
Journal of Machine Learning Research 11 (2010) 3371-3408 Submitted 5/10; Published 12/10

Stacked Denoising Autoencoders: Learning Useful Representationsin
a Deep Network with a Local Denoising Criterion

Pascal Vincent PASCAL .VINCENT @UMONTREAL .CA

Département d'informatique et de recherche opérationnelle
Universit́e de Montŕeal
2920, chemin de la Tour
Montréal, Qúebec, H3T 1J8, Canada

Hugo Larochelle LAROCHEH @CS.TORONTO .EDU

Department of Computer Science
University of Toronto
10 King's College Road
Toronto, Ontario, M5S 3G4, Canada

Isabelle Lajoie ISABELLE .LAJOIE .1@UMONTREAL .CA

Yoshua Bengio YOSHUA .BENGIO @UMONTREAL .CA

Pierre-Antoine Manzagol PIERRE-ANTOINE .MANZAGOL @UMONTREAL .CA

Département d'informatique et de recherche opérationnelle
Universit́e de Montŕeal
2920, chemin de la Tour
Montréal, Qúebec, H3T 1J8, Canada

Editor: Léon Bottou

Abstract
We explore an original strategy for building deep networks,based on stacking layers ofdenoising
autoencoderswhich are trained locally to denoise corrupted versions of their inputs. The resulting
algorithm is a straightforward variation on the stacking ofordinary autoencoders. It is however
shown on a benchmark of classi�cation problems to yield signi�cantly lower classi�cation error,
thus bridging the performance gap with deep belief networks(DBN), and in several cases surpass-
ing it. Higher level representations learnt in this purely unsupervised fashion also help boost the
performance of subsequent SVM classi�ers. Qualitative experiments show that, contrary to ordi-
nary autoencoders, denoising autoencoders are able to learn Gabor-like edge detectors from natural
image patches and larger stroke detectors from digit images. This work clearly establishes the value
of using a denoising criterion as a tractable unsupervised objective to guide the learning of useful
higher level representations.
Keywords: deep learning, unsupervised feature learning, deep beliefnetworks, autoencoders,
denoising

1. Introduction

It has been a long held belief in the �eld of neural network research thatthe composition ofseveral
levels of nonlinearitywould be key to ef�ciently model complex relationships between variables
and to achieve better generalization performance on dif�cult recognition tasks (McClelland et al.,
1986; Hinton, 1989; Utgoff and Stracuzzi, 2002). This viewpoint is motivated in part by knowledge

c 2010 Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio and Pierre-Antoine Manzagol.

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

of the layered architecture of regions of the human brain such as the visual cortex, and in part by a
body of theoretical arguments in its favor (H	astad, 1986; H	astad and Goldmann, 1991; Bengio and
LeCun, 2007; Bengio, 2009). Yet, looking back at the history of multi-layer neural networks, their
problematic non-convex optimization has for a long time prevented reaping the expected bene�ts
(Bengio et al., 2007; Bengio, 2009) of going beyond one or two hidden layers.1 Consequently
much of machine learning research has seen progress in shallow architectures allowing for convex
optimization, while the dif�cult problem of learning in deep networks was left dormant.

The recent revival of interest in suchdeep architecturesis due to the discovery of novel ap-
proaches (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al.,
2007; Lee et al., 2008) that proved successful at learning their parameters. Several alternative tech-
niques and re�nements have been suggested since the seminal work on deep belief networks (DBN)
by Hinton et al. (2006) and Hinton and Salakhutdinov (2006). All appearhowever to build on the
same principle that we may summarize as follows:

� Training a deep network to directly optimize only the supervised objective of interest (for ex-
ample the log probability of correct classi�cation) by gradient descent, starting from random
initialized parameters, does not work very well.

� What worksmuchbetter is to initially use alocal unsupervised criterionto (pre)train each
layer in turn, with the goal of learning to produce a usefulhigher-level representationfrom the
lower-level representation output by the previous layer. From this starting point on, gradient
descent on the supervised objective leads to much better solutions in terms ofgeneralization
performance.

Deep layered networks trained in this fashion have been shown empirically toavoid getting
stuck in the kind of poor solutions one typically reaches with only random initializations. See
Erhan et al. (2010) for an in depth empirical study and discussion regarding possible explanations
for the phenomenon.

In addition to the supervised criterion relevant to the task, what appears tobe key is using an
additionalunsupervised criterionto guide the learning at each layer. In this sense, these techniques
bear much in common with the semi-supervised learning approach, except that they are useful even
in the scenario where all examples are labeled, exploiting the input part of the data to regularize,
thus approaching better minima of generalization error (Erhan et al., 2010).

There is yet no clear understanding of what constitutes “good” representations for initializing
deep architectures or what explicit unsupervised criteria may best guidetheir learning. We know
but a few algorithms that work well for this purpose, beginning with restricted Boltzmann machines
(RBMs) (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Lee et al., 2008), and autoencoders
(Bengio et al., 2007; Ranzato et al., 2007), but also semi-supervised embedding (Weston et al.,
2008) and kernel PCA (Cho and Saul, 2010).

It is worth mentioning here that RBMs (Hinton, 2002; Smolensky, 1986) andbasic classical
autoencoders are very similar in their functional form, although their interpretation and the pro-
cedures used for training them are quite different. More speci�cally, thedeterministic function
that maps from input tomean hidden representation, detailed below in Section 2.2, is the same for
both models. One important difference is that deterministic autoencoders consider thatreal valued

1. There is a notable exception to this in the more specialized convolutional network architecture of LeCun et al. (1989).

3372

STACKED DENOISING AUTOENCODERS

meanas their hidden representation whereas stochastic RBMs sample abinary hidden representa-
tion from that mean. However, after their initial pretraining, the way layers of RBMs are typically
used in practice when stacked in a deep neural network is by propagatingthese real-valued means
(Hinton et al., 2006; Hinton and Salakhutdinov, 2006). This is more in line with the deterministic
autoencoder interpretation. Note also that reconstruction error of an autoencoder can be seen as an
approximation of the log-likelihood gradient in an RBM, in a way that is similar to theapproxima-
tion made by using the Contrastive Divergence updates for RBMs (Bengioand Delalleau, 2009).
It is thus not surprising that initializing a deep network by stacking autoencoders yields almost as
good a classi�cation performance as when stacking RBMs (Bengio et al., 2007; Larochelle et al.,
2009a). But why is it onlyalmostas good? An initial motivation of the research presented here was
to �nd a way to bridge that performance gap.

With the autoencoder paradigm in mind, we began an inquiry into the question ofwhat can
shape a good, useful representation. We were looking for unsupervised learning principles likely to
lead to the learning of feature detectors that detect important structure in theinput patterns.

Section 2 walks the reader along the lines of our reasoning. Starting from the simple intuitive
notion of preserving information, we present a generalized formulation ofthe classical autoencoder,
before highlighting its limitations. This leads us in Section 3 to motivate an alternativedenoising
criterion, and derive thedenoising autoencodermodel, for which we also give a possible intuitive
geometric interpretation. A closer look at the considered noise types will thenallow us to derive a
further extension of the base model. Section 4 discusses related preexisting works and approaches.
Section 5 presents experiments that qualitatively study the feature detectorslearnt by a single-layer
denoising autoencoder under various conditions. Section 6 describes experiments with multi-layer
architectures obtained by stacking denoising autoencoders and compares their classi�cation perfor-
mance with other state-of-the-art models. Section 7 is an attempt at turning stacked (denoising)
autoencoders into practical generative models, to allow for a qualitative comparison of generated
samples with DBNs. Section 8 summarizes our �ndings and concludes our work.

1.1 Notation

We will be using the following notation throughout the article:

� Random variables are written in upper case, for example,X.

� If X is a random vector, then itsj th componentwill be notedXj .

� Ordinary vectors are written in lowercase bold. For example, a realization of a random vector
X may be writtenx. Vectors are considered column vectors.

� Matrices are written in uppercase bold (e.g.,W). I denotes the identity matrix.

� The transpose of a vectorx or a matrixW is writtenxT or WT (not x0 or W0 which may be
used to refer to an entirely different vector or matrix).

� We use lower casep andq to denote both probability density functions or probability mass
functions according to context.

� Let X andY two random variables with marginal probabilityp(X) and p(Y). Their joint
probability is writtenp(X;Y) and the conditionalp(XjY).

� We may use the following common shorthands when unambiguous:p(x) for p(X = x);
p(Xjy) for p(XjY = y) (denoting a conditional distribution) andp(xjy) for p(X = xjY = y).

3373

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

� f , g, h, will be used for ordinary functions.

� Expectation (discrete case,p is probability mass):Ep(X) [f (X)] = å x p(X = x) f (x).

� Expectation (continuous case,p is probability density):Ep(X) [f (X)] =
R

p(x) f (x)dx.

� Entropy or differential entropy:IH(X) = IH(p) = Ep(X) [� logp(X)].

� Conditional entropy:IH(XjY) = Ep(X;Y) [� logp(XjY)].

� Kullback-Leibler divergence:IDKL (pkq) = Ep(X) [log p(X)
q(X)].

� Cross-entropy:IH(pkq) = Ep(X) [� logq(X)] = IH(p) + IDKL (pkq).

� Mutual information:I (X;Y) = IH(X) � IH(XjY).

� Sigmoid:s(x) = 1
1+ e� x ands(x) = (s(x1); : : : ;s(xd))T .

� Bernoulli distribution with meanµ: B(µ). By extension for vector variables:X � B(µ) means
8i;Xi � B(µi).

1.2 General setup

We consider the typical supervised learning setup with a training set ofn (input, target) pairsDn =
f (x(1) ; t(1)) : : : ; (x(n); t(n))g, that we suppose to be an i.i.d. sample from anunknown distribution
q(X;T) with corresponding marginalsq(X) andq(T). We denoteq0(X;T) andq0(X) the empirical
distributions de�ned by the samples inDn. X is ad-dimensional random vector (typically inIRd or
in [0;1]d).

In this work we are primarily concerned with �nding a new, higher-level representationY of X.
Y is a d0-dimensional random vector (typically inIRd0

or in [0;1]d
0
). If d0> d we will talk of an

over-completerepresentation, whereas it will be termed anunder-completerepresentation ifd0< d.
Y may be linked toX by a deterministic or stochastic mappingq(YjX;q) parameterized by a vector
of parametersq.

2. What Makes a Good Representation? From Mutual Information to Autoencoders

From the outset we can give anoperational de�nitionof a “good” representation as one that will
eventually beusefulfor addressing tasks of interest, in the sense that it will help the system quickly
achieve higher performance on those tasks than if it hadn't �rst learned to form the representa-
tion. Based on the objective measure typically used to assess algorithm performance, this might be
phrased as “A good representation is one that will yield a better performingclassi�er”. Final classi-
�cation performance will indeed typically be used to objectively compare algorithms. However, if
a lesson is to be learnt from the recent breakthroughs in deep network training techniques, it is that
the error signal from a single narrowly de�ned classi�cation task shouldnot be the only nor primary
criterion used toguidethe learning of representations. First because it has been shown experimen-
tally that beginning by optimizing an unsupervised criterion, oblivious of the speci�c classi�cation
problem, can actually greatly help in eventually achieving superior performance for that classi�ca-
tion problem. Second it can be argued that the capacity of humans to quickly become pro�cient in
new tasks builds on much of what they have learntprior to being faced with that task.

In this section, we begin with the simple notion of retaining information and progress to formally
introduce the traditionalautoencoderparadigm from this more general vantage point.

3374

STACKED DENOISING AUTOENCODERS

2.1 Retaining Information about the Input

We are interested in learning a (possibly stochastic) mapping from inputX to a novel representa-
tion Y. To make this more precise, let us restrict ourselves to parameterized mappings q(YjX) =
q(YjX;q) with parametersq that we want to learn.

One natural criterion that we may expect any goodrepresentationto meet, at least to some
degree, is to retain a signi�cant amount of information about theinput. It can be expressed in
information-theoretic terms as maximizing the mutual informationI (X;Y) between an input random
variableX and its higher level representationY. This is theinfomax principleput forward by Linsker
(1989).

Mutual information can be decomposed into an entropy and a conditional entropy term in two
different ways. A �rst possible decomposition isI (X;Y) = IH(Y) � IH(YjX) which lead Bell and
Sejnowski (1995) to their infomax approach to Independent ComponentAnalysis. Here we will
start from another decomposition:I (X;Y) = IH(X) � IH(XjY). Since observed inputX comes from
an unknown distributionq(X) on whichq has no in�uence, this makesIH(X) an unknown constant.
Thus the infomax principle reduces to:

argmax
q

I (X;Y) = argmax
q

� IH(XjY)

= argmax
q

Eq(X;Y) [logq(XjY)]:

Now for any distributionp(XjY) we will have

Eq(X;Y) [logp(XjY)] � Eq(X;Y) [logq(XjY)]
| {z }

� IH(XjY)

; (1)

as can easily be shown starting from the property that for any two distributions p andq we have
IDKL (qkp) � 0, and in particularIDKL (q(XjY = y)kp(XjY = y)) � 0.

Let us consider a parametric distributionp(XjY;q0), parameterized byq0, and the following
optimization:

max
q;q0

Eq(X;Y;q) [logp(XjY;q0)]:

From Equation 1, we see that this corresponds to maximizing a lower bound on� IH(XjY) and thus
on the mutual information. We would end up maximizing theexactmutual information provided
9q0s.t. q(XjY) = p(XjY;q0).

If, as is done in infomax ICA, we further restrict ourselves to a deterministicmapping fromX to
Y, that is, representationY is to be computed by a parameterized functionY = fq(X) or equivalently
q(YjX;q) = d(Y � fq(X)) (whered denotes Dirac-delta), then this optimization can be written:

max
q;q0

Eq(X) [logp(XjY = fq(X);q0)]:

This again corresponds to maximizing a lower bound on the mutual information.
Sinceq(X) is unknown, but we have samples from it, the empirical average over the training

samples can be used instead as an unbiased estimate (i.e., replacingEq(X) by Eq0(X)):

max
q;q0

Eq0(X) [logp(XjY = fq(X);q0)]: (2)

3375

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

We will see in the next section that this equation corresponds to thereconstruction errorcriterion
used to trainautoencoders.

2.2 Traditional Autoencoders (AE)

Here we brie�y specify the traditionalautoencoder(AE)2 framework and its terminology, based on
fq andp(XjY;q0) introduced above.

Encoder:The deterministic mappingfq that transforms an input vectorx into hidden represen-
tationy is called theencoder. Its typical form is an af�ne mapping followed by a nonlinearity:

fq(x) = s(Wx + b):

Its parameter set isq = f W;bg, whereW is a d0� d weight matrix andb is an offset vector of
dimensionalityd0.

Decoder: The resulting hidden representationy is then mapped back to a reconstructedd-
dimensional vectorz in input space,z = gq0(y). This mappinggq0 is called thedecoder. Its typical
form is again an af�ne mapping optionally followed by a squashing non-linearity, that is, either
gq0(y) = W0y+ b0or

gq0(y) = s(W0y+ b0); (3)

with appropriately sized parametersq0= f W0;b0g.
In generalz is not to be interpreted as an exact reconstruction ofx, but rather in probabilistic

terms as the parameters (typically the mean) of a distributionp(XjZ = z) that may generatex with
high probability. We have thus completed the speci�cation ofp(XjY;q0) from the previous section
asp(XjY = y) = p(XjZ = gq0(y)) . This yields an associated reconstruction error to be optimized:

L(x;z) µ � logp(xjz): (4)

Common choices forp(xjz) and associated loss functionL(x;z) include:

� For real-valuedx, that is,x 2 IRd: Xjz � N (z;s2I), that is,Xj jz � N (z j ;s2).
This yieldsL(x;z) = L2(x;z) = C(s2)kx � zk2 whereC(s2) denotes a constant that depends
only ons2 and that can be ignored for the optimization. This is thesquared errorobjective
found in most traditional autoencoders. In this setting, due to the Gaussian interpretation, it
is more naturalnot to use a squashing nonlinearity in the decoder.

� For binaryx, that is,x 2 f 0;1gd: Xjz � B(z), that is,Xj jz � B(z j).
In this case, the decoder needs to produce az 2 [0;1]d. So a squashing nonlinearity such as a
sigmoid s will typically be used in the decoder. This yieldsL(x;z) = LIH(x;z) =
� å j [x j logz j +(1� x j) log(1� z j)] = IH(B(x)kB(z)) which is termed thecross-entropy loss
because it is seen as the cross-entropy between two independent multivariate Bernoullis, the
�rst with meanx and the other with meanz. This loss can also be used whenx is not strictly
binary but ratherx 2 [0;1]d.

2. Note:AutoEncoders(AE) are also often calledAutoAssociators(AA) in the literature. The shorter autoencoder term
was preferred in this work, as we believeencodingbetter conveys the idea of producing a novel useful representation.
Similarly, what we call Stacked Auto Encoders (SAE) has also been calledStacked AutoAssociators (SAA).

3376

STACKED DENOISING AUTOENCODERS

Note that in the general autoencoder framework, we may use other forms of parameterized func-
tions for the encoder or decoder, and other suitable choices of the loss function (corresponding to a
differentp(Xjz)). In particular, we investigated the usefulness of a more complex encodingfunction
in Larochelle, Erhan, and Vincent (2009b). For the experiments in the present work however, we
will restrict ourselves to the two usual forms detailed above, that is, anaf�ne+sigmoid encoder
and eitheraf�ne decoder with squared error lossor af�ne+sigmoid decoder with cross-entropy
loss. A further constraint that can optionally be imposed, and that further parallels the workings of
RBMs, is havingtied weightsbetweenW andW0, in effect de�ningW0asW0= WT .

Autoencoder training consists in minimizing the reconstruction error, that is, carrying the fol-
lowing optimization:

argmin
q;q0

Eq0(X) [L(X;Z(X))] ;

where we wroteZ(X) to emphasize the fact thatZ is a deterministic function ofX, sinceZ is
obtained by composition of deterministic encoding and decoding.

Making this explicit and using our de�nition of lossL from Equation 4 this can be rewritten as:

argmax
q;q0

Eq0(X) [logp(XjZ = gq0(fq(X)))] ;

or equivalently
argmax

q;q0
Eq0(X) [logp(XjY = fq(X);q0)]:

We see that this last line corresponds to Equation 2, that is, the maximization of alower bound on
the mutual information betweenX andY.

It can thus be said thattraining an autoencoder to minimize reconstruction error amounts
to maximizing a lower bound on the mutual information between inputX and learnt repre-
sentationY. Intuitively, if a representation allows a good reconstruction of its input, it means that
it has retained much of the information that was present in that input.

2.3 Merely Retaining Information is Not Enough

The criterion that representationY should retain information about inputX is not by itself suf�cient
to yield a useful representation. Indeed mutual information can be trivially maximized by setting
Y = X. Similarly, an ordinary autoencoder whereY is of the same dimensionality asX (or larger)
can achieve perfect reconstruction simply by learning an identity mapping.3 Without any other
constraints, this criterion alone is unlikely to lead to the discovery of a more useful representation
than the input.

Thus further constraints need to be applied to attempt to separate useful information (to be re-
tained) from noise (to be discarded). This will naturally translate to non-zero reconstruction error.
The traditional approach to autoencoders uses abottleneckto produce anunder-completerepre-
sentation whered0< d. The resulting lower-dimensionalY can thus be seen as alossy compressed
representationof X. When using af�ne encoder and decoder without any nonlinearity and asquared
error loss, the autoencoder essentially performs principal component analysis (PCA) as showed by

3. More precisely, it suf�ces thatg� f be the identity to obtain zero reconstruction error. Ford = d0 if we had a linear
encoder and decoder this would be achieved for any invertible matrixW by settingW0= W� 1. Now there is a
sigmoid nonlinearity in the encoder, but it is possible to stay in the linear part of the sigmoid with small enoughW.

3377

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Baldi and Hornik (1989).4 When a nonlinearity such as a sigmoid is used in the encoder, things
become a little more complicated: obtaining the PCA subspace is a likely possibility (Bourlard and
Kamp, 1988) since it is possible to stay in the linear regime of the sigmoid, but arguably not the only
one (Japkowicz et al., 2000). Also when using a cross-entropy loss rather than a squared error the
optimization objective is no longer the same as that of PCA and will likely learn different features.
The use of “tied weights” can also change the solution: forcing encoder and decoder matrices to
be symmetric and thus have the same scale can make it harder for the encoderto stay in the linear
regime of its nonlinearity without paying a high price in reconstruction error.

Alternatively it is also conceivable to impose onY different constraints than that of a lower
dimensionality. In particular the possibility of usingover-complete(i.e., higher dimensional than
the input) butsparserepresentations has received much attention lately. Interest in sparse repre-
sentations is inspired in part by evidence that neural activity in the brain seems to be sparse and
has burgeoned following the seminal work of Olshausen and Field (1996)on sparse coding. Other
motivations for sparse representations include the ability to handle effectively variable-size repre-
sentations (counting only the non-zeros), and the fact that dense compressed representations tend
to entangle information (i.e., changing a single aspect of the input yields signi�cant changes in all
components of the representation) whereas sparse ones can be expected to be easier to interpret and
to use for a subsequent classi�er. Various modi�cations of the traditionalautoencoder framework
have been proposed in order to learn sparse representations (Ranzato et al., 2007, 2008). These
were shown to extract very useful representations, from which it is possible to build top performing
deep neural network classi�ers. A sparse over-complete representations can be viewed as an alter-
native “compressed” representation: it hasimplicit straightforward compressibility due to the large
number of zeros rather than an explicit lower dimensionality.

3. Using a Denoising Criterion

We have seen that the reconstruction criterion alone is unable to guaranteethe extraction of useful
features as it can lead to the obvious solution “simply copy the input” or similarly uninteresting ones
that trivially maximizes mutual information. One strategy to avoid this phenomenon isto constrain
the representation: the traditional bottleneck and the more recent interest on sparse representations
both follow this strategy.

Here we propose and explore a very different strategy. Rather than constrain the representation,
we change the reconstruction criterion for a both more challenging and moreinteresting objec-
tive: cleaning partially corrupted input, or in shortdenoising. In doing so we modify the implicit
de�nition of a good representation into the following:“a good representation is one that can be
obtained robustly from a corrupted input and that will be useful for recovering the corresponding
clean input”. Two underlying ideas are implicit in this approach:

� First it is expected that a higher level representation should be rather stable and robust under
corruptions of the input.

� Second, it is expected that performing the denoising task well requires extracting features that
capture useful structure in the input distribution.

4. More speci�cally it will �nd the samesubspaceas PCA, but the speci�c projection directions found will in general
not correspond to the actual principal directions and need not be orthonormal.

3378

STACKED DENOISING AUTOENCODERS

We emphasize here that our goal isnot the task of denoising per se. Ratherdenoising is ad-
vocated and investigated as atraining criterion for learning to extract useful featuresthat will
constitute better higher level representation. The usefulness of a learntrepresentation can then be
assessed objectively by measuring the accuracy of a classi�er that uses it as input.

3.1 The Denoising Autoencoder Algorithm

This approach leads to a very simple variant of the basic autoencoder described above. Adenoising
autoencoder (DAE)is trained to reconstruct a clean “repaired” input from acorruptedversion of
it (the speci�c types of corruptions we consider will be discussed below). This is done by �rst
corrupting the initial inputx into x̃ by means of a stochastic mappingx̃ � qD(x̃jx).

Corrupted input̃x is then mapped, as with the basic autoencoder, to a hidden representation
y = fq(x̃) = s(Wx̃ + b) from which we reconstruct az = gq0(y). See Figure 1 for a schematic
representation of the procedure. Parametersq andq0 are trained to minimize the average recon-
struction error over a training set, that is, to havez as close as possible to theuncorruptedinput x.
The key difference is thatz is now a deterministic function of̃x rather thanx. As previously, the
considered reconstruction error is either the cross-entropy lossLIH(x;z) = IH(B(x)kB(z)) , with an
af�ne+sigmoid decoder, or the squared error lossL2(x;z) = kx � zk2, with an af�ne decoder. Pa-
rameters are initialized at random and then optimized by stochastic gradient descent. Note that each
time a training examplex is presented, a different corrupted versionx̃ of it is generated according
to qD(x̃jx).

Note that denoising autoencoders are still minimizing the same reconstruction loss between a
cleanX and its reconstruction fromY. So this still amounts to maximizing a lower bound on the
mutual information between clean inputX and representationY. The difference is thatY is now
obtained by applying deterministic mappingfq to acorruptedinput. It thus forces the learning of a
far more clever mapping than the identity: one that extracts features usefulfor denoising.

fq

xxx̃

qD

y

z

LH(x;z)
gq0

Figure 1: The denoising autoencoder architecture. An examplex is stochastically corrupted (via
qD) to x̃. The autoencoder then maps it toy (via encoderfq) and attempts to reconstruct
x via decodergq0, producing reconstructionz. Reconstruction error is measured by loss
LH(x;z).

3379

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

3.2 Geometric Interpretation

The process of denoising, that is, mapping a corrupted example back to anuncorrupted one, can
be given an intuitive geometric interpretation under the so-calledmanifold assumption(Chapelle
et al., 2006), which states that natural high dimensional data concentratesclose to a non-linear
low-dimensional manifold. This is illustrated in Figure 2. During denoising training, we learn a
stochastic operatorp(Xj eX) that maps a corruptedeX back to its uncorruptedX, for example, in the
case of binary data,

Xj eX � B(gq0(fq(eX))) :

Corrupted examples are much more likely to be outside and farther from the manifold than the
uncorrupted ones. Thus stochastic operatorp(Xj eX) learns a map that tends to go from lower prob-
ability points eX to nearby high probability pointsX, on or near the manifold. Note that wheneX is
farther from the manifold,p(Xj eX) should learn to make bigger steps, to reach the manifold. Suc-
cessful denoising implies that the operator maps even far away points to a small region close to the
manifold.

The denoising autoencoder can thus be seen as a way to de�ne and learna manifold. In particu-
lar, if we constrain the dimension ofY to be smaller than the dimension ofX, then the intermediate
representationY = f (X) may be interpreted as a coordinate system for points on the manifold. More
generally, one can think ofY = f (X) as a representation ofX which is well suited to capture the
main variations in the data, that is, those along the manifold.

3.3 Types of Corruption Considered

The above principle and technique can potentially be used with any type of corruption process. Also
the corruption process is an obvious place where prior knowledge, if available, could be easily in-
corporated. But in the present study we set to investigate a technique thatis generally applicable. In

! ! !! "! ! !#""

#

#

!#

!#
$! ! !#!#"

Figure 2: Manifold learning perspective. Suppose training data (�) concentrate near a low-
dimensional manifold. Corrupted examples (:) obtained by applying corruption process
qD(eXjX) will generally lie farther from the manifold. The model learns withp(Xj eX)
to “project them back” (via autoencoderg0

q(fq(�))) onto the manifold. Intermediate rep-
resentationY = fq(X) may be interpreted as a coordinate system for pointsX on the
manifold.

3380

STACKED DENOISING AUTOENCODERS

particular we want it to be usable for learning ever higher level representations bystackingdenois-
ing autoencoders. Now while prior knowledge on relevant corruption processes may be available in
a particular input space (such as images), such prior knowledge will notbe available for the space
of intermediate-level representations.

We will thus restrict our discussion and experiments to the following simple corruption pro-
cesses:

� Additive isotropicGaussian noise(GS):x̃jx � N (x;s2I);

� Masking noise(MN): a fractionn of the elements ofx (chosen at random for each example)
is forced to 0;

� Salt-and-pepper noise(SP): a fractionn of the elements ofx (chosen at random for each
example) is set to their minimum or maximum possible value (typically 0 or 1) according to
a fair coin �ip.

Additive Gaussian noise is a very common noise model, and is a natural choicefor real val-
ued inputs. Thesalt-and-pepper noisewill also be considered, as it is a natural choice for input
domains which are interpretable as binary or near binary such as black and white images or the
representations produced at the hidden layer after a sigmoid squashing function.

Much of our work however, both for its inspiration and in experiments, focuses onmasking
noisewhich can be viewed as turning off components considered missing or replacing their value
by a default value—that is, a common technique for handling missing values. All information about
these masked components is thus removed from that particular input pattern,and we can view the
denoising autoencoder as trained to�ll-in these arti�cially introduced “blanks”. Also, numerically,
forcing components to zero means that they are totally ignored in the computations of downstream
neurons.

We draw the reader's attention to the fact that both salt-and-pepper and masking noise drasti-
cally corrupt but a fraction of the elements while leaving the others untouched. Denoising, that is,
recovering the values of the corrupted elements, will only be possible thanks to dependencies be-
tween dimensions in high dimensional distributions. Denoising training is thus expected to capture
these dependencies. The approach probably makes less sense for very low dimensional problems,
at least with these types of corruption.

3.4 Extension: Putting an Emphasis on Corrupted Dimensions

Noise types such asmasking noiseandsalt-and-pepperthat erase only a changing subset of the
input's components while leaving the others untouched suggest a straightforward extension of the
denoising autoencoder criterion. Rather than giving equal weight to the reconstruction of all com-
ponents of the input, we can put anemphasison the corrupted dimensions. To achieve this we give
a different weighta for the reconstruction error on components that were corrupted, andb for those
that were left untouched.a andb are considered hyperparameters.

For the squared loss this yields

L2;a(x;z) = a

å
j2J(x̃)

(x j � z j)2

!

+ b

å
j =2J(x̃)

(x j � z j)2

!

;

whereJ(x̃) denotes the indexes of the components ofx that were corrupted.

3381

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

And for the cross-entropy loss this yields

LIH;a(x;z) = a

� å
j2J(x̃)

[x j logz j + (1� x j) log(1� z j)]

!

+ b

� å
j =2J(x̃)

[x j logz j + (1� x j) log(1� z j)]

!

:

We call this extensionemphasized denoising autoencoder. A special case that we callfull
emphasisis obtained fora = 1; b = 0 where we only take into account the error on the prediction
of corrupted elements.

3.5 Stacking Denoising Autoencoders to Build Deep Architectures

Stacking denoising autoencoders to initialize a deep network works in much the same way as stack-
ing RBMs in deep belief networks (Hinton et al., 2006; Hinton and Salakhutdinov, 2006) or ordinary
autoencoders (Bengio et al., 2007; Ranzato et al., 2007; Larochelle etal., 2009a). Let us specify
that input corruption is only used for the initial denoising-training of each individual layer, so that
it may learn useful feature extractors. Once the mappingfq has thus been learnt, it will henceforth
be used onuncorruptedinputs. In particular no corruption is applied to produce the representation
that will serve as clean input for training the next layer. The complete procedure for learning and
stacking several layers of denoising autoencoders is shown in Figure 3.

Once a stack of encoders has thus been built, its highest level output representation can be used
as input to a stand-alone supervised learning algorithm, for example a Support Vector Machine
classi�er or a (multi-class) logistic regression. Alternatively, as illustrated inFigure 4, a logistic
regression layer can be added on top of the encoders, yielding adeep neural networkamenable
to supervised learning. The parameters of all layers can then be simultaneously �ne-tunedusing a
gradient-based procedure such as stochastic gradient descent.

4. Related Approaches in the Literature

In this section, we brie�y review and discuss related prior work along three different axes.

4.1 Previous Work on Training Neural Networks for Denoising

The idea of training a multi-layer perceptron using error backpropagationon a denoising task is not
new. The approach was �rst introduced by LeCun (1987) and Gallinari et al. (1987) as an alternative
method to learn an(auto-)associative memorysimilar to how Hop�eld Networks (Hop�eld, 1982)
were understood. The networks were trained and tested on binary inputpatterns, corrupted by
�ipping a fraction of input bits chosen at random. Both the model and trainingprocedure in this
precursory work are very similar to the denoising autoencoder we describe.5 Our motivation and
goal are however quite different. The objective of LeCun (1987) wasto study thecapacityof
such a network for memorization tasks, that is, counting how many training patterns it was able to

5. There are a few minor differences; for example, the use of a squared error after sigmoid for binary data, while we
tend to use a cross-entropy loss. Also their denoising procedure considers doing several recurrent passes through the
autoencoder network, as in a recurrent net.

3382

STACKED DENOISING AUTOENCODERS

fq

xx

g(2)
q0

xx

fq

qD

LH

f (2)
q

f (2)
q

xx

fq

Figure 3: Stacking denoising autoencoders. After training a �rst level denoising autoencoder (see
Figure 1) its learnt encoding functionfq is used on clean input (left). The resulting
representation is used to train a second level denoising autoencoder (middle) to learn a
second level encoding functionf (2)

q . From there, the procedure can be repeated (right).

Target

supervised cost

fq

x

f (2)
q

f (3)
q

f sup
q

Figure 4: Fine-tuning of a deep network for classi�cation. After training astack of encoders as
explained in the previous �gure, an output layer is added on top of the stack. The param-
eters of the whole system are �ne-tuned to minimize the error in predicting the supervised
target (e.g., class), by performing gradient descent on a supervisedcost.

3383

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

correctly recall under these conditions. The work also clearly established the usefulness of a non-
linear hidden layer for this. By contrast, our work is motivated by the search and understanding
of unsupervised pretraining criteria to initialize deep networks. Our primaryinterest is thus in
investigating the ability of the denoising criterion to learn good feature extractors, with which to
initialize a deep network by stacking and composing these feature extractors. We focus on analyzing
the learnt higher-level representations and their effect on the classi�cation performance of resulting
deep networks.

Another insightful work that is very much related to the approach advocated here is the research
of Seung (1998), in which a recurrent neural network is trained to complete corrupted input patterns
using backpropagation through time. Both the work of Seung (1998) and that of LeCun (1987) and
Gallinari et al. (1987) appear to be inspired by Hop�eld-type associative memories (Hop�eld, 1982)
in which learnt patterns are conceived as attractive �xed points of a recurrent network dynamic.
Seung (1998) contributes a very interesting analysis in terms of continuousattractors, points out the
limitations of regular autoencoding, and advocates the pattern completion task as an alternative to
density estimation for unsupervised learning. Again, it differs form our study mainly by itsfocus
a) on recurrent networks6 and b) on the image denoising task per se. The latter justi�es their use of
prior knowledge of the 2D topology of images, both in the architectural choice of local 2D receptive
�eld connectivity, and in the corruption process that consists in zeroing-out a square image patch at
a random position. This occlusion by a 2D patch is a special form of astructuredmasking noise,
where the a-priori known 2D topological structure of images is taken into account. In our research
we deliberately chose not to use topological prior knowledge in our model nor in our corruption
process, so that thesame generic proceduremay be applied to learn higher levels of representation
from lower ones, or to other domains for which we have no such topological prior knowledge.

More recently Jain and Seung (2008) presented a very interesting and successful approach for
image denoising, that consists in layer-wise building of a deep convolutionalneural network. Their
algorithm yields comparable or better performance than state-of-the-art Markov Random Field and
wavelet methods developed for image denoising. The approach clearly has roots in their earlier
work (Seung, 1998) and appears also inspired by more recent research on deep network pretraining,
including our own group's (Bengio et al., 2007). But apparently, neither of us was initially aware of
the other group's relevant work on denoising (Vincent et al., 2008; Jain and Seung, 2008). Again the
focus of Seung (1998) on image denoising per se differs from our ownfocus on studying deep net-
work pretraining for classi�cation tasks and results in marked differences in the actual algorithms.
Speci�cally, in Jain and Seung (2008) each layer in the stack is trained to reconstruct the original
clean image a little better, which makes sense for image denoising. This can be contrasted with
our approach, in which upper layers are trained to denoise-and-reconstruct whatever representation
they receive from the layer immediately below, rather than to restore the original input image in
one operation. This logically follows from our search for a generic feature extraction algorithm
for pretraining, where upper level representations will eventually be used for a totally different task
such as classi�cation.

6. Note however that a recurrent network can be seen as deep network, with the additional property that all layers share
the same weights.

3384

STACKED DENOISING AUTOENCODERS

4.2 Training Classi�ers with Noisy Inputs

The idea of training a neural network with noisy input (Scalettar and Zee, 1988; von Lehman et al.,
1988)—or training withjitter as it is sometimes called—has been proposed to enhance generaliza-
tion performance for supervised learning tasks (Sietsma and Dow, 1991;Holmstrm and Koistinen,
1992; An, 1996). This thread of research is less directly related to autoencoders and denoising than
the studies discussed in the previous section. It is nevertheless relevant.After all, denoising amounts
to using noisy patterns as input with the clean pattern as a supervised target,albeit a rather high di-
mensional one. It has been argued that training with noise is equivalent toapplying generalized
Tikhonov regularization (Bishop, 1995). On the surface, this may seem tosuggest that training with
noisy inputs has a similar effect to training with an L2 weight decay penalty (i.e.,penalizing the sum
of squared weights), but this view is incorrect. Tikhonov regularization applied tolinear regression
is indeed equivalent to a L2 weight decay penalty (i.e., ridge regression). But for a non-linear map-
ping such as a neural network, Tikhonov regularization is no longer so simple (Bishop, 1995). More
importantly, in the non-linear case, the equivalence of noisy training with Tikhonov regularization
is derived from a Taylor series expansion, and is thus only valid in the limit ofvery small additive
noise. See Grandvalet et al. (1997) for a theoretical study and discussion regarding the limitations
of validity for this equivalence. Last but not least, our experimental results in Section 5.1 clearly
show qualitatively very different results when using denoising autoencoders (i.e., noisy inputs) than
when using regular autoencoders with a L2 weight decay.

Here, we must also mention a well-known technique to improve the generalizationperformance
of a classi�er (neural network or other), which consists in augmenting theoriginal training set
with additional distorted inputs, either explicitly (Baird, 1990; Poggio and Vetter, 1992) or virtually
through a modi�ed algorithm (Simard et al., 1992; Schölkopf et al., 1996). For character images
for instance such distortions may include small translations, rotations, scalings and shearings of
the image, or even applying a scanner noise model. This technique can thus be seen as training
with noisy corrupted inputs, but with a highly structured corruption process based onmuchprior
knowledge.7 As already explained and motivated above, our intent in this work is to develop and
investigate a generally applicable technique, that should also be applicable tointermediate higher
level representations. Thus we intentionally restrict our study to very simplegeneric corruption
processes that do not incorporate explicit prior knowledge.

We also stress the difference between the approaches we just discussed, that consist in training a
neural network by optimizing aglobal supervised criterion using noisy input, and the approach we
investigate in the present work, that is, using alocal unsupervised denoising criterion to pretrain
each layer of the networkwith the goal to learn useful intermediate representations. We shall see
in experimental Section 6.4 that the latter applied to a deep network yields better classi�cation
performance than the former.

4.3 Pseudo-Likelihood and Dependency Networks

The view of denoising training as “�lling in the blanks” that motivated the maskingnoise and the
extension that puts an emphasis on corrupted dimensions presented in Section 3.4, can also be re-
lated to the pseudo-likelihood (Besag, 1975) and Dependency Network (Heckerman et al., 2000)

7. Clearly, simple Tikhonov regularization cannot achieve the same as training with such prior knowledge based cor-
ruption process. This further illustrates the limitation of the equivalence between training with noise and Tikhonov
regularization.

3385

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

paradigms. Maximizing pseudo-likelihood instead of likelihood implies replacing the likelihood
term p(X) by the product of conditionalsÕd

i= 1 p(Xi jX: i). HereXi denotes theith component of
input vector variableX andX: i denotes all components but theith. Similarly, in the Dependency
Network approach of Heckerman et al. (2000) one learnsd conditional distributions, each trained to
predict componenti given (a subset of) all other components. This is in effect what anemphasized
denoising autoencoderwith a masking noise that masks but one input component (n = 1

d), and a
full emphasis(a = 1; b = 0), is trained to do. More speci�cally, for binary variables it will learn
to predict p(Xi = 1jX: i); and when using squared error for real-valued variables it will learn to
predictE[Xi jX: i] assumingXi jX: i � N (E[Xi jX: i];s2). Note that with denoising autoencoders, alld
conditional distributions are constrained toshare common parameters, which de�ne the mapping to
and from hidden representationY. Also when the emphasis is not fully put on the corrupted com-
ponents (b > 0) some of the network's capacity will be devoted to encoding/decoding uncorrupted
components.

A more important difference can be appreciated by considering the following scenario: What
happens if components of the input come in identical pairs? In that case, conditional distribution
p(Xi jX: i) can simply learn to replicate the other component of the pair, thus not capturing any other
potentially useful dependency. Now for dependency networks this exact scenario is forbidden by
the formal requirement that no input con�guration may have zero probability. But a similar problem
may occur in practice if the components in a pair are not identical but very highly correlated. By
contrast, denoising autoencoders can and will typically be trained with a larger fractionn of cor-
rupted components, so that reliable prediction of a component cannot relyexclusively on a single
other component.

5. Experiments on Single Denoising Autoencoders: Qualitative Evaluation of
Learned Feature Detectors

A �rst series of experiments was carried out using single denoising autoencoders, that is, without
any stacking nor supervised �ne tuning. The goal was to examine qualitatively the kind of feature
detectors learnt by a denoising criterion, for various noise types, and compare these to what ordinary
autoencoders yield.

Feature detectors that correspond to the �rst hidden layer of a networktrained on image data
are straightforward to visualize. Each hidden neurony j has an associated vector of weightsW j that
it uses to compute a dot product with an input example (before applying its non-linearity). These
W j vectors, the�lters , have the same dimensionality as the input, and can thus be displayed as little
images showing what aspects of the input each hidden neuron is sensitiveto.

5.1 Feature Detectors Learnt from Natural Image Patches

We trained both regular autoencoders and denoising autoencoders on 12� 12 patches from whitened
natural scene images, made available by Olshausen (Olshausen and Field,1996).8 A few of these
patches are shown in Figure 5 (left). For these natural image patches, weused a linear decoder
and a squared reconstruction cost. Network parameters were trained from a random start,9 using

8. More speci�cally randomly positioned 12� 12 patches were extracted from the 20� 20 patches made available by
Olshausen at the following URL:https://redwood.berkeley.edu/bruno/sparsenet/ .

9. We applied the usual random initialization heuristic in which weights are sampled independently form a uniform in
range[� 1p

fanin
; 1p

fanin
] where fanin in this case is the input dimension.

3386

STACKED DENOISING AUTOENCODERS

stochastic gradient descent to perform 500000 weight updates with a �xed learning rate of 0.05. All
�lters shown were from experiments with tied weights, but untied weights yielded similar results.

Figure 5 displays �lters learnt by a regularunder-completeautoencoder that used a bottleneck
of 50 hidden units, as well as those learnt by anover-completeautoencoder using 200 hidden units.
Filters obtained in the under-complete case look like very local blob detectors. No clear structure is
apparent in the �lters learnt in the over-complete case.

Figure 5: Regular autoencoder trained on natural image patches.Left: some of the 12� 12 image
patches used for training.Middle: �lters learnt by a regularunder-completeautoencoder
(50 hidden units) using tied weights and L2 reconstruction error.Right: �lters learnt by a
regularover-completeautoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtainedin the over-
complete case have no recognizable structure, looking entirely random.

We then trained 200 hidden units over-complete noiseless autoencoders regularized with L2
weight decay, as well as 200 hidden units denoising autoencoders with isotropic Gaussian noise
(but no weight decay). Resulting �lters are shown in Figure 6. Note that adenoising autoencoder
with a noise level of 0 is identical to a regular autoencoder. So, naturally, �lters learnt by a denoising
autoencoder at small noise levels (not shown) look like those obtained with aregular autoencoder
previously shown in Figure 5. With a suf�ciently large noise level however(s = 0:5), the denoising
autoencoder learns Gabor-like local oriented edge detectors (see Figure 6). This is similar to what
is learnt by sparse coding (Olshausen and Field, 1996, 1997), or ICA(Bell and Sejnowski, 1997)
and resembles simple cell receptive �elds from the primary visual cortex �rst studied by Hubel and
Wiesel (1959). The L2 regularized autoencoder on the other hand learnt nothing interesting beyond
restoring some of the local blob detectors found in the under-complete case. Note that we did try a
wide range of values for the regularization hyperparameter,10 but were never able to get Gabor-like
�lters. From this experiment, we see clearly thattraining with suf�ciently large noise yields a
qualitatively very different outcome than training with a weight decay regularization, which
con�rms experimentally that the two arenot equivalent for a non-linear autoencoder, as discussed
earlier in Section 4.2.

Figure 7 shows some of the results obtained with the other two noise types considered, that is,
salt-and-pepper noise, and masking-noise. We experimented with 3 corruption levelsn: 10%;25%;55%.
The �lters shown were obtained using 100 hidden units, but similar �lters were found with 50 or
200 hidden units. Salt-and-pepper noise yielded Gabor-like edge detectors, whereas masking noise

10. Attempted weight decays values were the following:l 2 f 0:0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,
1:0g.

3387

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 6: Weight decay vs. Gaussian noise. We show typical �lters learnt from natural image
patches in the over-complete case (200 hidden units).Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learningrates: �lters
never appeared to capture a more interesting structure than what is shownhere. Note
that some local blob detectors are recovered compared to using no weightdecay at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian noise (s = 0:5)
learns Gabor-like local oriented edge detectors. Clearly the �lters learntare qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating �lters. Clearly different corruption types and levels
can yield qualitatively different �lters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28� 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, butwith different noise levels.Figure 8 shows some
of the resulting �lters learnt and how they are affected as we increase thelevel of corruption. With
0% corruption, the majority of the �lters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, �lters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly largerstructure learnt at a
higher noise level often appears related to the smaller structure obtained atlower noise levels, in
that they share about the same position and orientation.

3388

STACKED DENOISING AUTOENCODERS

Figure 7: Filters obtained on natural image patches by denoising autoencoders using other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like �lters. They
appear slightly less localized than when using Gaussian noise (contrast withFigure 6
right). Right: with 55% zero-masking noise we obtain �lters that look like oriented
gratings. For the three considered noise types, denoising training appears to learn �lters
that capture meaningful natural image statistics structure.

6. Experiments on Stacked Denoising Autoencoders

In this section, we evaluate denoising autoencoders as a pretraining strategy for building deep net-
works, using the stacking procedure that we described in Section 3.5. Weshall mainly compare the
classi�cation performance of networks pretrained by stacking denoisingautoencoders (SDAE), ver-
sus stacking regular autoencoders (SAE), versus stacking restrictedBoltzmann machines (DBN),
on a benchmark of classi�cation problems.

6.1 Considered Classi�cation Problems and Experimental Methodology

We considered 10 classi�cation problems, the details of which are listed in Table 1. They consist
of:

� The standard MNIST digit classi�cation problem with 60000 training examples.

� The eight benchmark image classi�cation problems used in Larochelle et al. (2007) which in-
clude more challenging variations of the MNIST digit classi�cation problem (all with 10000
training examples), as well as three arti�cial 28� 28 binary image classi�cation tasks.11

These problems were designed to be particularly challenging to current generic learning al-
gorithms (Larochelle et al., 2007). They are illustrated in Figure 9.

� A variation of thetzanetakisaudio genre classi�cation data set (Bergstra, 2006) which con-
tains 10000 three-second audio clips, equally distributed among 10 musical genres: blues,
classical, country, disco, hiphop, pop, jazz, metal, reggae and rock. Each example in the set

11. The data sets for this benchmark are available athttp://www.iro.umontreal.ca/ ˜ lisa/icml2007 .

3389

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise.(a-c)
show some of the �lters learnt by denoising autoencoders trained with various corruption
levels n. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point inparameter
space.(d) and(e) zoom in on the �lters obtained for two of the neurons. As can be seen,
with no noise, many �lters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising trainingforces the �lters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local �lters, as expected. One can distinguish different kinds of �lters, from
local blob detectors, to stroke detectors, and character parts detectorsat the higher noise
levels.

was represented by 592Mel Phon Coef�cient(MPC) features. These are a simpli�ed for-
mulation of theMel-frequency cepstral coef�cients(MFCCs) that were shown to yield better
classi�cation performance (Bergstra, 2006).

All problems excepttzanetakishad their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and �ne tuning of the models. Classi�cation performanceon the validation set is
used for choosing the best con�guration of hyperparameters (model selection). The corresponding
classi�cation performance on the test set is then reported together with a 95% con�dence interval.

For tzanetakiswe used a slightly different procedure, since there was no prede�nedstandard
split and fewer examples. We used 10-fold cross validation, where eachfold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classi�cation performance of deep neural networks using
different unsupervised initialization strategies for their parameters:

3390

STACKED DENOISING AUTOENCODERS

� MLP random: multilayer perceptron with usual random initialization;

� DBN (deep belief networks) corresponds to stacked RBM pretraining;

� SAE stacked autoencoder pretraining;

� SDAE stacked denoising autoencoder pretraining.

In all cases, the same supervised �ne-tuning procedure was then used, that is, simple stochastic
gradient descent with early stopping based on validation set performance.

Data Set Description input m Train-Valid-Test
MNIST Standard MNIST digit classi-

�cation problem.
784 gray-scale
values scaled
to [0,1]

10 50000-10000-10000

basic Smaller subset of MNIST. 10 10000-2000-50000
rot MNIST digits with added

random rotation.
10 10000-2000-50000

bg-rand MNIST digits with random
noise background.

10 10000-2000-50000

bg-img MNIST digits with random
image background.

10 10000-2000-50000

bg-img-rot MNIST digits with rotation
and image background.

10 10000-2000-50000

rect Discriminate between tall
and wide rectangles (white
on black).

784 values
2f 0,1g

2 10000-2000-50000

rect-img Discriminate between tall
and wide rectangular image
overlayed on a different
background image.

784 values2
[0;1]

2 10000-2000-50000

convex Discriminate between con-
vex and concave shape.

784 values
2f 0,1g

2 6000-2000-50000

tzanetakis Classify genre of thirty sec-
ond audio-clip.

592 MPC
coef�cients,
standardized.

10 10-fold cross valida-
tion on 10000 training
samples.

Table 1: Data sets. Characteristics of the 10 different problems considered. Except fortzane-
takis whose input is made of 592 MPC features extracted from short audio sequences,
all other problems are 28� 28 gray-scale image classi�cation tasks (i.e., input dimension-
ality is 28� 28= 784). See Larochelle et al. (2007) and Bergstra (2006) for furtherdetails
on these data sets. The table gives, for each task, its shorthand name, a description of the
problem, a description of input preprocessing, the number of classes (m), and the number
of examples used for the training, validation and test sets respectively.

3391

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

(a) rot, bg-rand, bg-img, bg-img-rot (b) rect, rect-img, convex

Figure 9: Samples form the various image classi�cation problems. (a): harder variations on the
MNIST digit classi�cation problems. (b): arti�cial binary classi�cation problems.

On the 28� 28 gray-scale image problems, SAE and SDAE used linear+sigmoid decoderlayers
and were trained using a cross-entropy loss, due to this being a natural choice for this kind of (near)
binary images, as well as being functionally closer to RBM pretraining we wanted to compare
against.

However for training the�rst layer on thetzanetakisproblem, that is, for reconstructingMPC
coef�cients, a linear decoder and a squared reconstruction cost were deemed moreappropriate (sub-
sequent layers used sigmoid cross entropy as before). Similarly the �rstlayer RBM used in pre-
training a DBN ontzanetakiswas de�ned with a Gaussian visible layer.

Table 2 lists the hyperparameters that had to be tuned by proper model selection (based on
validation set performance). Note that to reduce the choice space, we restricted ourselves to the
same number of hidden units, the same noise level, and the same learning rate for all hidden layers.

6.2 Empirical Comparison of Deep Network Training Strategies

Table 3 reports the classi�cation performance obtained on all data sets using a 3 hidden layer neural
network pretrained with the three different strategies: by stacking denoising autoencoders (SDAE-
3), stacking restricted Boltzmann machines (DBN-3), and stacking regularautoencoders (SAE-3).
For reference the table also contains the performance obtained by a singlehidden-layer DBN-1 and
by a Support Vector Machine with a RBF kernel (SVMrbf).12

12. SVMs were trained using the libsvm implementation. Their hyperparameters (C and kernel width) were tuned semi-
automatically (i.e., by human guided grid-search), searching for the best performer on the validation set.

3392

STACKED DENOISING AUTOENCODERS

hyperparameter description considered values

nHLay number of hidden layers f 1,2,3g
nHUnit number of units per hidden layer

(same for all layers)
f 1000,2000,3000g

lRate �xed learning rate for unsuper-
vised pretraining

f 5� 10� 6, 5� 10� 5, 5� 10� 4,
5� 10� 3, 5� 10� 2, 10� 1g

lRateSup �xed learning rate for supervised
�ne-tuning

f 0.0005,0.005,0.05,0.1,0.15,0.2g

nEpoq number of pretraining epochs
(passages through the whole
training set)

f 5,10,50,100,125,150,200,300g

n corrupting noise level fraction of corrupted inputs
(0;0:10;0:25;0:40)
or standard deviation
for Gaussian noise
(0;0:05;0:10;0:15;0:30;0:50)

Table 2: List of hyperparameters for deep networks. These hyperparameters are common to all
considered deep network training strategies, except for noise leveln which is speci�c
to SDAE (for which we must also choose the kind of corruption). We list the typical
values we considered in the majority of our experiments. Best performing con�guration
on the validation set was always searched for in a semi-automatic fashion, that is, running
experiments in parallel on a large computation cluster, but with manual guidance to avoid
wasting resources on unnecessary parts of the con�guration space.Some experiments
meant to study more closely the in�uence of speci�c hyperparameters occasionally used a
�ner search grid for them, as will be speci�ed in the description of these experiments.

In these experiments, SDAE used a zero-masking corruption noise for allproblems except for
tzanetakis, for which a Gaussian noise was deemed more appropriate due to the natureof the input.

We see that SDAE-3 systematically outperforms the baseline SVM, as well as SAE-3 (except
for convexfor which the difference is not statistically signi�cant). This shows clearly that de-
noising pretraining with a non-zero noise level is a better strategy than pretraining with regular
autoencoders. For all but one problem, SDAE-3 is either the best performing algorithm or has its
con�dence interval overlap with that of the winning algorithm (i.e., difference cannot be considered
statistically signi�cant). In most cases, stacking 3 layers of denoising autoencoder seems to be on
par or better than stacking 3 layers of RBMs in DBN-3.

In the following subsections, we will be conducting further detailed experiments to shed light
on particular aspects of the denoising autoencoder pretraining strategy.

6.3 In�uence of Number of Layers, Hidden Units per Layer, and NoiseLevel

Next we wanted to study more closely the in�uence of important architecturalhyperparameters,
namely the number of layers, the number of hidden units per layer, and the noise level. For this �ner

3393

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Data Set SVMrb f DBN-1 SAE-3 DBN-3 SDAE-3 (n)

MNIST 1.40� 0:23 1.21� 0:21 1.40� 0:23 1.24� 0:22 1.28� 0:22 (25%)
basic 3.03� 0:15 3.94� 0:17 3.46� 0:16 3.11� 0:15 2.84� 0:15 (10%)
rot 11.11� 0:28 14.69� 0:31 10.30� 0:27 10.30� 0:27 9.53� 0:26 (25%)
bg-rand 14.58� 0:31 9.80� 0:26 11.28� 0:28 6.73� 0:22 10.30� 0:27 (40%)
bg-img 22.61� 0:37 16.15� 0:32 23.00� 0:37 16.31� 0:32 16.68� 0:33 (25%)
bg-img-rot 55.18� 0:44 52.21� 0:44 51.93� 0:44 47.39� 0:44 43.76� 0:43 (25%)
rect 2.15� 0:13 4.71� 0:19 2.41� 0:13 2.60� 0:14 1.99� 0:12 (10%)
rect-img 24.04� 0:37 23.69� 0:37 24.05� 0:37 22.50� 0:37 21.59� 0:36 (25%)
convex 19.13� 0:34 19.92� 0:35 18.41� 0:34 18.63� 0:34 19.06� 0:34 (10%)
tzanetakis 14.41� 2:18 18.07� 1:31 16.15� 1:95 18.38� 1:64 16.02� 1:04(0.05)

Table 3: Comparison of stacked denoising autoencoders (SDAE-3) with other models. Test error
rate on all considered classi�cation problems is reported together with a 95%con�dence
interval. Best performer is in bold, as well as those for which con�denceintervals overlap.
SDAE-3 appears to achieve performance superior or equivalent to thebest other model on
all problems exceptbg-rand. For SDAE-3, we also indicate the fractionn of corrupted
input components, or in case oftzanetakis, the standard deviation of the Gaussian noise, as
chosen by proper model selection. Note that SAE-3 is equivalent to SDAE-3 with n = 0%.

grained series of experiments, we chose to concentrate on the hardest of the considered problems,
that is, the one with the most factors of variation:bg-img-rot.

We �rst examine how the proposed network training strategy behaves as we increase the capacity
of the model both in breadth (number of neurons per layer) and in depth (number of hidden layers).
Figure 10 shows the evolution of the performance as we increase the number of hidden layers from
1 to 3, for three different network training strategies: without any pretraining (standard MLP),
with ordinary autoencoder pretraining (SAE) and with denoising autoencoder pretraining (SDAE).
We clearly see a strict ordering: denoising pretraining being better than autoencoder pretraining
being better than no pretraining. The advantage appears to increase with the number of layers (note
that without pretraining it seems impossible to successfully train a 3 hidden layer network) and
with the number of hidden units. This general behavior is a typical illustration of what is gained
by pretraining deep networks with a good unsupervised criterion, and appears to be common to
several pretraining strategies. We refer the reader to Erhan et al. (2010) for an empirical study
and discussion regarding possible explanations for the phenomenon, centered on the observation of
regularizationeffects (we exploit the hypothesis that features ofX that help to captureP(X) also
help to captureP(YjX)) andoptimizationeffects (unsupervised pre-training initializes parameters
near a betterlocal minimumof generalizationerror).

Notice that in tuning the hyperparameters for all classi�cation performances so far reported, we
considered only a coarse choice of noise levelsn (namely 0%, 10%, 25%, or 40% of zero-masking
corruption for the image classi�cation problems). Clearly it was not necessary to pick the noise
level very precisely to obtain good performances. In Figure 11 we examine in more details the
in�uence of the level of corruptionn using a more �ne-grained grid for problembg-img-rot. We

3394

STACKED DENOISING AUTOENCODERS

Figure 10: Classi�cation performance onbg-img-rotfor standard MLP with random initialization
(NoPreTrain, left), SAE (middle), and SDAE (right), as we increase the number of hid-
den layers and the number of neurons per layer. Error bars show 95%con�dence in-
tervals. Note that without pretraining the curve for 3 layers is outside the graphic, the
classi�cation error being above 89%.

notice that SDAE appears to perform better than SAE (0 noise) for a rather wide range of noise
levels, regardless of the number of hidden layers.

The following section reports an experiment that was conducted on three other data sets. The ex-
periment had a different goal and thus used a coarsern grid, but the resulting curves (see Figure 12)
appear to follow a similar pattern to the one seen here (Figure 11).

6.4 Denoising Pretraining vs. Training with Noisy Input

We discussed in Section 4.2 the important distinction between denoising pretraining as it is done
in SDAE and simply training with noisy inputs. SDAE uses a denoising criterion to learn good
initial feature extractors at each layer that will be used as initialization for anoiselesssupervised
training. This is very different from training with noisy inputs, which amountsto training with a
(virtually) expanded data set. This latter approach can in principle be applied to any classi�er, such
as an SVM13 or a SAE. Note that in the case of the SAE, since there are two phases (pretraining
and �ne-tuning), it is possible to use noisy inputs for only the pretraining orfor both the pretraining

13. For SAE, input examples can cheaply be corrupted on the �y, but this is not an option with standard SVM algorithms.
So for SVM training we �rst augmented the training set by generating 9 extra variations of each original training
example thus yielding a training set 10 times bigger than the original. Alternatively, we could instead have used the

3395

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 11: Sensitivity to the level of corruption. The curves report the test error rate for SDAE
trained on problembg-img-rotas a function of the fractionn of corrupted input compo-
nents (using zero masking noise). Error bars show 95% con�dence interval. Note that
0% corruption corresponds to a SAE (regular autoencoder).

and �ne-tuning phase. We experimentally compare these different approaches on three data sets in
Figure 12. We see that denoising pretraining with SDAE, for a large rangeof noise levels, yields
signi�cantly improved performance, whereas training with noisy inputs sometimes degrades the
performance, and sometimes improves it slightly but is clearly less bene�cial than SDAE.

6.5 Variations on the Denoising Autoencoder: Alternate CorruptionTypes and Emphasizing

In the next series of experiments, we wanted to evaluate quantitatively the effect of using the various
corrupting noises described in Section 3.3 as well as theemphasized denoising autoencodervariant
described in Section 3.4.

Extensive experiments were carried out on the same 3 problems we used in the previous section.
Besides zero-masking noise (MN) we trained 3 hidden layer SDAE using salt-and-pepper noise (SP)
and additive Gaussian noise (GS). For MN and SP, we also tried the emphasized variant.14 For each
considered variant, hyperparameters were selected as usual to yield thebest performance on the

virtual SV technique (Scḧolkopf et al., 1996), which may or may not have yielded better performance, but since our
main focus here is comparing noisy SAE with SDAE, SVM only serves as a simple baseline.

14. As already mentioned previously, since Gaussian noise corrupts every dimension, emphasized denoising does not
make sense for this type of corruption.

3396

STACKED DENOISING AUTOENCODERS

(a) basic

(b) rot (c) bg-rand

Figure 12: SDAE vs. training with noisy input. The test error of aSDAE with 3 hidden layers
is compared to other algorithms trained with noisy inputs: a SVM with RBF kernel
(SVMrbf), a 3-hidden-layers SAE where noisy inputs were used for pretrainingonly
(SAE(1)) and one where noisy inputs were used both for pretraining and supervised
�ne-tuning (SAE(2)). Hidden layers have 1000 neurons each. Zero-masking noise was
used. Note that at 0% noise, the three stacked models correspond to an ordinary SAE.
Error bars show 95% con�dence interval. Denoising pretraining with SDAE appears to
always yield signi�cantly better performance, unlike training with noisy inputs.

3397

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Model basic rot bg-rand

SVMrb f 3.03� 0:15 11.11� 0:28 14.58� 0:31

SAE-3 3.46� 0:16 10.30� 0:27 11.28� 0:28

DBN-3 3.11� 0:15 10.30� 0:27 6.73� 0:22

SDAE-3MN(n) 2.84� 0:15(10%) 9.53� 0:26(25%) 10.30� 0:27(40%)
SDAE-3MN(n) + emph 2.76� 0:14(25%) 10.36� 0:27(25%) 9.69� 0:26(40%)
SDAE-3SP(n) 2.66� 0:14(25%) 9.33� 0:25(25%) 10.03� 0:26(25%)
SDAE-3SP(n) + emph 2.48� 0:14(25%) 8.76� 0:29(25%) 8.52� 0:24(10%)
SDAE-3GS(n) 2.61� 0:14(0.1) 8.86� 0:28(0.3) 11.73� 0:28(0.1)

Table 4: Variations on 3-hidden-layer stacked denoising autoencoders(SDAE-3): alternative noise
types and effect of emphasis. Considered noise types are masking noise(MN), salt-and-
pepper (SP) and Gaussian noise (GS). Emphasized version considered double emphasis
and full emphasis (see main text for detailed explanation). For easy comparison, the table
also reproduces previously shown results for SVMrbf, SAE-3, and DBN-3. Test error rate
is reported together with a 95% con�dence interval. Best performer is in bold, as well
as those for which con�dence intervals overlap. Corruption leveln (fraction of corrupted
input components or Gaussian standard deviation) that was retained by model selection on
the validation set is speci�ed in parenthesis. SDAE-3SPwith emphasis on reconstruction of
corrupted dimension appears to be the best SDAE variant for these data sets, signi�cantly
improving performance onrot andbg-rand.

validation set. These included the number of units per layer (same for all layers), the corruption
level n (fraction of corrupted dimensions for MN and SP, or standard deviation for GS), with the
usual considered values (listed previously in Table 2). For the emphasized version, a further hy-
perparameter was the degree of emphasis. We considered bothdouble emphasis, where the weight
on the reconstruction of the corrupted components is twice that on the uncorrupted components
(a = 1; b = 0:5), andfull emphasiswhere all the weight is on reconstructing the corrupted compo-
nents and none on the uncorrupted dimensions (a = 1; b = 0). Table 4 reports the corresponding
classi�cation performance on the held-out test set. For the three considered data sets, an empha-
sized SDAE with salt-and-pepper noise appears to be the winning SDAE variant. It thus appears
that a judicious choice of noise type and added emphasis may often buy us a better performance.
However we had hoped, with these variants, to catch up with the performance of DBN-3 on the
bg-randproblem,15 but DBN-3 still performs signi�cantly better than the best SDAE variant on this
particular problem.

6.6 Are Features Learnt in an Unsupervised Fashion by SDAE Usefulfor SVMs?

In the following series of experiments, we wanted to verify whether the higher level representations
extracted using SDAE could improve the performance of learning algorithms other than a neural
network, such as SVMs.

15. As discussed in Larochelle et al. (2007),bg-randis particularly favorable to RBMs because the pixel-wise indepen-
dent noise perfectly matches what an RBM expects and will naturally not be represented in the hidden units.

3398

STACKED DENOISING AUTOENCODERS

To this end, we fed the representations learnt by the purely unsupervised phase of SDAE, at
increasing higher levels (�rst, second and third hidden layer) to both a linear SVM and a Kernel
SVM (using a RBF kernel). The hyperparameters of the SVM and its kernel were tuned on the
validation set as usual. For computational reasons, we did not re-tune SDAE hyperparameters.
Instead, we identi�ed the best performing SDAE-pretrained neural networks with 1000 units per
layer, based on their validation performance after �ne-tuning from previous experiments, but used
their saved weights prior to �ne-tuning (i.e., after unsupervised denoisingtraining only).

Results for all considered data sets are reported in Table 5, and Figure 13 highlights performance
curves for two of them. Clearly, SVM performance can bene�t signi�cantly from using the higher
level representation learnt by SDAE.16 On all problems we see improved performance compared
to using the original input (SVM0). More interestingly, on most problems, SVM performance im-
proves steadily as we use ever higher level representations. While it is not too surprising that linear
SVMs can bene�t from having the original input processed non-linearly, it is noteworthy that RBF
kernel SVMs, which are high-capacity non-linear classi�ers, also seem to bene�t greatly from the
non-linear mapping learned by SDAE.

Figure 13: SVM on representations learnt by SDAE. The curves show evolution, on two data sets,
of the test performance of linear and RBF kernel SVMs as we train them onhigher level
representations learnt in the unsupervised phase of SDAE. Performance of SDAE after
supervised �ne-tuning is also shown as SDAEmn (mn stands for masking noise). Hidden
layer 0 corresponds to original input representation.

7. Generating Samples from Stacked Denoising Autoencoder Networks

Besides the classi�cation performance comparisons and qualitative visualinspection of learnt �lters,
it is also customary in studies of deep generative models such as DBNs, to show samples generated

16. To verify that the learnt representation was responsible for the improved performance, rather than a random non-
linear transformation, we also trained SVMs on the representation of the same neural network architecture but using
randomly initialized weights: the performance degraded as we used the higher level representations.

3399

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Data Set
SVM

kernel
SVM0 SVM1 SVM2 SVM3

linear 5.33� 0:44 1.49� 0:24 1.24� 0:22 1.2� 0:21
MNIST

rbf 1.40� 0:23 1.04� 0:20 0.94� 0:19 0.95� 0:19

linear 7.32� 0:23 3.43� 0:16 2.71� 0:14 2.63� 0:14
basic

rbf 3.03� 0:15 2.59� 0:14 2.55� 0:14 2.57� 0:14

linear 43.47� 0:43 21.74� 0:36 15.15� 0:31 10.00� 0:26rot
rbf 11.11� 0:28 8.45� 0:24 8.27� 0:24 8.64� 0:25

linear 24.14� 0:38 13.58� 0:30 13.00� 0:29 11.32� 0:28
bg-rand

rbf 14.58� 0:31 11.00� 0:27 10.08� 0:26 10.16� 0:26

linear 25.08� 0:38 16.72� 0:33 20.73� 0:36 14.55� 0:31
bg-img

rbf 22.61� 0:37 15.91� 0:32 16.36� 0:32 14.06� 0:30

linear 63.53� 0:42 50.44� 0:44 50.26� 0:44 42.07� 0:43
bg-img-rot

rbf 55.18� 0:44 44.09� 0:44 42.28� 0:43 39.07� 0:43

linear 29.04� 0:40 6.43� 0:22 2.31� 0:13 1.80� 0:12rect
rbf 2.15� 0:13 2.19� 0:13 1.46� 0:11 1.22� 0:10

linear 49.64� 0:44 23.12� 0:37 23.01� 0:37 21.43� 0:36
rect-img

rbf 24.04� 0:37 22.27� 0:36 21.56� 0:36 20.98� 0:36

linear 45.75� 0:44 24.10� 0:37 18.40� 0:34 18.06� 0:34convex
rbf 19.13� 0:34 18.09� 0:34 17.39� 0:33 17.53� 0:33

linear 20.72� 2:51 12.51� 2:05 7.95� 1:68 5.04� 1:36
tzanetakis

rbf 14.41� 2:18 7.54� 1:64 5.20� 1:38 4.13� 1:23

Table 5: SVM performance on higher level representations learnt by SDAE. Performance of both
linear SVM, and SVM with RBF kernel is reported, as they are trained on either original
input (SVM0), or on the representation learnt by a SDAE at the level of its �rst (SVM1),
second (SVM2), or third (SVM3) hidden layer. The representations used for the SVMs
were those obtained prior to �ne-tuning. Test error rate on all considered classi�cation
problems is reported together with a 95% con�dence interval. Best performer is in bold,
as well as those for which con�dence intervals overlap. Clearly both linear and kernel
SVM performance bene�t from using the higher level representations learnt by SDAE.
For most problems the performance increases steadily as we use representations from ever
higher levels of the architecture.

from the trained models. This can yield another qualitative visual assessment of whether they were
able to capture the input distribution well.

7.1 Top-Down Generation of a Visible Sample Given a Top-Layer Representation

Given a top-layer representation, a deep belief network (Hinton et al., 2006) is a directed graphical
model, and it is easy to do a top down sampling pass, that is, sampling each layerconditioned on
the layer above, to eventually produce a sample in the bottom layer that can bedisplayed. More
precisely, in sigmoid deep belief networks (DBN), the representation at a lower layerX given the

3400

STACKED DENOISING AUTOENCODERS

layer aboveY is distributed according to a product of independent Bernoullis whose mean is a
deterministic function ofY, that is,XjY � B(gq0(Y)) ; wheregq0 has the exact same form as that
given in Equation 3 for thedecoderpart of an autoencoder. From a trained SAE or SDAE17 it is
thus possible to generate samples at one layer from the representation of the layer above in the exact
same way as in a DBN.

7.2 Bottom-Up Inferring of the Top-Layer Representation Corresponding to a Given Input
Pattern

In SAE/SDAE,given an input representation at the bottom layer, the corresponding representation
in the top layer is computed in a deterministicbottom-uppass using encoding functionsfq. The
same procedure is used in DBNs and, in the graphical model perspective, can be viewed as an
approximate inferenceof a factorial Bernoulli top-layer distribution given the low level input. This
top-layer representation is to be understood as the parameters (the mean) of a factorial Bernoulli
distribution for the actual binary units.

7.3 Generating Samples with SAE, SDAE, and DBN Using the Same Procedure

The deep belief network of Hinton et al. (2006) is a fully speci�ed generative model. In particular
the joint distribution of its top two layers is de�ned by an RBM model,18, that is, anundirected
graphical model from which one can ef�ciently sample using alternating Gibbs sampling (Hinton
et al., 2006). So to sample from a DBN model, one would �rst sample from the top-layer RBM
using alternating Gibbs sampling. Then, given the thus obtained top-layer representation, perform
the single top down sampling pass previously described to produce a visible pattern at the bottom
layer.

By contrast, SAE/SDAE training does not attempt to model the distribution of the top-layer
representation. So even though—given a top-layer representation—wecan use the exact same top
down sampling procedure to generate input patterns from a SAE/SDAE as for a DBN, SAE/SDAE
cannot by themselves alone be treated as fully speci�ed generative models. They lack a model of
the marginal distribution of their top layer.

We can easily �x this by modeling that top-layer distribution non-parametrically by the simple
memory-basedempirical distributionof the encoded top-layer representations of then training set
patterns. A visible sample can then be generated by simply taking the top-layer encoded represen-
tation of a randomly picked training set input, and carrying out the top-downsampling procedure
explained previously, as illustrated in Figure 14. This same technique can also be used as an alter-
native sample-generation procedure for DBNs built by stacking RBMs.

If we keep the same �xed input pattern, and hence the same corresponding higher level rep-
resentation, and perform several top-down samplings, we can thus observe what kind of pattern
variations the deep multilayer part of a deep network has learnt to model (orabstract away in ex-
tracting the top-layer representation). Figure 15 shows the resulting variability in the regenerated
patterns, for models pretrained respectively as SAE, SDAE19 and DBN on MNIST without any su-

17. SAE and SDAE train suchgq0 to perform reconstruction, that is, predicting the mean value of a layer given the
representation in the layer immediately above it.

18. This RBM was trained, using the training set, to model the representations obtained at the layer just below the top
one, produced by the bottom-up pass we just described.

19. Both were pretrained with salt-and-pepper noise.

3401

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 14: Non-parametric sampling procedure for pretrained networks. A randomly picked input
form the original data set is provided as input. Its top level representationis obtained by
deterministic bottom-up encoding using functionsfq(k) . A visible pattern is generated
given this high level representation, by alternating Bernoulli sampling and deterministic
decoding, that is, by successively sampling fromB(gq0(k) (previouslayer). This same
procedure can be applied with SAE, SDAE and DBN. It allows to see the quality and
variability of patterns one obtains given a high-level representation.

pervised �ne-tuning. It appears that SDAE and DBN are able to resynthesize a variety of similarly
good quality digits, whereas the SAE trained model regenerates patterns withmuch visible degra-
dation in quality. This is further evidence of the qualitative difference resulting from optimizing a
denoising criterion instead of mere reconstruction criterion. Note how SDAEputs back the miss-
ing hole in the loop of the regenerated 6, and sometimes straightens up the upper stroke of the 7,
suggesting that it did indeed capture interesting speci�c characteristics. It appears that, when using
this same sample generation procedure, SDAE and DBN yield a similar degree of variability in the
regenerated patterns (with DBN patterns looking slightly fatter and SDAE patterns slightly thinner).
Neither DBN nor SDAE guarantee that class boundaries will not be crossed,20 for example DBN
closes a loop in a 7 making it look closer to a 9, whereas SDAE sometimes breaksopen the loop
of an 8 making it look like a 3. But in all cases, and contrary to SAE, the regenerated patterns look
like they could be samples from the same unknown input distribution that yieldedthe training set.

8. Conclusion and Future Work

The present work was inspired by recent successful approachesto training deep networks, specif-
ically by their use of a local unsupervised criterion, and led by the questionof what that crite-
rion should be. At the same time we were motivated by a desire to bridge a remaining perfor-
mance gap between deep belief networks and the stacking of ordinary autoencoders (Bengio et al.,
2007; Larochelle et al., 2009a). This led us to address a theoretical shortcoming of traditional
autoencoders—namely their inability in principle to learn useful over-completerepresentations—in
a simple yet original way: by changing the objective from one involving merereconstruction to
the more challenging task ofdenoising. The resulting Stacked Denoising Autoencoder algorithm

20. The reader should however keep in mind that this results from unsupervised training only.

3402

STACKED DENOISING AUTOENCODERS

(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-�gure is to be read row-wise: the leftmost patternin each row
is a training set pattern. Following the sample generation depicted in Figure 14,it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, likeDBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note howSDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightensup
the upper stroke of the last 7, suggesting that it did indeed capture meaningful speci�c
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.

3403

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

for training deep networks, proved indeed able to bridge the performance gap with DBNs, yielding
equivalent or better classi�cation performance on all but one of the considered benchmark prob-
lems. As a deep network pretraining strategy, stacking of denoising autoencoders yielded in most
cases a signi�cant improvement in performance over the stacking of ordinary autoencoders. The
representations thus extracted layer by layer, using a purely unsupervised local denoising criterion,
appear to make subsequent classi�cation tasks much easier. This is further evidenced by the fact
that state-of-the-art shallow classi�ers such as kernel SVMs also appear able to greatly bene�t from
it. Close examination of the feature extractors learnt by denoising autoencoders showed that they
were able to zero in on useful structure in the data (such as Gabor-like edge detectors on natural
image patches) that regular autoencoders seemed unable to learn.

The algorithm we developed is a straightforward, easy to implement, variation on the well-
understood ordinary autoencoders. All that remains to be chosen is the kind and level of corrupting
noise. It is likely that a careful choice, possibly guided by prior domain knowledge, may further
boost application-speci�c performance. Nevertheless our experimentsshowed that high perfor-
mance can already be achieved using very simple and generic noise types and with little tuning of
the noise level. In addition, we were able to show that, contrary to what it may seem on the sur-
face based on popular myths, the denoising training we advocate isnot equivalent to using a mere
weight decay regularization, nor is it the same as direct supervised training with corrupted (jittered)
examples.

Beyond the speci�cities and practical usefulness of the simple algorithm we developed,our re-
sults clearly establish the value of using adenoising criterionas an unsupervised objective to
guide the learning of useful higher level representations.This is in our view the most important
contribution of our work, as it offers an interesting alternative to more usual (and often intractable)
likelihood derived criteria. Indeed, denoising performance can easily be measured and directly op-
timized. The use of a denoising criterion is very different from the contrastive divergence training
of RBMs or the direct enforcing of sparsity in autoencoders. We hope that our very encouraging
results will inspire further research in this direction, both theoretical (to better understand the rela-
tionship between denoising and representation learning), and practical (to develop better learning
algorithms based on this understanding).

There are certainly better ways to use denoising-based training signals in the learning of a deep
network than the simple local approach we explored here. In particular, while stacking denoising
autoencoders allows us to build a deep network, the denoising autoencoders we used here were
shallow. It would thus be interesting to investigate deep denoising autoencoders with several hidden
layers, and their ability to form useful representations. The choice and role of the corruption process
also deserves further inquiry. If more involved corruption processesthan those explored here prove
bene�cial, it would be most useful if they could be parameterized and learnt directly from the data,
rather than having to be hand-engineered based on prior-knowledge.

Acknowledgments

This research was supported by funding from NSERC, MITACS, FQRNT, CIFAR, and the Canada
Research Chairs, and partly carried out on computation resources madeavailable by RQCHP.

3404

STACKED DENOISING AUTOENCODERS

References

G. An. The effects of adding noise during backpropagation training on ageneralization perfor-
mance.Neural Computation, 8(3):643–674, 1996.

H. Baird. Document image defect models. InIAPR Workshop on Syntactic and Structural Pattern
Recognition, pages 38–46, Murray Hill, NJ., 1990.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima.Neural Networks, 2:53–58, 1989.

A. Bell and T.J. Sejnowski. The independent components of natural scenes are edge �lters.Vision
Research, 37:3327–3338, 1997.

A.J. Bell and T.J. Sejnowski. An information maximisation approach to blind separation and blind
deconvolution.Neural Computation, 7(6):1129–1159, 1995.

Y. Bengio. Learning deep architectures for AI.Foundations and Trends in Machine Learning, 2(1):
1–127, 2009. Also published as a book. Now Publishers, 2009.

Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence.Neural Computa-
tion, 21(6):1601–1621, June 2009.

Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors,Large Scale Kernel Machines. MIT Press, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep net-
works. In Bernhard Scḧolkopf, John Platt, and Thomas Hoffman, editors,Advances in Neural
Information Processing Systems 19 (NIPS'06), pages 153–160. MIT Press, 2007.

J. Bergstra. Algorithms for classifying recorded music by genre. Master's thesis, Universit́e de
Montreal, 2006.

J. Besag. Statistical analysis of non-lattice data.The Statistician, 24(3):179–195, 1975.

C.M. Bishop. Training with noise is equivalent to Tikhonov regularization.Neural Computation, 7
(1):108–116, 1995.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decom-
position.Biological Cybernetics, 59:291–294, 1988.

O. Chapelle, B. Scḧolkopf, and A. Zien, editors.Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

Y. Cho and L. Saul. Kernel methods for deep learning. In Y. Bengio, D.Schuurmans, C. Williams,
J. Lafferty, and A. Culotta, editors,Advances in Neural Information Processing Systems 22
(NIPS'09), pages 342–350. NIPS Foundation, 2010.

D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, and S. Bengio. Why does unsu-
pervised pre-training help deep learning?Journal of Machine Learning Research, 11:625–660,
February 2010.

3405

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

P. Gallinari, Y. LeCun, S. Thiria, and F. Fogelman-Soulie. Memoires associatives distribuees. In
Proceedings of COGNITIVA 87, Paris, La Villette, 1987.

Y. Grandvalet, S. Canu, and S. Boucheron. Noise injection: Theoretical prospects.Neural Compu-
tation, 9(5):1093–1108, 1997.

J. H	astad. Almost optimal lower bounds for small depth circuits. InProceedings of the 18th annual
ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California, 1986. ACM Press.

J. H	astad and M. Goldmann. On the power of small-depth threshold circuits.Computational Com-
plexity, 1:113–129, 1991.

D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie.Dependency networks
for inference, collaborative �ltering, and data visualization.Journal of Machine Learning Re-
search, 1:49–75, 2000.

G.E. Hinton. Connectionist learning procedures.Arti�cial Intelligence, 40:185–234, 1989.

G.E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Computa-
tion, 14:1771–1800, 2002.

G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, July 2006.

G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18:1527–1554, 2006.

L. Holmstrm and P. Koistinen. Using additive noise in back-propagation training. IEEE Transac-
tions on Neural Networks, 3(1):24–38, 1992.

J.J. Hop�eld. Neural networks and physical systems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sciences, USA, 79, 1982.

D.H. Hubel and T.N. Wiesel. Receptive �elds of single neurons in the cat'sstriate cortex.Journal
of Physiology, 148:574–591, 1959.

V. Jain and S.H. Seung. Natural image denoising with convolutional networks. In Daphne Koller,
Dale Schuurmans, Yoshua Bengio, and Leon Bottou, editors,Advances in Neural Information
Processing Systems 21 (NIPS'08), 2008.

N. Japkowicz, S.J. Hanson, and M.A. Gluck. Nonlinear autoassociation isnot equivalent to PCA.
Neural Computation, 12(3):531–545, 2000.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. Anempirical evaluation of deep
architectures on problems with many factors of variation. In Z. Ghahramani,editor,Proceedings
of the Twenty-fourth International Conference on Machine Learning (ICML'07), pages 473–480.
ACM, 2007.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep
neural networks.Journal of Machine Learning Research, 10:1–40, January 2009a.

3406

STACKED DENOISING AUTOENCODERS

H. Larochelle, D. Erhan, and P. Vincent. Deep learning using robust interdependent codes. InPro-
ceedings of the Twelfth International Conference on Arti�cial Intelligence and Statistics (AIS-
TATS 2009), pages 312–319, April 2009b.

Y. LeCun.Mod�eles connexionistes de l'apprentissage. PhD thesis, Université de Paris VI, 1987.

Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D. Jackel. Back-
propagation applied to handwritten zip code recognition.Neural Computation, 1(4):541–551,
1989.

H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for visual area V2. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems
20 (NIPS'07), pages 873–880, Cambridge, MA, 2008. MIT Press.

R. Linsker. An application of the principle of maximum information preservationto linear systems.
In D.S. Touretzky, editor,Advances in Neural Information Processing Systems 1 (NIPS'88). Mor-
gan Kaufmann, 1989.

J.L. McClelland, D.E. Rumelhart, and the PDP Research Group.Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, volume 2. MIT Press, Cambridge, 1986.

B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive �eld properties by learning a
sparse code for natural images.Nature, 381:607–609, 1996.

B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete basis set: a strategy employed
by V1? Vision Research, 37:3311–3325, December 1997.

T. Poggio and T. Vetter. Recognition and structure from one 2d model view: Observations on
prototypes, object classes and symmetries. Technical Report A.I. Memo No. 1347, Arti�cial
Intelligence Laboratory, Massachusetts Institute of Technology, 1992.

M. Ranzato, C.S. Poultney, S. Chopra, and Y. LeCun. Ef�cient learning of sparse representations
with an energy-based model. In B. Schölkopf, J. Platt, and T. Hoffman, editors,Advances in
Neural Information Processing Systems 19 (NIPS'06), pages 1137–1144. MIT Press, 2007.

M. Ranzato, Y. Boureau, and Y. LeCun. Sparse feature learning fordeep belief networks. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing
Systems 20 (NIPS'07), pages 1185–1192, Cambridge, MA, 2008. MIT Press.

R. Scalettar and A. Zee. Emergence of grandmother memory in feed forward networks: Learning
with noise and forgetfulness. In D. Waltz and J. A. Feldman, editors,Connectionist Models and
Their Implications: Readings from Cognitive Science, pages 309–332. Ablex, Norwood, 1988.

B. Scḧolkopf, C.J.C. Burges, and V. Vapnik. Incorporating invariances in support vector learning
machines. In C. von der Malsburg, W. von Seelen, J. C. Vorbrggen, and B. Sendhoff, editors,
Lecture Notes in Computer Science (Vol 112), Arti�cial Neural Netowrks ICANN'96, pages 47–
52. Springer, 1996.

S.H. Seung. Learning continuous attractors in recurrent networks. InM.I. Jordan, M.J. Kearns,
and S.A. Solla, editors,Advances in Neural Information Processing Systems 10 (NIPS'97), pages
654–660. MIT Press, 1998.

3407

V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

J. Sietsma and R. Dow. Creating arti�cial neural networks that generalize. Neural Networks, 4(1):
67–79, 1991.

P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop - A formalism for specifying selected
invariances in an adaptive network. In J.E. Moody S.J. Hanson and R.P.Lippmann, editors,
Advances in Neural Information Processing Systems 4 (NIPS'91), pages 895–903, San Mateo,
CA, 1992. Morgan Kaufmann.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In
D.E. Rumelhart and J.L. McClelland, editors,Parallel Distributed Processing, volume 1, chap-
ter 6, pages 194–281. MIT Press, Cambridge, 1986.

P.E. Utgoff and D.J. Stracuzzi. Many-layered learning.Neural Computation, 14:2497–2539, 2002.

P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting andcomposing robust features
with denoising autoencoders. In W.W. Cohen, A. McCallum, and S.T. Roweis, editors,Pro-
ceedings of the Twenty-�fth International Conference on Machine Learning (ICML'08), pages
1096–1103. ACM, 2008.

A. von Lehman, E.G. Paek, P.F. Liao, A. Marrakchi, and J.S. Patel. Factors in�uencing learning
by back-propagation. InIEEE International Conference on Neural Networks, volume 1, pages
335–341, San Diego 1988, 1988. IEEE, New York.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In William W.
Cohen, Andrew McCallum, and Sam T. Roweis, editors,Proceedings of the Twenty-�fth Inter-
national Conference on Machine Learning (ICML'08), pages 1168–1175, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390303.

3408

