Fast Exact Matrix Completion: A Unified Optimization Framework for Matrix Completion

Dimitris Bertsimas, Michael Lingzhi Li.

Year: 2020, Volume: 21, Issue: 231, Pages: 1−43


We formulate the problem of matrix completion with and without side information as a non-convex optimization problem. We design fastImpute based on non-convex gradient descent and show it converges to a global minimum that is guaranteed to recover closely the underlying matrix while it scales to matrices of sizes beyond $10^5 \times 10^5$. We report experiments on both synthetic and real-world datasets that show fastImpute is competitive in both the accuracy of the matrix recovered and the time needed across all cases. Furthermore, when a high number of entries are missing, fastImpute is over $75\%$ lower in MAPE and $15$ times faster than current state-of-the-art matrix completion methods in both the case with side information and without.