next up previous
Next: About this document ... Up: Dependency Networks for Inference, Previous: Appendix: Proofs of Theorems

Bibliography

BartlettBartlett1955
Bartlett, M. 1955.
An Introduction to Stochastic Processes.
University Press, Cambridge.

BesagBesag1974
Besag, J. 1974.
Spatial interaction and the statistical analysis of lattice systems
Journal of the Royal Statistical Society, B, 36, 192-236.

BesagBesag1975
Besag, J. 1975.
Statistical analysis of non-lattice data
The Statistician, 24, 179-195.

Besag, Green, Higdon, MengersenBesag et al.1995
Besag, J., Green, P., Higdon, D., Mengersen, K. 1995.
Bayesian computation and stochastic systems
Statistical Science, 10, 3-66.

BishopBishop1995
Bishop, C. 1995.
Neural Networks for Pattern Recognition.
Clarendon Press, Oxford.

Breese, Heckerman, KadieBreese et al.1998
Breese, J. S., Heckerman, D., Kadie, C. 1998.
Empirical analysis of predictive algorithms for collaborative filtering
In Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin. Morgan Kaufmann.

BrookBrook1964
Brook, D. 1964.
On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbor systems
Biometrika, 51, 481-483.

BuntineBuntine1991
Buntine, W. 1991.
Theory refinement on Bayesian networks
In Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence, Los Angeles, CA, 52-60. Morgan Kaufmann.

Chickering, Heckerman, MeekChickering et al.1997
Chickering, D., Heckerman, D., Meek, C. 1997.
A Bayesian approach to learning Bayesian networks with local structure
In Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence, Providence, RI. Morgan Kaufmann.

Cho MeyerCho Meyer1999
Cho, G. Meyer, C. 1999.
Markov chain sensitivity by mean first passage times
112242-0199, North Carolina State University.

Fowlkes, Freeny, LandwehrFowlkes et al.1988
Fowlkes, E., Freeny, A., Landwehr, J. 1988.
Evaluating logistic models for large contingency tables
Journal of the American Statistical Association, 83, 611-622.

Frey, Hinton, DayanFrey et al.1996
Frey, B., Hinton, G., Dayan, P. 1996.
Does the wake-sleep algorithm produce good density estimators?
In Touretsky, D., Mozer, M., Hasselmo, M., Neural Information Processing Systems,  8, 661-667. MIT Press.

Friedman GoldszmidtFriedman Goldszmidt1996
Friedman, N. Goldszmidt, M. 1996.
Learning Bayesian networks with local structure
In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR, 252-262. Morgan Kaufmann.

Geman GemanGeman Geman1984
Geman, S. Geman, D. 1984.
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-742.

Gilks, Richardson, SpiegelhalterGilks et al.1996
Gilks, W., Richardson, S., Spiegelhalter, D. 1996.
Markov Chain Monte Carlo in Practice.
Chapman and Hall.

Heckerman MeekHeckerman Meek1997
Heckerman, D. Meek, C. 1997.
Models and selection criteria for regression and classification
In Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence, Providence, RI. Morgan Kaufmann.

Jensen, Lauritzen, OlesenJensen et al.1990
Jensen, F., Lauritzen, S., Olesen, K. 1990.
Bayesian updating in recursive graphical models by local computations
Computational Statisticals Quarterly, 4, 269-282.

LauritzenLauritzen1996
Lauritzen, S. 1996.
Graphical Models.
Claredon Press.

Lauritzen, Dawid, Larsen, LeimerLauritzen et al.1990
Lauritzen, S., Dawid, A., Larsen, B., Leimer, H. 1990.
Independence properties of directed Markov fields
Networks, 20, 491-505.

LévyLévy1948
Lévy, P. 1948.
Chaines doubles de Markoff et fonctions aleatories de deux variables
Academcy of Science, Paris, 226, 53-55.

McClave DieterichMcClave Dieterich1988
McClave, J. Dieterich, F. 1988.
Statistics.
Dellen Publishing Company.

McCullagh NelderMcCullagh Nelder1989
McCullagh, P. Nelder, J. 1989.
Generalized Linear Models, Second Edition.
Chapman and Hall, New York.

NealNeal1993
Neal, R. 1993.
Probabilistic inference using Markov chain Monte Carlo methods
CRG-TR-93-1, Department of Computer Science, University of Toronto.

PearlPearl1988
Pearl, J. 1988.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

PlattPlatt1999
Platt, J. 1999.
Fast training of support vector machines using sequential minimal optimization
In Advances in Kernel Methods--Support Vector Learning. MIT Press.

Resnik, Iacovou, Suchak, Bergstrom, RiedlResnik et al.1994
Resnik, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J. 1994.
Grouplens: An open architecture for collaborative filtering of netnews
In Proceedings of the ACM 1994 Conference on Computer Supported Cooperative Work, 175-186. ACM.

Sewell ShahSewell Shah1968
Sewell, W. Shah, V. 1968.
Social class, parental encouragement, and educational aspirations
American Journal of Sociology, 73, 559-572.

Tresp HofmannTresp Hofmann1998
Tresp, V. Hofmann, R. 1998.
Nonlinear Markov networks for continuous variables
In Advances in Neural Information Processing Systems 10, 521-527. MIT Press.

WhittakerWhittaker1990
Whittaker, J. 1990.
Graphical Models in Applied Multivariate Statistics.
John Wiley and Sons.


Journal of Machine Learning Research, 2000-10-19