Next: About this document ...
Up: Learning with Mixtures of
Previous: Appendix A.
- Bishop 1999
-
Bishop, C. M.
1999.
Latent variable models.
In M. I. Jordan (), Learning in Graphical Models.
Cambridge, MA: MIT Press.
- Blake, Merz
1998
-
Blake, C. Merz, C.
1998.
UCI Repository of Machine Learning Databases.
http://www.ics.uci.edu/mlearn/MLRepository.html.
- Boutilier, Friedman, Goldszmidt
Koller 1996
-
Boutilier, C., Friedman, N., Goldszmidt, M. Koller, D.
1996.
Context-specific independence in Bayesian networks.
In Proceedings of the 12th Conference on Uncertainty in
AI ( 64-72).
Morgan Kaufmann.
- Buntine 1996
-
Buntine, W.
1996.
A guide to the literature on learning graphical
models.
IEEE Transactions on Knowledge and Data Engineering, 8,
195-210.
- Cheeseman, Stutz 1995
-
Cheeseman, P. Stutz, J.
1995.
Bayesian classification (AutoClass): Theory and
results.
In U. Fayyad, G. Piatesky-Shapiro, P. Smyth
Uthurusamy (), Advances in Knowledge Discovery and Data
Mining ( 153-180).
AAAI Press.
- Cheng, Bell, Liu
1997
-
Cheng, J., Bell, D. A. Liu, W.
1997.
Learning belief networks from data: an information theory
based approach.
In Proceedings of the Sixth ACM International
Conference on Information and Knowledge Management.
- Chow, Liu 1968
-
Chow, C. K. Liu, C. N.
1968.
Approximating discrete probability distributions with
dependence trees.
IEEE Transactions on Information Theory, IT-14(3),
462-467.
- Cooper, Herskovits
1992
-
Cooper, G. F. Herskovits, E.
1992.
A Bayesian method for the induction of probabilistic
networks from data.
Machine Learning, 9, 309-347.
- Cormen, Leiserson, Rivest
1990
-
Cormen, T. H., Leiserson, C. E. Rivest, R. R.
1990.
Introduction to Algorithms.
Cambridge, MA: MIT Press.
- Cowell, Dawid, Lauritzen,
Spiegelhalter 1999
-
Cowell, R. G., Dawid, A. P., Lauritzen, S. L. Spiegelhalter,
D. J.
1999.
Probabilistic Networks and Expert Systems.
New York, NY: Springer.
- Dayan, Zemel 1995
-
Dayan, P. Zemel, R. S.
1995.
Competition and multiple cause models.
Neural Computation, 7(3), 565-579.
- Dempster, Laird, Rubin
1977
-
Dempster, A. P., Laird, N. M. Rubin, D. B.
1977.
Maximum likelihood from incomplete data via the EM
algorithm.
Journal of the Royal Statistical Society, B, 39, 1-38.
- Fredman, Tarjan
1987
-
Fredman, M. L. Tarjan, R. E.
1987.
Fibonacci heaps and their uses in improved network
optimization algorithms.
Journal of the Association for Computing Machinery,
34(3), 596-615.
- Frey, Hinton, Dayan
1996
-
Frey, B. J., Hinton, G. E. Dayan, P.
1996.
Does the wake-sleep algorithm produce good density
estimators?
In D. Touretzky, M. Mozer M. Hasselmo (),
Neural Information Processing Systems ( 661-667).
Cambridge, MA: MIT Press.
- Friedman 1998
-
Friedman, N.
1998.
The Bayesian structural EM algorithm.
In Proceedings of the 14th Conference on Uncertainty in
AI ( 129-138).
San Francisco, CA: Morgan Kaufmann.
- Friedman, Geiger, Goldszmidt
1997
-
Friedman, N., Geiger, D. Goldszmidt, M.
1997.
Bayesian network classifiers.
Machine Learning, 29, 131-163.
- Friedman, Getoor
1999
-
Friedman, N. Getoor, L.
1999.
Efficient learning using constrained sufficient
statistics.
In Proceedings of the 7th International Workshop on
Artificial Intelligence and Statistics (AISTATS-99).
- Friedman, Getoor, Koller, Pfeffer
1996
-
Friedman, N., Getoor, L., Koller, D. Pfeffer, A.
1996.
Learning probabilistic relational models.
In Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI) ( 1300-1307).
- Friedman, Goldszmidt, Lee
1998
-
Friedman, N., Goldszmidt, M. Lee, T.
1998.
Bayesian network classification with continous attributes:
Getting the best of both discretization and parametric fitting.
In Proceedings of the International Conference on Machine
Learning (ICML).
- Geiger 1992
-
Geiger, D.
1992.
An entropy-based learning algorithm of Bayesian conditional
trees.
In Proceedings of the 8th Conference on Uncertainty in
AI ( 92-97).
Morgan Kaufmann Publishers.
- Geiger, Heckerman
1996
-
Geiger, D. Heckerman, D.
1996.
Knowledge representation and inference in similarity networks
and Bayesian multinets.
Artificial Intelligence, 82, 45-74.
- Hastie, Tibshirani
1996
-
Hastie, T. Tibshirani, R.
1996.
Discriminant analysis by mixture modeling.
Journal of the Royal Statistical Society B, 58,
155-176.
- Heckerman, Geiger, Chickering
1995
-
Heckerman, D., Geiger, D. Chickering, D. M.
1995.
Learning Bayesian networks: the combination of knowledge
and statistical data.
Machine Learning, 20(3), 197-243.
- Hinton, Dayan, Frey, Neal
1995
-
Hinton, G. E., Dayan, P., Frey, B. Neal, R. M.
1995.
The wake-sleep algorithm for unsupervised neural
networks.
Science, 268, 1158-1161.
- Jelinek 1997
-
Jelinek, F.
1997.
Statistical Methods for Speech Recognition.
Cambridge, MA: MIT Press.
- Jordan, Jacobs
1994
-
Jordan, M. I. Jacobs, R. A.
1994.
Hierarchical mixtures of experts and the EM
algorithm.
Neural Computation, 6, 181-214.
- Kontkanen, Myllymaki, Tirri
1996
-
Kontkanen, P., Myllymaki, P. Tirri, H.
1996.
Constructing Bayesian finite mixture models by the EM
algorithm ( C-1996-9).
University of Helsinki, Department of Computer Science.
- Lauritzen 1995
-
Lauritzen, S. L.
1995.
The EM algorithm for graphical association models with
missing data.
Computational Statistics and Data Analysis, 19,
191-201.
- Lauritzen 1996
-
Lauritzen, S. L.
1996.
Graphical Models.
Oxford: Clarendon Press.
- Lauritzen, Dawid, Larsen, Leimer
1990
-
Lauritzen, S. L., Dawid, A. P., Larsen, B. N. Leimer, H.-G.
1990.
Independence properties of directed Markov fields.
Networks, 20, 579-605.
- MacLachlan, Bashford
1988
-
MacLachlan, G. J. Bashford, K. E.
1988.
Mixture Models: Inference and Applications to
Clustering.
NY: Marcel Dekker.
- Meila, Jaakkola
2000
-
Meila, M. Jaakkola, T.
2000.
Tractable Bayesian learning of tree distributions.
In C. Boutilier M. Goldszmidt (), Proceedings of
the 16th Conference on Uncertainty in AI ( 380-388).
San Francisco, CA: Morgan Kaufmann.
- Meila, Jordan
1998
-
Meila, M. Jordan, M. I.
1998.
Estimating dependency structure as a hidden variable.
In M. I. Jordan, M. J. Kearns S. A. Solla (),
Neural Information Processing Systems ( 584-590).
MIT Press.
- Meila-Predoviciu 1999
-
Meila-Predoviciu, M.
1999.
Learning with mixtures of trees.
, Massachusetts Institute of Technology.
- Michie, Spiegelhalter, Taylor
1994
-
Michie, D., Spiegelhalter, D. J. Taylor, C. C.
1994.
Machine Learning, Neural and Statistical
Classification.
New York: Ellis Horwood.
- Monti, Cooper
1998
-
Monti, S. Cooper, G. F.
1998.
A Bayesian network classfier that combines a finite mixture
model and a naive Bayes model ( ISSP-98-01).
University of Pittsburgh.
- Moore, Lee 1998
-
Moore, A. W. Lee, M. S.
1998.
Cached sufficient statistics for efficient machine learning
with large datasets.
Journal for Artificial Intelligence Research, 8, 67-91.
- Neal, Hinton 1999
-
Neal, R. M. Hinton, G. E.
1999.
A view of the EM algorithm that justifies incremental,
sparse, and other variants.
In M. I. Jordan (), Learning in Graphical Models ( 355-368).
Cambridge, MA: MIT Press.
- Ney, Essen KneserNey
1994
-
Ney, H., Essen, U. Kneser, R.
1994.
On structuring probabilistic dependences in stochastic
language modelling.
Computer Speech and Language, 8, 1-38.
- Noordewier, Towell, Shavlik
1991
-
Noordewier, M. O., Towell, G. G. Shavlik, J. W.
1991.
Training knowledge-based neural networks to recognize genes
in DNA sequences.
In R. P. Lippmann, J. E. Moody D. S. Touretzky (), Advances in Neural Information Processing Systems ( 530-538).
Morgan Kaufmann Publishers.
- Pearl 1988
-
Pearl, J.
1988.
Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference.
San Mateo, CA: Morgan Kaufman Publishers.
- Philips, Moon, Rauss, Rizvi 1997
-
Philips, P., Moon, H., Rauss, P. Rizvi, S.
1997.
The FERET evaluation methodology for face-recognition
algorithms.
In Proceedings of the 1997 Conference on Computer Vision
and Pattern Recognition.
San Juan, Puerto Rico.
- Rasmussen
1996
-
Rasmussen, C. E., Neal, R. M., Hinton, G. E., Camp, D. van, Revow, M.,
Ghahramani, Z., Kustra, R. Tibshrani, R.
1996.
The DELVE Manual.
http://www.cs.utoronto.ca/delve.
- Rissanen 1989
-
Rissanen, J.
1989.
Stochastic Complexity in Statistical Inquiry.
New Jersey: World Scientific Publishing Company.
- Rubin, Thayer
1983
-
Rubin, D. B. Thayer, D. T.
1983.
EM algorithms for ML factor analysis.
Psychometrika, 47, 69-76.
- Saul, Jordan 1999
-
Saul, L. K. Jordan, M. I.
1999.
A mean field learning algorithm for unsupervised neural
networks.
In M. I. Jordan (), Learning in Graphical Models ( 541-554).
Cambridge, MA: MIT Press.
- Shafer, Shenoy
1990
-
Shafer, G. Shenoy, P.
1990.
Probability propagation.
Annals of Mathematics and Artificial Intelligence, 2,
327-352.
- Smyth, Heckerman, Jordan
1997
-
Smyth, P., Heckerman, D. Jordan, M. I.
1997.
Probabilistic independence networks for hidden Markov
probability models.
Neural Computation, 9, 227-270.
- Thiesson, Meek, Chickering,
Heckerman 1997
-
Thiesson, B., Meek, C., Chickering, D. M. Heckerman, D.
1997.
Learning mixtures of Bayes networks ( MSR-POR-97-30).
Microsoft Research.
- Watson, Hopkins, Roberts, Steitz,
Weiner 1987
-
Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A.
Weiner, A. M.
1987.
Molecular Biology of the Gene ( I, 4 ).
Menlo Park, CA: The Benjamin/Cummings Publishing Company.
- West 1996
-
West, D. B.
1996.
Introduction to Graph Theory.
Upper Saddle River, NJ: Prentice Hall.
Journal of Machine Learning Research
2000-10-19