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Abstract
A linear causal model with correlated errors, represented by a DAG with bi-directed edges, can
be tested by the set of conditional independence relations implied by the model. A global Markov
property specifies, by the d-separation criterion, the set of all conditional independence relations
holding in any model associated with a graph. A local Markov property specifies a much smaller set
of conditional independence relations which will imply all other conditional independence relations
which hold under the global Markov property. For DAGs with bi-directed edges associated with
arbitrary probability distributions, a local Markov property is given in Richardson (2003) which
may invoke an exponential number of conditional independencies. In this paper, we show that for
a class of linear structural equation models with correlated errors, there is a local Markov property
which will invoke only a linear number of conditional independence relations. For general linear
models, we provide a local Markov property that often invokes far fewer conditional independencies
than that in Richardson (2003). The results have applications in testing linear structural equation
models with correlated errors.

Keywords: Markov properties, linear causal models, linear structural equation models, graphical
models

1. Introduction

Linear causal models called structural equation models (SEMs) are widely used for causal reasoning
in social sciences, economics, and artificial intelligence (Goldberger, 1972; Bollen, 1989; Spirtes
et al., 2001; Pearl, 2000). One important problem in the applications of linear causal models is test-
ing a hypothesized model against the given data. While the conventional method involves maximum
likelihood estimation of the covariance matrix, an alternative approach has been proposed recently
which involves testing for the conditional independence relationships implied by the model (Spirtes
et al., 1998; Pearl, 1998; Pearl and Meshkat, 1999; Pearl, 2000; Shipley, 2000, 2003). The advan-
tages of using this new test method instead of the traditional global fitting test have been discussed
in Pearl (1998), Shipley (2000), McDonald (2002) and Shipley (2003). The method can be applied
in small data samples and it can test “local” features of the model.

To apply this test method, one needs to be able to identify the conditional independence rela-
tionships implied by an SEM. This can be achieved by representing the SEM with a graph called a
path diagram (Wright, 1934) and then reading independence relations from the path diagram. For
a linear SEM without correlated errors, the corresponding path diagram is a directed acyclic graph
(DAG). The set of all conditional independence relations holding in any model associated with a
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DAG, often called a global Markov property for the DAG, can be read by the d-separation crite-
rion (Pearl, 1988). However, it is not necessary to test for all the independencies implied by the
model as a subset of those independencies may imply all others. A local Markov property specifies
a much smaller set of conditional independence relations which will imply (using the laws of prob-
ability) all other conditional independence relations that hold under the global Markov property. A
well-known local Markov property for DAGs is that each variable is conditionally independent of
its non-descendants given its parents (Lauritzen et al., 1990; Lauritzen, 1996). Based on this local
Markov property, Pearl and Meshkat (1999) and Shipley (2000) proposed testing methods for linear
SEMs without correlated errors that involve at most one conditional independence test for each pair
of variables.

On the other hand, the path diagrams for linear SEMs with correlated errors are DAGs with
bi-directed edges (↔) where bi-directed edges are used to represent correlated errors. A DAG with
bi-directed edges is called an acyclic directed mixed graph (ADMG) in Richardson (2003). The
set of all conditional independence relations encoded in an ADMG can still be read by (a natural
extension of) the d-separation criterion (called m-separation in Richardson, 2003) which provides
the global Markov property for ADMGs (Spirtes et al., 1998; Koster, 1999; Richardson, 2003). A
local Markov property for ADMGs is given in Richardson (2003), which, in the worst case, may
invoke an exponential number of conditional independence relations, a sharp difference with the
local Markov property for DAGs, where only one conditional independence relation is associated
with each variable. Shipley (2003) suggested a method for testing linear SEMs with correlated
errors but the method may or may not, depending on the actual models, be able to find a subset of
conditional independence relations that imply all others.

In this paper, we seek to improve the local Markov property given in Richardson (2003) for
linear SEMs with correlated errors. The local Markov property in Richardson (2003) is applicable
for ADMGs associated with arbitrary probability distributions. Specifically, only semi-graphoid
axioms which must hold in all probability distributions (Pearl, 1988) are used in showing that the
set of conditional independence relations specified by the local Markov property will imply all those
specified by the global Markov property. On the other hand, in linear SEMs, variables are assumed
to have normal distributions, and it is known that normal distributions also satisfy the so-called
composition axiom. Therefore, in this paper, we look for local Markov properties for ADMGs
associated with probability distributions that satisfy the composition axiom. We will show that
for a class of ADMGs, the local Markov property will invoke only one conditional independence
relation for each variable, and therefore testing for the corresponding linear SEMs will involve at
most one conditional independence test for each pair of variables. For general ADMGs, we provide
a procedure that reduces the number of conditional independencies invoked by the local Markov
property given in Richardson (2003), and therefore reduces the complexity of testing linear SEMs
with correlated errors.

In the test of conditional independence relations, the efficiency of the test is influenced by the
size of the conditioning set (that is, the number of conditioning variables) with a small conditioning
set having advantage over a large one. The conditional independence relations invoked by the stan-
dard local Markov property for DAGs use a parent set as the conditioning set. Pearl and Meshkat
(1999) have shown for linear SEMs without correlated errors how to find a set of conditional inde-
pendence relations that may involve fewer conditioning variables. In this paper, we also generalize
this result to linear SEMs with correlated errors.
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The paper is organized as follows. In Section 2, we introduce linear SEMs, give basic notation
and definitions, and present the local Markov property developed in Richardson (2003). In Section
3, we show that for a class of ADMGs, there is a local Markov property for probability distributions
satisfying the composition axiom that invokes only a linear number of conditional independence
relations. We also show a local Markov property that may involve fewer conditioning variables.
In Section 4, we consider general ADMGs (for probability distributions satisfying the composition
axiom) and show a local Markov property that invokes fewer conditional independencies than that
in Richardson (2003). Section 5 concludes the paper.

2. Preliminaries and Motivation

In this section, we give basic definitions and introduce some relevant concepts.

2.1 Linear Causal Models

The SEM technique was developed by geneticists (Wright, 1934) and economists (Haavelmo, 1943)
for assessing cause-effect relationships from a combination of statistical data and qualitative causal
assumptions. It is an important causal analysis tool widely used in social sciences, economics, and
artificial intelligence (Goldberger, 1972; Duncan, 1975; Bollen, 1989; Spirtes et al., 2001). For a
review of SEMs and causality we refer to Pearl (1998).

In an SEM, the causal relationships among a set of variables are often assumed to be linear and
expressed by linear equations. Each equation describes the dependence of one variable in terms of
the others. For example, an equation

Y = aX + ε (1)

represents that X may have a direct causal influence on Y and that no other variables have (direct)
causal influences on Y except those factors (represented by the error term ε traditionally assumed to
have normal distribution) that are omitted from the model. The parameter a quantifies the (direct)
causal effect of X on Y . An equation like (1) with a causal interpretation represents an autonomous
causal mechanism and is said to be structural.

As an example, consider the following model from Pearl (2000) that concerns the relations
between smoking (X) and lung cancer (Y ), mediated by the amount of tar (Z) deposited in a person’s
lungs:

X = ε1,

Z = aX + ε2,

Y = bZ + ε3.

The model assumes that the amount of tar deposited in the lungs depends on the level of smoking
(and external factors) and that the production of lung cancer depends on the amount of tar in the
lungs but smoking has no effect on lung cancer except as mediated through tar deposits. To fully
specify the model, we also need to decide whether those omitted factors (ε1, ε2, ε3) are correlated
or not. We may assume that no other factor that affects tar deposit is correlated with the omitted
factors that affect smoking or lung cancer (Cov(ε1,ε2) = Cov(ε2,ε3) = 0). However, there might be
unobserved factors (say some unknown carcinogenic genotype) that affect both smoking and lung
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Figure 1: Causal diagram illustrating the effect of smoking on lung cancer

cancer (Cov(ε1,ε3) 6= 0), but the genotype nevertheless has no effect on the amount of tar in the
lungs except indirectly (through smoking). Often, it is illustrative to express our qualitative causal
assumptions in terms of a graphical representation, as shown in Figure 1.

We now formally define the model that we will consider in this paper. A linear causal model (or
linear SEM) over a set of random variables V = {V1, . . . ,Vn} is given by a set of structural equations
of the form

Vj = ∑
i

c jiVi + ε j, j = 1, . . . ,n, (2)

where the summation is over the variables in V judged to be immediate causes of V j. c ji, called a
path coefficient, quantifies the direct causal influence of Vi on V j. ε j’s represent “error” terms due
to omitted factors and are assumed to have normal distribution. We consider recursive models and
assume that the summation in (2) is for i < j, that is, c ji = 0 for i≥ j.

We denote the covariances between observed variables σi j = Cov(Vi,Vj), and between error
terms ψi j = Cov(εi,ε j). We denote the following matrices, Σ = [σi j], Ψ = [ψi j], and C = [ci j]. The
parameters of the model are the non-zero entries in the matrices C and Ψ. A parameterization of the
model assigns a value to each parameter in the model, which then determines a unique covariance
matrix Σ given by (see, for example, Bollen, 1989)

Σ = (I−C)−1Ψ((I−C)t)
−1

.

The structural assumptions encoded in the model are the zero path coefficients and zero error
covariances. The model structure can be represented by a DAG G with (dashed) bi-directed edges
(an ADMG), called a causal diagram (or path diagram), as follows: the nodes of G are the variables
V1, . . . ,Vn; there is a directed edge from Vi to Vj in G if Vi appears in the structural equation for V j,
that is, c ji 6= 0; there is a bi-directed edge between Vi and V j if the error terms εi and ε j have non-zero
correlation. For example, the smoking-and-lung-cancer SEM is represented by the causal diagram
in Figure 1, in which each directed edge is annotated by the corresponding path coefficient.

We note that linear SEMs are often used without explicit causal interpretation. A linear SEM in
which error terms are uncorrelated consists of a set of regression equations. Note that an equation as
given by (2) is a regression equation if and only if ε j is uncorrelated with each Vi (Cov(Vi,ε j) = 0).
Hence, an equation in an SEM with correlated errors may not be a regression equation. Linear
SEMs provide a more powerful way to model data than the regression models taking into account
correlated error terms.

2.2 Model Testing and Markov Properties

One important task in the applications of linear SEMs is to test a model against data. One approach
for this task is to test for the conditional independence relationships implied by the model, which
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can be read from the causal diagram by the d-separation criterion as defined in the following.1 A
path between two vertices Vi and V j in an ADMG consists of a sequence of consecutive edges of
any type (directed or bi-directed). A vertex Vi is said to be an ancestor of a vertex V j if there is a
path Vi → ·· · → V j. A non-endpoint vertex W on a path is called a collider if two arrowheads on
the path meet at W , that is, →W ←, ↔W ↔, ↔W ←, →W ↔; all other non-endpoint vertices
on a path are non-colliders, that is,←W →,←W ←,→W →,↔W →,←W ↔. A path between
vertices Vi and V j in an ADMG is said to be d-connecting given a set of vertices Z if

1. every non-collider on the path is not in Z, and

2. every collider on the path is an ancestor of a vertex in Z.

If there is no path d-connecting Vi and V j given Z, then Vi and V j are said to be d-separated given Z.
Sets X and Y are said to be d-separated given Z, if for every pair Vi, Vj, with Vi ∈ X and V j ∈ Y , Vi

and V j are d-separated given Z. Let I(X ,Z,Y ) denote that X is conditionally independent of Y given
Z. The set of all the conditional independence relations encoded by a causal diagram G is specified
by the following global Markov property.

Definition 1 (The Global Markov Property (GMP)) A probability distribution P is said to satisfy
the global Markov property for G if for arbitrary disjoint sets X ,Y,Z with X and Y being nonempty,

(GMP) X is d-separated from Y given Z in G =⇒ I(X ,Z,Y ).

The global Markov property typically involves a vast number of conditional independence relations
and it is possible to test for a subset of those independencies that will imply all others. A local
Markov property specifies a much smaller set of conditional independence relations which will
imply by the laws of probability all other conditional independence relations that hold under the
global Markov property. For example, a well-known local Markov property for DAGs is that each
variable is conditionally independent of its non-descendants given its parents. The causal diagram
for a linear SEM with correlated errors is an ADMG and a local Markov property for ADMGs is
given in Richardson (2003).

Note that in linear SEMs, the conditional independence relations will correspond to zero partial
correlations (Lauritzen, 1996):

ρViV j.Z = 0⇐⇒ I({Vi},Z,{V j}).

As an example, for the linear SEM with the causal diagram in Figure 2, if we use the local Markov
property in Richardson (2003), then we need to test for the vanishing of the following set of partial
correlations (for ease of notation, we write ρi j.Z to denote ρViV j.Z):

{ρ21,ρ32.1,ρ43.2,ρ41.2,ρ54.3,ρ52.3,ρ51.3,ρ64.53,ρ62.53,ρ61.53,ρ64.3,ρ62.3,ρ61.3,ρ72.6543,

ρ71.6543,ρ72.643,ρ71.643,ρ75.4,ρ73.4,ρ72.4,ρ71.4}. (3)

The local Markov property in Richardson (2003) is valid for any probability distributions. In
fact, the equivalence of the global and local Markov properties is proved using the following so-
called semi-graphoid axioms (Pearl, 1988) that probabilistic conditional independencies must sat-
isfy:

1. The d-separation criterion was originally defined for DAGs (Pearl, 1988) but can be naturally extended for ADMGs
and is called m-separation in Richardson (2003).
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Figure 2: A causal diagram

• Symmetry
I(X ,Z,Y )⇐⇒ I(Y,Z,X).

• Decomposition
I(X ,Z,Y ∪W ) =⇒ I(X ,Z,Y ) & I(X ,Z,W ).

• Weak Union
I(X ,Z,Y ∪W ) =⇒ I(X ,Z∪W,Y ).

• Contraction
I(X ,Z,Y ) & I(X ,Z∪Y,W ) =⇒ I(X ,Z,Y ∪W ).

where X , Y , Z, and W are disjoint sets of variables.
On the other hand, in linear SEMs the variables are assumed to have normal distributions, and

normal distributions also satisfy the following composition axiom:

• Composition
I(X ,Z,Y ) & I(X ,Z,W ) =⇒ I(X ,Z,Y ∪W ).

Therefore, we expect a local Markov property for linear SEMs to invoke fewer conditional inde-
pendence relations than that for arbitrary distributions. In this paper, we will derive reduced local
Markov properties for linear SEMs by making use of the composition axiom. As an example, for
the linear SEM in Figure 2, a local Markov property which we will present in this paper (see Sec-
tion 3.3) says that we only need to test for the vanishing of the following set of partial correlations:

{ρ21,ρ32,ρ43,ρ41,ρ54,ρ52,ρ51.3,ρ64,ρ62,ρ61.3,ρ75,ρ73,ρ71,ρ72.4}.

The number of tests needed and the size of the conditioning set Z are both substantially reduced
compared with (3), thus leading to a more economical way of testing the given model.

2.3 A Local Markov Property for ADMGs

In this section, we describe the local Markov property for ADMGs associated with arbitrary proba-
bility distributions presented in Richardson (2003). In this paper, this Markov property will be used
as an important tool to prove the equivalence of our local Markov properties and the global Markov
property.

First, we define some graphical notations. For a vertex X in an ADMG G, paG(X)≡ {Y |Y → X
in G} is the set of parents of X . spG(X) ≡ {Y |Y ↔ X in G} is the set of spouses of X . anG(X) ≡
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Figure 3: An ADMG and its compressed graph

{Y |Y → ·· · → X in G or Y = X} is the set of ancestors of X . And deG(X) ≡ {Y |Y ← ·· · ← X in
G or Y = X} is the set of descendants of X . These definitions will be applied to sets of vertices, so
that, for example, paG(A)≡ ∪X∈ApaG(X), spG(A)≡ ∪X∈AspG(X), etc.

Definition 2 (C-component) A c-component of G is a maximal set of vertices in G such that any
two vertices in the set are connected by a path on which every edge is of the form↔; a vertex that
is not connected to any bi-directed edge forms a c-component by itself.

For example, the ADMG in Figure 3 (a) is composed of 6 c-components {V1}, {V2}, {V3}, {V4},
{V5,V6,V7} and {V8,V9}. The district of X in G is the c-component of G that includes X . Thus,

disG(X)≡ {Y |Y ↔ ·· · ↔ X in G or Y = X}.

For example, in Figure 3 (a), we have disG(V5) = {V5,V6,V7} and disG(V8) = {V8,V9}. A set A is
said to be ancestral if it is closed under the ancestor relation, that is, if anG(A) = A. Let GA denote
the induced subgraph of G on the vertex set A, formed by removing from G all vertices that are not
in A, and all edges that do not have both endpoints in A.

Definition 3 (Markov Blanket)2 If A is an ancestral set in an ADMG G, and X is a vertex in A
that has no children in A then the Markov blanket of vertex X with respect to the induced subgraph
on A, denoted mb(X ,A) is defined to be

mb(X ,A)≡ paGA
(disGA(X))∪ (disGA(X)\{X}) .

For example, for an ancestral set A = anG({V5,V6}) = {V1,V2,V3,V4,V5,V6} in Figure 3 (a), we have

mb(V5,A) = {V3,V4,V6}.

An ordering (≺) on the vertices of G is said to be consistent with G if X ≺Y ⇒Y /∈ anG(X). Given
a consistent ordering ≺, let preG,≺(X)≡ {Y |Y ≺ X or Y = X}.

Definition 4 (The Ordered Local Markov Property (LMP,≺)) A probability distribution P sat-
isfies the ordered local Markov property for G with respect to a consistent ordering ≺, if, for any X
and ancestral set A such that X ∈ A⊆ preG,≺(X),

(LMP,≺) I({X},mb(X ,A),A\ (mb(X ,A)∪{X})). (4)

2. The definition of Markov blanket here follows that in Richardson (2003) and is compatible with that in Pearl (1988).
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Theorem 5 (Richardson, 2003) If G is an ADMG and≺ is a consistent ordering, then a probability
distribution P satisfies the ordered local Markov property for G with respect to ≺ if and only if P
satisfies the global Markov property for G.

We will write (GMP)⇐⇒ (LMP,≺) to denote the equivalence of the two Markov properties. There-
fore the (smaller) set of conditional independencies specified in the ordered local Markov prop-
erty will imply all other conditional independencies which hold under the global Markov prop-
erty. It is possible to further reduce the number of conditional independence relations in the or-
dered local Markov property. An ancestral set A, with X ∈ A ⊆ preG,≺(X) is said to be maxi-
mal with respect to the Markov blanket mb(X ,A) if, whenever there is a set B such that A ⊆ B ⊆
preG,≺(X) and mb(X ,A) =mb(X ,B), then A = B. For example, suppose that we are given an or-
dering ≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 for the graph G in Figure 3 (a). While an
ancestral set A = anG({V3,V6,V7}) = {V1,V2,V3,V4,V6,V7} is maximal with respect to the Markov
blanket mb(V7,A) = {V4,V6}, an ancestral set A′ = anG({V6,V7}) = {V2,V4,V6,V7} is not. It was
shown that we only need to consider ancestral sets A which are maximal with respect to mb(X ,A) in
the ordered local Markov property (Richardson, 2003). Thus, we will consider only maximal ances-
tral sets A when we discuss (LMP,≺) for the rest of this paper. The following lemma characterizes
maximal ancestral sets.

Lemma 6 (Richardson, 2003) Let X be a vertex and A an ancestral set in G with consistent ordering
≺ such that X ∈ A⊆ preG,≺(X). The set A is maximal with respect to the Markov blanket mb(X,A)
if and only if

A = preG,≺(X)\deG(h(X ,A))

where
h(X ,A)≡ spG

(

disGA(X)
)

\
(

{X}∪mb(X ,A)
)

.

Even though we only consider maximal ancestral sets, the ordered local Markov property may
still invoke an exponential number of conditional independence relations. For example, for a vertex
X , if disG(X)⊆ preG,≺(X) and disG(X) has a clique of n vertices joined by bi-directed edges, then
there are at least O(2n−1) different Markov blankets.

It should be noted that only the semi-graphoid axioms were used to prove Theorem 5 on the
equivalence of the two Markov properties and no assumptions about probability distributions were
made. Next we will show that the ordered local Markov property can be further reduced if we use
the composition axiom in addition to the semi-graphoid axioms. The local Markov properties we
obtained (in Sections 3 and 4) are not restricted to linear causal models in that they are actually valid
for any probability distributions that satisfy the composition axiom.

3. Markov Properties for ADMGs without Directed Mixed Cycles

In this section, we introduce three local Markov properties for a class of ADMGs and show that they
are equivalent to the global Markov property. Also, we discuss related work in maximal ancestral
graphs and chain graphs. First, we give some definitions.

Definition 7 (Directed Mixed Cycle) A path is said to be a directed mixed path from X to Y if
it contains at least one directed edge and every edge on the path is either of the form Z ↔W, or
Z→W with W between Z and Y . A directed mixed path from X to Y together with an edge Y → X
or Y ↔ X is called a directed mixed cycle.
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X Y

Z W

Figure 4: Directed mixed cycles

For example, the path X→ Z↔W →Y ↔ X in the graph in Figure 4 forms a directed mixed cycle.
In this section, we will consider only ADMGs without directed mixed cycles.

Definition 8 (Compressed Graph) Let G be an ADMG. The compressed graph of G is defined to be
the graph G′= (V ′,E ′), V ′= {VC |C is a c-component of G}, E ′= {VCi→VC j | there is an edge X→
Y in G such that X ∈Ci,Y ∈C j}.

Figure 3 shows an ADMG and its compressed graph. If there exists a directed mixed cycle in an
ADMG G, there will be a cycle or a self-loop in the compressed graph of G. For example, if for two
vertices X and Y in a c-component C of G there exists an edge X → Y , then the compressed graph
of G contains a self-loop y

VC. The following proposition holds.

Proposition 9 Let G be an ADMG. The compressed graph of G is a DAG if and only if G has no
directed mixed cycles.

3.1 The Reduced Local Markov Property

In this section, we introduce a local Markov property for ADMGs without directed mixed cycles
which only invokes a linear number of conditional independence relations and show that it is equiv-
alent to the global local Markov property.

Definition 10 (The Reduced Local Markov Property (RLMP)) Let G be an ADMG without di-
rected mixed cycles. A probability distribution P is said to satisfy the reduced local Markov property
for G if

(RLMP) ∀X ∈V, I({X},paG(X),V \ f(X ,G)) (5)

where f(X ,G)≡ paG(X)∪deG({X}∪ spG(X)).

The reduced local Markov property states that a variable is independent of the variables that are
neither its descendants nor its spouses’ descendants given its parents.

Theorem 11 If a probability distribution P satisfies the composition axiom and an ADMG G has
no directed mixed cycles, then

(GMP)⇐⇒ (RLMP).

Proof: (GMP) =⇒ (RLMP)
We need to prove that any variable X is d-separated from V \ f(X ,G) given paG(X) in G with no
directed mixed cycle. Consider a vertex α ∈ V \ f(X ,G). We will show that there is no path d-
connecting X and α given paG(X). There are four possible cases for any path between X and α.

49



KANG AND TIAN

1. X ← β · · ·α

2. X → ·· · → δ←∗·· ·α

3. X ↔ γ←∗·· ·α

4. X ↔ γ→ ·· · → δ←∗·· ·α

A symbol ∗ serves as a wildcard for an end of an edge. For example, ←∗ represents both ← and
↔. In case 1, β ∈ paG(X). In case 2, the collider δ is not an ancestor of a vertex in paG(X) (other-
wise, there would be a cycle). In cases 3 and 4, neither γ nor δ is an ancestor of a vertex in paG(X)
(otherwise, there would be directed mixed cycles). In any case, the path is not d-connecting given
paG(X). �

Proof: (RLMP) =⇒ (GMP)
We will show that for some consistent ordering ≺, (RLMP) =⇒ (LMP,≺). Then, by Theorem 5,
we have (RLMP) =⇒ (GMP).

We construct a consistent ordering with the desired property as follows.

1. Construct the compressed graph G′ of G.

2. Let ≺′ be any consistent ordering on G′. Construct a consistent ordering ≺ from ≺′ by
replacing each VC (corresponding to each c-component C of G) in ≺′ with the vertices in C
(the ordering of the vertices in C is arbitrary).

We now prove that (RLMP) =⇒ (LMP,≺). Assume that a probability distribution P satisfies
(RLMP). Consider the set of conditional independence relations invoked by (LMP,≺) for each vari-
able X given in (4). First, observe that for any vertex Y in disGA(X), we have

A\ (paG(Y )∪{Y}∪ spG(Y ))⊆V \ f(Y,G),

since

A\ (paG(Y )∪{Y}∪ spG(Y ))

= A\

(

(

paG(Y )∪{Y}∪ spG(Y )
)

∪
(

deG({Y}∪ spG(Y ))\ ({Y}∪ spG(Y ))
)

)

(6)

= A\ f(Y,G).

The equality (6) holds since the vertices in deG({Y}∪ spG(Y ))\ ({Y}∪ spG(Y )) do not appear in A
(because of the way ≺ is constructed, no descendant of disGA(X) is in A). Thus, by (5), for all Y in
disGA(X), we have

I({Y},paG(Y ),A\ (paG(Y )∪{Y}∪ spGA
(Y ))).

Let S1 = paG(disGA(X))\paG(Y ) and S2 = A\ (mb(X ,A)∪{X}). It follows that

S1 ⊆ A\ (paG(Y )∪{Y}∪ spG(Y )) and

S2 ⊆ A\ (paG(Y )∪{Y}∪ spG(Y )).
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Also, we have

S1∩S2 = /0,

since S1 ⊆mb(X ,A). Therefore, for Y ∈ disGA(X),

I({Y},paG(Y ),S1∪S2) by decomposition

I({Y},paG(Y )∪S1,S2) by weak union

I(disGA(X),paG(disGA(X)),A\ (mb(X ,A)∪{X})) by composition

I({X},paG(disGA(X))∪ (disGA(X)\{X}),

A\ (mb(X ,A)∪{X})) by weak union.

Thus, we have

I({X},mb(X ,A),A\ (mb(X ,A)∪{X}))

by the definition of the Markov blanket of X with respect to A. �

As an example, consider the ADMG G in Figure 3 (a) which has no directed mixed cycles. The
graph in Figure 3 (b) is the compressed graph G′ of G described in the proof. From the ordering
≺′: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V567 ≺ V89, we obtain the ordering ≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺
V7 ≺ V8 ≺ V9. The ordered local Markov property (LMP,≺) involves the following conditional
independence relations:

I({V2}, /0,{V1}), I({V3},{V1},{V2}),

I({V4},{V2},{V1,V3}), I({V5},{V3},{V1,V2,V4}),

I({V6},{V3,V4,V5},{V1,V2}), I({V6},{V4},{V1,V2,V3}),

I({V7},{V3,V4,V5,V6},{V1,V2}), I({V7},{V4,V6},{V1,V2,V3}),

I({V7},{V4},{V1,V2,V3,V5}), I({V8},{V6},{V1,V2,V3,V4,V5,V7}),

I({V9},{V2,V6,V7,V8},{V1,V3,V4,V5}), I({V9},{V2,V7},{V1,V3,V4,V5,V6}). (7)

(RLMP) invokes the following conditional independence relations:

I({V1}, /0,{V2,V4,V6,V7,V8,V9}), I({V2}, /0,{V1,V3,V5}),

I({V3},{V1},{V2,V4,V6,V7,V8,V9}), I({V4},{V2},{V1,V3,V5}),

I({V5},{V3},{V1,V2,V4,V7,V9}), I({V6},{V4},{V1,V2,V3}),

I({V7},{V4},{V1,V2,V3,V5}), I({V8},{V6},{V1,V2,V3,V4,V5,V7}),

I({V9},{V2,V7},{V1,V3,V4,V5,V6}) (8)

which, by Theorem 11, imply all the conditional independence relations in (7).
For the special case of graphs containing only bi-directed edges,3 Kauermann (1996) provides

a local Markov property for probability distributions obeying the composition axiom as follows:

∀X ∈V, I({X}, /0,V \ ({X}∪ spG(X))). (9)

3. Kauermann (1996) actually used undirected graphs with dashed edges which are Markov equivalent to graphs with
only bi-directed edges (see Richardson, 2003, for discussions).
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Since a graph containing only bi-directed edges is a special case of ADMGs without directed mixed
cycles, the reduced local Markov property (RLMP) is applicable, and it turns out that (RLMP)
reduces to (9) for graphs containing only bi-directed edges. Therefore (RLMP) includes the local
Markov property given in Kauermann (1996) as a special case.

3.2 The Ordered Reduced Local Markov Property

The set of zero partial correlations corresponding to a conditional independence relation I(X ,Z,Y )
is

{ρViV j.Z = 0 | Vi ∈ X ,Vj ∈ Y}.

Although (RLMP) gives only a linear number of conditional independence relations, the number of
zero partial correlations may be larger than that invoked by (LMP,≺) in some cases. For example,
12 conditional independence relations in (7) involve 37 zero partial correlations while 9 conditional
independence relations in (8) involve 41 zero partial correlations. In this section, we will show an
ordered local Markov property such that at most one zero partial correlation is invoked for each pair
of variables.

Definition 12 (C-ordering) Let G be an ADMG. A consistent ordering ≺ on the vertices of G is
said to be a c-ordering if all the vertices in each c-component of G are consecutively ordered in ≺.

For example, the ordering V1≺V2≺V3≺V4≺V5≺V6≺V7≺V8≺V9 is a c-ordering on the vertices
of G in Figure 3 (a). The following holds.

Proposition 13 There exists a c-ordering on the vertices of G if G does not have directed mixed
cycles.

We can easily construct a c-ordering from the compressed graph of G. We introduce the following
Markov property.

Definition 14 (The Ordered Reduced Local Markov Property (RLMP,≺c)) Let G be an ADMG
without directed mixed cycles and≺c be a c-ordering on the vertices of G. A probability distribution
P is said to satisfy the ordered reduced local Markov property for G with respect to ≺c if

(RLMP,≺c) ∀X ∈V, I({X},paG(X),preG,≺c
(X)\ ({X}∪paG(X)∪ spG(X))). (10)

The ordered reduced local Markov property states that a variable is independent of its predecessors,
excluding its spouses, in a c-ordering given its parents. We now establish the equivalence of (GMP)
and (RLMP,≺c).

Theorem 15 If a probability distribution P satisfies the composition axiom and an ADMG G has
no directed mixed cycles, then for a c-ordering ≺c on the vertices of G,

(GMP)⇐⇒ (RLMP,≺c).

52



MARKOV PROPERTIES FOR LINEAR CAUSAL MODELS WITH CORRELATED ERRORS

Proof: (GMP) =⇒ (RLMP,≺c)
The set preG,≺c

(X) does not include any descendant of disG(X) since ≺c is a c-ordering. We have

preG,≺c
(X)\ ({X}∪paG(X)∪ spG(X))

= preG,≺c
(X)\

(

(

{X}∪paG(X)∪ spG(X)
)

∪
(

deG({X}∪ spG(X))\ ({X}∪ spG(X))
)

)

= preG,≺c
(X)\ f(X ,G)

⊆V \ f(X ,G).

Hence, (RLMP,≺c) follows from (RLMP). �

Proof: (RLMP,≺c) =⇒ (GMP)
We will show that (RLMP,≺c) =⇒ (LMP,≺c). Assume that a probability distribution P satisfies
(RLMP,≺c). Let g(Y ) = preG,≺c

(Y ) \ ({Y} ∪ paG(Y )∪ spG(Y )). Consider the set of conditional
independence relations invoked by (LMP,≺c) for each variable X given in (4) where A is maximal.
By (10), for all Y in disGA(X), we have

I(Y,paG(Y ),g(Y )). (11)

Let S1 = paG(disGA(X))\paG(Y ) and S2 = A\ (mb(X ,A)∪{X}). We have that

S1 ⊆ g(Y ).

Note that S2 \g(Y ) may be non-empty. Let S3 = S2 \g(Y ). It suffices to show that

I(Y,paG(Y ),S3),

which implies I(Y,paG(Y ),S2) by composition. Then, the rest of the proof would be identical to that
of Theorem 11.

We first characterize the vertices in S3. We will show that

S3 = (preG,≺c
(X)\preG,≺c

(Y ))\ spG(disGA(X)). (12)

By Lemma 6, we have

S2 = preG,≺c
(X)\

(

deG(h(X ,A))∪mb(X ,A)∪{X}
)

.

Since ≺c is a c-ordering, no descendant of disG(X) will appear in A. Hence,

S2 = preG,≺c
(X)\

(

spG(disGA(X))∪paG(disGA(X))
)

.

To identify some common elements of S2 and g(Y ), we will reformulate S2 and g(Y ) as follows.

S2 =
(

B\paG(disGA(X))
)

∪
(

(disG(X)∩preG,≺c
(X))\ spG(disGA(X))

)

,

g(Y ) =
(

B\paG(Y )
)

∪
(

(disG(X)∩preG,≺c
(Y ))\ ({Y}∪ spG(Y ))

)
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where B = preG,≺c
(X) \ disG(X). This can be verified by noting that A1 = A2 \ (A3∪A4) = (A11 \

A2)∪(A12\A3) if A1 = A11∪A12,A11∩A12 = /0,A2⊆A11,A3⊆A12. From paG(Y )⊆ paG(disGA(X)),
it follows that B\paG(disGA(X))⊆ B\paG(Y ) and

S3 =S2 \g(Y )

=
(

(disG(X)∩preG,≺c
(X))\ spG(disGA(X))

)

\
(

(disG(X)∩preG,≺c
(Y ))\ ({Y}∪ spG(Y ))

)

.

We can rewrite the first part of this expression as follows.

(disG(X)∩preG,≺c
(X))\ spG(disGA(X))

=
(

(disG(X)∩preG,≺c
(Y ))\ spG(disGA(X))

)

∪
(

(preG,≺c
(X)\preG,≺c

(Y ))\ spG(disGA(X))
)

.

From (disG(X)∩preG,≺c
(Y ))\ spG(disGA(X))⊆ (disG(X)∩preG,≺c

(Y ))\ ({Y}∪ spG(Y )), (12) fol-
lows. Thus, the vertices in S3 are those in the set preG,≺c

(X) \ preG,≺c
(Y ) and not in the set

spG(disGA(X)).
Now we are ready to prove I(Y,paG(Y ),S3). For any Z ∈ S3, we have Y ≺ Z and Z /∈ spG(Y ).

Hence,

I({Z},paG(Z),g(Z)),

I({Z},paG(Z),{Y}∪ (paG(Y )\paG(Z))) by decomposition,

I({Z},paG(Z)∪paG(Y ),{Y}) by weak union,

I({Y},paG(Y ),paG(Z)\paG(Y )) by paG(Z)\paG(Y ))⊆ g(Y ),(11)

and decomposition,

I({Y},paG(Y ),{Z}) by contraction and decomposition.

Therefore, by composition, I(Y,paG(Y ),S3) holds. �

(RLMP,≺c) invokes one zero partial correlation for each pair of nonadjacent variables. For
example, for the ADMG G in Figure 3 (a) and a c-ordering≺c: V1 ≺V2 ≺V3 ≺V4 ≺V5 ≺V6 ≺V7 ≺
V8 ≺V9, (RLMP,≺c) invokes the following conditional independence relations:

I({V2}, /0,{V1}), I({V3},{V1},{V2}),

I({V4},{V2},{V1,V3}), I({V5},{V3},{V1,V2,V4}),

I({V6},{V4},{V1,V2,V3}), I({V7},{V4},{V1,V2,V3,V5}),

I({V8},{V6},{V1,V2,V3,V4,V5,V7}), I({V9},{V2,V7},{V1,V3,V4,V5,V6}) (13)

which involve 25 zero partial correlations while (7) involve 37 zero partial correlations.

3.3 The Pairwise Markov Property

In this section, we give a pairwise Markov property which specifies conditional independence re-
lations between pairs of variables and show that it is equivalent to the global Markov property. In
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previous sections, we focused on minimizing the number of zero partial correlations. We now take
into account the size of the conditioning set Z in each zero partial correlation ρXY.Z . When the
size of paG(X) for a vertex X in (RLMP,≺c) is large, it might be advantageous to use a different
conditioning set with smaller size (if the equivalence of the Markov properties still holds). Pearl
and Meshkat (1999) introduced a pairwise Markov property for DAGs (without bi-directed edges)
which may involve fewer conditioning variables and thus lead to more economical tests. The result
can be easily generalized to ADMGs with no directed mixed cycles.

Let d(X ,Y ) denote the shortest distance between two vertices X and Y , that is, the number of
edges in the shortest path between X and Y . Two vertices X and Y are nonadjacent if X and Y are
not connected by a directed nor a bi-directed edge.

Definition 16 (The Pairwise Markov Property (PMP,≺c)) Let G be an ADMG without directed
mixed cycles and ≺c be a c-ordering on the vertices of G. A probability distribution P is said to
satisfy the pairwise Markov property for G with respect to ≺c if for any two nonadjacent vertices
Vi,Vj,Vj ≺c Vi

(PMP,≺c) I({Vi},Zi j,{Vj})

where Zi j is any set of vertices such that Zi j d-separates Vi from V j and ∀Z ∈ Zi j,d(Vi,Z) < d(Vi,Vj).

Note that, in ADMGs with no directed mixed cycles, there always exists such a Zi j for any two
nonadjacent vertices. For example, the parent set of Vi always satisfies the condition for Zi j. If
the empty set d-separates Vi from V j, then the empty set is defined to satisfy the condition for Zi j.
Therefore we can always choose a Zi j with the smallest size, providing a more economical way to
test zero partial correlations.

Theorem 17 If a probability distribution P satisfies the composition axiom and an ADMG G has
no directed mixed cycles, then

(GMP)⇐⇒ (PMP,≺c).

Proof: Noting that two vertices X and Y are adjacent if X ← Y , X → Y or X ↔ Y , the proof of
Theorem 1 by Pearl and Meshkat (1999) is directly applicable to ADMGs and it effectively proves
that (RLMP,≺c)⇐⇒ (PMP,≺c). We do not reproduce the proof here. �

As an example, for the ADMG G in Figure 3 (a) and a c-ordering≺c: V1 ≺V2 ≺V3 ≺V4 ≺V5 ≺
V6 ≺V7 ≺V8 ≺V9, the following conditional independence relations (for convenience, we combine
the relations for each vertex that have the same conditioning set) can be given by (PMP,≺c):

I({V2}, /0,{V1}), I({V3}, /0,{V2}),

I({V4}, /0,{V3,V1}), I({V5}, /0,{V4,V2}),

I({V5},{V3},{V1}), I({V6}, /0,{V3,V1}),

I({V6},{V4},{V2}), I({V7}, /0,{V5,V3,V1}),

I({V7},{V4},{V2}), I({V8},{V6},{V7,V5,V4,V2}),

I({V8}, /0,{V3,V1}), I({V9},{V2,V7},{V6,V4}),

I({V9}, /0,{V5,V3,V1})

which involve the same number of zero partial correlations as (13) but involve smaller conditioning
sets than those in (13).
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3.4 Relation to Other Work

In this section, we contrast the class of ADMGs without directed mixed cycles to maximal ancestral
graphs and chain graphs in terms of Markov properties.

3.4.1 MAXIMAL ANCESTRAL GRAPHS

It is easy to see that an ADMG without directed mixed cycles is a maximal ancestral graph (MAG)
(Richardson and Spirtes, 2002). An ADMG is said to be ancestral if, for any edge X ↔ Y , X is not
an ancestor of Y (and vice versa). Note that an edge X ↔Y and a directed path from X to Y (or Y to
X) form a directed mixed cycle. Hence, an ADMG without directed mixed cycles is ancestral. An
ancestral graph is said to be maximal if, for any pair of nonadjacent vertices X and Y , there exists a
set Z ⊆V \{X ,Y} that d-separates X from Y . From Theorem 17, it follows that an ADMG without
directed mixed cycles is maximal. On the other hand, there exist MAGs which have directed mixed
cycles (see Figure 4). Thus, the class of ADMGs without directed mixed cycles is a strict subclass
of MAGs.

Richardson and Spirtes (2002, p.979) showed the following pairwise Markov property for a
MAG G:

I({Vi},anG({Vi,Vj})\{Vi,Vj},{V j})

for any two nonadjacent vertices Vi and V j. Richardson and Spirtes (2002) proved that this pairwise
Markov property implies the global Markov property assuming a Gaussian parametrization. This
does not trivially imply our results in Section 3.3 and our results cannot be considered as a special
case of the results on MAGs. The two pairwise Markov properties involve two different forms of
conditioning sets. The pairwise Markov property for MAGs involves considerably larger condition-
ing sets than our pairwise Markov property: the conditioning set includes all ancestors of Vi and V j,
which is undesirable for our purpose of using the zero partial correlations to test a model.

Also, it should be stressed that our results do not depend on a specific parameterization. We only
require the composition axiom to be satisfied. In contrast, Richardson and Spirtes (2002) consider
only Gaussian parameterizations. It requires further study whether the pairwise Markov property
for MAGs can be generalized to the class of distributions satisfying the composition axiom.

In the next section, we consider general ADMGs and try to eliminate redundant conditional
independence relations from (LMP,≺). The class of MAGs is clearly a (strict) subclass of ADMGs.
Hence, given a MAG, we have two options: either we use the result in the next section or the
pairwise Markov property for MAGs. Although the pairwise Markov property for MAGs gives
fewer zero partial correlations (one for each nonadjacent pair of vertices), it is possible that in some
cases we are better off using the result in the next section (because of the cost incurred by the large
conditioning sets in the pairwise Markov property for MAGs). An example of this situation will be
given in the next section.

Richardson and Spirtes (2002) also proved that for a Gaussian distribution encoded by a MAG
all the constraints on the distribution (that is, on the covariance matrix) are implied by the vanishing
partial correlations given by the global Markov property. Hence, this also holds in a linear SEM
represented by an ADMG without directed mixed cycles which is a special type of MAG.
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3.4.2 CHAIN GRAPHS

The graph that results from replacing bi-directed edges with undirected edges in an ADMG without
directed mixed cycles is a chain graph. The class of chain graphs has been studied extensively (see
Lauritzen, 1996, for a review).

Some Markov properties have been proposed for chain graphs. The first Markov property for
chain graphs has been proposed by Lauritzen and Wermuth (1989) and Frydenberg (1990). An-
dersson et al. (2001) have introduced another Markov property. These two Markov properties do
not correspond to the Markov property for ADMGs. Let G be an ADMG without directed mixed
cycles and G′ be the chain graph obtained by replacing bi-directed edges with undirected edges. In
general, the set of conditional independence relations given by the Markov property for G is not
equivalent to that given by either of the two Markov properties for chain graphs. However, there
are other Markov properties for chain graphs that correspond to the Markov property for ADMGs
without directed mixed cycles (Cox and Wermuth, 1993; Wermuth and Cox, 2001, 2004).4

4. Markov Properties for General ADMGs

When an ADMG G has directed mixed cycles, (RLMP), (RLMP,≺c), and (PMP,≺c) are no longer
equivalent to (GMP) while (LMP,≺) still is. In this section, we show that the number of conditional
independence relations given by (LMP,≺) for an arbitrary ADMG that might have directed mixed
cycles can still be reduced. We introduce a procedure to reduce (LMP,≺). We then give an example
to illustrate the procedure.

4.1 Reducing the Ordered Local Markov Property

First, we introduce a lemma that gives a condition by which a conditional independence relation
renders another conditional independence relation redundant.

Lemma 18 Given an ADMG G, a consistent ordering ≺ on the vertices of G and a vertex X,
assume that a probability distribution P satisfies the global Markov property for GpreG,≺(X)\{X}. Let
A = preG,≺(X) and A′ be a maximal ancestral set with respect to mb(X ,A′) such that X ∈ A′ ⊂ A,
A′∩disGA(X) = disGA′

(X) and paG(disGA(X)\disGA′
(X))⊆ mb(X ,A′). Then,

I({X},mb(X ,A),A\ (mb(X ,A)∪{X})) (14)

implies
I({X},mb(X ,A′),A′ \ (mb(X ,A′)∪{X})).

We define rdG,≺(X) to be the set of all A′ satisfying this condition.

Proof: First, we show the relationships among A,disGA(X), mb(X ,A) and A′,disGA′
(X), mb(X ,A′).

By Lemma 6, we have

A′ = A\deGA(h(X ,A′)) (15)

where
h(X ,A′)≡ spGA

(

disGA′
(X)

)

\
(

{X}∪mb(X ,A′)
)

.

4. In their terminology, ADMGs without directed mixed cycles correspond to chain graphs with dashed arrows and
dashed edges.
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Figure 5: The relationship between A and A′ that satisfy the conditions in Lemma 18. The induced
subgraph GA is shown. The vertices of GA are decomposed into two disjoint subsets
deGA(T ) and A′.

disGA′
(X) and h(X ,A′) are subsets of disGA(X). Since disGA′

(X)⊆{X}∪mb(X ,A′) (by the definition
of the Markov blanket), disGA′

(X)∩h(X ,A′) = /0. Thus, we can decompose the set disGA(X) into 3
disjoint subsets as follows.

disGA(X) = disGA′
(X)∪h(X ,A′)∪B (16)

where
B≡ disGA(X)\

(

disGA′
(X)∪h(X ,A′)

)

.

We have

A′∩disGA(X) = A′∩
(

disGA′
(X)∪h(X ,A′)∪B

)

= disGA′
(X)∪B

since disGA′
(X) ⊆ A′,B ⊆ A′ and A′ ∩ h(X ,A′) = /0. From the assumption in Lemma 18 that A′ ∩

disGA(X) = disGA′
(X), it follows that B = /0. Thus, from (16), we have

disGA(X)\disGA′
(X) = h(X ,A′). (17)

Let T = disGA(X)\disGA′
(X) = h(X ,A′). Then,

mb(X ,A) = mb(X ,A′)∪T ∪paG(T )

= mb(X ,A′)∪T (18)

since paG(T )⊆mb(X ,A′) by our assumption. Thus A decomposes into

A = A′∪deGA(T ) (19)
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Figure 6: (a) An ADMG with directed mixed cycles (b) Illustration of the procedure GetOrdering.
The modified graph after the first step is shown.

since deGA(T )⊆ A and (15).
The key relationships among A,disGA(X),mb(X ,A) and A′,disGA′

(X),mb(X ,A′) are given by
(17)–(19). Figure 5 shows these relationships. We are now ready to prove that I({X},mb(X ,A′),A′\
(mb(X ,A′)∪{X})) can be derived from I({X},mb(X ,A),A \ (mb(X ,A)∪{X})). From (18) and
(19), it follows that

A\ (mb(X ,A)∪{X}) = (A′∪deGA(T ))\ (mb(X ,A′)∪{X}∪T ).

Since A′ ∩ deGA(T ) = /0,(mb(X ,A′)∪{X})∩ T = /0,mb(X ,A′)∪{X} ⊆ A′ and T ⊆ deGA(T ), we
have

A\ (mb(X ,A)∪{X}) =
(

A′ \ (mb(X ,A′)∪{X})
)

∪
(

deGA(T )\T
)

. (20)

Plugging (18) and (20) into (14), we get

I
(

{X},mb(X ,A′)∪T,
(

A′ \ (mb(X ,A′)∪{X})
)

∪
(

deGA(T )\T
))

.

From the decomposition axiom, it follows that

I({X},mb(X ,A′)∪T,A′ \ (mb(X ,A′)∪{X})). (21)

The last step is to remove T from the conditioning set to obtain I({X},mb(X ,A′),A′\(mb(X ,A′)∪
{X})). We claim that

I(T,mb(X ,A′),A′ \ (mb(X ,A′)∪{X})). (22)

We first argue that T is d-separated from A′ \ (mb(X ,A′)∪{X}) given mb(X ,A′). Consider a vertex
t ∈ T and a vertex α ∈ A′ \ (mb(X ,A′)∪{X}). Note that for any bi-directed edge t↔ β in GA, β is
either in T or disGA′

(X). There are only four possible cases for any path in GA from t to α.

1. t← γ · · ·α

2. t→ ·· · → γ←∗·· ·α
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3. t↔↔ ·· · ↔ δ← γ · · ·α

4. t↔↔ ·· · ↔ δ→ ·· · → γ←∗·· ·α

In case 1, γ ∈ mb(X ,A′) since paG(T ) ⊆ mb(X ,A′). Thus, the path is not d-connecting. In case
2, γ is a descendant of t. Since mb(X ,A′) does not contain any descendant of t, the path is not
d-connecting. Case 3 is similar to case 1, but there are one or more bi-directed edges after t. δ is
either in T or disGA′

(X). It follows that γ ∈ mb(X ,A′), so the path is not d-connecting. Case 4 is
similar to case 2, but there are one or more bi-directed edges after t. If δ is in T , the argument for
case 2 can be applied. If δ is in disGA′

(X), then δ ∈ mb(X ,A′), which implies that the path is not
d-connecting. This establishes that T is d-separated from A′ \ (mb(X ,A′)∪{X}) given mb(X ,A′).
By the assumption that P satisfies the global Markov property for GpreG,≺(X)\{X}, (22) holds. Finally,
from (21),(22) and the contraction axiom, it follows that I({X},mb(X ,A′),A′ \ (mb(X ,A′)∪{X})).
�

For example, consider the ADMG G in Figure 2 and a consistent ordering V1 ≺ V2 ≺ V3 ≺
V4 ≺ V5 ≺ V6 ≺ V7. Assume that the global Markov property for GpreG,≺(V6) is satisfied. Let A =

{V1,V2,V3,V4,V5,V6,V7} and A′= {V1,V2,V3,V4,V6,V7}. Then, disGA(V7) = {V5,V6,V7}, disGA′
(V7) =

{V6,V7}, A′∩disGA(V7) = {V6,V7}= disGA′
(V7) and paG(disGA(V7)\disGA′

(V7)) = {V3}⊆ {V3,V4,V6}
= mb(V7,A′). Thus, I({V7},{V3,V4,V6}, {V1,V2}) follows from I({V7}, {V3,V4,V5,V6}, {V1,V2}).
Note that in the proof of Lemma 18, the composition axiom is not used. Thus, Lemma 18 can be
used to reduce the ordered local Markov property for ADMGs associated with an arbitrary prob-
ability distribution. Also, note that the condition that P satisfies the global Markov property for
GpreG,≺(X)\{X} is always satisfied in a recursive application of this lemma in Theorem 21.

We now introduce a key concept in eliminating redundant conditional independence relations
from (LMP,≺).

Definition 19 (C-ordered Vertex) Given a consistent ordering ≺ on the vertices of an ADMG G,
a vertex X is said to be c-ordered in ≺ if

1. all vertices in disG(X)∩preG,≺(X) are consecutive in ≺ and

2. for any two vertices Y and Z in disG(X)∩preG,≺(X), there is no directed edge between Y and
Z.

If no bi-directed edge is connected to X , then X is defined to be c-ordered. For example, consider
the ADMG G in Figure 6 (a). ≺: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V6 ≺ V7 ≺ V8 ≺ V9 is a consistent
ordering on the vertices of G. V1,V2, . . . ,V8 are c-ordered in ≺ but V9 is not since V5 and V9 are not
consecutive in ≺.

The key observation, which will be proved, is that c-ordered vertices contribute to eliminating
many redundant conditional independence relations invoked by the ordered local Markov property
(LMP,≺). We provide two procedures. The first procedure ReduceMarkov in Figure 7 constructs
a list of conditional independence relations in which some redundant conditional independence
relations from (LMP,≺) are not included (all the conditional independence relations identified by
Lemma 18 are not included). ReduceMarkov takes as input a fixed ordering ≺. The second
procedure GetOrdering in Figure 9 gives a good ordering that might have many c-ordered vertices.

We first describe the procedure ReduceMarkov. Given an ADMG G and a consistent ordering
≺, ReduceMarkov gives a set of conditional independence relations which will be shown to be
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procedure ReduceMarkov
INPUT: An ADMG G and a consistent ordering ≺ on the vertices of G
OUTPUT: A set of conditional independence relations S
S← /0
for i = 1, . . . ,n do

Ii← /0
if Vi is c-ordered in ≺ then

for nonadjacent V j ≺Vi do
Ii← Ii∪ I({Vi},Zi j,{Vj}) where Zi j is any set of vertices such that Zi j d-separates
Vi from V j and ∀Z ∈ Zi j,d(Vi,Z) < d(Vi,Vj)

end for
else

for all maximal ancestral sets A with respect to mb(Vi,A) such that
Vi ∈ A⊆ preG,≺(Vi), A /∈ rdG,≺(Vi) do

Ii← Ii∪ I({Vi},mb(Vi,A),A\ (mb(Vi,A)∪{Vi}))
end for

end if
S← S∪ Ii

end for

Figure 7: A procedure to generate a reduced set of conditional independence relations for an
ADMG G and a consistent ordering ≺

equivalent to the global Markov property for G. For each vertex Vi, ReduceMarkov generates a
set of conditional independence relations. If Vi is c-ordered, the relations that correspond to the
pairwise Markov property are generated. Otherwise, the relations that correspond to the ordered
local Markov property are generated, and Lemma 18 is used to remove some redundant relations.
The output S = ReduceMarkov(G,≺) can be described as follows:

S =
[

X :X is c-ordered in ≺

(

[

Y :Y≺X

I
(

{X},ZXY ,{Y}
)

)

[

[

X :X is not c-ordered in ≺

(

[

all maximal sets A
with respect to mb(X ,A):

X∈A⊆preG,≺(X),

A/∈rdG,≺(X)

I
(

{X},mb(X ,A),A\ (mb(X ,A)∪{X})
)

)

(23)

where ZXY is any set of vertices such that ZXY d-separates X from Y and ∀Z ∈ ZXY , d(X ,Z) <
d(X ,Y ).

If a vertex X is c-ordered, O(n) conditional independence relations (or zero partial correla-
tions) are added to S. Otherwise, O(2n) conditional independence relations may be added to S
and O(n2n) zero partial correlations may be invoked. Furthermore, a c-ordered vertex typically in-
volves a smaller conditioning set. I({X},ZXY ,{Y}) has the conditioning set |ZXY | ≤ |paG(X)| while
I({X},mb(X ,A),A\ (mb(X ,A)∪{X})) has the conditioning set |mb(X ,A)| ≥ |paG(X)|.

We now prove that the conditional independence relations produced by ReduceMarkov can
derive all the conditional independence relations invoked by the global Markov property.
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Definition 20 (S-Markov Property (S-MP,≺)) Let G be an ADMG and ≺ be a consistent or-
dering on the vertices of G. Let S be the set of conditional independence relations given by
ReduceMarkov(G,≺). A probability distribution P is said to satisfy the S-Markov property for
G with respect to ≺, if

(S-MP,≺) P satisfies all the conditional independence relations in S.

Theorem 21 Let G be an ADMG and ≺ be a consistent ordering on the vertices of G. Let S
be the set of conditional independence relations given by ReduceMarkov(G,≺). If a probability
distribution P satisfies the composition axiom, then

(GMP)⇐⇒ (S-MP,≺).

Proof: (GMP) =⇒ (S-MP,≺) since every conditional independence relation in (S-MP,≺) corre-
sponds to a valid d-separation. We show (S-MP,≺) =⇒ (GMP). Without any loss of generality,
let ≺: V1 ≺ . . . ≺ Vn. The proof is by induction on the sequence of ordered vertices. Suppose that
(S-MP,≺) =⇒ (GMP) holds for V1, . . .Vi−1. Let Si−1 = I1∪ . . .∪ Ii−1. Then, by the induction hypoth-
esis, Si−1 contains all the conditional independence relations invoked by (LMP,≺) for V1, . . .Vi−1.
If Vi is not c-ordered, Ii = I({Vi},mb(Vi,A),A \ (mb(Vi,A)∪{Vi})) for all maximal ancestral sets
A such that Vi ∈ A ⊆ preG,≺(Vi), A /∈ rdG,≺(Vi). The conditional independence relations invoked
by (LMP,≺) with respect to Vi and any A ∈ rdG,≺(Vi) can be derived from other conditional inde-
pendence relations by Lemma 18. Thus, Si = Si−1 ∪ Ii contains all the conditional independence
relations invoked by (LMP,≺) for V1, . . .Vi, which implies (GMP). If Vi is c-ordered, applying the
arguments in the proof of (GMP)⇐⇒ (PMP,≺c), we have

I({Vi},paG(Vi),preG,≺(Vi)\ ({Vi}∪paG(Vi)∪ spG(Vi))).

By the induction hypothesis and the definition of a c-ordered vertex, we have for all V j ∈ disG(Vi)∩
preG,≺(Vi)

I({V j},paG(Vj),preG,≺(Vj)\ ({V j}∪paG(Vj)∪ spG(Vj))).

By the arguments in the proof of (GMP)⇐⇒ (RLMP,≺c), we have for all maximal ancestral sets A
such that Vi ∈ A⊆ preG,≺(Vi)

I({Vi},mb(Vi,A),A\ (mb(Vi,A)∪{Vi})).

Therefore, Si = Si−1∪ Ii derives all the conditional independence relations invoked by (GMP). �

As we have seen earlier, the number of zero partial correlations critically depends on the number
of c-ordered vertices in a given ordering. This motivates us to find the ordering with the most c-
ordered vertices. An obvious way of finding this ordering is to explore the space of all the consistent
orderings. However, this exhaustive search may become infeasible as the number of vertices grows.
We propose a greedy algorithm to get an ordering that has a large number of c-ordered vertices. The
basic idea is to first find a large c-component in which many vertices can be c-ordered and place the
vertices consecutively in the ordering, then repeating this until we cannot find a set of vertices that
can be c-ordered. To describe the algorithm, we define the following notion, which identifies the
largest subset of a c-component that can be c-ordered.
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V1 V2 V3 V4

W

Figure 8: The c-component {V1,V2,V3,V4} has the root set {V1,V2}

Definition 22 (Root Set) The root set of a c-component C, denoted rt(C) is defined to be the set
{Vi ∈C | there is no V j ∈C such that a directed path V j→ . . .→Vi exists in G}.

For example, the c-component {V1,V2,V3,V4} in Figure 8 has the root set {V1,V2}. V3 and V4 are
not in the root set since there are paths V2→ V3 and V1→W → V4. The root set has the following
properties.

Proposition 23 Let ≺ be a consistent ordering on the vertices of an ADMG G and C be a c-
component of G. If the vertices in rt(C) are consecutive in ≺, then all the vertices in rt(C) are
c-ordered in ≺.

Proof: Assume that the vertices in rt(C) are consecutive in ≺. Then, for X ∈ rt(C), disG(X)∩
preG,≺(X)⊆ rt(C). Thus, there is no directed edge between any two vertices in disG(X)∩preG,≺(X).
�

Proposition 24 Let ≺ be a consistent ordering on the vertices of an ADMG G and C be a c-
component of G. If a vertex X in C is c-ordered in ≺, then X ∈ rt(C).

Proof: Assume that X is c-ordered in ≺. Suppose for a contradiction that X /∈ rt(C). Then, there
exists an ancestor Y of X in C. If there exists a vertex Z such that Z /∈ C, Y → ·· · → Z → ·· · →
X . Then, the first condition of a c-ordered vertex is violated. Otherwise, the second condition is
violated. �

Proposition 23 and 24 imply that the root set of a c-component is the largest subset of the c-
component that can be c-ordered in a consistent ordering. If G does not have directed mixed cycles,
rt(C) = C for every c-component C.

The procedure GetOrdering in Figure 9 is our proposed greedy algorithm that generates a good
consistent ordering for G. In Step 1, it searches for the largest root set M and then merges all the
vertices in M to one vertex VM modifying edges accordingly. Then, it repeats the same operation for
the modified graph until there is no root set that contains more than one vertex. Since the vertices
in a root set are merged at each iteration, the modified graph is acyclic as otherwise there would be
a directed path between two vertices in the root set, which contradicts the condition of a root set.
After Step 1, we can easily obtain a consistent ordering for the original graph from the modified
graph.

4.2 An Example

We show the application of the procedures ReduceMarkov and GetOrdering by considering the
ADMG G in Figure 6 (a). First, we apply GetOrdering to get a consistent ordering on the vertices
V of G. In Step 1, we first look for the largest root set. The c-component {V6,V7,V8} has the largest
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procedure GetOrdering
INPUT: An ADMG G
OUTPUT: A consistent ordering ≺ on V
Step 1:
G′← G (V ′ is the set of vertices of G)
while (there is a c-component C of G′ such that |rt(C)|> 1) do

M← /0
for each c-component C of G′ do

if |rt(C)|> |M| then
M← rt(C)

end if
end for
Add a vertex VM to G′V ′\M
Draw an edge VM ← X (respectively VM → X , VM ↔ X) if there is
Y ← X (respectively Y → X , Y ↔ X) in G′ such that Y ∈M,X ∈V ′ \M
Let G′ be the resulting graph

end while
Step 2:
Let ≺′ be any consistent ordering on V ′. Construct a consistent ordering ≺ from ≺′ by replacing
each VS ∈V ′ \V with the vertices in S (the ordering of the vertices in S is arbitrary)

Figure 9: A greedy algorithm to generate a good consistent ordering on the vertices of an ADMG
G

root set {V6,V7,V8}. Then, the vertices in {V6,V7,V8} are merged into a vertex V678. Figure 6 (b)
shows the modified graph G′ after the first iteration of the while loop. In the next iteration, we find
that every c-component has the root set of size 1. Note that for C = {V5,V9}, rt(C) = {V5,V9} in
G but rt(C) = {V5} in G′. Thus, Step 1 ends. In Step 2, from G′ in Figure 6 (b), we can obtain
an ordering ≺′: V1 ≺ V2 ≺ V3 ≺ V4 ≺ V5 ≺ V678 ≺ V9. This is converted to a consistent ordering
≺: V1 ≺V2 ≺V3 ≺V4 ≺V5 ≺V6 ≺V7 ≺V8 ≺V9 for G.

With the ordering ≺, we now apply ReduceMarkov to obtain a set of conditional indepen-
dence relations that can derive those invoked by the global Markov property. It is easy to see that
the vertices V1, . . . ,V8 are c-ordered in ≺. Thus, the following conditional independence relations
corresponding to the pairwise Markov property are added to the set S (initially empty).

I({V2}, /0,{V1}), I({V3}, /0,{V2}),

I({V4}, /0,{V3,V1}), I({V5}, /0,{V4,V3,V2,V1}),

I({V6}, /0,{V5,V4,V2}), I({V6},{V3},{V1}),

I({V7}, /0,{V5,V4,V2}), I({V7},{V3},{V1}),

I({V8}, /0,{V6,V3,V1}), I({V8},{V4},{V2}). (24)
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V9 is not c-ordered in ≺ since V5 is not adjacent in ≺. Thus, we use the ordered local Markov
property (LMP,≺) for V9. The maximal ancestral sets that we need to consider are

A1 = anG({V6,V8,V9}) = {V1,V2,V3,V4,V5,V6,V7,V8,V9} and

A2 = anG({V4,V6,V9}) = {V1,V2,V3,V4,V6,V7,V9}.

The corresponding conditional independence relations are

I({V9},{V7,V5},{V8,V6,V4,V3,V2,V1}), (25)

I({V9},{V7},{V6,V4,V3,V2,V1}). (26)

However, it turns out that A2 ∈ rdG,≺(V9) and (26) is not added to S. We check the condition of
Lemma 18. The global Markov property for GpreG,≺(V8) is satisfied by (24). Also,

disGA1
(V9) = {V5,V9},

disGA2
(V9) = {V9},

A2∩disGA1
(V9) = {V9}= disGA2

(V9),

paG(disGA1
(V9)\disGA2

(V9)) = /0⊆ {V7}= mb(V9,A2).

Therefore, the condition of Lemma 18 is satisfied and it follows that (26) is redundant. To see
how much we reduced the testing requirements, the conditional independence relations invoked by
(LMP,≺) are shown below.

I({V2}, /0,{V1}), I({V3},{V1},{V2}),

I({V4},{V2},{V3,V1}), I({V5}, /0,{V4,V3,V2,V1}),

I({V6},{V3},{V5,V4,V2,V1}), I({V7},{V3},{V5,V4,V2,V1}),

I({V7},{V6,V3},{V5,V4,V2,V1}), I({V8},{V5,V4},{V6,V3,V2,V1}),

I({V8},{V7,V5,V4,V3},{V2,V1}), I({V8},{V7,V6,V5,V4,V3},{V2,V1}),

I({V9},{V7},{V6,V4,V3,V2,V1}), I({V9},{V7,V5},{V8,V6,V4,V3,V2,V1}). (27)

S invokes 26 zero partial correlations while (LMP,≺) invokes 39. Also, S involves much smaller
conditioning sets. We have at most one vertex in each conditioning set in (24) and two vertices in
(25) while 23 zero partial correlations in (27) involve more than 2 vertices in the conditioning set.

The ADMG G in this example turns out to be a MAG. As we discussed in Section 3.4.1, we have
two options: either we use the constraints in (24) and (25) or the constraints given by the pairwise
Markov property for MAGs. In this example, both sets of constraints involve the same number
of zero partial correlations. However, the pairwise Markov property for MAGs involves much
larger conditioning sets. For example, the pairwise Markov property for MAGs gives the following
conditional independence relation for the pair V6 and V8: I({V8},{V5,V4,V3,V2,V1},{V6}). Our
method uses an empty set as the conditioning set for the pair. Hence, in this example, we are better
off using the constraints in (24) and (25).

4.3 Comparison of (LMP,≺) and (S-MP,≺)

From (23), it is clear that (S-MP,≺) invokes fewer conditional independence relations than (LMP,≺)
if there are c-ordered vertices in≺. But how much more economical is (S-MP,≺) than (LMP,≺) and
for what type of graphs is the reduction large?
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For simplicity, we will compare the number of conditional independence relations rather than
zero partial correlations and ignore the reduction done by Lemma 18. For now assume

S =
[

X :X is c-ordered in ≺

I({X},paG(X),preG,≺(X)\ ({X}∪paG(X)∪ spG(X)))
[

[

X :X is not c-ordered in ≺

(

[

all maximal sets A
with respect to mb(X ,A):

X∈A⊆preG,≺(X)

I
(

{X},mb(X ,A),A\ (mb(X ,A)∪{X})
)

)

.

Let M(X ,≺) be the number of different Markov blankets of a vertex X , that is,

M(X ,≺) =
∣

∣

∣
{disGA(X) | A is an ancestral set such that X ∈ A ⊆ preG,≺(X)}

∣

∣

∣
, and C(≺) be the

set of vertices that are c-ordered in ≺. Then, (LMP,≺) lists ∑X∈V M(X ,≺) conditional indepen-
dence relations and (S-MP,≺) lists |C(≺)|+ ∑X /∈C(≺) M(X ,≺) conditional independence relations.
Hence, the difference in the number of conditional independence relations between (LMP,≺) and
(S-MP,≺) is

∑
X∈C(≺)

(

M(X ,≺)−1
)

.

This difference is large when |C(≺)| or M(X ,≺) for each X is large.
The size of C(≺) depends on the number of directed mixed cycles. From Definition 19, it

follows that C(≺) is large if there are a small number of directed mixed cycles. Note that a directed
mixed cycle such as that in Figure 4 induces the violation of the first condition in Definition 19 and
a directed mixed cycle of the form α ↔→ β induces the violation of the second condition in Definition
19.

M(X ,≺) depends on the structure of disG(X)∩ preG,≺(X). We will reformulate M(X ,≺) to
show the properties that affect M(X ,≺). Let G↔,dis(X ,≺) = (V ′,E ′) where V ′= disG(X)∩preG,≺(X)
and E ′ = {Vi ↔ Vj | Vi ↔ Vj in GV ′}. For example, for an ADMG G in Figure 8 and an ordering
V1 ≺ V2 ≺ V3 ≺ V4, G↔,dis(V3,≺) is V1↔ V2↔ V3. Let G↔,dis(X ,≺)S be the induced subgraph of

G↔,dis(X ,≺) on a set S ⊆ disG(X)∩preG,≺(X). Then, M(X ,≺) =
∣

∣

∣
{S | S ⊆ disG(X) ∩ preG,≺(X)

such that G↔,dis(X ,≺)S is a connected component of G↔,dis(X ,≺)S ∪ (anG(S) ∩ disG(X) ∩ preG,≺(X))}
∣

∣

∣

that is, M(X ,≺) corresponds to a set of subsets S of disG(X)∩preG,≺(X) satisfying two conditions:

(i) G↔,dis(X ,≺)S is connected; and (ii) for all Y ∈
(

anG(S)∩disG(X)∩preG,≺(X)
)

\S, there is no

path from Y to any vertices in S. The condition (i) implies that M(X ,≺) will be large if the ver-
tices in disG(X)∩ preG,≺(X) are connected by many bi-directed edges. The condition (ii) implies
that M(X ,≺) will be large if there are few directed mixed cycles. Note that for ADMGs without

directed mixed cycles, (ii) trivially holds since
(

anG(S)∩ disG(X)∩ preG,≺(X)
)

\ S = /0. For ex-

ample, consider a subset of vertices {V1, . . . ,Vk} in an ADMG with edges Vi↔ Vk, i = 1, . . . ,k−1,
which has no directed mixed cycles. Then, for an ordering V1 ≺ . . . ≺ Vk, M(Vk,≺) = 2k−1. Also,
consider a subset of vertices {V1, . . . ,Vk} in an ADMG with edges V1

↔
→ V2

↔
→ · · ·

↔
→ Vk, which has

k−1 directed mixed cycles. Then, M(Vk,≺) = 1. Hence, it is clear that M(X ,≺) is large if

1. the set disG(X)∩preG,≺(X) is large,

2. there are many bi-directed edges connecting vertices in disG(X)∩preG,≺(X), and
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X Y

V

W

Z

Figure 10: An example ADMG for which using (S-MP,≺) is most beneficial. There is no directed
mixed cycle and each c-component is a clique joined by bi-directed edges.

3. there are few directed mixed cycles.

Thus, (LMP,≺) will invoke a large number of conditional independence relations for an ADMG
with few directed mixed cycles and large c-components with many bi-directed edges. For such an

ADMG, ∑X∈C(≺)

(

M(X ,≺)−1
)

, the reduction made by (S-MP,≺), is also large. An extreme case

is an ADMG that has no directed mixed cycles and each c-component of which is a clique joined
by bi-directed edges. An example of such an ADMG is given in Figure 10. For this ADMG and
an ordering W ≺ V ≺ X ≺ Y ≺ Z, (LMP,≺) invokes M(W,≺)+ M(V,≺)+ M(X ,≺)+ M(Y,≺)+
M(Z,≺) = 1+1+1+2+4 = 9 conditional independence relations while (S-MP,≺) invokes |C(≺
)|= n = 5 conditional independence relations. If we enlarge the clique joined by bi-directed edges
such that it contains k vertices, then (LMP,≺) invokes 2+∑k−1

i=0 2i = 1+2k conditional independence
relations while (S-MP,≺) invokes k +2.

In general, although (S-MP,≺) greatly reduces (LMP,≺), it may still invoke an exponential num-
ber of conditional independence relations if there exist directed mixed cycles.

5. Conclusion and Discussion

We present local Markov properties for ADMGs representing linear SEMs with correlated errors.
The results have applications in testing linear SEMs against the data by testing for zero partial
correlations implied by the model. For general linear SEMs with correlated errors, we provide a
procedure that lists a subset of zero partial correlations that will imply all other zero partial correla-
tions implied by the model. In particular, for a class of models whose corresponding path diagrams
contain no directed mixed cycles, this subset invokes one zero partial correlation for each pair of
variables.

In general, our procedure may invoke an exponential number of zero partial correlations if the
path diagram G satisfies all of the following properties: (i) G has large c-components; (ii) the
vertices in each c-component are heavily connected by bi-directed edges; and (iii) G has directed
mixed cycles. If one of these properties is not satisfied, then the number of zero partial correlations
derived by our method is typically not exponential.

For the class of MAGs, which is a strict superclass of ADMGs without directed mixed cycles,
one might use the pairwise Markov property for MAGs given in Richardson and Spirtes (2002)
instead of our results in Section 4. However, when the two approaches give a similar number of
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constraints, it may be better to use our approach since it may use smaller conditioning sets as shown
in the example in Section 4.2.

The potential advantages of testing linear SEMs based on vanishing partial correlations over
the classical test method based on maximum likelihood estimation of the covariance matrix have
been discussed in Pearl (1998), Shipley (2000), McDonald (2002) and Shipley (2003). The results
presented in this paper provide a theoretical foundation for the practical applications of this test
method in linear SEMs with correlated errors. How to implement this test method in practice still
needs further study as it requires multiple testing of hypotheses about zero partial correlations (Ship-
ley, 2000; Drton and Perlman, 2007). We also note that, in linear SEMs without correlated errors,
all the constraints on the covariance matrix are implied by vanishing partial correlations. This also
holds in linear SEMs with correlated errors that are represented by ADMGs without directed mixed
cycles. However, it is possible that linear SEMs with correlated errors represented by ADMGs with
directed mixed cycles may imply constraints on the covariance matrix that are not implied by zero
partial correlations.

Although the intended application is in linear SEMs, the local Markov properties presented
in the paper are valid for ADMGs associated with any probability distributions that satisfy the
composition axiom. For example, any probability distribution that is faithful5 to some DAG or
undirected graph (and the marginals of the distribution) satisfies the composition axiom.

Model debugging for ADMGs using vanishing partial correlations is another area of current
research. In this model debugging problem, the goal is to modify a graph based on the pattern of re-
jected hypotheses. The properties of ADMGs presented in this paper may facilitate the development
of a new model debugging method.
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