RNN-T may benefit particularly from pre-training on unlabeled text data in the case of USM-M, effectively
training a strong neural language model.

21. Models trained on FLEURS data were trained for 300K updates, for MLS models we found 50k updates
to work well, CommonVoice and VoxPopuli models were trained for 200K updates.
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#lang CER CER ≤ 5 %

Asia 335 1.6 ± 0.1 330 99%
South America 136 1.5 ± 0.2 132 97%
North America 144 2.2 ± 0.2 139 97%
Europe 41 1.7 ± 0.4 40 98%
Africa 363 2.9 ± 0.2 331 91%
Pacific 88 1.7 ± 0.5 87 99%

1,107 2.1 ± 0.1 1,059 96%

Table 6: ASR Evaluation on 1,107 Languages. We evaluate the MMS multi-domain
model trained on MMS-lab, FLEURS, CommonVoice, VoxPopuli, and MLS supporting 1,162
languages (§5.4) Results are in terms of the average character error rate on the MMS-lab
test sets for the languages of different geographical regions. We also show the number of
languages for which the model achieves CER less than five, indicating systems which on
average produce no more than one incorrect character every twenty characters. All results
are shown with confidence interval 95%.

sets etc. Also, many of the recordings in MMS-lab are single speaker which means that both
the training data and the test data contains utterances with the same voice for a particular
language. While this makes evaluation challenging, we hope that this analysis gives a sense
that the model can be used to transcribe a wide variety of languages.

6. Language Identification

Language Identification (LID) is the task of determining the language which is spoken in a
given utterance. This has several important applications: despite much work on multilingual
speech recognition (Burget et al., 2010; Lin et al., 2009; Heigold et al., 2013; Bourlard et al.,
2011; Cho et al., 2018; Toshniwal et al., 2018; Kannan et al., 2019; Li et al., 2019; Pratap
et al., 2020b), many deployed systems are still trained on data in a single language despite
the need to transcribe speech in different languages. It is therefore crucial to route utterances
to the correct system and this routing depends on an LID model. Moreover, much work on
mining speech data from the web relies on LID, including some of the most recent large-scale
weakly-supervised work (Radford et al., 2022). Training a language identification system
requires speech data for which the spoken language is known, however, the most diverse
public corpora span no more than about 100 languages (Valk and Alumäe, 2020; Conneau
et al., 2022).

In this section, we first describe our methodology to build LID models (§6.1), then
evaluate the feasibility of training LID systems using MMS-lab-U and MMS-unlab data
compared data from existing corpora (§6.2) and then build LID models with 40x more
languages compared to existing systems (§6.3).22

22. Note that we use MMS-lab-U instead of MMS-lab because it supports more languages and we do not
require the data to be paired with transcriptions for LID (§3.1.1).
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Figure 13: LID Performance with Different Training Datasets. Models trained on
MMS-lab-U+unlab are very competitive to models trained on existing data (FLEURS,
VoxLingua-107) when evaluated out-of-domain (comparison in dashed line). We train models
on data from MMS-lab-U, MMS-unlab, FLEURS and VoxLingua-107 on a common subset of
72 languages and evaluate on FLEURS and VoxLingua-107.

6.1 Training Setup

We train models by fine-tuning the MMS (1B) pre-trained model (§4.2) for language identifi-
cation. This is done by stacking a linear classifier on top of the pre-trained model, which maps
to the set of possible languages for a particular task, followed by fine-tuning all parameters,
including the pre-trained model.

We optimize models with Adam with exponential decay rates β1 = 0.9 and β2 = 0.98
and a tri-state learning rate schedule where the learning rate is warmed up for the first 10%
of updates, held constant for the next 40% and then linearly decayed for the remainder
of training (Kingma and Ba, 2015). During development, we experiment with different
hyper-parameters and perform final model selection based on development set accuracy. We
experiment with different learning rates (1× 10−5, 3× 10−5, 3× 10−6, 5× 10−6, 7× 10−6),
training updates (10K, 20K, 30K, 40K, 50K) and batch sizes (1.5min, 3min, 6min). We train
models on 16 GPUs.

To balance the different languages and corpora during training, we first balance the data
of every language in the different corpora, using sampling parameter βL. This is followed by
balancing each language using the resampled data of the first step, using sampling parameter
βD with the sampling distribution outlined in §4.1. We experiment with βL and βD settings
0, 0.3, 0.5, 0.7 and 1.

When we train models on multiple datasets, then we use a development set containing
up to 30 minutes of data for each language and we sample an equal amount of data from
each corpus. For models supporting 1K, 2K or 4K languages, we reduce the amount of data
per language to 15 min, 7min and 3min to enable faster development.

6.2 Comparison to Existing Datasets

We first assess the effectiveness of training LID models on MMS-lab-U and MMS-unlab
data compared to existing LID training data (FLEURS, VoxLingua-107). Performance is
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evaluated both on the FLEURS and VoxLingua-107 benchmarks. In this setting, FLEURS
and VoxLingua-107 models are at an advantage because there is no domain shift compared
to systems trained on MMS-lab-U and MMS-unlab data.

We are particularly interested in the setting where models trained on existing corpora
are evaluated out-of-domain, i.e., the performance of a model trained on VoxLingua-107
evaluated on FLEURS or a model trained on FLEURS evaluated on VoxLingua-107 data,
and how this compares to models trained on MMS-lab-U/MMS-unlab. To enable a controlled
comparison, we report LID accuracy on the 72 languages supported by all considered datasets
and train only on data of these languages.

The results (Figure 13) show that MMS-lab-U+unlab enables LID with slightly lower
performance compared to systems trained on existing datasets when both are evaluated
out-of-domain: on FLEURS evaluation data the gap is 2.1% compared to a VoxLingua-107
model and on VoxLingua-107 evaluation data MMS-lab-U+unlab trails a FLEURS model by
1.6%. Combining MMS-lab-U and MMS-unlab works particularly well as MMS-unlab is more
varied which improves performance. Naturally, models trained on in-domain training data
(FLEURS or VoxLingua-107) perform best. We conclude that MMS-lab-U and MMS-unlab
enable good quality LID models while enabling LID for many more languages as we will
demonstrate next.

6.3 Scaling Language Identification to 4,017 Languages

Next, we scale spoken language identification from about 100 languages to 4,017 languages by
combining MMS-lab-U, MMS-unlab, FLEURS, and VoxLingua-107 data. Our primary goal
is to understand how accuracy is impacted as models support more and more languages. We
start with 126 languages, the union of the languages in both FLEURS and VoxLingua-107,
and then add languages from MMS-lab-U+unlab, roughly doubling the number of languages
at every experiment. Languages are sorted by descending speaker count and we add the
most spoken languages first.23

Performance is evaluated on FLEURS and VoxLingua-107 which is in-domain with respect
to the models we train. To get a sense of how the models perform on domains not seen in the
training data, we also evaluate on two other datasets which are out-of-domain with respect
to the training data domain: first, BABEL is conversational telephone speech data and we
evaluate on 23 African and Asian languages (Gales et al., 2014).24 Second, VoxPopuli (Wang
et al., 2021) consists of parliamentary speech in 25 languages from the European parliament.
We evaluate on 2.5 hours of data for each language sampled from the VoxPopuli unlabeled
data portion.

Table 7 shows that MMS models scale very well: increasing the number of languages
from 126 to 4,017 results in a modest performance drop of just 0.3% on FLEURS and no
drop on VoxLingua-107. Out-of-domain we observe a drop of 3.6% on BABEL and 0.2%
on VoxPopuli. The results are also competitive to models trained only on in-domain data:
On FLEURS evaluation data, the 4,017 language MMS model performs 1% better than the
baseline trained only on FLEURS data and is only 0.2% behind the baseline trained on both

23. We obtain the number of speakers of each language from https://www.ethnologue.com
24. Amharic, Assamese, Bengali, Cantonese, Cebuano, Georgian, Guarani, Haitian Creole, Igbo, Javanese,

Kazakh, Lao, Lithuanian, Dholuo, Mongolian, Pashto, Swahili, Tagalog, Tamil, Telugu, Turkish, Viet-
namese, Zulu. We evaluate on test utterances longer than 10 seconds.
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#lang in-domain out-of-domain

FLEURS VL BABEL VoxPopuli
(102 lang.) (33 lang.) (23 lang.) (25 lang.)

Prior Work
mSLAM (Bapna et al., 2022b) 102 77.7 - - -
Whisper (Radford et al., 2022) 82 64.5 - - -
ASRL (Chen et al., 2023) 102 95.9 - - -
XLS-R (Babu et al., 2022) 107 - 94.3 - -
SpeechBrain (Ravanelli et al., 2021) 107 - 93.3 - -
AmberNet (Jia et al., 2022) 107 - 95.3 - -

Our Baselines (based on existing datasets)
MMS (FL) 102 96.2 - - -
MMS (VL) 107 - 94.7 - -
MMS (FL + VL) 126 97.4 94.3 78 87.8

This Work
MMS (MMS-lab-U+unlab+FL+VL) 126 97.5 93.9 84.1 87.3

256 97.2 93.4 80.1 87.6
512 96.8 92.9 81.6 85.6

1,024 97 92.8 80.5 86.2
2,048 97.3 92.8 81.5 86.6
4,017 97.2 93.9 80.5 87.1

Table 7: Scaling LID to 4,017 Languages. We show test accuracy of LID models trained
on an increasing number of languages using data from FLEURS (FL), VoxLingua-107 (VL)
and MMS-lab-U+unlab; smaller language subsets are included in the larger subsets. There
is little performance degradation when scaling to more languages. We also show results from
the literature as well as baselines trained only on FL or VL.

FLEURS and VoxLingua-107. On VoxLingua-107 evaluation data, the gap is 0.4-0.8%. This
shows that scaling LID to 4,017 can result in models with competitive performance to models
trained on much fewer languages.

7. Speech Synthesis

As a final downstream task we consider speech synthesis or text-to-speech (TTS) where
models output speech for a corresponding input text. Most prior work focuses on English
using clean corpora and high quality phonemizers (Tan et al., 2021). These resources are only
available for a small number of languages which is why expanding TTS to 1,107 languages
requires different choices. Black (2019) built TTS systems for 699 languages using data from
a similar source as MMS-lab. Encouraged by our initial results indicating higher quality
data (§3.3.1), we extend their work by building models for 1,107 languages.

We first describe the model architecture on which we build (§7.1), how we pre-process the
data to train TTS models (§7.2) and how we evaluate our models (§7.3). Next, we present
an ablation of our design choices compared to a highly optimized setup used for English
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(§7.4). We also measure performance when synthesizing out-of-domain data for 61 languages
of the FLEURS benchmark (§7.5), and finally present results for all 1,107 languages (§7.6).

7.1 Text-To-Speech Model

Our Text-to-Speech (TTS) model is based on VITS (Kim et al., 2021), which is one of the
state-of-the-art TTS approaches. While VITS has previously been applied in a multilingual
setting for English, Portuguese, and French (Casanova et al., 2022), we scale it to 1,107
languages.

VITS is an end-to-end speech generation network that predicts the raw speech wave-
form from a text sequence. It can be viewed as a conditional variational auto-encoder
(VAE; Kingma and Welling 2013) that estimates audio features based on the input text.
The spectrogram-based acoustic features are generated by a flow-based sub-network, which
includes multiple affine coupling layers (Dinh et al., 2017) and a text encoder. The waveform
is decoded using a stack of transposed convolutional layers that have been adapted from
HiFi-GAN (Kong et al., 2020). The model is trained end-to-end with a combination of losses
derived from variational lower bound and adversarial training. During inference, the text
encodings are upsampled based on an internal duration prediction module and then mapped
into the waveform using a cascade of the flow module and HiFi-GAN decoder.

We train separate VITS models for each language. Most of our hyperparameters are
identical to the VITS model trained on LJSpeech (Ito and Johnson, 2017; Kim et al.,
2021) except for these differences: Instead of training the model for 800K steps, we train
each model for 100K steps using eight V100-GPUs with a batch size of 64 per GPU. This
setup was only slightly worse than the original configuration but reduced training time by
approximately eight times which made training a large number of TTS systems feasible
(§7.3). We experimented with different learning rate settings and found that the original
learning rate schedule of VITS worked best.

7.2 Text and Speech Data Pre-processing

Data Selection. To train models we use the MMS-lab dataset which provides paired
speech and text data. For most languages we have a single recording of the New Testament,
however, for 99 languages multiple recordings are available (§3.1.1). For these languages, we
choose a single recording in order to avoid introducing additional speakers into the training
data. To choose a recording, we train ASR models on the data and select the recording
based on which the corresponding ASR model achieves the lowest CER on a held-out set of
an out-of-domain evaluation set. If no out-of-domain evaluation set is available, we choose
a random recording. Finally, if there are both drama and non-drama recordings, then we
consider only non-drama recordings.

Text Representations. Most current TTS models convert text to phonemes using grapheme-
to-phoneme tools such as g2p (Park and Kim, 2019) which rely on a lexicon to map input
characters to phonetic representations. However, such lexicons are not available for most
low resource languages since they require manual annotation. In order to scale TTS to
over one thousand languages, we represent the input text as individual letters for languages
with a small vocabulary. For languages with 200 or more characters, we use a uroman
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encoding (Hermjakob et al. 2018; §3.1.4). We validated this strategy on the languages of
FLEURS where we found that letter-based models outperform uroman-based systems across
all languages, except for Amharic and Korean, which both have large character sets of
between 200-1,000 characters. We therefore used this mixed strategy.25

Speech Data Pre-processing. For drama recordings, we remove background music to
enhance the quality of TTS models. We use a denoiser model (Defossez et al., 2020) to
remove background music. We also noticed that some utterances contain multiple speakers,
usually voicing different characters in the read stories. We use a simple heuristic to detect
those utterances and remove them from the training data. The heuristic computes the
variance of the pitch on voiced frames and removes utterances with high variance in the pitch;
the pitch estimation is based on Mauch and Dixon (2014). We found that removing 15% of
the utterances with the highest pitch variance in each recording removed many multi-speaker
utterances.

7.3 Evaluation Methodology

Evaluation of speech synthesis is not straightforward even in the most researched English
setting comprising a clean corpus with single speaker data (Ito and Johnson, 2017) and
expanding evaluation to a large number of languages poses additional challenges. Similar to
prior work, we rely on both automatic metrics (MCD and ASR) and human studies which
we detail next.

Mel-Cepstral Distortion (MCD). Mel-cepstral distortion is an automatic metric which
measures the closeness of synthesized speech to a human utterance for the same text in terms
of the warping distance of mel frequency cepstral coefficients. There are two disadvantages
of MCD: first, it is only meaningful when the voice and prosody of the speaker as well
as recording conditions in the training data matches the evaluation data because the mel
cepstral sequences are sensitive to these aspects. This prevents evaluation on data outside
the MMS-lab domain. Second, it is not well suited to measuring the intelligibility of the
TTS output. We address the former by focusing MCD evaluation on MMS-lab data and the
latter via the next metric.

Automatic speech recognition (ASR). Transcribing the synthesized speech with au-
tomatic speech recognition and then measuring the error rate has the potential to address
both issues of MCD: it can be measured on evaluation sets which are out-of-domain and it
captures the content of the synthesized speech. Specifically, we synthesize both in-domain
data from the MMS-lab evaluation sets as well as out-of-domain data from the FLEURS
corpus. Next, we apply ASR models and compute CER of the ASR model output with
respect to the input text of the TTS system. Low CER indicates that the TTS model is
able to capture the content of the input text. Unless otherwise stated, we use ASR models
trained on FLEURS data.

Mean Opinion Score (MOS). Finally, we evaluate models using MOS and because it is
very hard to find human raters proficient for a large number of languages, we ask raters to

25. For all 1,107 languages, the following languages use a uroman encoding: Amharic, Gumuz, Korean, Sebat
Bet Gurage and Tigrinya.
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train train text ASR (CER) MOS
upd data repr. MMS-lab LJS FLEURS MMS-lab LJS FLEURS

Natural speech 4.4 4.3 9.3 3.89 ± 0.06 3.96 ± 0.06 3.37 ± 0.07

800K LJS phon. 5.5 4.9 5.9 3.87 ± 0.08 3.82 ± 0.06 3.73 ± 0.07

100K LJS phon. 6.3 4.9 6.3 3.64 ± 0.09 3.74 ± 0.07 3.66 ± 0.07

100K MMS-lab phon. 7.2 6.8 7.9 3.68 ± 0.07 3.51 ± 0.08 3.54 ± 0.07

100K MMS-lab chars 7.2 9.2 10.0 3.58 ± 0.08 3.45 ± 0.08 3.34 ± 0.09

Table 8: Ablation of Training Setup. Our design choices (last row) lead to a moderate
quality reduction compared to the standard VITS setup (second row) but enable scaling
TTS to 1,107 languages. The standard VITS setting performs 800K training updates on
clean LJSpeech data using a high quality phonemizer while as MMS is trained on MMS-lab
data for fewer updates and with characters. Natural speech results are based on the human
utterances of each dataset. We report ASR CER and MOS scores from a human study
with confidence interval 95% on the English development sets of MMS-lab, LJSpeech and
FLEURS.

judge the fidelity of the synthesized samples together with how natural the speech sounds.
We rely on ASR to get a sense of how much of the content is preserved in the TTS outputs
and consider the MOS score for generation quality and naturalness. We evaluate 50 samples
per method of each language, collect ten judgements per sample and ask raters to judge the
quality from 1 (lowest quality) to 5 (highest quality). Results are reported in terms of the
mean score as well as the 95% confidence interval. We use the CrowdMOS (Ribeiro et al.,
2011) package with the recommended recipes for detecting and discarding inaccurate ratings.
We do not require raters to be able to speak the respective language (except for English) as
it is very hard to find raters that speak all the languages we consider. We rely on the ASR
error rate to get a sense of content preservation in the TTS models.

7.4 Evaluation of Design Choices

7.4.1 Training Setup

We first analyze the quality of our training setup (§7.1) and compare it to the common
VITS setup (Kim et al., 2021) which trains models for up to 800K updates on the clean
LJSpeech corpus (Ito and Johnson, 2017) with text data pre-processed by a high-quality
phonemizer (Park and Kim, 2019). This contrasts to our setup where we train the same
model for 100K updates on the MMS-lab data using letters.

We evaluate performance on the development sets of MMS-lab which is in-domain for
MMS-lab models, LJSpeech (LJS; Ito and Johnson 2017) which is in-domain for the original
VITS setup and FLEURS which is out-of-domain for both.26 The audio of FLEURS frequently
contains high levels of noise and reverberation and it is relatively uncommon to use it for
TTS, however, it does cover a large number of languages and it is out-of-domain with respect

26. For measuring CER on LJSpeech, we remove punctuation and capitalization of both references and
hypothesis using the normalization of Radford et al. (2022).
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ASR (CER) MOS
MMS-lab LJS FLEURS MMS-lab LJS FLEURS

Natural speech 4.4 4.3 9.3 3.89 ± 0.06 3.96 ± 0.06 3.37 ± 0.07

no background music 7.2 9.2 10.0 3.51 ± 0.07 3.52 ± 0.08 3.41 ± 0.09

background music 11.8 15.6 16.1 3.24 ± 0.08 2.98 ± 0.08 3.01 ± 0.08

+ denoise 10.8 13.2 14.4 3.32 ± 0.08 3.18 ± 0.07 3.16 ± 0.08

+ denoise + filter 7.8 10.8 11.9 3.47 ± 0.07 3.32 ± 0.08 3.12 ± 0.07

Table 9: Ablation of Building TTS Models using Data with Background Music.
Curating the training data containing background music results in TTS systems which
approach the performance of models trained on recordings without background music. We
show MOS ratings as well as ASR CER on three different benchmarks for English data
for the development sets of MMS-lab, LJSpeech and FLEURS. The TTS model labeled
"no background music" is identical to the last row in Table 8 and we use the MMS-lab
development set of the non-drama recording.

to the MMS-lab training data which makes it an interesting evaluation set, particularly for
the experiment in §7.5.

Table 8 shows that our reduced setup (row 5) generally performs less well than the highly
optimized setup of VITS for LJSpeech (row 2; Kim et al. 2021) and each design choice (fewer
training updates, MMS-lab training data and character inputs) leads to a reduction in quality.
In terms of character error rate, the degradation is most pronounced on out-of-domain
settings with respect to our reduced setup (row 5) and less so on the in-domain MMS-lab
development set. We stress that these choices enable scaling TTS to over 1,000 languages at
manageable compute requirements and no need for language-specific text processing tools.

Note that the CER of almost all models on FLEURS data is lower than for the corre-
sponding natural speech and that the MOS scores of the human reference utterances is also
lower than for other datasets. We attribute this to the high levels of noise and reverberation
in the FLEURS audio which results in increased CER for the original samples compared to
the CER of the synthesized samples.

7.4.2 Data with Background Music

Next, we ablate how we build speech synthesis models based on recordings with background
music which is a setting that applies to about 38% of the languages (§3.1.1). For this
purpose, we train a model on an English recording with background music before and after
the pre-processing steps outlined in §7.2 and compare this to a model trained on another
English recording that does not contain any background music to start with (no background
music). The pre-processing denoises the data and removes utterances with multiple speakers.

The results (Table 9) show that both denoising and removing samples with multi-
speaker utterances results in performance improvements compared to the original data with
background music. Both steps reduce the CER gap to models trained on no background
music data by 69-87% relative to the CER of the system trained on data with background
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ASR (CER) MOS
TTS ref TTS ref

In-domain 11.1 9.2 3.51 ± 0.11 3.61 ± 0.11

Out-of-domain 11.3 8.8 3.52 ± 0.11
∗3.33 ± 0.12

Table 10: TTS in-domain and Out-of-domain Evaluation on 61 Languages. We
synthesize the test sets of MMS-lab (in-domain) and FLEURS (out-of-domain) to measure
character error rate (CER) and collect human judgements (MOS) for both the model outputs
(TTS) and human utterances (ref). The MMS models are robust with little performance
degradation when applied to general domain data (out-of-domain): they retain much of the
original content (low difference between CER of TTS and ref) and the systems produce
outputs with good prosody and sound quality (low difference between MOS scores between
TTS and ref). We show MOS scores with confidence interval 95%. (∗) human judges assigned
low ratings since the human reference audio in FLEURS contains a lot of variability compared
to synthesized speech or the MMS-lab reference speech (in-domain ref).

music. MOS scores also increase after pre-processing, sometimes close to the level of the
data with no background music on MMS-lab evaluation data (3.47 vs. 3.51).

7.5 Out-of-Domain Evaluation

The MMS-lab data is from a particular narrow domain (§3.1.1) which poses the question
of whether TTS models trained on this data will generalize to other domains. To get a
better sense of this, we train speech synthesis models and evaluate their quality on both
in-domain and out-of-domain data. As in-domain data we use the test sets of MMS-lab
and as out-of-domain data we use FLEURS. This enables evaluation on 61 languages of
the FLEURS benchmark (FLEURS-61) which are covered by MMS-lab data. However, a
downside of FLEURS is that it contains high levels of noise which makes it challenging when
comparing synthesized audio to the human reference audio.

Table 10 shows that MMS models are robust to domain shift: the CER of synthesized
speech (TTS) is only slightly higher out-of-domain compared to in-domain and MOS scores for
the synthesized samples are nearly identical. We note that the in-domain and out-of-domain
settings are measured on different data which does not enable strong claims about identical
performance. The systems also retain much of the original content as the small difference in
CER between TTS and human utterances.

The MOS scores also indicate that our systems have lower sound quality compared to
human utterances but the difference is not very large on in-domain data (3.51 vs. 3.61).
Unfortunately, out-of-domain MOS scores for the references are affected by the noisy speech
in the FLEURS audio as noted earlier. We conclude that TTS models trained on MMS-lab
data perform well out-of-domain.

7.6 Evaluation on 1,107 Languages

Finally, we train models for all languages of MMS-lab and focus on in-domain evaluation
since finding out-of-domain evaluation data for such a large number of languages is difficult.
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#lang MCD ASR (CER) TTS CER %
TTS ref ≤ 5

Asia 335 4.30 ± 0.1 3.1 ± 0.2 1.9 ± 0.1 296 88%
South America 136 4.10 ± 0.1 2.6 ± 0.2 1.8 ± 0.1 129 95%
North America 144 4.12 ± 0.1 3.8 ± 0.8 2.4 ± 0.2 125 87%
Europe 41 4.33 ± 0.2 3.0 ± 0.3 1.9 ± 0.2 39 95%
Africa 363 4.34 ± 0.1 4.1 ± 0.2 2.6 ± 0.1 277 76%
Pacific 88 4.72 ± 0.2 3.4 ± 1.3 1.8 ± 0.2 79 90%

1,107 4.30 ± 0.0 3.5 ± 0.2 2.2 ± 0.1 945 85%

Table 11: TTS Evaluation on 1,107 Languages. The majority of MMS TTS models
can synthesize speech which preserves most of the content as per the ASR character error
rates (TTS CER ≤ 5). We report MCD and character error rate for the synthesized outputs
(TTS) of the MMS-lab test sets as well as the human references (ref). We also show the
number of systems which achieve CER less than five, indicating systems which on average
produce no more than one incorrect character every twenty characters. Results are shown
with confidence interval 95%.

Specifically, we measure MCD and ASR CER on the MMS-lab test sets. To be able to
evaluate ASR quality on all languages, we use ASR models trained on MMS-lab data which
results in much lower error rates. Similar to §5.5, we group results into six geographical
regions covered by MMS-lab: Asia, North America, South America, Europe, Africa and the
Pacific region.

To get an overall sense of how many models are of good quality, we measure whether the
model for a particular language has ASR CER ≤ 5. This indicates the number of systems
which make on average no more than one error in twenty characters. While this measure
is by far not perfect, it enables us to get a broad sense of quality across a large number of
languages.

Table 11 shows that about 85% of the 1,107 languages meet the CER quality threshold.
South American and European languages achieve the highest rate at 95% and African
languages the lowest rate of 76%. This is in part driven by different writing scripts. The
ASR character error rates are generally low because the error rates are based on ASR models
trained on MMS-lab data.

8. Bias Analysis and Ethical Considerations

Training machine learning models on religious texts may introduce biases and requires ethical
considerations. In this section, we analyze whether our models are biased to perform better
for different genders (§8.1), if the language produced by our models is religiously biased (§8.2
and finally, we discuss ethical considerations of using religious texts in research (§8.3).
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Figure 14: Analysis of Gender Bias. We compare the character error rate (CER) of
automatic speech recognition models trained on MMS-lab data and FLEURS data for male
and female spakers. Results are on the development sets of 27 languages of the FLEURS
benchmark for which MMS-lab provides data and for which there are at least 50 samples for
each gender.

8.1 Understanding Gender Bias

Most speakers in MMS-lab dataset appear to be male and this bears the risk of machine
learning models trained on this data performing better for male speakers. To understand
whether the models trained on our datasets (§3) exhibit gender bias, we perform the following
experiment: we evaluate models on the development set of FLEURS which contains metadata
indicating the gender of the speaker and we use this information to report performance for
each gender. Using this split, we evaluate the accuracy of ASR models trained on MMS-lab
restricted to languages of FLEURS for which MMS-lab provides data (61 languages) and for
which there are at least 50 samples for each gender (27 of these 61 languages).

Figure 14 shows that the average character error rate over these 27 languages is very
similar, both for the MMS model and the model trained on FLEURS data. There can be
significant differences between genders within a particular language, but both models appear
to be equally affected (see Table A4). On a per language basis, male speakers have a higher
error rate for 14 languages while as female speakers have a higher error rate for the remaining
13 languages. We conclude that our models exhibit similar gender bias to models trained on
FLEURS data which is general domain data.

8.2 Understanding Language Bias

The datasets created as part of this study are from a particular narrow domain and machine
learning models estimated on this data may exhibit certain biases. In this section, we examine
the extent to which automatic speech recognition models trained on MMS-lab data output
biased language.

Methodology. The general methodology of our analysis is to identify a set of biased words
in each language and to measure the rate at which biased words are produced by ASR models.
We compare models trained on MMS-lab data and models trained on FLEURS, a corpus of
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Figure 15: Analysis of Language Produced by MMS ASR Models. MMS models
generate biased words at a slightly increased rate of 0.7% absolute compared to models
trained on FLEURS data. We focus on words that occur at least twice as often in the
MMS-lab training data compared to Common Crawl (in terms of relative frequency). We
compare the cumulative relative frequency of these words in the MMS model output and the
output of ASR models trained on FLEURS data. ASR outputs are based on transcribing
the development sets of 51 languages.

people reading Wikipedia articles in different languages. Both sets of models are tasked to
transcribe the FLEURS development set and we are interested in whether models trained
on MMS-lab data are more likely to use biased language compared to models trained on
FLEURS data.

Identifying Biased Words. We were not able to find speakers for most of the considered
languages of this study and therefore use the following automatic procedure to determine
religious words: for each word that occurs in the training data of MMS-lab, we compare the
relative token frequency, that is, the rate at which the word type occurs in the MMS-lab data,
to the relative token frequency in a general domain corpus; we use Common Crawl (Conneau
et al., 2020b) as a general domain corpus. If the relative word frequency is at least twice as
high in MMS-lab compared to Common Crawl, then we add it to the subset of words we
include in our study. This enables us to evaluate on 51 languages of the FLEURS corpus
since not all languages are covered by MMS-lab and we also need to find data in Common
Crawl for each language. The automatic procedure has the added benefit of avoiding any
potential biases introduced by human annotators.

Results. Figure 15 shows that the rate of biased words is much lower in the outputs of
MMS models compared to the training data (MMS-lab ASR output vs. MMS-lab train).
For many languages, MMS models generate these words at the same rate as the FLEURS
models. On average the rate of biased words is 0.7% absolute higher for MMS compared to
the FLEURS model. We interpret this as a slight bias as the difference between MMS-lab
ASR output and FLEURS ASR output in Figure 15 shows.

We consulted with native speakers for languages which showed the largest discrepancies:
for Mongolian (mon), a native speaker verified that most of the biased words in question
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are actually general language with no particular bias. For Persian (fas), only two out of the
words the procedure identified were of religious nature and both were indeed over predicted:
the Persian words for Jesus and spirit/ghost were predicted in four instances (on the entire
development set) while the FLEURS model does not predict these words, however, the MMS
model also predicts the word for hand 15 times more often than the baseline FLEURS model.

In English, the procedure identifies words such as you, that, they but it also includes jesus,
which both models predict at the same rate. There is also christ, and lord, both of which are
not predicted at all, or men which is predicted six times by the MMS model compared to
five times by the FLEURS model. Our method of identifying biased words has low precision
but it does capture words which are likely more used in religious contexts than otherwise.

8.3 Ethical Considerations and use of Religious Texts in Research

Our consultations with Christian ethicists concluded that most Christians would not regard
the New Testament, and translations thereof, as too sacred to be used in machine learning.
The same is not true for all religious texts: for example, the Quran was originally not
supposed to be translated. There is also the risk of religious training data biasing the models
with respect to a particular world view, however, our analysis of the language generated by
our models suggests that the language produced by the resulting speech recognition models
exhibit only little bias compared to baseline models trained on other domains (§8.2).

This project follows a long line of research utilizing the New Testament to train and evalu-
ate machine learning models. The most related project is the CMU Wilderness effort (Black,
2019) which created speech synthesis models for 699 languages using speech and text data
from similar sources as our datasets. For machine translation, researchers used data from the
Bible both for training and evaluation (Christodouloupoulos and Steedman, 2015; McCarthy
et al., 2020; NLLB Team et al., 2022). For speech processing, researchers trained speech
synthesis models for ten African languages based on readings of the bible (Meyer et al.,
2022).

9. Conclusions and Open Problems

We presented the first study which scaled speech technology to over one thousand languages.
This has been made possible by the rapid progress in self-supervised speech representation
learning which in turn enabled more sample efficient learning from labeled data. We presented
how we collected datasets, pretrained models and then built models for automatic speech
recognition, language identification and speech synthesis. This scaled the number of supported
languages for several major speech tasks by between 10-40x. Going forward, we see several
avenues for future work:

Scaling to even more languages and dialects. Even though, we built speech systems
supporting between 1,100-4,000 languages, there are currently over 7,000 languages being
spoken around the world today. Moreover, there are many more dialects which are often
not adequately represented in the training data, even for high-resource languages such as
English. This can lead to undesirable biases in the performance of these models (Koenecke
et al., 2020).
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Multi-task models. Another avenue is to train single models for several downstream
tasks such as speech recognition, language identification etc. which can then all be performed
by a single model. There has been work on a moderate number of languages (Radford et al.,
2022) but we hope that this approach can be scaled to many more languages and with a
smaller focus on head languages.

Tackling more speech tasks. While this study covered three different speech tasks, there
are many more tasks involving speech data, such as speech translation, both to text and to
speech, or keyword spotting, intent classification etc. We hope that future work will expand
these tasks to many more languages as well.
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Appendices

Appendix A. Forced Alignment

Given an input audio sequence X = (x1, ..., xN ), where N is the number of frames, a CTC
alignment model produces an output sequence Y = (y1, ...,yT) of length T , where yt denotes
the posterior probability distribution over an alphabet A and blank token 〈b〉. Let B denote
the collapsing function of CTC which collapses all repeating symbols and which removes all
blanks for a given sequence. An alignment path π = π1, ..., πT in CTC for a given target
label of length M , L = (l1, ..., lM ) where πt ∈ A ∪ {〈b〉} and li ∈ A should satisfy B(π) = L.

Among the all the alignment paths which can be collapsed to the given target label L,
forced alignment computes the best alignment path π̂ which maximizes the probability under
the posterior distribution given by the acoustic model.

π̂ = argmax
π∈B−1(L)

P (π|X) (2)

CTC assumes every output is conditionally independent of the other outputs given the
input. We have

P (π|X) =

T∏
t=1

P (πt|t,X) =

T∏
t=1

ytπt (3)

Equation 2 can be computed efficiently using dynamic programming and backtracking.
An efficient version of this algorithm is implemented in flashlight (Kahn et al., 2022) on CPU.
We implement a parallel version on CUDA, incorporating memory optimizations that offload
memory to CPU, allowing it to process long audio files efficiently as shown in Algorithm 1.

Relationship to Other Alignment Generation Approaches. For dealing with noisy
transcripts, a commonly used alternative to forced alignment is as follows (Povey et al.,
2011): first segment the audio into shorter segments that can be input to an acoustic model
composed with a language model and generate a transcription for each segment.27 Then
align the generated transcription with the original text to determine the audio segment for
each word. If the generated transcriptions cannot be well aligned, then these segments are
discarded.

The advantage of this approach is that it enables alignment when the audio and the
text do not correspond entirely to each other. However, the alignments are performed on a
segment per segment basis, whereas our forced alignment process performs a global alignment
taking the entire sequence into account.

Appendix B. n-gram Language Models

We train 5-gram language models on Common Crawl data using KenLM (Heafield, 2011) for
each language in FLEURS. For languages that do not use spaces to separate words, we train
20-gram character-level language models. These languages are Mandarin Chinese (cmn),
Cantonese Chinese (yue), Japanese (jpn), Thai (tha), Lao (lao), Burmese (mya) and Khmer
(khm). The text is pre-processed following § 3.1.2 and we also remove emojis.28.

27. https://github.com/mozilla/DSAlign
28. https://stackoverflow.com/a/33417311
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Algorithm 1 Pseudo code of our CTC Forced Alignment algorithm on GPU
Input: Posterior probabilities y, target label L
Output: Alignment path π
1: S ← 2× |L|+ 1
2: Create GPU matrices αodd, αeven of size S each to store the maximum log probability of

aligning the target upto the given node
3: B ← 100; # buffer size for data copy from GPU to CPU
4: Create CPU matrix β of size T × S for saving the label indices from previous time step

used to compute αodd/αeven
5: Create GPU matrix βbuffer of size B × S, where B is the buffer size, to store the values

of β temporarily in a buffer before being copied to CPU.
6: for t = 1, . . . , T do
7: for all l = 1, . . . , S do in parallel
8: If t is odd, update αodd[l] based on αeven, yt using dynamic programming and

vice-versa
9: Store the index l′ from previous time step used to update αodd/αeven in βbuffer

10: end for
11: if t % B == 0 or t == T then
12: Copy βbuffer to CPU matrix β asynchronously
13: end if
14: end for
15: Backtrack and compute π from αodd, αeven and β

For word-level models, we limit the training data to 40GB and select the 250K most-
frequent words as the vocabulary. For character-level models, we limit the training data to
6GB. We provide example commands used for training the LMs below:

# word-level LM

> kenlm/build/bin/lmplz –prune 1 2 3 4 5 -o 5 –limit_vocab_file vocab.txt -S 90% -T /tmp/

< input.txt > output.arpa 29

# character-level LM

> kenlm/build/bin/lmplz –prune 0 0 0 0 0 1 1 1 2 3 -o 20 trie -S 90% -T /tmp/ < input.txt

> output.arpa

For n-gram models trained on the FLEURS training data transcriptions, we build 15-gram
character level language models without any pruning on all languages in FLEURS. For the
comparison with Whisper, we only use the Common Crawl language models.

We use the CTC beam-search decoder from the Flashlight (Kahn et al., 2022) library for
decoding our models. For decoding with word-level LMs, we use the lexicon-based decoder
of Collobert et al. (2016); Pratap et al. (2019) and for character-level LMs, we use the
lexicon-free beam-search decoder of Likhomanenko et al. (2019). We tune the language model
weight and word insertion penalty on the validation set to select the best hyperparameters
for decoding the test set.

29. We use –prune 1 1 2 3 4 if data size < 5GB and additionally use –discount_fallback if data size <
1GB
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Appendix C. Comparison to Whisper

Table A1 shows a breakdown of the results into individual languages and Table A2 shows
results with and without CC LM n-gram language models.

Whisper Whisper MMS MMS MMS MMS MMS MMS MMS MMS
medium large-v2 L-61 L-61 L-61 L-61 L-1107 L-1107 L-1107 L-1107

noLM CC LM noLM CC LM noLM CC LM noLM CC LM
LSAH LSAH LSAH LSAH

Amharic 229.3 140.3 48.7 30.7 52.4 32.5 52.9 30.1 53.3 31.1
Arabic 20.4 16.0 34.9 19.6 35.8 19.9 44.0 23.4 41.3 21.0
Assamese 102.3 106.2 29.5 18.8 28.4 18.6 37.6 21.2 30.5 19.2
Azerbaijani 33.1 23.4 40.7 21.3 38.3 19.8 45.0 21.2 40.1 19.1
Bengali 100.6 104.1 19.7 11.6 20.0 12.1 25.0 12.5 23.5 12.1
Bulgarian 21.4 14.6 23.4 13.1 23.9 13.3 27.9 12.9 25.5 13.5
Burmese 123.0 115.7 22.2 14.2 22.3 14.5 29.2 20.2 24.5 16.0
Catalan 9.6 7.3 18.1 11.0 18.1 11.0 25.9 11.5 20.1 10.8
Dutch 9.9 6.7 26.9 13.7 26.4 14.3 38.1 14.9 27.6 14.5
English 4.4 4.2 23.8 10.7 24.8 11.8 38.8 12.2 27.8 12.3
Filipino 19.1 13.8 19.3 11.9 19.4 12.2 26.2 13.5 20.2 12.4
Finnish 13.9 9.7 26.4 22.5 26.9 23.1 32.3 22.2 28.8 23.1
French 8.7 8.3 24.3 13.7 24.5 14.1 35.8 15.4 29.3 15.0
German 6.5 4.5 22.5 13.2 22.3 13.7 38.4 13.1 22.5 13.3
Greek 19.0 12.5 40.8 14.0 40.5 13.6 57.5 13.0 40.1 13.6
Gujarati 104.8 102.7 23.0 13.0 22.7 12.8 73.9 56.4 24.0 12.8
Hausa 106.6 88.9 35.9 26.7 36.3 27.3 40.4 26.7 38.3 26.4
Hebrew 33.1 27.1 68.5 44.8 66.6 41.5 78.7 50.9 67.1 40.0
Hindi 26.8 21.5 65.0 44.4 28.8 16.0 70.7 45.7 21.2 10.6
Hungarian 24.3 17.0 31.2 18.1 30.7 18.4 40.3 18.3 30.7 18.0
Icelandic 49.9 38.2 42.9 18.3 42.3 19.9 53.6 20.5 45.3 18.6
Indonesian 10.2 7.1 25.5 11.7 23.8 12.1 31.9 11.6 23.4 11.8
Javanese 67.9 68.5 32.8 19.6 32.8 20.0 58.8 27.2 34.2 19.5
Kannada 77.7 37.0 18.8 14.4 15.8 12.9 41.3 25.2 17.7 13.3
Kazakh 48.8 37.7 30.2 17.4 30.2 17.7 63.8 19.5 31.6 17.4
Khmer 103.8 128.9 26.0 19.9 25.7 19.8 70.7 52.4 26.7 19.7
Korean 16.4 14.3 58.7 37.5 59.9 37.3 82.1 58.2 68.3 40.1
Lao 101.4 101.5 48.9 45.4 24.2 22.8 62.1 56.6 22.6 16.9
Latvian 32.0 23.1 20.8 12.0 20.9 12.1 24.5 11.9 21.8 12.1
Malay 12.2 8.7 25.3 12.3 25.9 13.2 32.4 12.1 26.1 12.5
Malayalam 101.1 100.7 23.7 19.1 19.5 16.6 39.1 25.6 20.4 15.3
Marathi 63.2 38.3 32.5 19.0 19.2 13.5 28.0 14.9 20.9 13.4
Mongolian 103.7 110.5 55.7 29.3 54.9 32.9 67.7 28.7 55.3 32.3
Persian 41.0 32.9 39.7 22.9 39.9 22.5 44.4 21.3 42.9 22.0
Polish 8.0 5.4 21.5 11.4 20.8 11.6 33.0 11.0 25.1 11.3
Portuguese 5.0 4.3 16.1 10.8 16.3 10.8 19.3 10.2 17.7 10.5
Punjabi 102.0 102.4 41.4 29.9 30.4 20.7 99.0 91.0 31.0 19.8
Romanian 20.0 14.4 27.9 18.8 28.4 19.1 31.3 17.8 27.4 18.3
Russian 7.2 5.6 30.3 14.6 30.4 14.3 38.8 14.7 35.0 15.0
Shona 143.9 121.0 38.1 30.4 37.7 30.1 43.0 29.9 37.8 29.6
Somali 104.0 102.9 51.8 42.8 52.5 43.0 54.5 42.9 53.8 42.8
Spanish 3.6 3.0 12.2 7.8 12.4 8.2 14.0 7.8 14.0 8.7
Swahili 52.8 39.3 22.9 16.0 23.3 15.6 29.6 16.8 23.7 16.0
Swedish 11.2 8.5 29.9 17.4 30.5 17.5 38.2 17.2 33.5 17.4
Tajik 74.0 85.8 59.8 46.6 33.9 19.2 59.0 39.5 25.7 15.7
Tamil 23.1 17.5 24.2 18.3 21.9 16.3 25.3 17.3 23.9 16.3
Telugu 82.8 99.0 19.4 13.7 19.6 13.7 24.5 15.8 22.1 13.6
Thai 15.4 11.5 18.2 13.6 18.1 13.6 27.6 18.8 20.7 14.3
Turkish 10.4 8.4 28.6 17.3 28.7 17.5 31.2 16.1 30.9 16.9
Ukrainian 11.6 8.6 31.1 13.6 31.7 13.5 39.2 13.3 33.3 13.6
Urdu 28.2 22.6 42.3 22.7 33.1 20.1 46.4 25.1 36.9 20.5
Vietnamese 12.7 10.3 44.5 18.6 47.5 20.7 56.6 21.0 52.9 19.8
Welsh 40.8 33.0 48.9 20.8 49.0 20.8 54.9 21.4 51.4 20.9
Yoruba 105.1 94.8 61.2 49.7 61.9 49.4 62.7 50.2 64.2 49.4

50.1 44.3 33.3 20.7 31.0 19.1 44.2 24.8 32.5 18.7

Table A1: Comparison to Whisper on the FLEURS test set. We report WER for
each of the 54 languages supported by both MMS and Whisper, except for Thai (tha),
Lao (lao), Burmese (mya) and Khmer (khm) where we report CER. We apply Whisper
normalization for both reference and hypothesis for measuring CER/WER.
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#lang lbld train FLEURS-54
data (h) (M) dev test

Prior Work
Whisper medium 99 680K 769M - 50.1
Whisper large-v2 99 1,550M - 44.3

This Work
MMS 61 3K 965M 33.6 33.3
+ CC LM 61 3K 965M 20.9 20.7

MMS (LSAH) 61 3K 1,096M 31.4 31.0
+ CC LM 61 3K 1,096M 19.1 19.0

MMS 1,107 45K 965M 44.7 44.2
+ CC LM 1,107 45K 965M 24.8 24.8

MMS (LSAH) 1,107 45K 3,346M 32.8 32.5
+ CC LM 1,107 45K 3,346M 18.7 18.7

Table A2: Comparison to Whisper. We report average WER on the 54 languages of
the FLEURS benchmark supported by both Whisper and MMS (FLEURS-54). MMS is a
CTC-based model and to enable a fairer comparison we use n-gram models trained on web
data when comparing to Whisper whose decoder is a neural sequence-model and serves as a
language model that was trained on billions of web tokens.
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Appendix D. Comparison to USM

Dev CER Test CER LM

Afrikaans 6.3 6.3 CC LM
Amharic 6.8 7.0 CC LM
Arabic 4.3 4.9 CC LM
Assamese 7.3 7.7 CC LM
Asturian 5.2 5.1 CC LM
Azerbaijani 4.2 3.9 CC LM
Belarusian 3.8 3.8 CC LM
Bengali 5.1 5.3 CC LM
Bosnian 3.8 3.4 FL LM
Bulgarian 3.0 3.2 CC LM
Catalan 2.8 2.9 CC LM
Cebuano 3.6 4.4 CC LM
Czech 3.3 3.0 CC LM
Sorani 6.5 7.4 FL LM
Mandarin 14.8 14.9 CC LM
Welsh 5.7 5.9 CC LM
Danish 5.5 5.7 CC LM
German 3.0 2.7 CC LM
Greek 4.0 3.7 CC LM
English 4.6 4.3 CC LM
Estonian 2.9 2.7 FL LM
Persian 4.0 4.1 FL LM
Finnish 2.6 2.4 FL LM
French 4.1 4.1 CC LM
Fula 13.9 13.8 FL LM
Irish 19.3 19.5 CC LM
Galician 2.8 2.7 CC LM
Gujarati 5.2 5.1 CC LM
Hausa 5.5 5.9 CC LM
Hebrew 15.5 12.9 CC LM
Hindi 5.4 4.7 CC LM
Croatian 3.5 3.2 CC LM
Hungarian 4.1 4.2 CC LM
Armenian 3.2 3.2 FL LM
Igbo 10.7 11.1 FL LM
Indonesian 2.3 2.1 CC LM
Icelandic 5.2 4.1 CC LM
Italian 1.5 1.4 CC LM
Javanese 4.3 3.8 CC LM
Japanese 14.5 14.6 CC LM
Kamba 12.5 11.3 FL LM
Kannada 4.6 4.4 FL LM
Georgian 3.4 3.6 CC LM
Kazakh 2.9 3.1 CC LM
Kabuverdianu 4.3 4.3 FL LM
Khmer 9.9 10.3 CC LM
Kyrgyz 4.1 3.6 FL LM
Korean 11.4 11.8 CC LM
Lao 26.5 24.1 CC LM
Latvian 2.8 2.2 CC LM
Lingala 4.0 4.3 FL LM
Lithuanian 4.3 3.7 CC LM

Dev CER Test CER LM

Luxembourgish 8.0 7.5 CC LM
Ganda 8.0 8.4 FL LM
Luo 4.9 5.0 FL LM
Malayalam 4.4 4.2 FL LM
Marathi 7.2 6.6 CC LM
Macedonian 2.0 1.9 CC LM
Maltese 3.7 3.7 CC LM
Mongolian 5.6 5.9 CC LM
Maori 5.9 6.9 CC LM
Burmese 8.9 9.2 CC LM
Dutch 3.7 3.1 CC LM
Norwegian 3.7 4.1 CC LM
Nepali 8.3 7.7 CC LM
Northern 6.8 6.1 FL LM
Nyanja 6.3 6.7 CC LM
Occitan 7.8 8.2 CC LM
Oromo 15.7 16.2 CC LM
Oriya 6.3 7.1 CC LM
Punjabi 7.4 7.0 CC LM
Polish 2.6 2.7 CC LM
Portuguese 2.8 2.8 CC LM
Pashto 13.1 14.1 CC LM
Romanian 3.7 3.1 CC LM
Russian 3.1 3.0 CC LM
Slovak 2.7 2.5 CC LM
Slovenian 4.0 3.7 CC LM
Shona 3.8 4.1 FL LM
Sindhi 7.2 7.2 FL LM
Somali 12.8 13.0 CC LM
Spanish 1.8 2.1 CC LM
Serbian 10.3 12.7 FL LM
Swedish 4.7 4.6 CC LM
Swahili 3.3 3.4 CC LM
Tamil 8.2 9.0 FL LM
Telugu 6.6 6.9 CC LM
Tajik 4.0 4.5 CC LM
Filipino 3.1 3.1 CC LM
Thai 7.6 8.3 CC LM
Turkish 3.5 3.1 CC LM
Ukrainian 3.3 2.9 CC LM
Umbundu 10.7 10.2 FL LM
Urdu 9.8 8.1 CC LM
Uzbek 4.7 5.0 CC LM
Vietnamese 5.9 6.1 CC LM
Wolof 11.2 11.5 FL LM
Xhosa 6.0 6.1 FL LM
Yoruba 17.0 16.1 FL LM
Cantonese 12.9 12.4 CC LM
Malay 2.8 2.6 CC LM
Zulu 5.2 5.5 FL LM

Average 6.3 6.3

Table A3: Results on FLEURS-102. We show character error rate on the dev and test sets
of all 102 FLEURS languages for MMS when fine-tuned on the labeled data of FLEURS using
language-specific adapters/heads. For inference we choose between two n-gram language
models (LM) based on dev set accuracy: a word-based model trained on Common Crawl (CC
LM) or a character-based model trained on the FLEURS training transcriptions (FL LM).
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Appendix E. Gender Bias Study

Num Samples MMS ASR CER ↓ FLEURS ASR CER ↓
Female Male Female Male Overall Female Male Overall

Assamese 139 279 15.3 15.1 15.4 8.6 8.0 8.9
Bulgarian 189 206 9.0 10.2 7.9 3.6 3.5 3.6
Welsh 150 296 15.8 19.4 14.1 8.4 11.5 6.9
Greek 125 146 11.4 9.3 13.1 5.4 4.0 6.6
English 245 149 10.8 10.7 10.9 6.0 5.5 6.8
Spanish 130 278 5.2 5.8 5.0 2.3 2.9 2.0
Fula 107 166 27.2 29.0 26.2 14.8 21.4 11.0
Finnish 352 63 7.6 7.1 10.2 2.7 2.6 3.8
French 62 227 9.1 10.0 8.8 5.4 6.4 5.2
Gujarati 149 283 13.3 12.7 13.7 6.2 6.2 6.2
Hindi 120 119 15.1 15.5 14.7 6.6 8.3 5.1
Kazakh 136 232 7.8 7.4 8.0 3.1 2.4 3.6
Khmer 98 228 26.1 22.8 27.6 14.1 11.2 15.4
Kannada 245 123 10.0 10.4 9.3 5.2 5.2 5.1
Korean 93 133 24.3 26.0 22.9 13.5 14.0 13.1
Kyrgyz 273 149 10.6 12.1 7.9 4.5 5.7 2.1
Ganda 228 78 13.4 13.3 13.6 8.2 7.9 9.0
Latvian 177 179 7.0 6.6 7.3 3.0 2.7 3.3
Marathi 148 295 13.2 9.3 15.0 8.2 4.8 9.9
Polish 95 243 6.6 7.2 6.3 3.3 3.8 3.1
Russian 203 153 8.0 7.4 8.9 4.0 3.7 4.6
Shona 118 275 10.5 8.6 11.4 4.1 2.2 5.1
Swedish 64 266 10.1 8.5 10.5 5.6 4.6 5.9
Swahili 59 152 7.7 11.1 6.5 3.7 3.9 3.6
Tamil 214 163 15.3 17.0 13.2 8.9 10.1 7.4
Telugu 76 235 12.7 11.3 13.1 7.9 8.2 7.8
Tajik 116 123 11.1 12.5 9.9 4.3 4.9 3.7

Average - - 12.4 12.3 12.4 6.5 6.2 6.4

Table A4: Analysis of Gender Bias. We compare ASR models trained on MMS-lab data
and FLEURS data. We report dev CER per gender of the speakers for 27 languages of
FLEURS for which MMS-lab provides data and for which there are at least 50 samples for
each gender.

52


	Introduction
	Related Work
	Dataset Creation
	Paired Data for 1,107 Languages (MMS-lab)
	Data Source
	Data Pre-processing
	Scalable Forced Alignment
	Initial Data Alignment
	Improved Data Alignment
	Final Data Filtering
	Creating train/dev/test splits

	Unpaired Data for 3,809 Languages (MMS-unlab)
	Comparison to Existing Broad Coverage Approaches and Other Datasets
	CMU Wilderness Dataset
	ASR-2K
	Other Existing Datasets


	Cross-lingual Self-supervised Speech Representation Learning
	Method: wav2vec 2.0 and XLS-R
	Pre-training Setup
	Comparison to XLS-R

	Automatic Speech Recognition
	Modeling and Training Approach
	Scaling Multilingual ASR to 1,107 Languages
	Comparison to Other Work
	Whisper
	Google USM

	Robust Multilingual ASR Models
	Evaluation on 1,107 Languages

	Language Identification
	Training Setup
	Comparison to Existing Datasets
	Scaling Language Identification to 4,017 Languages

	Speech Synthesis
	Text-To-Speech Model
	Text and Speech Data Pre-processing
	Evaluation Methodology
	Evaluation of Design Choices
	Training Setup
	Data with Background Music

	Out-of-Domain Evaluation
	Evaluation on 1,107 Languages

	Bias Analysis and Ethical Considerations
	Understanding Gender Bias
	Understanding Language Bias
	Ethical Considerations and use of Religious Texts in Research

	Conclusions and Open Problems
	Forced Alignment
	n-gram Language Models
	Comparison to Whisper
	Comparison to USM
	Gender Bias Study

