next up previous
Up: SVMTorch: Support Vector Machines Previous: Conclusion

Bibliography

1
R. Collobert and S. Bengio.
On the Convergence of SVMTorch, an Algorithm for Large-Scale Regression Problems.
IDIAP-RR 24, IDIAP, 2000.
Available at ftp://www.idiap.ch/pub/reports/2000/rr00-24.ps.gz.

2
H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik.
Support vector regression machines.
In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 155-161. The MIT Press, 1997.

3
G.W. Flake and S. Lawrence.
Efficient SVM regression training with SMO.
Submitted to Machine Learning. Available at http://external.nj.nec.com/homepages/flake/smorch.ps, 2000.

4
R. Fletcher.
Practical Methods of Optimization.
John Wiley and Sons, Chichester, 1987.

5
T. Joachims.
Making large-scale support vector machine learning practical.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press, 1999.

6
S. S. Keerthi and E. G. Gilbert.
Convergence of a Generalized SMO Algorithm for SVM Classifier Design.
Technical Report CD-00-01, Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore, 2000.
Available at http://guppy.mpe.nus.edu.sg/~mpessk/svm/conv_ml.ps.gz.

7
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy.
Improvements to Platt's SMO Algorithm for SVM Classifier Design.
Technical Report CD-99-14, Control Division, Dept. of Mechanical and Production Engineering, National University of Singapore, 1999.
To appear in Neural Computation. Available at http://guppy.mpe.nus.edu.sg/~mpessk/smo_mod.ps.gz.

8
P. Laskov.
An improved decomposition algorithm for regression support vector machines.
In S.A. Solla, T.K. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing Systems 12. The MIT Press, 2000.

9
C. Lin.
On the Convergence of the Decomposition Method for Support Vector Machines.
Technical report, National Taiwan University, 2000.
Available at http://www.csie.ntu.edu.tw/~cjlin/papers/conv.ps.gz.

10
K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik.
Predicting time series with support vector machines.
In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, editors, Artificial Neural Networks - ICANN'97, pages 999-1004. Springer, 1997.

11
E. Osuna, R. Freund, and F. Girosi.
An improved training algorithm for support vector machines.
In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop, pages 276-285. IEEE Press, New York, 1997.

12
J. C. Platt.
Fast training of support vector machines using sequential minimal optimization.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods. The MIT Press, 1999.

13
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy.
Improvements to the SMO algorithm for SVM regression.
IEEE Transaction on Neural Networks, 11(5):1188-1183, 2000.

14
A. Smola and B. Schölkopf.
A Tutorial on Support Vector Regression.
Technical Report NeuroCOLT NC-TR-98-030, Royal Holloway College,University of London, UK, 1998.

15
V. Vapnik.
The Nature of Statistical Learning Theory.
Springer, second edition, 1995.


Journal of Machine Learning Research