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Abstract

An important goal for machine learning is to transfer knadge between tasks. For example, learn-
ing to play RoboCup Keepaway should contribute to learnivegfull game of RoboCup soccer.
Previous approaches to transfer in Keepaway have focuse@dmsforming the original represen-
tation to t the new task. In contrast, this paper explores itfea that transfer is most effective if
the representation is designed to beghmeeven across different tasks. To demonstrate this point,
abird's eye view(BEV) representation is introduced that can representmifit tasks on the same
two-dimensional map. For example, both the 3 vs. 2 and 4 veepBway tasks can be represented
on the same BEV. Yet the problem is that a raw two-dimensioreg is high-dimensional and un-
structured. This paper shows how this problem is addressedally by an idea from evolutionary
computation callethdirect encodingwhich compresses the representation by exploiting itsrgeo
etry. The result is that the BEV learns a Keepaway policy titzatsfersvithout further learningor
manipulation. It also facilitates transferring knowledgarned in a different domain, Knight Joust,
into Keepaway. Finally, the indirect encoding of the BEV me#hat its geometry can be changed
without altering the solution. Thus static representaifacilitate several kinds of transfer.

1. Introduction

Representation is a critical factor in the ability of any algorithm to learn autonemdClark,
1989). For example, a soccer player might represent the world thnawghision, distances and
angles to other objects, or qualitative features such as close and f@reDifsuch representations
provide different perspectives to the learning algorithm. While one mighppeopriate for learning
physical control, another might better suit strategic planning. This papasés in particular on the
effect of representation diask transferthat is, bootstrapping knowledge gained learning one task
to facilitate learning another, related task (Caruana, 1997; Talvitie andh,S28§7; Taylor et al.,
2007a). It turns out that representation not only affects the perfarenaf such transfer, but also
the elegance of its implementation. For example, transferring an arti cialah@etwork (ANN)
that takes as inputs parameters associated with objects (e.g., location, tsizeoea task with
more such objects may require transforming the network by adding inpytafameters associated
with each new object (Taylor et al., 2007a). Yet such transformatioisaapt previous learning,
thereby requiring the transformed network to undergo additional trainingg@in even its former
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capabilities within the new scenario. As an alternative, this paper arguestigeal representation
would require no such transformations (i.e., it would remain static) whenfénaimg to a new task.

The idea that input (i.e., state) representation might remain static duringerasgflausible
because the raw inputs to biological organisms, for example, vision, rem@asathe even when
new tasks are confronted. For example, when a child graduates frginglideepaway to full-
blown soccer, the number of photoreceptors in the eye do not chahgemain idea in this paper
is that such static representation, when possible, facilitates transfeisbyiremthat the semantics
of the representation are preserved even when the task changes.

To demonstrate the critical role of static representation in transfer, a statelrepresentation
is introduced called bird's eye view(BEV), which is a two-dimensional depiction of objects on the
ground from above. Conceptually, the BEV is a metaphor for an inteepaésentation of the state
of the world from above. The BEV places objects into the context of thédvg@ometry, allowing
geometric relationships to be more easily learned. Another advantage is thatittdimensionality
(i.e., number of inputs) is constant no matter how many objects are on the le&d vy, even if the
task is transferred to a version with more objects, the representation reimaissme (i.e., static),
signi cantly simplifying task transfer.

However, the challenge for the BEV is that representing a high-resolttiordimensional
eld requires many input dimensions (i.e., many parameters), similarly to an &geoutgrowth
of evolutionary computation designed to address such high-dimensiastalkprs isindirect en-
coding which compresses the representation of the solution by reusing informaterparticular
indirect encoding in this paper, calledcampositional pattern producing netwo(iCPPN; Stan-
ley 2007), represents arti cial neural network (ANN) mappings betwieigh-dimensional spaces
by exploitingregularitiesin their geometry, which is well-suited to the BEV. An evolutionary al-
gorithm called Hypercube-based NeuroEvolution of Augmenting TopaodigperNEAT; Gauci
and Stanley 2008; Stanley et al. 2009; Gauci and Stanley 2010) thatigsdd to evolve CPPNSs is
therefore able to learn effectively from the BEV.

The HyperNEAT BEV is tested in the common RoboCup Keepaway soccebregment-
learning (RL) benchmark (Stone et al., 2005). Keepaway is importam@tuisecit can potentially
serve as a stepping stone to full-blown soccer in the future, which is a majentgoal in machine
learning (Kalyanakrishnan et al., 2007; Kitano et al., 1997; Kok et ab528yrylov et al., 2005;
Mackworth, 2009; Stolzenburg et al., 2006). One interesting result wélB@V is the longest
holding time in the 3 vs. 2 variant of the task yet recorded. However, morertangly, unlike
any method so far, HyperNEAT can transfer from 3 vs. 2 to 4 vs. 3 &&ay with no change in
representation and no further learning, demonstrating the critical role sgptiesentation plays in
learning and transfer. Furthermore, these transferred policies aabéHferther trained on the new
task without the need to alter the representation. Additional types of tramgfen Keepaway are
investigated wherein thepresentatiorof the policy (i.e., the CPPN, or indirect encoding) remains
static while the BEV itself is changed by increasing resolution and by acconmmgdiifferent
eld sizes. Finally, cross-domain transfer is demonstrated by training aetmatly different do-
main, Knight Joust (Taylor et al., 2007a), which is a simple predator{qymy domain, and then
transferring to 3 vs. 2 Keepaway.

The main result is that transfer through a static representation is consistertyrobust and
often provides immediate bene ts even without any further training. While stapoesentations
are inherently high-dimensional because they must encompass manyindskst encodings like
HyperNEAT's CPPNs show that high-dimensionality need not be prohéifivius, while machine
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learning often focuses on the learniafgorithm, the hope is that this paper provokes a fruitful
conversation on the role oépresentatiorin transfer and learning in general.

Itis nally important to acknowledge that the extent to which maintaining a staficesentation
is realistic depends upon the learning method, state information, and diffsréetween domains.
Thus static representation is an ideal that when met can provide an agljaatashown in this
paper.

The next section describes the importance of representation in learriorggsearch in transfer
learning, and the methods that underlie the BEV representation. Sectignia@nsxhow the BEV
is con gured, how information is represented in the BEV, and how Hyg&Ntrains the BEV. In
Section 4, the experiments that investigate the performance of the BEV iinigamd transfer are
described. Finally, Section 5 presents the results of the BEV, followeddiscassion in Section 6.

2. Background

This section examines the critical role of representation in RL and then egpfemgeometry-based
methods that underlie the static representation investigated in this papereaneidition to task
transfer.

2.1 Representation in Learning

A convenient model for problems in RL is tiMarkov decision proces@MDP). In the MDP, the
learner knows its environment through a state observatid®, which is characterized by a set of
state variables= hpsy; p2; ; pni, in which eachp; denotes a particular state parameter. By taking
an actiorn2 A, the agent transitions to a new stat&ithrough the transition functioh: S A7! S
The reward functioR: S7! R determines the instantaneous reward associated with reaching each
state. Finally, the action that the agent takes from its current state is sdbydfeel policy function
p:S7! A(Puterman, 1994). For example, in the Keepaway soccer domain, thepstaeS$or the
keeper with the ball can be de ned as the set of distances and angleshtotear player. The set of
actionsA can be de ned as a set of passes to teammates and holding the ball (Metier2@07;
Stone et al., 2001; Stone and Sutton, 2001; Stone et al., 2005). A simplg paeliculd be to pass
to the most open teammate when takers are close and hold the ball otherwise.

While the MDP framework provides a solid foundation for developing learaiggrithms, it
does not suggest how to select a state and amtiiesentatiorappropriate for both the domain and
the learning algorithm. One popular approach to state representatioxafopke, in the RoboCup
Keepaway soccer domain, is to express the state as distances and atlggestter players rela-
tive to the agent with the ball (Metzen et al., 2007; Stone et al., 2001, Z@9%or et al., 2006).
However, this common representation is not the only one possible, which istanpbecause repre-
sentation critically in uences what is learned (Gauci and Stanley, 200 &t al., 2008; Tadepalli
et al., 2004; Tesauro, 1992).

To see the powerful effect of representation on learning, consigecdmmon representation
in 3 vs. 2 Keepaway of 13 state parameters that are value-attributestioradisand angle relation-
ships among the players and the eld. In contrast, 4 vs. 3 Keepaway, a istasla requires an
increased number of state parameters to represent the distances ksd@amnipe additional play-
ers. These additional parameters mean that the same representatiarbesenpylied to both tasks,
thereby complicating the transfer of knowledge between tasks. For exaimpkame concept must
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be learned repeatedly when the same decisions are made separately fdembjgpts, such as
whether to pass to teammates who are out of bounds.

Relational RLaddresses problems such as scaling and repetitious concepts byligeengttze
representation of information for learning algorithms to a relational fornr@gle et al., 2001).
For example, in the RoboCup Keepaway domain, instead of real-valuechbataimeters, general
relationscan be de ned. An example for deciding to whom to pass in 3 vs. 2 Kegpava

PasgTeammate: Threatene@PlayerWithBal); OpenTeammatg

The relational form provides a more expressive representation thmtbeacombined with
reinforcement-learning methods (Tadepalli et al., 2004). By focusinty@togic of relationships,
instead of on individual parameter values, these relationships can bedafgpany number of ob-
jects. Furthermore, once a relationship is learned for one set of olijastearned for all similar
sets of objects.

One of relational RL's goals is to provide an easier representation fosferring knowledge.
This transfer could be across objects in the domain or across diffesst telowever, the design
and de nition of these relationships are dependent upon the human desigquiring expert do-
main knowledge. Learning is dependent upon the a priori de ned retiGontinuous and noisy
domains present additional challenges to designing appropriate relatlonal¢s, 2003). Never-
theless, relational RL highlights the importance of representation to learning.

However, while state representation is important, it is not the only type oéseptation that
affects learning. Also signi cant is the representation of the learner jtagdifch impacts which
types of relationships can be learned and how easily they are foundexBarple, research in
temporal difference learning can employ look-up tables or more compa@sentations (Sutton,
1988, 1996; Tesauro, 1992), which work by encoding regularitiesrmfportant difference between
these representations is that the look-up table contains enough paramsters associated actions
with every state, while compact representations must encode the solutiongmiticantly fewer
parameters than states. To guarantee convergence lwdhk-ap table every state must be visited an
in nite number of times (Sutton and Barto, 1998) whilempactepresentations need only discover
underlying regularities in the problem (Sutton, 1996; Tesauro, 1992).

Another important factor in representation is the geometry of the domain (éigh wosition
is adjacent to which and in what direction). Geometry plays a critical role mileg. For example,
if a checkers board is scrambled while the relationships among locations theabhan moved
remain the same, the game would become more dif cult to learn. This effedidesinvestigated
in checkers, wherein learning based on board geometry was demothstrateghance performance
versus learning while blind to geometry (Gauci and Stanley, 2008, 20t@glly, the solution
should be a function of the domain geometry, enabling the learner to takatadeaof geometric
regularities. This paper focuses further on the critical role of reptegpgeometry, particularly in
task transfer, which is described next.

2.2 Task Transfer

Task transfer means applying knowledge learned in one task to a newdredak (Caruana, 1997,
Talvitie and Singh, 2007; Taylor et al., 2007a). It allows learning to bgdled instead of starting
anew, thereby avoiding wasted computation. Additionally, a task may be sdexothpt it requires

initial training on a simpler version to reduce learning time and increase pwafae (Caruana,
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1997; Schmidhuber and Informatik, 1994; Tadepalli, 2008; Thrun aitdhell, 1994). Thus the
capability to transfer is becoming increasingly important as the tasks studietl incRease in
complexity. However, transfer learning faces several challengest, fiansfer is only effective
among compatible tasks and the particular knowledge that can transfesfetask to another must
be identi ed. Second, a method must be derived to actually implement thedrasfdtnowledge.
Finally, cases in which transfer hinders performancenegative transfermust be avoided (Pan
and Yang, 2008). There are several types of transfer learnifggme and a variety of methods
that exploit their characteristics. These methods include translating thdddgsvearned in one
task to another task (Ramon et al., 2007; Taylor et al., 2007a), choosngest policy for the
current task from a set of previously learned policies (Talvitie and SiBg07), extracting advice
from previously learned tasks (Torrey et al., 2008a,b), and learnirgpheuasks at the same time
(Collobert and Weston, 2008). This section reviews several sudioagipes.

An intuitive approach to transfer learning is to transform the representaticnowledge learned
in one task to a suitable form for a new task and then continue learning fretrpadint. A success-
ful method that takes this approachtiansfer via inter-task mapping for policy search methods
(TVITM-PS; Taylor et al. 2007a). TVITM-PS is such a leading methadfansforming the policy
learned in the source task into a policy usable in the target task. In TVISMaRransfer func-
tionalr is de ned to transform the policp for a source task into the policy for a target task, such
thatr (Psourcd = Prarget. This functional is often hand-coded based on domain knowledge, lthoug
learning it is possible. When there are novel state variables or actiomsc@mplete mappings
de ned from the source to the target. TVITM-PS can be adapted to multiplesentations. For
example, in an ANN, input or output nodes whose connections are madia the mapping (i.e.,
it is incomplete) are made fully connected to the existing hidden nodes withmangdights. This
incomplete mapping implies that further training is needed to optimize the policies sjiraeto
the new state variables and actions. However, it makes it possible to begia iarget domain
from a better starting point than from scratch. TVITM-PS is a milestone inttasisfer because it
introduces a formal approach to moving from one domain to another thaedénow ambiguous
variables in the target domain should be treated. The performance ofVIF'?iS is compared to
results in this paper.

Another method of transfer, which is one that is explored in this paper, Bcile the exact
samepolicy from a source task in a later target task. The idea is that the policthearcontinue
to improve in the target task. An existing approach to recycling past policiesngintain aset
of policies and select among themlternating trusting Exploration and suspicious exploitation
(AtEase; Talvitie and Singh 2007) is such a transfer method; it aims to resogien tasks are
related and when to exploit knowledge gained from previous tasksploigx knowledge from pre-
vious tasks by judging when to invoke the previously gained knowledgdrandwhich policies.
To facilitate this process, a set of policies previously developed by legasuorce tasks are rst
evaluated. This evaluation estimates the performance of these previousgdeaurce policies on
the new target task. Second, the strategies are ranked by their expedi@unance on the target
task and the source policy with the best estimated performance is chosally, Five chosen best
policy is set as the current policy for the target task. It remains as theygolithe target task until
the policy's actual performance on the task falls below expectation (i.e.stheated performance
from the evaluation of source policies is greater than the current peafoze) or reaches a maxi-
mum number of iterations (allowing other policies to be explored). If the éxymdicy falls below
expectation, the next best policy is selected and is set as the curramt prpicy. This method
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allows an accurate estimate of which policy from previously learned taskpisjariate for the cur-

rent task. In contrast to this approach, this paper focuses on hofetdiedly leverage knowledge
gained in asinglesource policy to continue learning in the target domain. Thus the appro#uis in
paper can potentially combine with a multi-policy approach such as AtEase.

An important consideration in transfer is whether a human can undersekddivledge being
transferred among tasks. An alternative method to recycling previoushye@aolicies directly is
to take advice from learned policies to augment decision making. This advictak®athe form of
geometric knowledge, causal relationships, predictions, or any othewofyipformation, allowing
researchers to more easily interpret the transferred knowldRigle. extractioris one such method
that takes knowledge learned from a source domain and translates it wte #uht aids a policy in
a target domain (Torrey et al., 2008b). The advice is generated agldigpal, if-then statement.
Torrey et al. (2008b) describe two methods for generating advice n@tieod is to compose rules
by decomposing the policy learned on a source task. For exa@plajues can be examined
directly and rules can be generated based on which actions are edefémn alternative method
for generating advice is to analyze thehavior(instead of the policy) of an agent to generate
rules. Consider observing agents playing a game of Keepaway sdbceugh observation, it may
be apparent that a learned policy always passes the ball if oppongtsaah within one meter,
which may then be transformed into a rule to transfer to another task. Thesefgsules have
the advantage of being understandable to humans, allowing reseawmckeosv what knowledge is
being transferred and how it is contributing.

Interestingly, transfer learning does not always require a desigsatede and target task. In-
stead, knowledge may transfer among several tasks that are simultigrizeing learned. By en-
coding the knowledge for multiple tasks within the same policy, the knowledgedd#iom each
individual task may combine with and complement the knowledge from othes.t&slk example,
Collobert and Weston (2008) demonstrate transfer learning through multireeing for natu-
ral language processing (NLP) with deep neural networks. Therenany tasks related to NLP,
including part-of-speech tagging, chunking, named entity recognitionasgc role labeling, lan-
guage modeling, and relating words syntactically. The idea is that learning abe such task may
contribute to learning the others. By training the policies simultaneously foredktiapabilities,
knowledge can be continually passed back and forth among all these liagksticular, Collobert
and Weston (2008) show that this method improves generalization and exkmwpetitive results
on the task of relating words with similar meaning.

This paper adds to our understanding of task transfer by focusingeawlh ofrepresentation
The next section reviews the NEAT method, upon which this representzgiutnic approach is
built.

2.3 NeuroEvolution of Augmenting Topologies (NEAT)

NEAT (Stanley and Miikkulainen, 2002, 2004) is a popular policy searcthatethat evolves
ANNs. The main idea in this paper focuses on an extension of NEAT callgeiMEAT. Nev-

ertheless, the basic principles of NEAT still supply the foundation of thecagh. Traditionally,

ANNSs evolved by NEAT control agents that select actions based on #vegos inputs. It is proven
in a variety of challenging control and decision-making tasks (Aaltoneh,e2@09; Cardamone
et al., 2009; Stanley and Miikkulainen, 2002, 2004; Stanley et al., 20f}8ofet al., 2006; White-
son, 2005; Whiteson and Whiteson, 2007). This section brie y revielwdN
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NEAT is an evolutionary algorithm that starts with a population of small, simple ANTds
increase their complexity over generations by adding new nodes andatmms through mutation.
That way, the topology of the network does not need to be known a pndrNEAT nds a suitable
level of complexity for the task. NEAT is unlike many previous methods thalvedoneural net-
works, that isheuroevolutiormethods, which historically evolved either xed-topology networks
(Gomez and Miikkulainen, 1999; Saravanan and Fogel, 1995), orambitandom-topology net-
works (Angeline et al., 1993; Gruau et al., 1996; Yao, 1999). Unliksdla@proaches, NEAT begins
evolution with a population of small, simple networks and increases the compléxtitg aetwork
topology intodiverse speciesver generations, leading to increasingly sophisticated behavior. A
similar process of gradually adding new genes has been con rmed inahavwlution (Martin,
1999; Watson et al., 1987) and shown to improve adaptation in a few poartmnary (Altenberg,
1994) and neuroevolutionary (Harvey, 1993) approaches. Hewvakey feature that distinguishes
NEAT from prior work in growing ANNS is its unique approach to maintainingealthy diversity
of increasingly complex structures simultaneously, as this section reviewrapl€te descriptions
of the NEAT method, including experiments con rming the contributions of its conemts, are
available in Stanley and Miikkulainen (2002, 2004) and Stanley et al. {2005

The NEAT method is based on three key ideas. First, to allow network stegdinincrease in
complexity over generations, a method is needed to keep track of whicliggghieh. Otherwise, it
is not clear in later generations which individual is compatible with which in afaipn of diverse
structures, or how their genes should be combined to produce offsgdBéT solves this prob-
lem by assigning a uniquaistorical markingto every new piece of network structure that appears
through a structural mutation. The historical marking is a number assigneattogene corre-
sponding to its order of appearance over the course of evolution. drbers are inherited during
crossover unchanged, and allow NEAT to perform crossover amigagsd topologies without the
need for expensive topological analysis.

Second, NEAT divides the population into species so that individuals aenppienarily within
their own niches instead of with the population at large. Because addingtnegture is often
initially disadvantageous, this separation means that unique topologicakinms are protected
and therefore have the opportunity to optimize their structure without diomspetition from other
niches in the population. The historical markings help NEAT determine to wipiebiss different
individuals belong.

Third, many approaches that evolve network topologies and weights begiation with a
population of random topologies (Gruau et al., 1996; Yao, 1999). mtrast, NEAT begins with a
uniform population of simple networks with no hidden nodes, differing ontyéir initial random
weights. Because of speciation, novel topologies gradually accumuletesesiution, thereby al-
lowing diverse and complex phenotype topologies to be represented. Ndsliptéiced on the size
to which topologies can grow. New structures are introduced incremengadiractural mutations
occur, and only those structures survive that are found to be behéhrough tness evaluations.
In effect, then, NEAT searches for a compact, appropriate topolodggdsgmentally adding com-
plexity to existing structure.

The important concept for the approach in this paper is that NEAT is a psdéiaych method
that discovers the right topology and weights of a network to maximize peaioce on a task. The
next section reviews the extension of NEAT called HyperNEAT that allows &xploit geometry
through representation.
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2.4 CPPNs and HyperNEAT

The primary reason that NEAT is chosen as the main vehicle to study alteapmtsentations is
that it is easily extended to becomeiadirect encodingwhich means aompressedescription of
the solution network. Such compression makes the policy search praveceif ¢he state space is
high-dimensional. One effective approach to indirect encoding is to ctantpe network structure
as a function of the domain's geometry. This section describes such arsiextexf NEAT, called
Hypercube-based NEAT (HyperNEAT; Gauci and Stanley 2008;|8fagt al. 2009; Gauci and
Stanley 2010), which enables the novel state representation in this papeafbird's eye view.
The effectiveness of the geometry-based learning in HyperNEAT s dbemonstrated in multiple
domains, such as checkers (Gauci and Stanley, 2008, 2010), muitigagdator prey (D'Ambrosio
and Stanley, 2008; D'Ambroiso and Stanley, 2010), visual discriminaSten(ey et al., 2009), and
guadruped locomotion (Clune et al., 2009). For a full HyperNEAT dpBon, see Stanley et al.
(2009) and Gauci and Stanley (2010).

The main idea in HyperNEAT is that it is possible to learn geometric relationshtps ilomain
through an indirect encoding that describes howdbenectivityof the ANN can begeneratedas
a function of the domain geometry. Unlikedaect representation, wherein every dimension in the
policy space (i.e., each connection in the ANN) is described individuallindirect representation
can describe a pattern of parameters in the policy space without explicitiyezating every such
parameter. That is, information is reused in such an encoding, which is & foajs in the eld
of generative and developmental systdrom which HyperNEAT originates (Bentley and Kumar,
1999; Hornby and Pollack, 2002; Lindenmayer, 1968; Turing, 19%)ch information reuse is
what allows indirect encodings to search a compressed space. THgpesNEAT discovers the
regularitiesin the domain geometry and learns a policy based on them.

The indirect encoding in HyperNEAT is called @ampositional pattern producing network
(CPPN; Stanley 2007), which encodes ttannectivity patterrof an ANN (Gauci and Stanley,
2007, 2008; Stanley et al., 2009; Gauci and Stanley, 2010). The &ldacCPPNs is that a ge-
ometric pattern can be encoded bga@nposition of functionthat are chosen to represent several
common regularities. For example, because the Gaussian function is symmagicit is com-
posed with any other function, the result is a symmetric pattern. The intdroatise of a CPPN
is a weighted network, similar to an ANN, that denotes which functions are esegpand in what
order. The appeal of this encoding is that it can represent a patteomoéctivity, with regularities
such as symmetry, repetition, and repetition with variation, through a netWaiknple functions
(i.e., the CPPN), which means that, instead of evolving ANNs directly, NEATev@lve CPPNs
that generate ANN connectivity patterns (Figure 1). Furthermore, theeateencoding represents
the connectivity of the ANN regardless of its size, which allows ANNSs ofteaty dimensionality
to be represented.

Formally, CPPNs aréunctionsof geometry (i.e., locations in space) that output connectivity
patterns whose nodes are situated @imensions, whera is the number of dimensions in a Carte-
sian space. For each connection between two nodes in that space RNér@Rts theicoordinates
and outputs their connection weight. That way, NEAT can evolve CPPNsgigesent ANNs with
symmetries and regularities that are compudidctly from the geometry of the state space. Con-
sider a CPPN that takes four inputs labelgdyi, X2, andys; this point in four-dimensional space
canalsodenote the connection between the two-dimensional pEiatg:) and(xz;y2). The output
of the CPPN for that input thereby represents the weight of that ctiond€&igure 1). By querying
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Figure 1: A CPPN Describes Connectivity. A grid of nodes, called the ANbktrateis assigned
coordinates. (1) Every connection between layers in the substraterisdjbg the CPPN
to determine its weight; the line connecting layers in the substrate represeatgples
such connection. (2) For each such query, the CPPN inputs the catasliof the two
endpoints, which are highlighted on the input and output layers of thdratdas(3) The
weight between them is output by the CPPN. Thus, CPPNs, whose intepgmbgy
and connection weights are evolved by HyperNEAT, can generatdéaregatterns of
connections.

every pair of points in the space, the CPPN can produce an ANN, wheaelm queried point is
the position of a neuron. While CPPNs are themselves networks, the distiirctierminology
between CPPN and ANN is important for explicative purposes becausgierNEAT, CPPN&nN-
codeANNSs. Because the connection weights are produced as a functioriradigpoints, the nal
structure is produced witknowledgeof the domain geometry, which is literally depicted geometri-
cally within the constellation of nodes. In other words, paramegieds the state vectos actually
exist atcoordinatesn space, giving it a geometry.

To help explain how CPPNs can compactly encode regular connectivitynmtkégure 2 shows
how a very simple CPPN encodes a symmetric network. In effect, the CRRtd pgattern within
a four-dimensional hypercube that is interpreted as an isomorphic ciritygoattern. The example
in Figure 2 illustrates the natural connection between the function embodiee IGRRN and the
geometry of the resultant network.

Connectivity patterns produced by a CPPN in this way are calldgxstrateso that they can
be verbally distinguished from the CPPN, whose internal topology is indbpe of the substrate.
The experimenter de nes both the location and role (i.e., hidden, input, tpuguof each node
in the substrate. As a rule of thumb, nodes are placed on the substrateetd tiee geometry of
the domain (i.e., the state), which makes the setup straightforward (GauStamey, 2007, 2008;
Clune et al., 2009; Stanley et al., 2009; Gauci and Stanley, 2010). Hyistlne connectivity of the
substrate becomes a direct function of the domain geometry, which meakaahaédge about the
problem can be injected into the search and HyperNEAT can exploit théaréges (e.g., adjacency,

1745



VERBANCSICS ANDSTANLEY

(a) ANN Substrate (b) CPPN

Figure 2: Example CPPN Describing Connections from a Single Node. &mgbe CPPN (b) with
ve inputs (X1;V1;X2; y2; bias) and one outputweight) contains a single Gaussian node
and ve connections. The function produced is symmetric agpandx, (because of the
Gaussian) and linear with respectta(which directly connects to the CPPN output). For
the given xed input node coordinateq = 0;y; = 0), the CPPN in effect produces the
function Gaussiah x2) Y». This pattern of weights from input nod6; 0) is shown on
the substrate (a). Weight magnitudes are indicated by thickness and bleskndicate
positive values. Note that the pattern produces a set of weights thatraneetric about
thex-axis and linearly decreasing as the valuegaohcreases. In this way, the function
embodied by the CPPN encodes a geometric pattern of weights in spacerNHEyje
evolves the topologies and weights of such CPPNs.

or symmetry, which the CPPN sees) of a problem that are invisible to tradigrraldings. For
example, one way that geometric knowledge can be imparted is by includingenhidde in the
CPPN that computes Gaussjan Xi1), which imparts the concept of locality on tkeaxis, an idea
employed in the implementation in this paper. The HyperNEAT algorithm is outlineldyarigom
1.

In summary, instead of evolving the ANN directly, HyperNEAT, through tHeAN method,
evolves the internal topology and weights of the CPPN émabdest, which is signi cantly more
compact. The next section explains how this encoding makes it possiblendrear a bird's eye
view.

3. Approach: Bird's Eye View

A major challenge for the state representation in RL tasks is that speci ¢ statbles are often
tied to agents or individual objects, which makes it dif cult to add more sugjecis without ex-
panding the state space (Taylor et al., 2007a). To address this probiesgdtion proposes a static
representation, the bird's eye view (BEV) perspective, which enalgaking to higher complexity
states without the need to alter the representation. The BEV is explainedolietyed by its im-
plementation, which is based on the HyperNEAT approach. Becauseldtisety simple, the BEV
is chosen in this paper to exemplify the advantage of static representatiok tretaster.
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Input: Substrate Con guration

Output: Solution CPPN
1 Initialize population of minimal CPPNs with random weights;
2 while Stopping criteria is not medo
3 foreach CPPN in the populatioo

4 foreach Possible connection in the substrate

5 Query the CPPN for weight of connection;

6 if Abs(w)> Thresholdthen

7 Create connection with a weight scaled proportionallwt@-igure 1);
8 end

9 end
10 Run the substrate as an ANN in the task domain to ascertain tness;
11 end

12 Reproduce CPPNs according to the NEAT method to produce the nexatjene
13 end
14 Output the Champion CPPN.

Algorithm 1: Basic HyperNEAT Algorithm

3.1 Bird's Eye View

Humans often visualize data from a BEV. Examples include maps for navigatiastruction blue
prints, and sports play books. Key to these representations is that thajnrthe same (i.e., they
are static) no matter how many objects are represented on them. For example, a city esmp do
not change size or format when new buildings are constructed or resdg Bre created. Addition-
ally, the physical geometry of such representations allow agents to tengieispatial relationships
among objects in the environment by placing them in the context of physiaaésfghe BEV also
implicitly represents its borders by excluding space outside them from its fldewv. As sug-
gested in Kuipers' Spatial Semantic Hierarchy (SSH), suelricalrepresentation of the geometry
of large-scale space is a critical component of human spatial reasdhiie(s, 2000).

A distinctive feature of the proposed representation is that not only igena atate represented
from a BEV, but italsorequestsactionswithin the same BEV perspective. For example, to request
a pass the agent can indicate its target by simply highlighting it on a two-dimehsiotput array.
That way, instead of making decisions blind to the geometry of physicaésfiaan be taken into
account.

Egocentric data (Figure 3a) can be mapped to an equivalent BEV byatiiagsfrom local
(relative) coordinates to global coordinates established by static poiragenénce (i.e., ducials).
The global coordinates mark the location of objects in the BEV (Figure 3fi¥ tfanslation allows
mapping any number of objects into the static representation of the BEV.

Importantly, the continuous coordinate system must be discretized so tmavagable in the
state representation corresponds to a single discrete location. Thididegaa allows the two-
dimensional eld to be represented with a nite set of parameters. The saltithese parameters
denote objects in their respective regions.

Note that while the division of the eld in Figure 3b appears reminiscetil@toding(Sutton,
1996), that appearance is super cial because (1) a tile coding oftdéie wariables in Figure 3a
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(a) Egocentric view (b) BEV

Figure 3: Alternative Representations of a Soccer Field. Severamgéess (a) represent the
agent's relationship with other agents on a soccer eld (taken from a atdriRoboCup
representation; Cheny et al. 2003). Each distance and angle paseeps a specic
relationship of the agent to another agent. The BEV (b) representsrtteerstationships
as paths in the geometric space. A square depicts the agent, circles defeetitsates,
and triangles its opponents. The overhead perspective also makesilipds represent
any number of agents without changing the representation.

would still be egocentric whereas the BEV is not, and (2) tile coding bre&kstéte representation
into chunks that can be optimized separately whereas the HyperNEAT G&RMds the connectiv-
ity of the policy network directly from the geometric relationships among thersgua Figure 3b,
as explained next.

3.2 HyperNEAT: Learning from the BEV

Geometric patterns often exhibit spatial regularities. Examples include repeditid symmetry.
Furthermore, important geometric relationships such as locality and topolcgitaéctedness of-
ten critically in uence informed spatial decision-making. The challenge farimree learning is that
learning is often blind to the geometry of the problem, making it dif cult to explaitts relation-
ships (Gauci and Stanley, 2008, 2010). To understand the impactwifigdrom the true geometry
of the domain, consider a two-dimensional eld converted to a traditional vexftparameters,
which removes the geometry (Figure 4). For example, consider a setuifuafues to an ANN
such as in to Figure 3a. Though eatist andq pair is critically related in such a traditional rep-
resentation, an ANN has no inherent knowledge or explicit access tceethttonship. In contrast,
HyperNEAT seesthe task geometry, thereby exploiting geometric regularities and relationships,
such as locality, which the BEV naturally makes explicit.

For HyperNEAT to exploit patterns in a two-dimensional BEV (e.g., in sQ¢ctke geometry
of the input layer of the substrate is made two-dimensional, as in Figure %.wWHyaCPPNs can
compute the connectivity of the substrate as a function of that geometryx ahey coordinates
of each input unit (i.e., eacfy) are in the rang¢ 1;1]. Furthermore, the output layer of the sub-
strate matches the dimensions of the BEV so that the CPPN can exploit the geaeiationship
between the input space and output space as well (Figure 5). Thatithetsare themselves a
discretized two-dimensional plane is another signi cant difference ftilencoding. Each coor-
dinate in this substrate represents a discretized region of the overheadfyaysical space. A
four-dimensional CPPN with inputs;yi;Xo; andy, determines the weights between coordinates
in the two-dimensional input layer and the two-dimensional output layeatiogea pattern of con-
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Figure 4: The Importance of True Geometry. A two-dimensional eld tramsgd into a vector of
parameters without any geometry forfeits knowledge of the geometry ottinaid.

nections between regions in the physical space. To represent wdsdd @lbgects and agents are
literally “drawn” onto the input substrate, which is a static size, like marking a mhp generated
network then can make decisions based on the relationships of suctefemtphysical space and
thereby learn the signi cance of certain kinds of geometric relationshipsigrabjects that are not
identi ed a priori by the designer.

Figure 5: BEV Implemented in the Substrate. Each dimension ranges bdtwkdhand the input
and output planes of the substrate are equivalently constructed to teketage of geo-
metric regularities between states and actions. Because CPPNs are ait gntticaling,
the high dimensionality of the weights does not affect performance. (HNJs the
search space.)

In this way, the BEV makes it possible to add new features (e.g., a new playthe state
spacewithoutthe need to add new inputs. Instead, they can now simply be drawn ontoistingex
representation with no additional apparatus. That way, task transféfaedt numbers of players
is made simple through the static representation.
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Interestingly, although the BEV is naturally held static its size or resolution eachanged
without retraining. A unique feature of CPPNs (which encode the BEV conriggtig that the
same CPPN can query substrates of arbitrary size or resolution. It istanpdo note that even
when size or resolution are changed, @iePNitself remains the same. Thus the BEV can extend
its representation to different eld sizes or to different levels of detail,(r&solutions), as shown
in Figure 6. In this way, the CPPN allows not only transfer to different nenwlof players, but to
different eld sizes and resolutions, all without the need for retraining.

Figure 6: Changing the BEV. Two kinds of alterations are depicted in thisegtrirst, the BEV
can be altered by increasing theea of the substrate while maintaining the size of each
discrete cell by extrapolating new connection weights associated with pelyionseen
cells. Second, resolution is increased by increasing the number of ceélshanking the
area represented by each discrete cell. The CPPN automatically interpalatection
weights for the new locations. Thus, the BEV allows new forms of transfdiffering
eld sizes or levels of precision.

It is important to understand that the dimensionality of the search space erNEAT is not
the same as the dimensionality of the substrate because the search spacPBrhavhich is a
compact encoding of the pattern of connections in the substrate. For kexaitipe substrate reso-
lution is 20 20 then the number of possible connections in the substrate is 400= 160,000.
However, a CPPN that encodes this connectivity can itself contain oofleragnitude fewer con-
nections. This fact also explains why resolution can increase withoainmety. For example, if
resolution increases to 4040 (2,560,000 possible connections), there are new connections that
connect locations that previously did not exist at 200. However, the same CPPN can simply
query the X1;Y1;X2; y2) coordinate of the new connections, thereby interpolating the weights of the
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new connections automatically. Although the number of connections in this éx@mppeases from
160,000 to 2,560,000, the dimensionality of the CPPN does not change at all.

The next section introduces the experiments that demonstrate the bendhs @eometric
approach.

4. Experimental Setup

The experiments in this paper are designed to investigate the role of nefatise in task transfer.
Of course, some representations are better suited to transfer in a givexircthan others. Further,
the ability to transfer between tasks is dependent on the similarity of the taskeevdr, this paper
focuses on the idea that a particularly effective representation fafénais one thatloes not need
to changefrom one task to the next. Because the representation is consistent, iehastémtial
to exhibit improved performance in the target domain immediately after tramgtbigut further
learning. The advantage of a consistent representation is that the semstattanships learned
previously are preserved and then can be built upon. Because the<BiE¥ same irrespective
of the number of players on either side, it satis es this requirement and sitfoevhypothesis that
consistent representation leads to immediate improvement in the target domaitesidae This
section explains the domains, the methods compared, and the experimergalaions.

4.1 RoboCup Keepaway Domain

RoboCup simulated soccer Keepaway (Stone et al., 2001) is well-suitedhoasuinvestigation
because itis a popular RL performance benchmark and can be scal#drend numbers of agents
to create new versions of the same task. All experiments are run on thawaep.6 player bench-
mark (Stone et al., 2006) and the RoboCup Simulator Soccer Server \l {2Heny et al., 2003).
RoboCup Keepaway is a popular benchmark (Metzen et al., 2007; Stahe2005; Taylor et al.,
2007a; Whiteson et al., 2005) in part because it includes a large staie, gzatially observable
state, and noisy sensors and actuators. It is also a stepping stone tioviullfRoboCup Soccer,
one of the hottest tasks in machine learning (Kalyanakrishnan et al., 2@@rpket al., 1997; Kok
et al., 2005; Kyrylov et al., 2005; Mackworth, 2009; Stolzenburg eal06). In Keepawaykeep-
erstry to maintain possession of the ball within a xed region aallersattempt to take it away.
The number of agents and size of the eld can be varied to make the task mess dlif cult: The
smaller the eld and the more players in the game, the harder it becomes.

4.2 Keepaway Benchmark

Each learning method in this paper is initially compared in the standard benclsetagk (Stone
et al., 2005) of the three keepers versus two takers task on a 20m eld. In this setup, agents'
sensors are noisy and their actions are nondeterministic. Takers folloevpsicies, wherein the
rst two takers go towards the ball and additional takers attempt to block &pepers. The learner
only controls the keeper who possesses the ball; its choices are to holaltbeass to a speci ¢
teammate. The keepers' reward is the length of time they hold ball. In the 3 v&k,2lfavariables
represent the agent's state (Stone et al., 2005). These include egehspiiistance to the center
of the eld, the distance from the keeper with the ball to each other playewrigtance from each
other keeper to the closest taker, and the minimum angle between the otperskand the takers
(Figure 7). The three possible actions are holding the ball or passingtofdine other two keepers.
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Figure 7: Visualization of Traditional State Variables in 3 vs. 2 Keepawhg. 113 state parameters
that represent the state in the 3 vs. 2 Keepaway task are depicted in thes Thwe three
keepers are represented by the circles and the takers represeritedltigngles. The
state parameters include the distances from each player to the center efdtimarked
by the circle with the ), the distances from the keeper with the ball (denoted by the
circle with the +) to each other player, the distance from each other kémplee taker
nearest them, and the angles along the passing lanes.

To investigate the ability of a static representation, that is, the HyperNEAT, BEMarn this
task, it is compared to both static policies (Stone et al., 2006) and the leatgorilans Sarsa
(Rummery and Niranjan, 1994), NEAT (Stanley and Miikkulainen, 20040,lBANT (Metzen et al.,
2007). Unlike the BEV, the traditional representation (with 13 state variptiiesugh which these
methods learn in 3 vs. 2 Keepaway must be changed for different uersfdhe task, such as 4 vs.
3 Keepaway. The static benchmarks are Always-Hold, Random, anaéEaded policy, which
holds the ball if no takers are within 10m (Stone and Sutton, 2001). Thesel®senchmarks provide
a baseline to validate that the BEV learns a non-trivial policy in the initial task.

State action reward state action (Sarsa; Rummery and Niranjan 1994) ispationtemporal
difference RL method that learns the action-value func@{s;a). The quintuple(s;a;r;s®ad
de nes the update function foQ(s;a) by determining for a current state) (and action &) what
the reward () and the expected reward for the predicted next seteuid action €9 will be. The
update equation is:

Qsa) (1 a)Q(sa)+ a(r+ g2ad);

wherea is the learning rate anglis the discount factor for the future reward. The valueQ(s; a)
determine which action is taken in a given state by selecting the maximal valuéh kéeper
separately learns which action to take in a given state to maximize the rewacgiite® (Taylor
et al., 2006).

Regular NEAT (Stanley and Miikkulainen, 2002) evolves ANNs to maximize astfunction.
The ANN receives the 13 state inputs (like Sarsa) to de ne the state of #iemsyand produce three
outputs to select an action. The tness in RoboCup Keepaway is the avéragth of time that
keepers can hold the ball over a number of trials (Taylor et al., 2006NTE@Metzen et al., 2007)
is an additional neuroevolution algorithm based on NEAT that learneda¢esmp Though similar
to NEAT, it distinguishes itself by more explicitly controlling the ratio of exploratioexploitation
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during the evolutionary process. These methods were chosen for deamphecause they have
been tested in the same Keepaway con guration.

As described in Section 3, the HyperNEAT BEV transforms the traditiontd s¢gresentation
to explicitly capture the geometry. The standard substrate is a two-dimen2®n&0 input layer
connected to a 20 20 output layer. Thus both the state and action spaces have 400 dimesesshns
(p1:::pacpanday:::asn0). As with Sarsa in Stone and Sutton (2001), this policy representation does
not include a hidden layer. However, the CPPN that encodes its weigbsevolve internal nodes.
Each node in a substrate layer represents adistrete chunk of Keepaway eld. Each keeper's
position is marked on the input layer with a positive value @& it its containing node and takers
are similarly denoted by 1:0. Paths are literally drawn from the keeper with the ball to the other
players (as in Figure 8).

Figure 8: Visualizing the BEV Input Layer in 3 vs. 2 Keepaway. The inpyer of the BEV is
marked with the positions of keepers, takers and paths. The keeper witialthe the
small square, other keepers are circles, and the takers are triangs#iszeHnput values
are denoted by lighter shades (for keepers and paths to keeperggative input values
are denoted by darker shades (for takers and paths to takers). Tdlle stidde represents
an input of 00, the lightest shade is 1.0, and the darkest shade isl:0. The BEV
represents the distances and angles to other players in a geometrici@ioguallowing
geometric relationships to be exploited by HyperNEAT. Paths implicitly reptasieich
keeper possesses the ball by converging on that keeper. (Note ¢hattthal standard
input layer in the experiments is 2020.)

Positive values of 8 depict paths to other keepers and values 613 depict paths to takers.
These input values for agents and paths are experimentally determinegbastito minor variation.
Actions are selected from among the output nodes (top layer of Figuratdirespond to where
the keepers are located: If the highest output is the node where therkeitip the ball is located,
it holds the ball. Otherwise, it passes to the teammate with the highest output atlés mhis
method of action selection thus corresponds exactly to the three actiondbkvail&arsa, NEAT,
and EANT. A key property of this representation is that it is independktiteonumber of players
on either side, unlike the representation in the traditional approaches.

The population size in HyperNEAT is 100. Available CPPN activation funstiare absolute
value, bipolar sigmoid, Gaussian, linear, sine, and step. Activation isgigemulting in a node out-
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put range of 1;1]. By convention, a connection is not expressed if the magnitude the pongs
ing CPPN output is below a minimal threshold 02 @Gauci and Stanley, 2007). The probability of
adding a node to the CPPN i908 and the probability of adding a connection i$& The disjoint
and excess node coef cients were both 1.0 and the weight differavefecient was 1.0. The initial
compatibility threshold was 20.0. These parameters were found to be tobusderate variation
in preliminary experimentation.

HyperNEAT evolves the CPPN that encodes the connectivity betweenNiie |Ayers in the
substrate (up to 160,000 connections with a ZD resolution). Fitness is assigned according to the
generated network's ball possession time averaged over at leastI8Ovitth additional trials up to
100 assigned to those above the mean, following Taylor et al. (2006)itiéwally, the CPPNs in
the initial population are given the geometric concept of locality (Sectigh 2

4.3 Keepaway Transfer

Task transfer, the focus of this work, is rst evaluated by training a éti{EAT BEV on the 3 vs.

2 task on a 256m25m eld (instead of the standard 20n20m) and then testing the trained BEVs
on the 4 vs. 3 version of the task on the same wlithout any further training The larger eld

is needed to accommodate the larger version of the task (Taylor et al.,)200¥Bwitch from 3
vs. 2 to 4 vs. 3, the additional players and paths are simply drawn on thelayeun as usual, with
no transformation of the representation or further training. The resulgénipmance on 4 vs. 3
is compared to TVITM-PS (Taylor et al. 2007b; described in Secti@), 2vhich is the leading
transfer method for this task. TVITM-PS results are from policies repres by an ANN trained
by NEAT (Taylor et al., 2007b). Unlike the HyperNEAT BEV, TVITM-P8quires further training
after transfer becauseexpands the ANN by adding new state variables.

Additionally, two alternative forms of transfer are evaluated in Keepawag rst is transfer
to increasing eld sizes, which is evaluated by rst training individuals asraall (15m 15m) eld
size and then testing trained individuals on the trained and larger eld sézeh (of 15m 15m,
20m 20m, and 25m 25m). To adjust for eld size changes, the size of the HyperNEAT BEV
substrate is changed to match the different eld sizes (i.e., if the eld sizeris 1B6m, the substrate
is 15 15; if itis 25m 25m, the substrate is 2525). In this way, the relative meaning of each
discrete input unit is held constant (e. 8013 = 11? per input and?®1-23M = 11? per input).
The indirect encoding of the BEV extrapolates the trained knowledgedrameld size to the other
eld sizes.

Second, transfer to substrates of different resolutions is evaluatedibing individuals on a
single eld size, then doubling the resolution in each dimension of the subsgi®tean individual
trained on a 20m20m eld with a 20 20 substrate is reevaluated on a substrate changed to
40 40). This increase in resolution results in a smaller section of the eld bejmgsented by
each input (e.g.22129M = 1n? per input and%-20" = Im? per input). The higher resolution
BEV is then tested on the same eld size to evaluate the ability to transfer knogvleelyveen
substrate resolutions. The new connections in the BEV are interpolatea: liydihect encoding.

In principle, this ability to raise resolution could allow computational cost to daaed by training
on a lower resolution and later raising resolution to increase the precistbe 8EV.
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4.4 Knight Joust

Knight Joust is a predator-prey variant domain wherein the playey)gtarts on one side of the
eld and the opponent (predator) starts on the opposite side (Tayldr, 2087b). The player must
then travel to the opposite side of the eld while evading the opponent. Theeanight Joust

re ects that the player is allowed three potential moves: move forwardhkjugnp left, and knight
jump right, where &night jumpis two steps in the direction left or right and then forward (as in
chess). The opponent follows a stochastic policy that attempts to intereggatfer. The traditional
state representation consists of the distance to the opponent, the anglerb#te®@pponent and
the left side, and the angle between the opponent and the right sidegBigur

Figure 9: Knight Joust World. In Knight Joust, the player (circle) begin the side marke8tart
and must reach the side markiEdd while evading the opponent (triangle). The player
is given the state information of the distance to the opportrihe angle between the
opponent and the left sida, and the angle between the opponent and the right bide,
This state information can similarly be drawn on the substrate of the BEV by ngglitién
position of the player, opponent, the path between them, and the paths tarikesco

While Knight Joust is signi cantly different from Keepaway, a featuféoth is that at each step
the agent must make the decision that best avoids the opponent. Holeigdrt Joust is simpler,
eliminating such complexity as multiple agents, noise, and kicking a ball, making ittnactable.
The simpli cation makes it ideal for cross-domain transfer; because truisiguicker and easier
than in Keepaway, knowledge is more quickly bootstrapped. In Tayldr €2G07a), cross-domain
transfer from Knight Joust to Keepaway was shown to enhance IgarAunditionally, the Hyper-
NEAT BEV can represent the state information in Figure 9 by drawing the sifatenation onto
the inputs.

In particular, the player and opponent are indicated-liy0 and 1.0 respectively. The path
to the opponent is shown by values 00:3 and the paths to the goal-side corners are marked with
+0:3. Actions are selected from among the output nodes representing titierposfront of the
player (move forward), the left corner (knight jump left), and the rigitner (knight jump right).
This representation of state is similar to Keepaway, but the semantics aremliffé he player in
Knight Joust is selecting a direction of movement instead of a passing pagitibthe paths to the
corners indicate the direction of the goal rather than teammate positions.
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The evaluation of cross-domain transfer is completed by rst training @og@&nerations in the
Knight Joust domain. Fitness is assigned to the individuals in Knight Jguatvarding 1 point
for only moving forward and a bonus of 20 points for reaching the eneixtNhe champions of
these runs seed the runs for 3 vs. 2 Keepaway. Finally, Keepawamg&irun for ten generations.
The runs seeded with individuals trained in Knight Joust can then be cethpaKeepaway runs
without such transfer. This experiment is interesting because it can hefjtothat static transfer
is bene cial with the BEV even in cases where the input semantics of the twe tesre slightly
different meaning.

5. Results

This section describes the results of training the BEV on the Keepawayieank, the transfer
performance among variations of the Keepaway task, and nally the jedioce of the BEV in
cross-domain transfer from Knight Joust to Keepaway. Videos df’feddkeepaway behaviors are
available at http://eplex.cs.ucf.edu/hyperneat-keepaway.html.

5.1 RoboCup Keepaway Performance Evaluation

In the RoboCup Keepaway benchmark, performance is measured byrttienof seconds that the
keepers maintain possession (Stone and Sutton, 2001; Stone et al.T&@0o6get al., 2007b). After
training, the champion of each epoch is tested over 1,000 trials. Perfoemeswlts are averaged
over ve runs with each consisting of 50 generations of evolution. Thimlmer of generations
was selected because the correspondingulatedtime spent in RoboCup during training equals
simulated time (800-1,000 hours) for previous approaches (Taylor 2086, Metzen et al., 2007).
The test on the 3 vs. 2 benchmark is intended to validate that the BEV leanetitively with
other leading methods.

In 3 vs. 2 Keepaway on the 20n20m eld, the best keepers from each of the ve runs con-
trolled by a BEV substrate trained by HyperNEAT maintain possession ofathem average for
15:4 secondsqd= 1:31), which signi cantly outperformsg < 0:05) all static benchmarks (Table
1). Furthermore, assuming similar variance, this performance signi cartigezls p < 0.05) the
current best reported average results (Stone et al., 2001, 20g6r €al., 2006) on this task for
both temporal difference learning (12.5 seconds) and NEAT (14.0ngsfoand matches EANT
(14.9 seconds; Table 1). The important implication of this result is that thetypAT BEV is at
least competitive with the top learning algorithms on this task.

5.2 Keepaway Transfer Results

In transfer learning, the main focus of this work, the BEV is evaluated bintemdividuals trained
for 20 generationsnly on the 3 vs. 2 task on a 25n25m eld. Learned policies are then tested
on boththe 3 vs. 2 and 4 vs. 3 tasks for@DO trials each without any further training. Note that
this evaluation of transfer differs from Taylor et al. (2007b), in whicnte trained on the smaller
task arefurther trainedon the larger task after the transfer because new parameters are &uded
contrast, transfer within the BEV requires no changes or transformatt@rformance is averaged
over ve runs, following Taylor et al. (2006). Figure 10 shows therage test performance droth

3 vs. 2 (trained) and 4 vs. 3 (untrained; immediately after transfer) ¢f gaweration champion.
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METHOD AVERAGE HOLD TIME
HYPERNEAT BEV 15:4s
EANT 14:9s
NEAT 14:.0s
SARSA 12:5s
HAND-TUNED BENCHMARK 8:3s
ALWAYS HOLD BENCHMARK 755
RANDOM BENCHMARK 3.4s

Table 1: Average Best Performance by Method. The HyperNEAT BaMdithe ball longer than
previously reported best results for neuroevolution and temporatelifée learning meth-
ods. Results are shown for Evolutionary Acquisition of Neural Topok{ANT) from
Metzen et al. (2007), NeuroEvolution of Augmenting Topologies (NEADy Taylor
et al. (2006), and State action reward state action (Sarsa) from Stdr&utton (2001).

Figure 10: Transfer Learning From 3 vs. 2 to 4 vs. 3 Keepaway onna Zbm Field. As the
performance (averaged over ve runs) of the champion on the 3 vskar@proves, the
transfer performance on the 4 vs. 3 task also consequently improvesstfbseconds
to 8.1 seconds withowver training for it. The improvement is positively correlated
(r= 0:87).

Testing performance on the 3 vs. 2 task improves to 14.3 seconds omge®m@ each run.
At the same time, the test performance of these same individuals on the 4 e&, 8vtach was
not trained, improves from 6.6 seconds to 8.1 seconds on averagenthast, the previous best
approach to transfer learning in this domain required executing a tramsigiion and additional
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training for between 50 and 200 hours (depending on the chosenerdnstction) beyondthe
initial bootstrap training in 3 vs. 2 to achieve a comparable 8.0 second episwdion (Taylor
et al., 2007b). Thus, because the BEV is static, transfer is instantanedusguires no special
adjustments to the representation to achieve the same result as many Houttseotraining with
the TVITM-PS transfer method.

Although the BEV improves in 4 vs. 3 Keepaway even when only trained in 2 g is still
informative to investigate the effect of further training in the 4 vs. 3 tasktlkie purpose, individ-
uals are trained on the 3 vs. 2 task for 20 generations and then furtimerdtien the 4 vs. 3 task
for 30 generations. The performance of these policies is contrasted edteks trained on 4 vs. 3
from scratch for 50 generations. Performance is averaged oveungand generation champions
are evaluated over 1,000 episodes. Figure 11 shows the averagerfesinance of the generation
champions. The individuals trained solely on 4 vs. 3 improve from 6.2 sicion8.0 seconds. In-
terestingly, this performance is equivalent to policies trained only in the 3 task and transferred
to 4 vs. 3. However, individuals trained on 3 vs. 2 for the rst 20 gatiens increase their test
performance on 4 vs. 3 to 9.1 seconds over the last 30 generationsnaltiifference between
further training after transfer and training from scratch is signi cgnt (0:05).

Figure 11: Further Training After Transfer From 3 vs. 2 to 4 vs. 3 Keexy on a 25m 25m Field.
Performance of individuals trained on 3 vs. 2 then transferred to 4 esd3further
trained are contrasted with individuals solely trained on 4 vs. 3. All depietsdlts are
performance on the 4 vs. 3 task. Prior training on 3 vs. 2 and transfeetd ts. 3
enhances keeper performance by beginning in a more optimal area efttoh space.

An important factor in the superior performance of the learner that wasfeaed is the behav-
ior of the third taker in the 4 vs. 3 task, which seeks to block the most opeprpl@is behavior
differs from 3 vs. 2, in which the two takers attempt to take the ball only bawgdiheading towards
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it. When training on 4 vs. 3 without previously learning on 3 vs. 2, the thirdrtalbehavior may
inhibit performance by preventing important knowledge from being lehrfer example, in 3 vs.
2 an important concept is to pass to the most open player. However, irB4hesmost open player
is not always the best choice because of the behavior of the third takerfdrepolicies that learn
the concept of passing to the most open player, which is still an importantaskilhot discovered.
A thorough evaluation of transfer recognizes that there is more thanantowlter a task. Thus
transfer learning is also evaluated by testing the best policy trained in 3orsvaried eld sizes.
Stone et al. (2001) previously investigated this kind of transfer on their ®&rsa solution in an
easier version of the Keepaway task that does not include noise by tastingle high-performing
individual that was trained on a xed eld size (15ml5m) not only on the trained eld size, but
also on the other two eld sizes. The best policy trained by the HyperNEEV Bwhich, unlike
Sarsa, was subject to noise) on the 15tBm eld size was also tested in this way (Figure 12).

Figure 12: 3vs. 2 Transfer Performance To Larger Field SizessTeato larger eld sizes is eval-
uated by testing an individual trained on a single eld size (151Bm) on two larger
eld sizes (20m 20m and 25m 25m) as well. The BEV is scaled by matching the
substrate size to the eld size, thus maintaining the same eld area repredgnézath
discrete unit on the substrate. Depicted results from Stone and Suttdl) &afv that
as a policy trained by Sarsa is transferred to larger eld sizededreasesn perfor-
mance. However, the taskéssieras eld size increases, as shown by the performance
of hand-designed policies (Random, Always Hold, and Hand-Tuned)rtbreasein
performance as eld size increases. In contrast, the BEV learns a pbld¢youtper-
forms the hand-designed policies and transfers to the larger eld stgsi cantly
improvingperformance.

The results are interesting because they show that the representaticeusanperformance to
vary in unexpected ways. For example, even though larger eld sizzgasier, Stone and Sut-
ton (2001) report that the performance of the best keepers train8dtsgdeclineswhen they are
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transferred to larger elds. However, even hard-coded policiesh sis Random, Always Hold, or
Hand Tuned, increase in performance as eld size increases, dertomgthe decreased dif culty

of the task. Also, in contrast to Sarsa, when transferred to larger, éhdskeepers trained with
the HyperNEAT BEV improve performance (as would be expected) fr@rs&conds to 11.0 sec-
onds and 13.8 seconds, respectively, and outperform the haigheépolicies (Figure 12). These
improvements make sense because the task should become easier whisnntioeeeroom on the

eld.

The BEV's advantage is that the geometric relationships encoded in the C&Pbe extrap-
olated as the eld size increases, thereby extending the knowledge fnthaller eld size to
the newer areas of the larger eld. For Sarsa, such extrapolation ipassible because as eld
size increases, the new areas represent previously unseen disanekich Sarsa was not trained.
Sarsa has no means to extrapolate geometric knowledge from the distaraeséten because, un-
like the CPPN, the knowledge learned is ndtiactionof the domain geometry (i.e., the geometric
relationships on a two-dimensional soccer eld). Instead, Sarsa leafunsction of the examples
presented, which do not explicitly describe the geometry of the domain.

Another important lesson from changing the eld size is that BEV perfogeaequires a min-
imal resolution. When the eld size is 15ml5m, the BEV performance appears to underperform
compared to Sarsa. In part, this difference is because Sarsa wasdsgtedlly without noise
(Stone et al., 2001). A later experiment with Sarsa trained on the 1%m with noise (Stone
et al., 2005) shows that its performance is similar to the BEV. However, entdhtor is simply
that when the eld size is 15m15m, the BEV resolution ialsoat 15 15, which may be too low
to capture the detail necessary to succeed in the task. Con rming this egistlif the BEV is
trained at 30 30 resolution on a 15m15m eld, its performance rises signi cantly, to 7.1 seconds
compared to 7.4s for Sarsa wheisitrained with noise on 15m15m (Stone et al., 2005). This re-
sult raises the interesting question of whether resolution caaibedabove the training resolution
without negative impact, as the next experiment addresses.

The nal result in Keepaway is that the knowledge learned through thiesicidencoding, that
is, the CPPN, is not negatively impacted by later increasing resolution fratathvhich the BEV
was trained. The substrate resolution of the champion individuals fromure from training on
three eld sizes (15m 15m, 20m 20m, and 25m 25m) are doubled in each dimension and then
tested again on the same eld size. For example, a 20 BEV becomes 40 40, which means that
each input represents one quarter as much of the space as befierBEVhquadruples the number
of inputs and outputs while increasing the number of connections by a fafcidr (from 160,000
to 2,560,000 connections). Table 2 shows that no matter the eld size, evesivelst increasing
the resolution does not degrade performance and can even lef@éparformance increase.

For the 15m 15m, 20m 20m, and 25m 25m eld sizes, doubling the size of each dimension
on average changes performance from 4.6 seconds to 5.3 secbrtisetonds to 15.9 seconds,
and 16.8 seconds to 16.9 seconds respectively. In one instance 2imth@0m eld, performance
improved instantly from 16.6 seconds to 18.9 seconds. The advantage capability is that the
BEV resolution can be selectively increased while maintaining the same perfice, which makes
possible further training with a higher resolution BEV.
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PERFORMANCE
TRAINING FIELD SIZE | TRAINED RESOLUTION INCREASEDRESOLUTION
15m 15wm 4.65 5.3
20m 20m 15.4s 15.9
25M 25m 16.8s 16.9

Table 2: Average Performance of the Best Individuals at DiffereggdRitions. The regularities
learned by the indirect encoding are not dependent on the particllsirate resolution
and may be extrapolated to higher resolutions. Increasing the numbenméat@mns in
the substrate by a factor of 16 (by doubling the size of each dimensios)raa@legrade
performance; in fact, it even improves it signi cantly in some cases.

5.3 Knight Joust Transfer Results

Cross-domain transfer is evaluated from the non-Keepaway task ohKogist on a 20 20 grid

to 3 vs. 2 Keepaway on a 20n20m eld. Evolution is run for 20 generations on the Knight Joust
task and then the champions seed the beginning generations of 3 vs. @&\égerurther training

is then performed over ten additional generations of evolution. PerfanianKeepaway of the
champion players from Knight Joust is on average 0.3 seconds abeytformance of initial
random individuals. After one generation of evolution, the best indivgdfram transfer exceed
the raw performance by 0.6 seconds. Finally, after ten further genesatiee best individuals with
transfer hold the ball for 1.1 seconds longer than without transfer (Eit8).

The differences are signi cant (g 0.05). Thus even preliminary learning in a signi cantly
different domain proved bene cial to the BEV. In contrast, previousdfar results from Knight
Joust to Keepaway from Taylor and Stone (2007) demonstrated an imtf@rmance advantage,
but after training for ve simulator hours (which is less than the duration nfgenerations) there
was no performance difference between learning with transfer andwtiitho

Overall, the results establish that the BEV is highly effective in transfer gpdevay. The next
section discusses the deeper implications of these results.

6. Discussion and Future Work

Methods that alter representation remain important tools in task transfeorieatids in which the
representation must change with the task. However, the BEV shows thatfally chosen repre-
sentation with the right encoding can sometimes eliminate the need to changertsentgtion,
even across different domains.

The deeper lesson is the critical role of representation in transfer armbtisequent need for
algorithms that can learn from relatively high-dimensional static represamgeof task geometry.
Indeed, the human eye contaimdlions of photoreceptors, which provide the same set of inputs to
every visual task tackled by humans. No new photoreceptor is addad&w task. In effect, visual
input to the human eye is a static representation (i.e., it does not alter whagirdpgasks) of state
to the human brain. While it is true that the information from the eye is interpreteébdebvisual
cortex, the set of inputs to the cortex, which are the photoreceptors ey&heemains the same. In
this paper, the BEV contains no hidden layers. However, by adding hidglers it is possible to
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Figure 13: Transfer Results from Knight Joust to Keepaway. Directsfier and further training
performance averaged over 30 runs is shown. The performane/airampions from
Knight Joust on Keepaway outperforms initial random individual by @c»ads. After
one generation, this advantage from transfer increases to 0.6 senahds 10 genera-
tions the advantage is 1.1 seconds. Thus performance on Keepawaiy)diantaneous
and with further training, bene ts from transfer from the Knight Joushdm with sig-
ni cance p< 0.05.

add the intervening interpretation of the input state analogously to how thal gigtiex interprets

data from the eye. HyperNEAT substrates with hidden layers have ibeamdo work in the past

in domains without transfer (D'Ambrosio and Stanley, 2008; Clune et adl92Gauci and Stanley,

2010). Thus the prospects are good for expanding the scope of staisfer. Nevertheless, of
course the human eye represents an ideal, and not all possible doneséimsearable to keeping the
representation static. Yet for those that are, the investigation in this plapes shat it can provide

an advantage.

The ability of a representation to remain static is dependent upon the partidftéaences be-
tween the tasks. Tasks that are semantically similar should be able to remtedennformation
similarly in the BEV, requiring no changes to the representation. Tasks taaigni cantly dif-
ferent, either through state information or actions, may not allow the rapets® to remain the
same. However, even then there are potential ways to allow the BEV to refi@nwas learned
in the previous task and build upon it while being altered. For example, aimndp to add new
input layers or output layers. These new layers can denote new irtffomm actions associated
with new objects in the environment while the previously-trained input andublagers retain the
prior knowledge. Geometry thus remains an advantage because statesitidorthat is connected
with the same location (e.g., all the state data for a single agent) would be lot#tedsame coor-
dinate on separate layers. In contrast, an ANN without geometry woule t@wneans to discern
which original inputs are associated with which new inputs and would thusash$tave to learn
such relationships.
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The role of representation in transfer is relevant to all approachesrtorigdbecause transfer is
always an option for extending the scope of learning. Thus encodsegreh, such as in generative
and developmental systems (Bentley and Kumar, 1999; Hornby and PA&@@R; Lindenmayer,
1968; Stanley, 2007; Bentley and Kumar, 1999; Turing, 1952), apgesentation research, such
as in relational reinforcement learning (Deroski et al., 2001; Mor2@83; Tadepalli et al., 2004),
is important to machine learning in general. Static representations mean thatio$tgaining
a new policy, or retraining a previous one, the same policy can be tresdfeithout change.
Additionally, the static nature of the representation allows the same policy to tnamuitiple
tasks simultaneously. For example, a soccer player does not practitayingmnly soccer games.
Players improve through multiple drills and continually practice in-between gtomese skills.

The encoding of the solution also impacts the kinds of policies that are fdtordexample, in
this paper the policy is encoded by a CPPN that is expressed as a funictfuntask geometry,
which enables the solution to exploit regularities in the geometry and extrapolateviously un-
seen areas of the geometry. It should also be possible to simplify the $eaecipolicy that is a
function of the geometry in other learning approaches as well. The challstigat gradient infor-
mation (i.e., error) cannot directly pass through the indirection betweenNieakd its generating
CPPN. A method that solves this problem would open up the power of ingirectding to all of
RL.

6.1 Prospects for Full RoboCup Soccer

An exciting implication of this work is that the power of static transfer and indieecoding can
potentially bootstrap learning the complete game of soccer. After all, the kexerts of soccer are
present in Keepaway as well. In fact, the results in this paper demonsabtestatic representation
can competitively learn to hold the ball in Keepaway and that this skill trasmgfenediately through
the BEV to variations of that task. The static BEV state representation erthblésarned policy
to transfer to variations of the task in which the number of players is chaeggd 3 vs. 2 to 4 vs.
3). Furthermore, indirectly encoding the policy enables the same policy tpiied to variations
of the task in which the geometry has been changed (e.g., moving from 20m to 25m 25m
eld size) HyperNEAT has also been proven effective in a wide variétiasks (D'Ambrosio and
Stanley, 2008; Clune et al., 2009; Stanley et al., 2009; Gauci and St201&Y).

Interestingly, the Keepaway domain was designed as a stepping stonéng stachine learn-
ing methods to the full RoboCup soccer domain (Stone and Sutton, 2004 sahie principles that
enable the BEV to transfer among variations of the Keepaway doats@rcan potentially enable
the BEV to scale to full Keepaway soccer. For example, because thesegpation remains static
no matter how many players are on the eld, training can begin with a small nuaft@ayers,
such as 3 vs. 3 soccer, and iteratively add more players, eventudilygsep to the full 11 vs. 11
soccer game. Furthermore, varying the substrate con guration whiletbhg® encoding remains
static makes it possible to train skills relevant to RoboCup on subsets of theldijifor example,
half- eld offense/defense. In this way, varying the number of playerd varying the eld size are
bothrequired to transfer from the RoboCup Keepaway domain to full Roba®@uaper. Thus this
study suggests a novel path to learning full- edged soccer.

A distinctive feature of the BEV representation is that actionsaéseselected in the BEV, that
is, the outputs are in the same geometry as the eld. In the RoboCup Keepimnesin, actions
are constrained to holding the ball and directly passing to a teammate. Howeer are many
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other actions that are possible, such as clearing the ball, kicking the baif bounds, dribbling,
and passing to a location close to a teammate. Furthermore, the BEV can potentialb} players
without the ball. By requesting actions in the BEV geometry, actions can beteglbased on
positions instead of objects.

For example, the keeper with the ball can potentially sedegtposition on the BEV to which
to kick the ball. That way, the BEV is not constrained in its actions. The phajtbrthe ball can
then choose from passes to teammates, passes to positions near teamndgiteisiedny kicking
the ball to a nearby position and then pursuing the ball. Players without litehdoe controlled by
interpreting the outputs of the BEV as the desired location towards whichltharshould move.
Thus an interesting property of the BEV is that the state space can transésrcommodating new
players or eld sizes, and the action space atsotransfer in the same way. Ultimately, the promise
of such transfer is tied to the idea of static representation, whose poteatidtighlighted in this
paper.

7. Conclusion

This paper introduced the BEV representation, which simpli es task trabgfenaking the state
representation static. That way, no matter how many objects are in the doneasizelof the state
representation remains the same. In contrast, in traditional representatianging the number
of players (e.g., in the RoboCup Keepaway task) forces changes iephesentation by adding
dimensions to the state space. In addition to results competitive with leading methtiasKeep-
away benchmark, the BEV, which is enabled by an indirect encodingg\shtransfer learning
from 3 vs. 2 to 4 vs. 3 Keepawayithoutfurther training. Improvement after further training then
demonstrated that the knowledge gained from the transfer does indektate further learning
the more dif cult task. Transfer also proved successful not only amamiations on the number of
players, but also among different eld sizes and substrate resolufiamally, cross-domain transfer
was demonstrated, from Knight Joust to Keepaway. The cross-doraasfdér improved not only
immediate performance, but also enhanced further learning. All thegksragyhlight the critical
role that representation plays in learning and transfer. By altering theseqmtation, transfer learn-
ing is simpli ed. Yet high-dimensional static representations require indeacbdings that take
advantage of their expressive power, such as in HyperNEAT. The hothat advanced represen-
tations in conjunction with indirect encoding can later contribute to scalingitgatachniques to
more challenging tasks, such as the complete RoboCup soccer domain.
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