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Abstract

In many applications involving multi-media data, the definition of similarity between items is inte-
gral to several key tasks, including nearest-neighbor retrieval, classification, and recommendation.
Data in such regimes typically exhibits multiple modalities, such as acoustic and visual content of
video. Integrating such heterogeneous data to form a holistic similarity space is therefore a key
challenge to be overcome in many real-world applications.

We present a novel multiple kernel learning technique for integrating heterogeneous data into
a single, unified similarity space. Our algorithm learns an optimal ensemble of kernel transfor-
mations which conform to measurements of human perceptual similarity, as expressed by relative
comparisons. To cope with the ubiquitous problems of subjectivity and inconsistency in multi-
media similarity, we develop graph-based techniques to filter similarity measurements, resulting in
a simplified and robust training procedure.

Keywords: multiple kernel learning, metric learning, similarity

1. Introduction

In applications such as content-based recommendation systems, the definitionof a proper similarity
measure between items is crucial to many tasks, including nearest-neighbor retrieval and classifi-
cation. In some cases, a natural notion of similarity may emerge from domain knowledge, for ex-
ample, cosine similarity for bag-of-words models of text. However, in more complex, multi-media
domains, there is often no obvious choice of similarity measure. Rather, viewing different aspects
of the data may lead to several different, and apparently equally valid notions of similarity. For ex-
ample, if the corpus consists of musical data, each song or artist may be represented simultaneously
by acoustic features (such as rhythm and timbre), semantic features (tags, lyrics), or social features
(collaborative filtering, artist reviews and biographies, etc). Although domain knowledge may be
incorporated to endow each representation with an intrinsic geometry—and,therefore, a sense of
similarity—the different notions of similarity may not be mutually consistent. In suchcases, there
is generally no obvious way to combine representations to form a unified similarity space which
optimally integrates heterogeneous data.
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Without extra information to guide the construction of a similarity measure, the situation seems
hopeless. However, if some side-information is available, for example, as provided by human label-
ers, it can be used to formulate a learning algorithm to optimize the similarity measure.

This idea of using side-information to optimize a similarity function has received agreat deal
of attention in recent years. Typically, the notion of similarity is captured by a distance metric over
a vector space (e.g., Euclidean distance inR

d), and the problem of optimizing similarity reduces to
finding a suitable embedding of the data under a specific choice of the distance metric.Metric learn-
ing methods, as they are known in the machine learning literature, can be informedby various types
of side-information, including class labels (Xing et al., 2003; Goldberger et al., 2005; Globerson
and Roweis, 2006; Weinberger et al., 2006), or binarysimilar/dissimilarpairwise labels (Wagstaff
et al., 2001; Shental et al., 2002; Bilenko et al., 2004; Globerson and Roweis, 2007; Davis et al.,
2007). Alternatively, multidimensional scaling (MDS) techniques are typicallyformulated in terms
of quantitative (dis)similarity measurements (Torgerson, 1952; Kruskal, 1964; Cox and Cox, 1994;
Borg and Groenen, 2005). In these settings, the representation of datais optimized so that distance
(typically Euclidean) conforms to side-information. Once a suitable metric has been learned, sim-
ilarity to new, unseen data can be computed either directly (if the metric takes a certain parametric
form, for example, a linear projection matrix), or via out-of-sample extensions (Bengio et al., 2004).

To guide the construction of a similarity space for multi-modal data, we adopt theidea of using
similarity measurements, provided by human labelers, as side-information. However, it has to be
noted that, especially in heterogeneous, multi-media domains, similarity may itself be ahighly
subjective concept and vary from one labeler to the next (Ellis et al., 2002). Moreover, a single
labeler may not be able to consistently decide if or to what extent two objects are similar, but she
may still be able to reliably produce a rank-ordering of similarity over pairs (Kendall and Gibbons,
1990). Thus, rather than rely on quantitative similarity or hard binary labelsof pairwise similarity,
it is now becoming increasingly common to collect similarity information in the form of triadic or
relativecomparisons (Schultz and Joachims, 2004; Agarwal et al., 2007), in which human labelers
answer questions of the form:

“Is x more similar toy or z?”

Although this form of similarity measurement has been observed to be more stablethan quantitative
similarity (Kendall and Gibbons, 1990), and clearly provides a richer representation than binary
pairwise similarities, it is still subject to problems of consistency and inter-labeler agreement. It is
therefore imperative that great care be taken to ensure some sense of robustness when working with
perceptual similarity measurements.

In the present work, our goal is to develop a framework for integrating multi-modal data so as
to optimally conform to perceptual similarity encoded by relative comparisons.In particular, we
follow three guiding principles in the development of our framework:

1. The algorithm should be robust against subjectivity and inter-labeler disagreement.

2. The algorithm must be able to integrate multi-modal data in an optimal way, that is,the
distances between embedded points should conform to perceptual similarity measurements.

3. It must be possible to compute distances to new, unseen data as it becomesavailable.

We formulate this problem of heterogeneous feature integration as a learning problem: given
a data set, and a collection of relative comparisons between pairs, we learna representation of
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Feature space 1
Feature space 2
Feature space 3

d(i,j) < d(i,k)

Figure 1: An overview of our proposed framework for multi-modal feature integration. Data is
represented in multiple feature spaces (each encoded by a kernel function). Humans
supply perceptual similarity measurements in the form of relative pairwise comparisons,
which are in turn filtered by graph processing algorithms, and then used asconstraints to
optimize the multiple kernel embedding.

the data that optimally reproduces the similarity measurements. This type of embedding problem
has been previously studied by Agarwal et al. (2007) and Schultz and Joachims (2004). However,
Agarwal et al. (2007) provide no out-of-sample extension, and neithersupport heterogeneous feature
integration, nor do they address the problem of noisy similarity measurements.

A common approach to optimally integrate heterogeneous data is based onmultiple kernel
learning, where each kernel encodes a different modality of the data. Heterogeneous feature inte-
gration via multiple kernel learning has been addressed by previous authors in a variety of contexts,
including classification (Lanckriet et al., 2004; Zien and Ong, 2007; Kloft et al., 2009; Jagarlapudi
et al., 2009), regression (Sonnenburg et al., 2006; Bach, 2008; Cortes et al., 2009), and dimension-
ality reduction (Lin et al., 2009). However, none of these methods specifically address the problem
of learning a unified data representation which conforms to perceptual similarity measurements.

1.1 Contributions

Our contributions in this work are two-fold. First, we develop thepartial order embedding(POE)
framework (McFee and Lanckriet, 2009b), which allows us to use graph-theoretic algorithms to
filter a collection of subjective similarity measurements for consistency and redundancy. We then
formulate a novel multiple kernel learning (MKL) algorithm which learns an ensemble of feature
space projections to produce a unified similarity space. Our method is able to produce non-linear
embedding functions which generalize to unseen, out-of-sample data. Figure 1 provides a high-level
overview of the proposed methods.

The remainder of this paper is structured as follows. In Section 2, we develop a graphical
framework for interpreting and manipulating subjective similarity measurements.In Section 3, we
derive an embedding algorithm which learns an optimal transformation of a single feature space.
In Section 4, we develop a novel multiple-kernel learning formulation for embedding problems,
and derive an algorithm to learn an optimal space from heterogeneous data. Section 5 provides
experimental results illustrating the effects of graph-processing on noisysimilarity data, and the
effectiveness of the multiple-kernel embedding algorithm on a music similarity task with human
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perception measurements. Finally, we prove hardness of dimensionality reduction in this setting in
Section 6, and conclude in Section 7.

1.2 Preliminaries

A (strict) partial order is a binary relationR over a setZ (R⊆Z2) which satisfies the following
properties:1

• Irreflexivity: (a,a) /∈ R,

• Transitivity: (a,b) ∈ R∧ (b,c) ∈ R⇒ (a,c) ∈ R,

• Anti-symmetry:(a,b) ∈ R⇒ (b,a) /∈ R.

Every partial order can be equivalently represented as a directed acyclic graph (DAG), where
each vertex is an element ofZ and an edge is drawn froma to b if (a,b)∈R. For any partial order,R
may refer to either the set of ordered tuples{(a,b)} or the graph (DAG) representation of the partial
order; the use will be clear from context.

For a directed graphG, we denote byG∞ its transitive closure, that is,G∞ contains an edge(i, j)
if and only if there exists a path fromi to j in G. Similarly, thetransitive reduction(denotedGmin)
is the minimal graph with equivalent transitivity toG, that is, the graph with the fewest edges such
that

(
Gmin

)∞
= G∞.

LetX = {x1,x2, . . . ,xn} denote the training set ofn items. AEuclidean embeddingis a function
g : X → R

d which mapsX into ad-dimensional space equipped with the Euclidean (ℓ2) metric:

‖x−y‖2 =
√
(x−y)T(x−y).

For any matrixB, let Bi denote itsith column vector. A symmetric matrixA ∈ R
n×n has a

spectral decompositionA=VΛVT, whereΛ = diag(λ1,λ2, . . . ,λn) is a diagonal matrix containing
the eigenvalues ofA, andV contains the eigenvectors ofA. We adopt the convention that eigenvalues
(and corresponding eigenvectors) are sorted in descending order.A is positive semi-definite(PSD),
denoted byA� 0, if each eigenvalue is non-negative:λi ≥ 0, i = 1, . . . ,n. Finally, a PSD matrixA
gives rise to the Mahalanobis distance function

‖x−y‖A =
√

(x−y)TA(x−y).

2. A Graphical View of Similarity

Before we can construct an embedding algorithm for multi-modal data, we must first establish the
form of side-information that will drive the algorithm, that is, the similarity measurements that will
be collected from human labelers. There is an extensive body of work onthe topic of constructing a
geometric representation of data to fit perceptual similarity measurements. Primarily, this work falls
under the umbrella of multi-dimensional scaling (MDS), in which perceptual similarity is modeled
by numerical responses corresponding to the perceived “distance” between a pair of items, for

1. The standard definition of a (non-strict) partial order also includes thereflexiveproperty:∀a,(a,a) ∈ R. For reasons
that will become clear in Section 2, we take thestrict definition here, and omit the reflexive property.
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example, on a similarity scale of 1–10. (See Cox and Cox 1994 and Borg andGroenen 2005 for
comprehensive overviews of MDS techniques.)

Because “distances” supplied by test subjects may not satisfy metric properties—in particular,
they may not correspond to Euclidean distances—alternativenon-metricMDS (NMDS) techniques
have been proposed (Kruskal, 1964). Unlike classical or metric MDS techniques, which seek to
preserve quantitative distances, NDMS seeks an embedding in which the rank-ordering of distances
is preserved.

Since NMDS only needs the rank-ordering of distances, and not the distances themselves, the
task of collecting similarity measurements can be simplified by asking test subjects toorder pairs of
points by similarity:

“Are i and j more similar thank andℓ?”

or, as a special case, the “triadic comparison”

“Is i more similar toj or ℓ?”

Based on this kind ofrelative comparisondata, the embedding problem can be formulated as fol-
lows. Given is a set of objectsX , and a set of similarity measurementsC = {(i, j,k, ℓ)} ⊆ X 4,
where a tuple(i, j,k, ℓ) is interpreted as “i and j are more similar thank andℓ.” (This formulation
subsumes the triadic comparisons model wheni = k.) The goal is to find an embedding function
g : X → R

d such that

∀(i, j,k, ℓ) ∈ C : ‖g(i)−g( j)‖2+1< ‖g(k)−g(ℓ)‖2. (1)

The unit margin is forced between the constrained distances for numericalstability.
Agarwal et al. (2007) work with this kind of relative comparison data and describe a generalized

NMDS algorithm (GNMDS), which formulates the embedding problem as a semi-definite program.
Schultz and Joachims (2004) derive a similar algorithm which solves a quadratic program to learn
a linear, axis-aligned transformation of data to fit relative comparisons.

Previous work on relative comparison data often treats each measurement(i, j,k, ℓ) ∈ C as ef-
fectively independent (Schultz and Joachims, 2004; Agarwal et al., 2007). However, due to their
semantic interpretation as encoding pairwise similarity comparisons, and the fact that a pair(i, j)
may participate in several comparisons with other pairs, there may be someglobal structure toC
which these previous methods are unable to exploit.

In Section 2.1, we develop a graphical framework to infer and interpret the global structure
exhibited by the constraints of the embedding problem. Graph-theoretic algorithms presented in
Section 2.2 then exploit this representation to filter this collection of noisy similarity measurements
for consistency and redundancy. The final, reduced set of relativecomparison constraints defines a
partial order, making for a more robust and efficient embedding problem.

2.1 Similarity Graphs

To gain more insight into the underlying structure of a collection of comparisonsC , we can represent
C as a directed graph overX 2. Each vertex in the graph corresponds to a pair(i, j)∈X 2, and an edge
from (i, j) to (k, ℓ) corresponds to a similarity measurement(i, j,k, ℓ) (see Figure 2). InterpretingC
as a graph will allow us to infer properties ofglobal (graphical) structure ofC . In particular, two
facts become immediately apparent:
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C =





( j,k, j, ℓ), ( j,k, i,k),
( j, ℓ, i,k), (i, ℓ, j, ℓ),
(i, ℓ, i, j), (i, j, j, ℓ)





Figure 2: The graph representation (left) of a set of relative comparisons (right).

1. If C contains cycles, then there exists no embedding which can satisfyC .

2. If C is acyclic, any embedding that satisfies the transitive reductionCmin also satisfiesC .

The first fact implies that no algorithm can produce an embedding which satisfies all measure-
ments if the graph is cyclic. In fact, the converse of this statement is also true:if C is acyclic, then
an embedding exists in which all similarity measurements are preserved (see Appendix A). If C
is cyclic, however, by analyzing the graph, it is possible to identify an “unlearnable” subset ofC
which must be violated by any embedding.

Similarly, the second fact exploits the transitive nature of distance comparisons. In the example
depicted in Figure 2, anyg that satisfies( j,k, j, ℓ) and( j, ℓ, i,k) must also satisfy( j,k, i,k). In effect,
the constraint( j,k, i,k) is redundant, and may also be safely omitted fromC .

These two observations allude to two desirable properties inC for embedding methods:tran-
sitivity and anti-symmetry. Together with irreflexivity, these fit the defining characteristics of a
partial order. Due to subjectivity and inter-labeler disagreement, however, most collections of rel-
ative comparisons will not define a partial order. Some graph processing, presented next, based on
an approximate maximum acyclic subgraph algorithm, can reduce them to a partial order.

2.2 Graph Simplification

Because a set of similarity measurementsC containing cycles cannot be embedded in any Euclidean
space,C is inherently inconsistent. Cycles inC therefore constitute a form oflabel noise. As noted
by Angelova (2004), label noise can have adverse effects on both model complexity and general-
ization. This problem can be mitigated by detecting and pruning noisy (confusing) examples, and
training on a reduced, but certifiably “clean” set (Angelova et al., 2005; Vezhnevets and Barinova,
2007).

Unlike most settings, where the noise process affects each label independently—for example,
random classification noise (Angluin and Laird, 1988)—the graphical structure of interrelated rel-
ative comparisons can be exploited to detect and prune inconsistent measurements. By eliminating
similarity measurements which cannot be realized by any embedding, the optimization procedure
can be carried out more efficiently and reliably on a reduced constraint set.

Ideally, when eliminating edges from the graph, we would like to retain as much information
as possible. Unfortunately, this is equivalent to themaximum acyclic subgraphproblem, which is
NP-Complete (Garey and Johnson, 1979). A1/2-approximate solution can be achieved by a simple
greedy algorithm (Algorithm 1) (Berger and Shor, 1990).

Once a consistent subset of similarity measurements has been produced, itcan be simplified
further by pruning redundancies. In the graph view of similarity measurements, redundancies can
be easily removed by computing the transitive reduction of the graph (Aho etal., 1972).
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Algorithm 1 Approximate maximum acyclic subgraph (Aho et al., 1972)
Input : Directed graphG= (V,E)
Output : Acyclic graphG′

E′← /0
for each(u,v) ∈ E in random orderdo

if E′∪{(u,v)} is acyclicthen
E′← E′∪{(u,v)}

end if
end for
G′← (V,E′)

By filtering the constraint set for consistency, we ensure that embeddingalgorithms are not
learning from spurious information. Additionally, pruning the constraint set by transitive reduc-
tion focuses embedding algorithms on the most important core set of constraints while reducing
overhead due to redundant information.

3. Partial Order Embedding

Now that we have developed a language for expressing similarity between items, we are ready to
formulate the embedding problem. In this section, we develop an algorithm that learns a represen-
tation of data consistent with a collection of relative similarity measurements, and allows to map
unseen data into the learned similarity space after learning. In order to accomplish this, we will
assume a feature representation forX . By parameterizing the embedding functiong in terms of
the feature representation, we will be able to applyg to any point in the feature space, thereby
generalizing to data outside of the training set.

3.1 Linear Projection

To start, we assume that the data originally lies in some Euclidean space, that is,X ⊂R
D. There are

of course many ways to define an embedding functiong : RD→R
d. Here, we will restrict attention

to embeddings parameterized by a linear projection matrixM, so that for a vectorx∈ R
D,

g(x)
.
= Mx.

Collecting the vector representations of the training set as columns of a matrixX ∈ R
D×n, the inner

product matrix of the embedded points can be characterized as

A= XTMTMX.

Now, for a relative comparison(i, j,k, ℓ), we can express the distance constraint (1) between
embedded points as follows:

(Xi−Xj)
TMTM(Xi−Xj)+1≤ (Xk−Xℓ)

TMTM(Xk−Xℓ).

These inequalities can then be used to form the constraint set of an optimization problem to solve
for M. Because, in general,C may not be satisfiable by a linear projection ofX , we soften the
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constraints by introducing a slack variableξi jkℓ ≥ 0 for each constraint, and minimize the empirical
hinge loss over constraint violations1/|C |∑C ξi jkℓ. This choice of loss function can be interpreted as
a convex approximation to a generalization of the area under an ROC curve(see Appendix C).

To avoid over-fitting, we introduce a regularization term tr(MTM), and a trade-off parameterβ>
0 to control the balance between regularization and loss minimization. This leadsto a regularized
risk minimization objective:

min
M,ξ≥0

tr(MTM)+
β
|C |∑

C

ξi jkℓ (2)

s.t. (Xi−Xj)
TMTM(Xi−Xj)+1≤ (Xk−Xℓ)

TMTM(Xk−Xℓ)+ξi jkℓ,

∀(i, j,k, ℓ) ∈ C .

After learningM by solving this optimization problem, the embedding can be extended to out-of-
sample pointsx′ by applying the projection:x′ 7→Mx′.

Note that the distance constraints in (2) involve differences of quadratic terms, and are therefore
not convex. However, sinceM only appears in the formMTM in (2), the optimization problem can
be expressed in terms of a positive semi-definite matrixW

.
= MTM. This change of variables results

in Algorithm 2, a (convex) semi-definite programming (SDP) problem (Boyd and Vandenberghe,
2004), since objective and constraints are linear inW, including the linear matrix inequalityW� 0.
The corresponding inner product matrix is

A= XTWX.

Finally, after the optimalW is found, the embedding functiong : RD → R
D can be recovered

from the spectral decomposition ofW:

W =VΛVT ⇒ g(x) = Λ1/2VTx,

and ad-dimensional approximation can be recovered by taking the leadingd eigenvectors ofW.

Algorithm 2 Linear partial order embedding (LPOE)
Input: n objectsX ,
partial orderC ,
data matrixX ∈ R

D×n,
β > 0
Output: mappingg : X → R

d

min
W,ξ

tr(W)+
β
|C |∑

C

ξi jkℓ

d(xi ,x j)
.
= (Xi−Xj)

TW (Xi−Xj)

d(xi ,x j)+1≤ d(xk,xℓ)+ξi jkℓ

ξi jkℓ ≥ 0 ∀(i, j,k, ℓ) ∈ C
W � 0
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3.2 Non-linear Projection via Kernels

The formulation in Algorithm 2 can be generalized to support non-linear embeddings by the use
of kernels, following the method of Globerson and Roweis (2007): we first map the data into a
reproducing kernel Hilbert space (RKHS)H via a feature mapφ with corresponding kernel function
k(x,y) = 〈φ(x),φ(y)〉H ; then, the data is mapped toRd by a linear projectionM : H → R

d. The
embedding functiong : X → R

d is the therefore the composition of the projectionM with φ:

g(x) = M(φ(x)).

Becauseφ may be non-linear, this allows us to learn a non-linear embeddingg.
More precisely, we considerM as being comprised ofd elements ofH , that is,{ω1,ω2, . . . ,ωd}⊆

H . The embeddingg can thus be expressed as

g(x) = (〈ωp,φ(x)〉H )d
p=1 ,

where(·)d
p=1 denotes concatenation.

Note that in general,H may be infinite-dimensional, so directly optimizingM may not be
feasible. However, by appropriately regularizingM, we may invoke the generalized representer
theorem (Schölkopf et al., 2001). Our choice of regularization is the Hilbert-Schmidt norm ofM,
which, in this case, reduces to

‖M‖2HS =
d

∑
p=1

〈ωp,ωp〉H .

With this choice of regularization, it follows from the generalized representer theorem that at an
optimum, eachωp must lie in the span of the training data, that is,

ωp =
n

∑
i=1

Npiφ(xi), p= 1, . . . ,d,

for some real-valued matrixN ∈ R
d×n. If Φ is a matrix representation ofX in H (i.e., Φi = φ(xi)

for xi ∈ X ), then the projection operatorM can be expressed as

M = NΦT. (3)

We can now reformulate the embedding problem as an optimization overN rather thanM. Using
(3), the regularization term can be expressed as

‖M‖2HS = tr(ΦNTNΦT) = tr(NTNΦTΦ) = tr(NTNK),

whereK is the kernel matrix overX :

K = ΦTΦ, with Ki j = 〈φ(xi),φ(x j)〉H = k(xi ,x j).

To formulate the distance constraints in terms ofN, we first express the embeddingg in terms ofN
and the kernel function:

g(x) = M(φ(x)) = NΦT(φ(x)) = N(〈Φi ,φ(x)〉H )n
i=1 = N(k(xi ,x))

n
i=1 = NKx,
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whereKx is the column vector formed by evaluating the kernel functionk at x against the training
set. The inner product matrix of embedded points can therefore be expressed as

A= KNTNK,

which allows to express the distance constraints in terms ofN and the kernel matrixK:

(Ki−K j)
TNTN(Ki−K j)+1≤ (Kk−Kℓ)

TNTN(Kk−Kℓ).

The embedding problem thus amounts to solving the following optimization problem inN andξ:

min
N,ξ≥0

tr(NTNK)+
β
|C |∑

C

ξi jkℓ (4)

s.t. (Ki−K j)
TNTN(Ki−K j)+1≤ (Kk−Kℓ)

TNTN(Kk−Kℓ)+ξi jkℓ,

∀(i, j,k, ℓ) ∈ C .

Again, the distance constraints in (4) are non-convex due to the differences of quadratic terms.
And, as in the previous section,N only appears in the form of inner productsNTN in (4)—both
in the constraints, and in the regularization term—so we can again derive a convex optimization
problem by changing variables toW

.
= NTN � 0. The resulting embedding problem is listed as

Algorithm 3, again a semi-definite programming problem (SDP), with an objective function and
constraints that are linear inW.

After solving forW, the matrixN can be recovered by computing the spectral decomposition
W =VΛVT, and definingN = Λ1/2VT. The resulting embedding function takes the form:

g(x) = Λ1/2VTKx.

As in Schultz and Joachims (2004), this formulation can be interpreted as learning a Maha-
lanobis distance metricΦWΦT overH . More generally, we can view this as a form of kernel
learning, where the kernel matrixA is restricted to the set

A∈ {KWK : W � 0} . (5)

3.3 Connection to GNMDS

We conclude this section by drawing a connection between Algorithm 3 and thegeneralized non-
metric MDS (GNMDS) algorithm of Agarwal et al. (2007).

First, we observe that thei-th column,Ki , of the kernel matrixK can be expressed in terms ofK
and theith standard basis vectorei :

Ki = Kei .

From this, it follows that distance computations in Algorithm 3 can be equivalently expressed as

d(xi ,x j) = (Ki−K j)
TW(Ki−K j)

= (K(ei−ej))
TW(K(ei−ej))

= (ei−ej)
TKTWK(ei−ej). (6)

500



LEARNING MULTI -MODAL SIMILARITY

Algorithm 3 Kernel partial order embedding (KPOE)
Input: n objectsX ,
partial orderC ,
kernel matrixK,
β > 0
Output: mappingg : X → R

n

min
W,ξ

tr(WK)+
β
|C |∑

C

ξi jkℓ

d(xi ,x j)
.
= (Ki−K j)

TW (Ki−K j)

d(xi ,x j)+1≤ d(xk,xℓ)+ξi jkℓ

ξi jkℓ ≥ 0 ∀(i, j,k, ℓ) ∈ C
W � 0

If we consider the extremal case whereK = I , that is, we have no prior feature-based knowledge of
similarity between points, then Equation 6 simplifies to

d(xi ,x j) = (ei−ej)
TIWI(ei−ej) =Wii +Wj j −Wi j −Wji .

Therefore, in this setting, rather than defining a feature transformation,W directly encodes the inner
products between embedded training points. Similarly, the regularization term becomes

tr(WK) = tr(WI) = tr(W).

Minimizing the regularization term can be interpreted as minimizing a convex upperbound on
the rank ofW (Boyd and Vandenberghe, 2004), which expresses a preferencefor low-dimensional
embeddings. Thus, by settingK = I in Algorithm 3, we directly recover the GNMDS algorithm.

Note that directly learning inner products between embedded training data points rather than a
feature transformation does not allow a meaningful out-of-sample extension, to embed unseen data
points. On the other hand, by Equation 5, it is clear that the algorithm optimizes over the entire
cone of PSD matrices. Thus, ifC defines a DAG, we could exploit the fact that a partial order
over distances always allows an embedding which satisfies all constraints inC (see Appendix A) to
eliminate the slack variables from the program entirely.

4. Multiple Kernel Embedding

In the previous section, we derived an algorithm to learn an optimal projection from a kernel space
H to R

d such that Euclidean distance between embedded points conforms to perceptual similarity.
If, however, the data is heterogeneous in nature, it may not be realistic to assume that a single feature
representation can sufficiently capture the inherent structure in the data.For example, if the objects
in question are images, it may be natural to encode texture information by one set of features, and
color in another, and it is not immediately clear how to reconcile these two disparate sources of
information into a single kernel space.

501



MCFEE AND LANCKRIET

However, by encoding each source of information independently by separate feature spaces
H 1,H 2, . . .—equivalently, kernel matricesK1,K2, . . .—we can formulate a multiple kernel learn-
ing algorithm to optimally combine all feature spaces into a single, unified embedding space. In this
section, we will derive a novel, projection-based approach to multiple-kernel learning and extend
Algorithm 3 to support heterogeneous data in a principled way.

4.1 Unweighted Combination

Let K1,K2, . . . ,Km be a set of kernel matrices, each with a corresponding feature mapφp and RKHS
H p, for p∈ 1, . . . ,m. One natural way to combine the kernels is to look at the product space, which
is formed by concatenating the feature maps:

φ(xi) = (φ1(xi),φ2(xi), . . . ,φm(xi)) = (φp(xi))
m
p=1.

Inner products can be computed in this space by summing across each feature map:

〈φ(xi),φ(x j)〉=
m

∑
p=1

〈
φp(xi),φp(x j)

〉
H p .

resulting in thesum-kernel—also known as theaverage kernelor product space kernel. The corre-
sponding kernel matrix can be conveniently represented as the unweighted sum of the base kernel
matrices:

K̂ =
m

∑
p=1

Kp. (7)

SinceK̂ is a valid kernel matrix itself, we could usêK as input for Algorithm 3. As a result, the
algorithm would learn a kernel from the family

K1 =

{(
m

∑
p=1

Kp

)
W

(
m

∑
p=1

Kp

)
: W � 0

}

=

{
m

∑
p,q=1

KpWKq : W � 0

}
.

4.2 Weighted Combination

Note thatK1 treats each kernel equally; it is therefore impossible to distinguishgoodfeatures (i.e.,
those which can be transformed to best fitC ) from bad features, and as a result, the quality of
the resulting embedding may be degraded. To combat this phenomenon, it is common to learn a
scheme for weighting the kernels in a way which is optimal for a particular task.The most common
approach to combining the base kernels is to take a positive-weighted sum

m

∑
p=1

µpKp (µp≥ 0),

where the weightsµp are learned in conjunction with a predictor (Lanckriet et al., 2004; Sonnenburg
et al., 2006; Bach, 2008; Cortes et al., 2009). Equivalently, this can beviewed as learning a feature
map

φ(xi) =
(√

µpφp(xi)
)m

p=1 ,
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where each base feature map has been scaled by the corresponding weight
√

µp.
Applying this reasoning to learning an embedding that conforms to perceptual similarity, one

might consider a two-stage approach to parameterizing the embedding (Figure 3(a)): first construct
a weighted kernel combination, and then project from the combined kernelspace. Lin et al. (2009)
formulate a dimensionality reduction algorithm in this way. In the present setting,this would be
achieved by simultaneously optimizingW andµp to choose an inner product matrixA from the set

K2 =

{(
m

∑
p=1

µpKp

)
W

(
m

∑
p=1

µpKp

)
: W � 0,∀p, µp≥ 0

}

=

{
m

∑
p,q=1

µpKpWµqKq : W � 0,∀p, µp≥ 0

}
.

The corresponding distance constraints, however, contain differences of terms cubic in the opti-
mization variablesW andµp:

∑
p,q

(
Kp

i −Kp
j

)T
µpWµq

(
Kq

i −Kq
j

)
+1≤∑

p,q

(
Kp

k −Kp
ℓ

)T
µpWµq

(
Kq

k −Kq
ℓ

)
,

and are therefore non-convex and difficult to optimize. Even simplifying theclass by removing
cross-terms, that is, restrictingA to the form

K3 =

{
m

∑
p=1

µ2
pKpWKp : W � 0,∀p, µp≥ 0

}
,

still leads to a non-convex problem, due to the difference of positive quadratic terms introduced by
distance calculations:

m

∑
p=1

(
Kp

i −Kp
j

)T
µ2

pW
(

µpKp
i −Kp

j

)
+1≤

m

∑
p=1

(
Kp

k −Kp
ℓ

)T
µ2

pW
(
µpKp

k −Kp
ℓ

)
.

However, a more subtle problem with this formulation lies in the assumption that a single weight
can characterize the contribution of a kernel to the optimal embedding. In general, different kernels
may be more or less informative on different subsets ofX or different regions of the corresponding
feature space. Constraining the embedding to a single metricW with a single weightµp for each
kernel may be too restrictive to take advantage of this phenomenon.

4.3 Concatenated Projection

We now return to the original intuition behind Equation 7. The sum-kernel represents the inner
product between points in the space formed by concatenating the base feature mapsφp. The setsK2

andK3 characterize projections of the weighted combination space, and turn out tonot be amenable
to efficient optimization (Figure 3(a)). This can be seen as a consequence of prematurely combining
kernels prior to projection.

Rather than projecting the (weighted) concatenation ofφp(·), we could alternatively concatenate
learned projectionsMp(φp(·)), as illustrated by Figure 3(b). Intuitively, by defining the embedding
as the concatenation ofm different projections, we allow the algorithm to learn an ensemble of
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projections, each tailored to its corresponding domain space and jointly optimized to produce an
optimal space. By contrast, the previously discussed formulations apply essentially the same pro-
jection to each (weighted) feature space, and are thus much less flexible than our proposed approach.
Mathematically, an embedding function of this form can be expressed as the concatenation

g(x) = (Mp (φp(x)))m
p=1 .

Now, given this characterization of the embedding function, we can adaptAlgorithm 3 to opti-
mize over multiple kernels. As in the single-kernel case, we introduce regularization terms for each
projection operatorMp

m

∑
p=1

‖Mp‖2HS

to the objective function. Again, by invoking the representer theorem foreachMp, it follows that

Mp = Np (Φp)T ,

for some matrixNp, which allows to reformulate the embedding problem as a joint optimization over
Np, p= 1, . . . ,m rather thanMp, p= 1, . . . ,m. Indeed, the regularization terms can be expressed as

m

∑
p=1

‖Mp‖2HS =
m

∑
p=1

tr
(
(Np)T(Np)Kp

)
. (8)

The embedding function can now be rewritten as

g(x) = (Mp (φp(x)))m
p=1 = (NpKp

x )
m
p=1 , (9)

and the inner products between embedded points take the form:

Ai j = 〈g(xi),g(x j)〉=
m

∑
p=1

(
NpKp

i

)T(
NpKp

j

)

=
m

∑
p=1

(Kp
i )

T(Np)T(Np)(Kp
j ).

Similarly, squared Euclidean distance also decomposes by kernel:

‖g(xi)−g(x j)‖2 =
m

∑
p=1

(
Kp

i −Kp
j

)T
(Np)T(Np)

(
Kp

i −Kp
j

)
. (10)

Finally, since the matricesNp, p= 1, . . . ,monly appear in the form of inner products in (8) and
(10), we may instead optimize over PSD matricesWp = (Np)T(Np). This renders the regularization
terms (8) and distances (10) linear in the optimization variablesWp. Extending Algorithm 3 to this
parameterization ofg(·) therefore results in an SDP, which is listed as Algorithm 4. To solve the
SDP, we implemented a gradient descent solver, which is described in Appendix B.

The class of kernels over which Algorithm 4 optimizes can be expressed simply as the set

K4 =

{
m

∑
p=1

KpWpKp : ∀p, Wp� 0

}
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Kernel class Learned kernel matrix

K1 =
{

∑p,qKpWKq
} [

K1+K2+ · · ·+Km
]
[W]
[
K1+K2+ · · ·+Km

]

K2 =
{

∑p,qµpµqKpWKq
}




K1

K2

...
Km




T



µ2
1W µ1µ2W · · · µ1µmW

µ2µ1W µ2
2W · · · ...

...
.. .

µmµ1W µ2
mW







K1

K2

...
Km




K3 =
{

∑pµ2
pKpWKp

}




K1

K2

...
Km




T



µ2
1W 0 · · · 0

0 µ2
2W · · · ...

...
.. .

0 µ2
mW







K1

K2

...
Km




K4 =
{

∑pKpWpKp
}




K1

K2

...
Km




T



W1 0 · · · 0

0 W2 · · · ...
...

. . .
0 Wm







K1

K2

...
Km




Table 1: Block-matrix formulations of metric learning for multiple-kernel formulations (K1–K4).
EachWp is taken to be positive semi-definite. Note that all sets are equal when there is
only one base kernel.

Note thatK4 containsK3 as a special case when allWp are positive scalar multiples of each-other.
However,K4 leads to a convex optimization problem, whereK3 does not.

Table 1 lists the block-matrix formulations of each of the kernel combination rules described in
this section. It is worth noting that it is certainly valid to first form the unweighted combination ker-
nel K̂ and then useK1 (Algorithm 3) to learn an optimal projection of the product space. However,
as we will demonstrate in Section 5, our proposed multiple-kernel formulation (K4) outperforms the
simple unweighted combination rule in practice.

4.4 Diagonal Learning

The MKPOE optimization is formulated as a semi-definite program overm differentn×n matrices
Wp—or, as shown in Table 1, a singlemn×mnPSD matrix with a block-diagonal sparsity structure.
Scaling this approach to large data sets can become problematic, as they require optimizing over
multiple high-dimensional PSD matrices.

To cope with larger problems, the optimization problem can be refined to constrain eachWp

to the set of diagonal matrices. IfWp are all diagonal, positive semi-definiteness is equivalent to
non-negativity of the diagonal values (since they are also the eigenvalues of the matrix). This allows
the constraintsWp � 0 to be replaced by linear constraintsWp

ii ≥ 0, and the resulting optimization
problem is a linear program (LP), rather than an SDP. This modification reduces the flexibility of
the model, but leads to a much more efficient optimization procedure.
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...

(a) Weighted combination (K2)

...

(b) Concatenated projection (K4)

Figure 3: Two variants of multiple-kernel embedding. (a) A data pointx∈ X is mapped intom fea-
ture spaces viaφ1,φ2, . . . ,φm, which are then scaled byµ1,µ2, . . . ,µm to form a weighted
feature spaceH ∗, which is subsequently projected to the embedding space viaM. (b) x is
first mapped into each kernel’s feature space and then its image in each space is directly
projected into a Euclidean space via the corresponding projectionsMp. The projections
are jointly optimized to produce the embedding space.

Algorithm 4 Multiple kernel partial order embedding (MKPOE)
Input: n objectsX ,
partial orderC ,
mkernel matricesK1,K2, . . . ,Km,
β > 0
Output: mappingg : X → R

mn

min
Wp,ξ

m

∑
p=1

tr(WpKp)+
β
|C |∑

C

ξi jkℓ

d(xi ,x j)
.
=

m

∑
p=1

(
Kp

i −Kp
j

)T
Wp
(

Kp
i −Kp

j

)

d(xi ,x j)+1≤ d(xk,xℓ)+ξi jkℓ

ξi jkℓ ≥ 0 ∀(i, j,k, ℓ) ∈ C
Wp� 0 p= 1,2, . . . ,m

More specifically, our implementation of Algorithm 4 operates by alternating sub-gradient de-
scent onWp and projection onto the feasible setWp � 0 (see Appendix B for details). For full
matrices, this projection is accomplished by computing the spectral decompositionof eachWp, and
thresholding the eigenvalues at 0. For diagonal matrices, this projection is accomplished simply by

Wp
ii 7→max

{
0,Wp

ii

}
,

which can be computed inO(mn) time, compared to theO(mn3) time required to computemspectral
decompositions.

RestrictingWp to be diagonal not only simplifies the problem to linear programming, but carries
the added interpretation of weighting the contribution of each (kernel, training point) pair in the
construction of the embedding. A large value atWp

ii corresponds to pointi being a landmark for the
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Sneaker
Hat
White shoe

X-mas teddy
Pink animal
Ball
Big smurf

Lemon
Pear
Orange

Clothing

Toys

Fruit

All

Figure 4: The label taxonomy for the experiment in Section 5.1.

features encoded inKp. Note that each of the formulations listed in Table 1 has a corresponding
diagonal variant, however, as in the full matrix case, onlyK1 andK4 lead to convex optimization
problems.

5. Experiments

To evaluate our framework for learning multi-modal similarity, we first test the multiple kernel
learning formulation on a simple toy taxonomy data set, and then on a real-world data set of musical
perceptual similarity measurements.

5.1 Toy Experiment: Taxonomy Embedding

For our first experiment, we generated a toy data set from the Amsterdam Library of Object Images
(ALOI) data set (Geusebroek et al., 2005). ALOI consists of RGB images of 1000 classes of objects
against a black background. Each class corresponds to a single object, and examples are provided
of the object under varying degrees of out-of-plane rotation.

In our experiment, we first selected 10 object classes, and from each class, sampled 20 examples.
We then constructed an artificial taxonomy over the label set, as depicted in Figure 4. Using the
taxonomy, we synthesized relative comparisons to span subtrees via their least common ancestor.
For example,

(Lemon#1, Lemon#2, Lemon#1, Pear#1),

(Lemon#1, Pear#,1, Lemon#1, Sneaker#1),

and so on. These comparisons are consistent and therefore can be represented as a directed acyclic
graph. They are generated so as to avoid redundant, transitive edgesin the graph.

For features, we generated five kernel matrices. The first is a simple linearkernel over the
grayscale intensity values of the images, which, roughly speaking, compares objects by shape. The
other four are Gaussian kernels over histograms in the (background-subtracted) red, green, blue, and
intensity channels, and these kernels compare objects based on their coloror intensity distributions.

We augment this set of kernels with five “noise” kernels, each of which was generated by sam-
pling random points from the unit sphere inR3 and applying the linear kernel.

The data was partitioned into five 80/20 training and test set splits. To tuneβ, we further
split the training set for 5-fold cross-validation, and swept overβ ∈ {10−2,10−1, . . . ,106}. For
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each fold, we learned a diagonally-constrained embedding with Algorithm 4, using the subset of
relative comparisons(i, j,k, ℓ) with i, j,k and ℓ restricted to the training set. After learning the
embedding, the held out data (validation or test) was mapped into the space, and the accuracy of the
embedding was determined by counting the fraction of correctly predicted relative comparisons. In
the validation and test sets, comparisons were processed to only include comparisons of the form
(i, j, i,k) wherei belongs to the validation (or test) set, andj andk belong to the training set.

We repeat this experiment for each base kernel individually (that is, optimizing overK1 with
a single base kernel), as well as the unweighted sum kernel (K1 with all base kernels), and finally
MKPOE (K4 with all base kernels). The results are averaged over all training/test splits, and col-
lected in Figure 5. For comparison purposes, we include the prediction accuracy achieved by com-
puting distances in each kernel’s native space before learning. In each case, the optimized space
indeed achieves higher accuracy than the corresponding native space. (Of course, the random noise
kernels still predict randomly after optimization.)

As illustrated in Figure 5, taking the unweighted combination of kernels significantly degrades
performance (relative to the best kernel) both in the native space (0.718accuracy versus 0.862 for
the linear kernel) and the optimized sum-kernel space (0.861 accuracy for the sum versus 0.951 for
the linear kernel), that is, the unweighted sum kernel optimized by Algorithm 3. However, MKPOE
(K4) correctly identifies and omits the random noise kernels by assigning them negligible weight,
and achieves higher accuracy (0.984) than any of the single kernels (0.951 for the linear kernel, after
learning).

5.2 Musical Artist Similarity

To test our framework on a real data set, we applied the MKPOE algorithm to the task of learning
a similarity function between musical artists. The artist similarity problem is motivatedby several
real-world applications, including recommendation and playlist-generation for online radio. Be-
cause artists may be represented by a wide variety of different features(e.g., tags, acoustic features,
social data), such applications can benefit greatly from an optimally integrated similarity metric.

The training data is derived from theaset400corpus of Ellis et al. (2002), which consists of
412 popular musicians, and 16385 relative comparisons of the form(i, j, i,k). Relative comparisons
were acquired from human test subjects through a web survey; subjectswere presented with a query
artist (i), and asked to choose what they believe to be the most similar artist (j) from a list of 10
candidates. From each single response, 9 relative comparisons are synthesized, indicating thatj is
more similar toi than the remaining 9 artists (k) which were not chosen.

Our experiments here replicate and extend previous work on this data set (McFee and Lanck-
riet, 2009a). In the remainder of this section, we will first give an overview of the various types of
features used to characterize each artist in Section 5.2.1. We will then discuss the experimental pro-
cedure in more detail in Section 5.2.2. The MKL embedding results are presented in Section 5.2.3,
and are followed by an experiment detailing the efficacy of our constraintgraph processing approach
in Section 5.2.4.

5.2.1 FEATURES

We construct five base kernels over the data, incorporating acoustic, semantic, and social views of
the artists.
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Figure 5: Mean test set accuracy for the experiment of Section 5.1. Error bars correspond to one
standard deviation across folds. Accuracy is computed by counting the fraction of cor-
rectly predicted relative comparisons in the native space of each base kernel, and then in
the optimized space produced by KPOE (K1 with a single base kernel). The unweighted
combination of kernels (Sum) significantly degrades performance in both the native and
optimized spaces. MKPOE (MKL, K4) correctly rejects the random kernels, and signifi-
cantly outperforms the unweighted combination and the single best kernel.

• MFCC : for each artist, we collected between 1 and 10 songs (mean 4). For eachsong,
we extracted a short clip consisting of 10000 half-overlapping 23ms windows. For each
window, we computed the first 13 Mel Frequency Cepstral Coefficients (MFCCs) (Davis and
Mermelstein, 1990), as well as their first and second instantaneous derivatives. This results
in a sequence of 39-dimensional vectors (delta-MFCCs) for each song. Each artisti was
then summarized by a Gaussian mixture model (GMM)pi over delta-MFCCs extracted from
the corresponding songs. Each GMM has 8 components and diagonal covariance matrices.
Finally, the kernel between artistsi and j is the probability product kernel (Jebara et al., 2004)
between their corresponding delta-MFCC distributionspi , p j :

Kmfcc
i j =

∫ √
pi(x)p j(x)dx.

• Auto-tags (AT): Using the MFCC features described above, we applied the automatic tagging
algorithm of Turnbull et al. (2008), which for each song yields a multinomialdistribution over
a setT of 149 musically-relevant tag words (auto-tags). Artist-level tag distributionsqi were
formed by averaging model parameters (i.e., tag probabilities) across all ofthe songs of artist
i. The kernel between artistsi and j for auto-tags is a radial basis function applied to the
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χ2-distance between the multinomial distributionsqi andq j :

Kat
i j = exp

(
−σ ∑

t∈T

(qi(t)−q j(t))
2

qi(t)+q j(t)

)
.

In these experiments, we fixedσ = 256.

• Social tags (ST): For each artist, we collected the top 100 most frequently used tag words
from Last.fm,2 a social music website which allows users to label songs or artists with ar-
bitrary tag words orsocial tags. After stemming and stop-word removal, this results in a
vocabulary of 7737 tag words. Each artist is then represented by a bag-of-words vector in
R

7737, and processed by TF-IDF. The kernel between artists for social tags is the cosine sim-
ilarity (linear kernel) between TF-IDF vectors.

• Biography (Bio): Last.fm also provides textual descriptions of artists in the form of user-
contributed biographies. We collected biographies for each artist in theaset400data set,
and after stemming and stop-word removal, we arrived at a vocabulary of16753 biography
words. As with social tags, the kernel between artists is the cosine similarity between TF-IDF
bag-of-words vectors.

• Collaborative filtering (CF) : Celma (2008) collected collaborative filtering data from Last.fm
in the form of a bipartite graph over users and artists, where each user isassociated with the
artists in her listening history. We filtered this data down to include only the aset400artists,
of which all but 5 were found in the collaborative filtering graph. The resulting graph has
336527 users and 407 artists, and is equivalently represented by a binary matrix where each
row i corresponds to an artist, and each columnj corresponds to a user. Thei j entry of this
matrix is 1 if we observe a user-artist association, and 0 otherwise. The kernel between artists
in this view is the cosine of the angle between corresponding rows in the matrix,which can
be interpreted as counting the amount of overlap between the sets of userslistening to each
artist and normalizing for overall artist popularity. For the 5 artists not found in the graph, we
fill in the corresponding rows and columns of the kernel matrix with the identity matrix.

5.2.2 EXPERIMENTAL PROCEDURE

The data was randomly partitioned into ten 90/10 training/test splits. Given the inherent ambiguity
in the task, and format of the survey, there is a great deal of conflicting information in the survey
responses. To obtain a more accurate and internally consistent set of training comparisons, directly
contradictory comparisons (e.g.,(i, j, i,k) and(i,k, i, j)) were removed from both the training and
test sets. Each training set was further cleaned by finding an acyclic subset of comparisons and
taking its transitive reduction, resulting in a minimal partial order. (No furtherprocessing was
performed on test comparisons.)

After training, test artists were mapped into the learned space (by Equation 9), and accuracy
was measured by counting the number of measurements(i, j, i,k) correctly predicted by distance in
the learned space, wherei belongs to the test set, andj,k belong to the training set.

For each experiment,β is chosen from{10−2,10−1, . . . ,107} by holding out 30% of the training
constraints for validation. (Validation splits are generated from the unprocessed training set, and the

2. Last.fm can be found athttp://last.fm .
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Figure 6: aset400 embedding results for each of the base kernels. Accuracy is computed in each
kernel’s native feature space, as well as the space produced by applying Algorithm 3
(i.e., optimizing overK1 with a single kernel) with either the diagonal or full-matrix
formulation. Error bars correspond to one standard deviation across training/test splits.

remaining training constraints are processed as described above.) Afterfinding the best-performing
β, the embedding is trained on the full (processed) training set.

5.2.3 EMBEDDING RESULTS

For each base kernel, we evaluate the test-set performance in the nativespace (i.e., by distances
calculated directly from the entries of the kernel matrix), and by learned metrics, both diagonal and
full (optimizing overK1 with a single base kernel). Figure 6 illustrates the results.

We then repeated the experiment by examining different groupings of base kernels: acoustic
(MFCC and Auto-tags), semantic (Social tags and Bio), social (Collaborative filter), and combina-
tions of the groups. The different sets of kernels were combined by Algorithm 4 (optimizing over
K4). The results are listed in Figure 7.

In all cases, MKPOE improves over the unweighted combination of base kernels. Moreover,
many combinations outperform the single best kernel (ST, 0.777± 0.02 after optimization), and
the algorithm is generally robust in the presence of poorly-performing kernels (MFCC and AT).
Note that the poor performance of MFCC and AT kernels may be expected,as they derive from
song-level rather than artist-level features, whereas ST provides high-level semantic descriptions
which are generally more homogeneous across the songs of an artist, andBio and CF are directly
constructed at the artist level. For comparison purposes, we trained metrics on the sum kernel
with K1 (Algorithm 3), resulting in accuracies of 0.676±0.05 (diagonal) and 0.765±0.03 (full).
The proposed approach (Algorithm 4) applied to all kernels results in 0.754±0.03 (diagonal), and
0.795±0.02 (full).

Figure 8 illustrates the weights learned by Algorithm 4 using all five kernels and diagonally-
constrainedWp matrices. Note that the learned metrics are both sparse (many 0 weights) and non-
uniform across different kernels. In particular, the (lowest-performing) MFCC kernel is eliminated
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Figure 7: aset400 embedding results with multiple kernel learning: the learnedmetrics are opti-
mized overK4 by Algorithm 4. Nativecorresponds to distances calculated according to
the unweighted sum of base kernels.

by the algorithm, and the majority of the weight is assigned to the (highest-performing) social tag
(ST) kernel.

A t-SNE (van der Maaten and Hinton, 2008) visualization of the space produced by MKPOE
is illustrated in Figure 9. The embedding captures a great deal of high-level genre structure: for
example, theclassic rockandmetalgenres lie at the opposite end of the space frompopandhip-
hop.

5.2.4 GRAPH PROCESSINGRESULTS

To evaluate the effects of processing the constraint set for consistency and redundancy, we repeat
the experiment of the previous section with different levels of processingapplied toC . Here, we
focus on the Biography kernel, since it exhibits the largest gap in performance between the native
and learned spaces.

As a baseline, we first consider the full set of similarity measurements as provided by human
judgements, including all inconsistencies. To first deal with what appear tobe the most egregious
inconsistencies, we prune all directly inconsistent training measurements; that is, whenever(i, j, i,k)
and (i,k, i, j) both appear, both are removed.3 Finally, we consider the fully processed case by
finding a maximal consistent subset (partial order) ofC and removing all redundancies. Table 2 lists
the number of training constraints retained by each step of processing (averaged over the random
splits).

Using each of these variants of the training set, we test the embedding algorithm with both
diagonal and full-matrix formulations. The results are presented in Table 2.Each level of graph
processing results in a significant reduction in the number of training comparisons (and, therefore,

3. A more sophisticated approach could be used here, for example, majority voting, provided there is sufficient over-
sampling of comparisons. The aset400 data lacks sufficient over-sampling for majority voting, so we default to this
relatively simple approach.

512



LEARNING MULTI -MODAL SIMILARITY

0

0.5

1

M
F

C
C

 

 

0

0.5A
T

0

0.5S
T

0

0.5B
io

0 50 100 150 200 250 300
0

0.5C
F

Figure 8: The weighting learned by Algorithm 4 using all five kernels and diagonalWp. Each bar
plot contains the diagonal of the corresponding kernel’s learned metric.The horizontal
axis corresponds to the index in the training set, and the vertical axis corresponds to the
learned weight in each kernel space.

Accuracy
C |C | (Avg.) Diagonal Full
Full 8951.3 0.622±0.05 0.715±0.04
Length-2 6684.5 0.630±0.05 0.714±0.04
Processed 4814.5 0.628±0.05 0.716±0.04

Table 2: aset400 embedding results (Biography kernel) for three possible refinements of the con-
straint set.Full includes all similarity measurements, with no pruning for consistency or
redundancy.Length-2removes all length-2 cycles (i.e.,(i, j,k, ℓ) and(k, ℓ, i, j)). Processed
finds an approximate maximal consistent subset, and removes redundant constraints.

computational overhead of Algorithm 3), while not degrading the quality of the resulting embed-
ding.

Finally, to test the sensitivity of the algorithm to randomness in the acyclic subgraph routine, we
repeated the above experiment ten times, each with a different random maximal acyclic constraint
set and the full matrix formulation of the algorithm. As depicted in Figure 10, the randomness in
the constraint generation has little impact on the accuracy of the learned metric: the largest standard
deviation is 0.007 (split #7).
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Figure 9: t-SNE visualizations of an embedding of aset400 produced by MKPOE. The embedding
is constructed by optimizing overK4 with all five base kernels. The two clusters shown
roughly correspond to (a) pop/hip-hop, and (b) classic rock/metal genres. Out-of-sample
points are indicated by a red +.
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Figure 10: Accuracy of the learned embedding for each training/test split,averaged over ten tri-
als with random maximal acyclic constraint subgraphs. Error bars correspond to one
standard deviation.

6. Hardness of Dimensionality Reduction

The algorithms given in Sections 3 and 4 attempt to produce low-dimensional solutions by regular-
izing W, which can be seen as a convex approximation to the rank of the embedding.In general,
because rank constraints are not convex, convex optimization techniques cannot efficiently mini-
mize dimensionality. This does not necessarily imply other techniques could notwork. So, it is
natural to ask if exact solutions of minimal dimensionality can be found efficiently, particularly in
the multidimensional scaling scenario, that is, whenK = I (Section 3.3).

As a special case, one may wonder if any instance(X ,C ) can be satisfied inR1. As Figure 11
demonstrates, not all instances can be realized in one dimension. Even more, we show that it is
NP-Complete to decide if a givenC can be satisfied inR1. Given an embedding, it can be verified
in polynomial time whetherC is satisfied or not by simply computing the distances between all pairs
and checking each comparison inC , so the decision problem is in NP. It remains to show that the
R

1 partial order embedding problem (hereafter referred to as1-POE) is NP-Hard. We reduce from
theBetweennessproblem (Opatrny, 1979), which is known to be NP-complete.

Definition 1 (Betweenness)Given a finite set Z and a collection T of ordered triples(a,b,c) of
distinct elements from Z, is there a one-to-one function f: Z→ R such that for each(a,b,c) ∈ T,
either f(a)< f (b)< f (c) or f (c)< f (b)< f (a)?

Theorem 1 1-POE is NP-Hard.

Proof Let (Z,T) be an instance of Betweenness. LetX = Z, and for each(a,b,c) ∈ T, intro-
duce constraints(a,b,a,c) and(b,c,a,c) to C . Since Euclidean distance inR1 is simply line dis-
tance, these constraints forceg(b) to lie betweeng(a) andg(c). Therefore, the original instance
(Z,T) ∈ Betweenness if and only if the new instance(X ,C ) ∈ 1-POE. Since Betweenness is NP-
Hard, 1-POE is NP-Hard as well.

Since 1-POE can be reduced to the general optimization problem of finding an embedding of
minimal dimensionality, we can conclude that dimensionality reduction subject to partial order con-
straints is also NP-Hard.
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Figure 11: (a) The vertices of a square inR2. (b) The partial order over distances induced by the
square: each side is less than each diagonal. This constraint set cannot be satisfied in
R

1.

7. Conclusion

We have demonstrated a novel method for optimally integrating heterogeneousdata to conform to
measurements of perceptual similarity. By interpreting a collection of relative similarity compar-
isons as a directed graph over pairs, we are able to apply graph-theoretic techniques to isolate and
prune inconsistencies in the training set and reduce computational overhead by eliminating redun-
dant constraints in the optimization procedure.

Our multiple-kernel formulation offers a principled way to integrate multiple feature modalities
into a unified similarity space. Our formulation carries the intuitive geometric interpretation of con-
catenated projections, and results in a semidefinite program. By incorporating diagonal constraints
as well, we are able to reduce the computational complexity of the algorithm, and learn a model
which is both flexible—only using kernels in the portions of the space where they are informative—
and interpretable—each diagonal weight corresponds to the contributionto the optimized space due
to a single point within a single feature space. Table 1 provides a unified perspective of multiple
kernel learning formulations for embedding problems, but it is clearly not complete. It will be the
subject of future work to explore and compare alternative generalizations and restrictions of the
formulations presented here.
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Appendix A. Embedding Partial Orders

In this appendix, we prove that any setX with a partial order over distancesC can be embedded
intoR

n while satisfying all distance comparisons.
In the special case whereC is a total ordering over all pairs (i.e., a chain graph), the problem

reduces to non-metric multidimensional scaling (Kruskal, 1964), and a constraint-satisfying em-
bedding can always be found by the constant-shift embedding algorithm of Roth et al. (2003). In
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Algorithm 5 Naïve total order construction
Input: objectsX , partial orderC
Output: symmetric dissimilarity matrix∆ ∈ R

n×n

for eachi in 1. . .n do
∆ii ← 0

end for
for each(k, ℓ) in topological orderdo

if in-degree(k, ℓ) = 0 then
∆kℓ,∆ℓk← 1

else
∆kℓ,∆ℓk← max

(i, j,k,ℓ)∈C
∆i j +1

end if
end for

general,C is not a total order, but aC -respecting embedding can always be produced by reducing
the partial order to a (weak) total order by topologically sorting the graph (see Algorithm 5).

Let ∆ be the dissimilarity matrix produced by Algorithm 5 on an instance(X ,C ). An embedding
can be found by first applying classical multidimensional scaling (MDS) (Cox and Cox, 1994) to∆:

A=−1
2

H∆H,

whereH = I − 1
n11T is then×n centering matrix, and1 is a vector of 1s. Shifting the spectrum of

A yields
A−λn(A)I = Â � 0,

whereλn(A) is the minimum eigenvalue ofA. The embeddingg can be found by decomposing

Â=VΛ̂VT, so thatg(xi) is theith column ofΛ̂
1/2

VT; this is the solution constructed by the constant-
shift embedding non-metric MDS algorithm of Roth et al. (2003).

Applying this transformation toA affects distances by

‖g(xi)−g(x j)‖2 = Âii + Â j j −2Âi j = (Aii −λn)+(A j j −λn)−2Ai j

= Aii +A j j −2Ai j −2λn.

Since adding a constant (−2λn) preserves the ordering of distances, the total order (and henceC )
is preserved by this transformation. Thus, for any instance(X ,C ), an embedding can be found in
R

n−1.

Appendix B. Solver

Our implementation of Algorithm 4 is based on a simple projected (sub)gradient descent. To sim-
plify exposition, we show the derivation of the single-kernel SDP versionof the algorithm (Algo-
rithm 3) with unit margins. (It is straightforward to extend the derivation to themultiple-kernel and
LP settings.)
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We first observe that a kernel matrix columnKi can be expressed asKTei whereei is the ith

standard basis vector. We can then denote the distance calculations in terms of Frobenius inner
products:

d(xi ,x j) = (Ki−K j)
TW(Ki−K j)

= (ei−ej)
TKWK(ei−ej)

= tr(KWK(ei−ej)(ei−ej)
T) = tr(WKEi j K)

=
〈
W,KEi j K

〉
F ,

whereEi j = (ei−ej)(ei−ej)
T.

A margin constraint(i, j,k, ℓ) can now be expressed as:

d(xi ,x j)+1≤ d(xk,xℓ)+ξi jkℓ

⇒
〈
W,KEi j K

〉
F +1≤ 〈W,KEkℓK〉F +ξi jkℓ

⇒ ξi jkℓ ≥ 1+
〈
W,K(Ei j −Ekℓ)K

〉
F .

The slack variablesξi jkℓ can be eliminated from the program by rewriting the objective in terms
of the constraints:

min
W�0

f (W) where f (W) = tr(WK)+
β
|C |∑

C

h
(
1+
〈
W,K(Ei j −Ekℓ)K

〉
F

)
,

where

h(x) =

{
0 x≤ 0

x x> 0

is the hinge loss.
The gradient∇ f has two components: one due to regularization, and one due to the hinge loss.

The gradient due to regularization is simplyK. The loss term decomposes linearly, and for each
(i, j,k, ℓ) ∈ C , a sub-gradient direction can be defined:

∂
∂W

h(1+d(xi ,x j)−d(xk,xℓ)) =

{
0 d(xi ,x j)+1≤ d(xk,xℓ)

K(Ei j −Ekℓ)K otherwise.
(11)

Rather than computing each gradient direction independently, we observethat each violated con-
straint contributes a matrix of the formK(Ei j −Ekℓ)K. By linearity, we can collect all(Ei j −Ekℓ)
terms and then pre- and post-multiply byK to obtain a more efficient calculation of∇ f :

∂
∂W

f = K+K


 ∑

(i, j,k,ℓ)∈C
Ei j −Ekℓ


K,

whereC is the set of all currently violated constraints.
After each gradient stepW 7→W−α∇ f , the updatedW is projected back onto the set of positive

semidefinite matrices by computing its spectral decomposition and thresholding theeigenvalues by
λi 7→max(0,λi).
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To extend this derivation to the multiple-kernel case (Algorithm 4), we can define

d(xi ,x j)
.
=

m

∑
p=1

dp(xi ,x j),

and exploit linearity to compute each partial derivative∂/∂Wp independently.
For the diagonally-constrained case, it suffices to substitute

K(Ei j −Ekℓ)K 7→ diag(K(Ei j −Ekℓ)K)

in Equation 11. After each gradient step in the diagonal case, the PSD constraint onW can be
enforced by the projectionWii 7→max(0,Wii ).

Appendix C. Relationship to AUC

In this appendix, we formalize the connection between partial orders overdistances and query-by-
example ranking. Recall that Algorithm 2 minimizes the loss1/|C |∑C ξi jkℓ, where eachξi jkℓ ≥ 0 is a
slack variable associated with a margin constraint

d(i, j)+1≤ d(k, ℓ)+ξi jkℓ.

As noted by Schultz and Joachims (2004), the fraction of relative comparisons satisfied by an
embeddingg is closely related to the area under the receiver operating characteristic curve (AUC).
To make this connection precise, consider the following information retrievalproblem. For each
pointxi ∈ X , we are given a partition ofX \{i}:

X+
i = {x j : x j ∈ X relevant forxi}, and

X−i = {xk : xk ∈ X irrelevant forxi}.

If we embed eachxi ∈ X into a Euclidean space, we can then rank the rest of the dataX \ {xi} by
increasing distance fromxi . Truncating this ranked list at the topτ elements (i.e., closestτ points
to xi) will return a certain fraction of relevant points (true positives), and irrelevant points (false
positives). Averaging over all values ofτ defines the familiar AUC score, which can be compactly
expressed as:

AUC(xi |g) =
1

|X+
i | · |X−i |

∑
(x j ,xk)∈X+

i ×X−i

1 [‖g(xi)−g(x j)‖< ‖g(xi)−g(xk)‖] .

Intuitively, AUC can be interpreted as an average over all pairs(x j ,xk)∈X+
i ×X−i of the number

of timesxi was mapped closer to a relevant pointx j than an irrelevant pointxk. This in turn can be
conveniently expressed by a set of relative comparisons for eachxi ∈ X :

∀(x j ,xk) ∈ X+
i ×X−i : (i, j, i,k).

An embedding which satisfies a complete set of constraints of this form will receive an AUC score
of 1, since every relevant point must be closer toxi than every irrelevant point.

Now, returning to the more general setting, we do not assume binary relevance scores or com-
plete observations of relevance for all pairs of points. However, we can define the generalized
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AUC score (GAUC) as simply the average number of correctly ordered pairs (equivalently, satisfied
constraints) given a set of relative comparisons:

GAUC(g) =
1
|C | ∑

(i, j,k,ℓ)∈C
1 [‖g(xi)−g(x j)‖< ‖g(xk)−g(xℓ)‖] .

Like AUC, GAUC is bounded between 0 and 1, and the two scores coincide exactly in the previously
described ranking problem. A corresponding loss function can be defined by reversing the order of
the inequality, that is,

LGAUC(g) =
1
|C | ∑

(i, j,k,ℓ)∈C
1 [‖g(xi)−g(x j)‖ ≥ ‖g(xk)−g(xℓ)‖] .

Note thatLGAUC takes the form of a sum over indicators, and can be interpreted as the average
0/1-loss overC . This function is clearly not convex ing, and is therefore difficult to optimize.
Algorithms 2, 3 and 4 instead optimize a convex upper bound onLGAUC by replacing indicators by
the hinge loss.

As in SVM, this is accomplished by introducing a unit margin and slack variableξi jkℓ for each
(i, j,k, ℓ) ∈ C , and minimizing1/|C |∑C ξi jkℓ.
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