Next: About this document ...
Up: Dependency Networks for Inference,
Previous: Appendix: Proofs of Theorems
- BartlettBartlett1955
-
Bartlett, M. 1955.
An Introduction to Stochastic Processes.
University Press, Cambridge.
- BesagBesag1974
-
Besag, J. 1974.
Spatial interaction and the statistical analysis of lattice
systems
Journal of the Royal Statistical Society, B, 36,
192-236.
- BesagBesag1975
-
Besag, J. 1975.
Statistical analysis of non-lattice data
The Statistician, 24, 179-195.
- Besag, Green, Higdon, MengersenBesag
et al.1995
-
Besag, J., Green, P., Higdon, D., Mengersen, K. 1995.
Bayesian computation and stochastic systems
Statistical Science, 10, 3-66.
- BishopBishop1995
-
Bishop, C. 1995.
Neural Networks for Pattern Recognition.
Clarendon Press, Oxford.
- Breese, Heckerman, KadieBreese
et al.1998
-
Breese, J. S., Heckerman, D., Kadie, C. 1998.
Empirical analysis of predictive algorithms for collaborative
filtering
In Proceedings of Fourteenth Conference on Uncertainty in
Artificial Intelligence, Madison, Wisconsin. Morgan Kaufmann.
- BrookBrook1964
-
Brook, D. 1964.
On the distinction between the conditional probability and the
joint probability approaches in the specification of nearest-neighbor
systems
Biometrika, 51, 481-483.
- BuntineBuntine1991
-
Buntine, W. 1991.
Theory refinement on Bayesian networks
In Proceedings of Seventh Conference on Uncertainty in
Artificial Intelligence, Los Angeles, CA, 52-60. Morgan
Kaufmann.
- Chickering, Heckerman, MeekChickering
et al.1997
-
Chickering, D., Heckerman, D., Meek, C. 1997.
A Bayesian approach to learning Bayesian networks with
local structure
In Proceedings of Thirteenth Conference on Uncertainty in
Artificial Intelligence, Providence, RI. Morgan Kaufmann.
- Cho MeyerCho Meyer1999
-
Cho, G. Meyer, C. 1999.
Markov chain sensitivity by mean first passage times
112242-0199, North Carolina State University.
- Fowlkes, Freeny, LandwehrFowlkes
et al.1988
-
Fowlkes, E., Freeny, A., Landwehr, J. 1988.
Evaluating logistic models for large contingency tables
Journal of the American Statistical Association, 83,
611-622.
- Frey, Hinton, DayanFrey et al.1996
-
Frey, B., Hinton, G., Dayan, P. 1996.
Does the wake-sleep algorithm produce good density
estimators?
In Touretsky, D., Mozer, M., Hasselmo, M., Neural
Information Processing Systems, 8, 661-667. MIT
Press.
- Friedman GoldszmidtFriedman
Goldszmidt1996
-
Friedman, N. Goldszmidt, M. 1996.
Learning Bayesian networks with local structure
In Proceedings of Twelfth Conference on Uncertainty in
Artificial Intelligence, Portland, OR, 252-262. Morgan
Kaufmann.
- Geman GemanGeman Geman1984
-
Geman, S. Geman, D. 1984.
Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 721-742.
- Gilks, Richardson, SpiegelhalterGilks
et al.1996
-
Gilks, W., Richardson, S., Spiegelhalter, D. 1996.
Markov Chain Monte Carlo in Practice.
Chapman and Hall.
- Heckerman MeekHeckerman
Meek1997
-
Heckerman, D. Meek, C. 1997.
Models and selection criteria for regression and
classification
In Proceedings of Thirteenth Conference on Uncertainty in
Artificial Intelligence, Providence, RI. Morgan Kaufmann.
- Jensen, Lauritzen, OlesenJensen
et al.1990
-
Jensen, F., Lauritzen, S., Olesen, K. 1990.
Bayesian updating in recursive graphical models by local
computations
Computational Statisticals Quarterly, 4, 269-282.
- LauritzenLauritzen1996
-
Lauritzen, S. 1996.
Graphical Models.
Claredon Press.
- Lauritzen, Dawid, Larsen, LeimerLauritzen
et al.1990
-
Lauritzen, S., Dawid, A., Larsen, B., Leimer, H. 1990.
Independence properties of directed Markov fields
Networks, 20, 491-505.
- LévyLévy1948
-
Lévy, P. 1948.
Chaines doubles de Markoff et fonctions aleatories de deux
variables
Academcy of Science, Paris, 226, 53-55.
- McClave DieterichMcClave
Dieterich1988
-
McClave, J. Dieterich, F. 1988.
Statistics.
Dellen Publishing Company.
- McCullagh NelderMcCullagh
Nelder1989
-
McCullagh, P. Nelder, J. 1989.
Generalized Linear Models, Second Edition.
Chapman and Hall, New York.
- NealNeal1993
-
Neal, R. 1993.
Probabilistic inference using Markov chain Monte Carlo
methods
CRG-TR-93-1, Department of Computer Science, University of
Toronto.
- PearlPearl1988
-
Pearl, J. 1988.
Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.
Morgan Kaufmann, San Mateo, CA.
- PlattPlatt1999
-
Platt, J. 1999.
Fast training of support vector machines using sequential
minimal optimization
In Advances in Kernel Methods--Support Vector Learning. MIT
Press.
- Resnik, Iacovou, Suchak, Bergstrom, RiedlResnik
et al.1994
-
Resnik, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.
1994.
Grouplens: An open architecture for collaborative filtering
of netnews
In Proceedings of the ACM 1994 Conference on Computer Supported
Cooperative Work, 175-186. ACM.
- Sewell ShahSewell Shah1968
-
Sewell, W. Shah, V. 1968.
Social class, parental encouragement, and educational
aspirations
American Journal of Sociology, 73, 559-572.
- Tresp HofmannTresp Hofmann1998
-
Tresp, V. Hofmann, R. 1998.
Nonlinear Markov networks for continuous variables
In Advances in Neural Information Processing Systems 10,
521-527. MIT Press.
- WhittakerWhittaker1990
-
Whittaker, J. 1990.
Graphical Models in Applied Multivariate Statistics.
John Wiley and Sons.
Journal of Machine Learning Research,
2000-10-19