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Abstract

We propose a sequential sampling policy for noisy discrete global optimization and ranking and
selection, in which we aim to efficiently explore a finite set of alternatives before selecting an
alternative as best when exploration stops. Each alternative may be characterized by a multi-
dimensional vector of categorical and numerical attributes and has independent normal rewards.
We use a Bayesian probability model for the unknown reward ofeach alternative and follow a fully
sequential sampling policy called the knowledge-gradientpolicy. This policy myopically optimizes
the expected increment in the value of sampling informationin each time period. We propose a hier-
archical aggregation technique that uses the common features shared by alternatives to learn about
many alternatives from even a single measurement. This approach greatly reduces the measurement
effort required, but it requires some prior knowledge on thesmoothness of the function in the form
of an aggregation function and computational issues limit the number of alternatives that can be
easily considered to the thousands. We prove that our policyis consistent, finding a globally opti-
mal alternative when given enough measurements, and show through simulations that it performs
competitively with or significantly better than other policies.

Keywords: sequential experimental design, ranking and selection, adaptive learning, hierarchical
statistics, Bayesian statistics

1. Introduction

We address the problem of maximizing an unknown functionθx wherex = (x1, . . . ,xD), x ∈ X , is
a discrete multi-dimensional vector of categorical and numerical attributes. We have the ability to
sequentially choose a set of measurements to estimateθx, after which we choose the value ofx with
the largest estimated value ofθx. Our challenge is to design a measurement policy which produces
fast convergence to the optimal solution, evaluated using the expected objective function after a
specified number of iterations. Many applications in this setting involve measurements that are
time consuming and/or expensive. This problem is equivalent to the rankingand selection (R&S)
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problem, where the difference is that the number of alternatives|X | is extremely large relative to
the measurement budget.

We do not make any explicit structural assumptions aboutθx, but we do assume that we are
given an ordered setG and a family of aggregation functionsGg : X → X g, g∈ G , each of which
mapsX to a regionX g, which is successively smaller than the original set of alternatives. After
each observation ˆyn

x = θx + εn, we update a family of statistical estimates ofθ at each level of
aggregation. Aftern observations, we obtain a family of estimatesµg,n

x of the function at different
levels of aggregation, and we form an estimateµn

x of θx using

µn
x = ∑

g∈G
wg,n

x µg,n
x , (1)

where the weightswg,n
x sum to one over all the levels of aggregation for each pointx. The estimates

µg,n
x at more aggregate levels have lower statistical variance since they are based upon more obser-

vations, but exhibit aggregation bias. The estimatesµg,n
x at more disaggregate levels will exhibit

greater variance but lower bias. We design our weights to strike a balancebetween variance and
bias.

Our goal is to create a measurement policyπ that leads us to find the alternativex that maximizes
θx. This problem arises in a wide range of problems in stochastic search including (i) which settings
of several parameters of a simulated system has the largest mean performance, (ii) which combi-
nation of chemical compounds in a drug would be the most effective to fight aparticular disease,
and (iii) which set of features to include in a product would maximize profits. We also consider
problems wherex is a multi-dimensional set of continuous parameters.

A number of measurement policies have been proposed for the ranking and selection problem
when the number of alternatives is not too large, and where our beliefs about the value of each
alternative are independent. We build on the work of Frazier et al. (2009) which proposes a policy,
the knowledge-gradient policy for correlated beliefs, that exploits correlations in the belief structure,
but where these correlations are assumed known.

This paper makes the following contributions. First, we propose a version of the knowledge
gradient policy that exploits aggregation structure and similarity between alternatives, without re-
quiring that we specify an explicit covariance matrix for our belief. Instead, we develop a belief
structure based on the weighted estimates given in (1). We estimate the weights using a Bayesian
model adapted from frequentist estimates proposed by George et al. (2008). In addition to eliminat-
ing the difficulty of specifying an a priori covariance matrix, this avoids the computational challenge
of working with large covariance matrices. Second, we show that a learning policy based on this
method is optimal in the limit, that is, eventually it always discovers the best alternative. Our
method requires that a family of aggregation functions be provided, but otherwise does not make
any specific assumptions about the structure of the function or set of alternatives.

The remainder of this paper is structured as follows. In Section 2 we give abrief overview of
the relevant literature. In Section 3, we present our model, the aggregation techniques we use, and
the Bayesian updating approach. We present our measurement policy in Section 4 and a proof of
convergence of this policy in Section 5. We present numerical experimentsin Section 6 and 7. We
close with conclusions, remarks on generalizations, and directions for further research in Section 8.
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2. Literature

There is by now a substantial literature on the general problem of finding themaximum of an
unknown function where we depend on noisy measurements to guide our search. Spall (2003)
provides a thorough review of the literature that traces its roots to stochasticapproximation methods
first introduced by Robbins and Monro (1951). This literature considers problems with vector-
valued decisions, but its techniques require many measurements to find maxima precisely, which is
a problem when measurements are expensive.

Our problem originates from the ranking and selection (R&S) literature, which begins with
Bechhofer (1954). In the R&S problem, we have a collection of alternatives whose value we can
learn through sampling, and from which we would like to select the one with the largest value. This
problem has been studied extensively since its origin, with much of this work reviewed by Bechhofer
et al. (1995), more recent work reviewed in Kim and Nelson (2006), and research continuing actively
today. The R&S problem has also been recently and independently considered within computer
science (Even-Dar et al., 2002; Madani et al., 2004; Bubeck et al., 2009b).

There is also a related literature on online learning and multi-armed bandits, in which an al-
gorithm is faced with a collection of noisy options of unknown value, and hasthe opportunity to
engage these options sequentially. In the online learning literature, an algorithm is measured ac-
cording to thecumulativevalue of the options engaged, while in the problem that we consider an
algorithm is measured according to its ability to select the best at the end of experimentation. Rather
than value, researchers often consider the regret, which is the loss compared to optimal sequence of
decisions in hindsight. Cumulative value or regret is appropriate in settings such as dynamic pricing
of a good sold online (learning while doing), while terminal value or regret isappropriate in settings
such as optimizing a transportation network in simulation before building it in the real world (learn
then do). Strong theoretical bounds on cumulative and average regrethave been developed in the
online setting (see, e.g., Auer et al., 2002; Flaxman et al., 2005; Abernethyet al., 2008).

General-purpose online-to-batch conversion techniques have been developed, starting with Lit-
tlestone (1989), for transforming online-learning methods with bounds on cumulative regret into
methods with bounds on terminal regret (for a summary and literature review see Shalev-Shwartz,
2007, Appendix B). While these techniques are easy to apply and immediately produce methods
with theoretical bounds on the rate at which terminal regret converges to zero, methods created in
this way may not have the best achievable bounds on terminal regret: Bubeck et al. (2009b) shows
that improving the upper bound on the cumulative regret of an online learning method causes a cor-
responding lower bound on the terminal regret to get worse. This is indicative of a larger difference
between what is required in the two types of problems. Furthermore, as as example of the differ-
ence between cumulative and terminal performance, Bubeck et al. (2009b) notes that with finitely
many unrelated arms, achieving optimal cumulative regret requires sampling suboptimal arms no
more than a logarithmic number of times, while achieving optimal terminal regret requires sampling
every arm a linear number of times.

Despite the difference between cumulative and terminal value, a number of methods have been
developed that are often applied to both online learning and R&S problems in practice, as well
as to more complex problems in reinforcement learning and Markov decision processes. These
heuristics include Boltzmann exploration, interval estimation, upper confidence bound policies, and
hybrid exploration-exploitation policies such as epsilon-greedy. See Powell and Frazier (2008) for
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a review of these. Other policies include the Explicit Explore or Exploit (E3) algorithm of Kearns
and Singh (2002) and R-MAX of Brafman and Tennenholtz (2003).

Researchers from the online learning and multi-armed bandit communities havealso directly
considered R&S and other related problems in which one is concerned with terminal rather than
cumulative value (Even-Dar et al., 2002, 2003; Madani et al., 2004; Mnih et al., 2008; Bubeck
et al., 2009b). Most work that directly considers terminal value assumes no a-priori relationship
between alternatives. One exception is Srinivas et al. (2010), which considers a problem with a
Gaussian process prior on the alternatives, and uses a standard online-to-batch conversion to obtain
bounds on terminal regret. We are aware of no work in the online learning community, however,
whether considering cumulative value or terminal value, that considers thetype of hierarchical
aggregation structures that we consider here. A number of researchers have considered other types
of dependence between alternatives, such as online convex and linearoptimization (Flaxman et al.,
2005; Kleinberg, 2005; Abernethy et al., 2008; Bartlett et al., 2008), general metric spaces with a
Lipschitz or locally-Lipschitz condition (Kleinberg et al., 2008; Bubeck et al., 2009a), and Gaussian
process priors (Grüneẅalder et al., 2010; Srinivas et al., 2010).

A related line of research has focused on finding the alternative which, ifmeasured, will have
the greatest impact on the final solution. This idea was originally introduced inMockus (1975) for a
one-dimensional continuous domain with a Wiener process prior, and in Gupta and Miescke (1996)
in the context of the independent normal R&S problem as also considered inthis paper. The latter
policy was further analyzed in Frazier et al. (2008) under the name knowledge-gradient (KG) policy,
where it was shown that the policy is myopically optimal (by construction) and asymptotically
optimal. An extension of the KG policy when the variance is unknown is presented in Chick et al.
(2010) under the nameLL1, referring to the one-step linear loss, an alternative name when we are
minimizing expected opportunity cost. A closely related idea is given in Chick andInoue (2001)
where samples are allocated to maximize an approximation to the expected value ofinformation.
Related search methods have also been developed within the simulation-optimization community,
which faces the problem of determining the best of a set of parameters, where evaluating a set of
parameters involves running what is often an expensive simulation. One class of methods evolved
under the name optimal computing budget allocation (OCBA) (Chen et al., 1996; He et al., 2007).

The work in ranking and selection using ideas of expected incremental value is similar to work
on Bayesian global optimization of continuous functions. In Bayesian global optimization, one
would place a Bayesian prior belief on the unknown functionθ. Generally the assumption is that
unknown functionθ is a realization from a Gaussian process. Wiener process priors, a special case
of the Gaussian process prior, were common in early work on Bayesian global optimization, being
used by techniques introduced in Kushner (1964) and Mockus (1975). Surveys of Bayesian global
optimization may be found in Sasena (2002); Lizotte (2008) and Brochu et al. (2009).

While algorithms for Bayesian global optimization usually assume noise-free function evalu-
ations (e.g., the EGO algorithm of Jones et al., 1998), some algorithms allow measurement noise
(Huang et al., 2006; Frazier et al., 2009; Villemonteix et al., 2009). We compare the performance of
HKG against two of these: Sequential Kriging Optimization (SKO) from Huanget al. (2006) and
the knowledge-gradient policy for correlated normal beliefs (KGCB) from Frazier et al. (2009). The
latter policy is an extension of the knowledge-gradient algorithm in the presence of correlated be-
liefs, where measuring one alternative updates our belief about other alternatives. This method was
shown to significantly outperform methods which ignore this covariance structure, but the algorithm
requires the covariance matrix to be known. The policies SKO and KGCB arefurther explained in
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Section 6. Like the consistency results that we provide for HKG, consistency results are known for
some algorithms: consistency of EGO is shown in Vazquez and Bect (2010), and lower bounds on
the convergence rate of an algorithm called GP-UCB are shown in Srinivas et al. (2010).

An approach that is common in optimization of continuous functions, and which accounts for
dependencies, is to fit a continuous function through the observations. In the area of Bayesian
global optimization, this is usually done using Gaussian process priors. In other approaches, like the
Response Surface Methodology (RSM) (Barton and Meckesheimer, 2006) one normally would fit
a linear regression model or polynomials. An exception can be found in Brochu et al. (2009) where
an algorithm is presented that uses random forests instead, which is reminiscent of the hierarchical
prior that we employ in this paper. When we are dealing with nominal categorical dimensions, fitting
a continuous function is less appropriate as we will show in this paper. Moreover, the presence of
categorical dimensions might give a good indication for the aggregation function to be used. The
inclusion of categorical variables in Bayesian global optimization methods, viaboth random forests
and Gaussian processes, as well as a performance comparison between these two, is addressed in
Hutter (2009).

There is a separate literature on aggregation and the use of mixtures of estimates. Aggregation,
of course, has a long history as a method of simplifying models (see Rogers et al., 1991). Bert-
sekas and Castanon (1989) describes adaptive aggregation techniques in the context of dynamic
programming, while Bertsekas and Tsitsiklis (1996) provides a good presentation of state aggre-
gation methods used in value iteration. In the machine learning community, there is an extensive
literature on the use of weighted mixtures of estimates, which is the approach that we use. We refer
the reader to LeBlanc and Tibshirani (1996); Yang (2001) and Hastie et al. (2001). In our work,
we use a particular weighting scheme proposed by George et al. (2008) due to its ability to easily
handle state dependent weights, which typically involves estimation of many thousands of weights
since we have a weight for each alternative at each level of aggregation.

3. Model

We consider a finite setX of distinct alternatives where each alternativex ∈ X might be a multi-
dimensional vectorx = (x1, . . . ,xD). Each alternativex ∈ X is characterized by an independent
normal sampling distribution with unknown meanθx and known varianceλx > 0. We useM to
denote the number of alternatives|X | and useθ to denote the column vector consisting of allθx,
x∈ X .

Consider a sequence ofN sampling decisions,x0,x1, . . . ,xN−1. The sampling decisionxn selects
an alternative to sample at timen from the setX . The sampling errorεn+1

x ∼N (0,λx) is independent
conditioned onxn = x, and the resulting sample observation is ˆyn+1

x = θx+ εn+1
x . Conditioned onθ

andxn = x, the sample has conditional distribution

ŷn+1
x ∼N (θx,λx) .

Because decisions are made sequentially,xn is only allowed to depend on the outcomes of the
sampling decisionsx0,x1, . . . ,xn−1. In the remainder of this paper, a random variable indexed byn
means it is measurable with respect toF n which is the sigma-algebra generated by
x0, ŷ1

x0,x1, . . . ,xn−1, ŷn
xn−1.

In this paper, we derive a method based on Bayesian principles which offers a way of formal-
izing a priori beliefs and of combining them with the available observations to perform statistical
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inference. In this Bayesian approach we begin with a prior distribution on the unknown valuesθx,
x∈ X , and then use Bayes’ rule to recursively to derive the posterior distribution at timen+1 from
the posterior at timen and the observed data. Letµn be our estimate ofθ after n measurements.
This estimate will either be the Bayes estimate, which is the posterior meanE[θ | F n], or an approx-
imation to this posterior mean as we will use later on. Later, in Sections 3.1 and 3.2,we describe
the specific prior and posterior that we use in greater detail. Under most sampling models and prior
distributions, including the one we treat here, we may intuitively understand the learning that occurs
from sampling as progressive concentration of the posterior distribution on θ, and as the tendency
of µn, the mean of this posterior distribution, to move towardθ asn increases.

After takingN measurements, we make an implementation decision, which we assume is given
by the alternativexN that has the highest expected reward under the posterior, that is,
xN ∈ argmaxx∈X µN

x . Although we could consider policies making implementation decisions in
other ways, this implementation decision is optimal whenµN is the exact posterior mean and when
performance is evaluated by the expected value under the prior of the truevalue of the implemented
alternative. Our goal is to choose a sampling policy that maximizes the expectedvalue of the im-
plementation decisionxN. Therefore we defineΠ to be the set of sampling policies that satisfies
the requirementxn ∈ F n and introduceπ ∈ Π as a policy that produces a sequence of decisions
(

x0, . . . ,xN−1
)

. We further writeEπ to indicate the expectation with respect to the prior over both
the noisy outcomes and the truthθ when the sampling policy is fixed toπ. Our objective function
can now be written as

sup
π∈Π

E
π
[

max
x∈X

E[θx | F N]

]

.

If µN is the exact posterior mean, rather than an approximation, this can be written as

sup
π∈Π

E
π
[

max
x∈X

µN
x

]

.

As an aid to the reader, the notation defined throughout the next subsections is summarized in
Table 1.

3.1 Model Specification

In this section we describe our statistical model, beginning first by describing the aggregation struc-
ture upon which it relies, and then describing our Bayesian prior on the sampling meansθx. Later,
in Section 3.2, we describe the Bayesian inference procedure. Throughout these sections we make
the following assumptions: (i) we assume independent beliefs across different levels of aggregation
and (ii) we have two quantities which we assume are fixed parameters of our model whereas we
estimate them using the empirical Bayes approach. Even though these are serious approximations,
we show that posterior inference from the prior results in the same estimatorsas presented in George
et al. (2008) derived using frequestist methods.

Aggregation is performed using a set of aggregation functionsGg : X → X g, whereX g repre-
sents thegth level of aggregation of the original setX . We denote the set of all aggregation levels
by G ={0,1, . . . ,G}, with g = 0 being the lowest aggregation level (which might be the finest
discretization of a continuous set of alternatives),g = G being the highest aggregation level, and
G= |G |−1.

The aggregation functionsGg are typically problem specific and involve a certain amount of
domain knowledge, but it is possible to define generic forms of aggregation. For example, numeric
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Variable Description
G highest aggregation level
Gg(x) aggregated alternative of alternativex at levelg
G set of all aggregation levels
G (x,x′) set of aggregation levels that alternativesx andx′ have in common
X set of alternatives
X g set of aggregated alternativesGg(x) at thegth aggregation level
X g(x) set of alternatives sharing aggregated alternativeGg(x) at aggregation levelg
N maximum number of measurements
M number of alternatives, that is,M = |X |
θx unknown true sampling mean of alternativex
θg

x unknown true sampling mean of aggregated alternativeGg(x)
λx measurement variance of alternativex
xn nth measurement decision
ŷn

x nth sample observation of alternativex
εn

x measurement error of the sample observation ˆyn
x

µn
x estimate ofθx aftern measurements

µg,n
x estimate of aggregated alternativeGg(x) on aggregation levelg aftern measurements

wg,n
x contribution (weight) of the aggregate estimateµg,n

x to the overall estimateµn
x of θx

mg,n
x number of measurements from the aggregated alternativeGg(x)

βn
x precision ofµn

x, with βn
x = 1/(σn

x)
2,

βg,n
x precision ofµg,n

x , with βg,n
x = 1/(σg,n

x )2

βg,n,ε
x measurement precision from alternativesx′ ∈ X g(x), with βg,n,ε

x = 1/(σg,n,ε
x )2

δg,n
x estimate of the aggregation bias

g̃n
x lowest levelg for whichmg,n

x > 0.
νg,n

x variance ofθg
x −θx

δ lower bound onδg,n
x

Table 1: Notation used in this paper.

data can be defined over a range, allowing us to define a series of aggregations which divide this
range by a factor of two at each additional level of aggregation. For vector valued data, we can ag-
gregate by simply ignoring dimensions, although it helps if we are told in advance which dimensions
are likely to be the most important.

Using aggregation, we create a sequence of sets{X g,g= 0,1, . . . ,G}, where each set has fewer
alternatives than the previous set, and whereX 0 equals the original setX . We introduce the follow-
ing notation and illustrate its value using the example of Figure 1:

G (x,x′) Set of all aggregation levels that the alternativesx andx′ have in common, withG (x,x′)⊆
G . In the example we haveG (2,3) = {1,2}.

X g(x) Set of all alternatives that share the same aggregated alternativeGg(x) at thegth aggregation
level, withX g(x)⊆ X . In the example we haveX 1(4) = {4,5,6}.
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g= 2 13
g= 1 10 11 12
g= 0 1 2 3 4 5 6 7 8 9

Figure 1: Example with nine alternatives and three aggregation levels.

Given this aggregation structure, we now define our Bayesian model. Define latent variables
θg

x, whereg∈ G andx∈ X . These variables satisfyθg
x = θg

x′ whenGg(x) = Gg(x′). Also, θ0
x = θx

for all x ∈ X . We have a belief about theseθg
x, and the posterior mean of the belief aboutθg

x is
µg,n

x . We see that, roughly speaking,θg
x is the best estimate ofθx that we can make from aggregation

level g, given perfect knowledge of this aggregation level, and thatµg,n
x may be understood to be an

estimator of the value ofθg
x for a particular alternativex at a particular aggregation levelg.

We begin with a normal prior onθx that is independent across different values ofx, given by

θx ∼N (µ0
x,(σ

0
x)

2).

The way in whichθg
x relates toθx is formalized by the probabilistic model

θg
x ∼N (θx,νg

x),

whereνg
x is the variance ofθg

x −θx under our prior belief.
The valuesθg

x − θx are independent across different values ofg, and between values ofx that
differ at aggregation levelg, that is, that have different values ofGg(x). The valueνg

x is currently
a fixed parameter of the model. In practice this parameter is unknown, and while we could place
a prior on it (e.g., inverse gamma), we later employ an empirical Bayes approach instead, first
estimating it from data and then using the estimated value as if it were given a priori.

When we measure alternativexn = x at timen, we observe a value ˆyn+1
x . In reality, this obser-

vation has distributionN (θx,λx). But in our model, we make the following approximation. We
suppose that we observe a value ˆyg,n+1

x for each aggregation levelg∈ G . These values are indepen-
dent and satisfy

ŷg,n+1
x ∼N (θg

x,1/βg,n,ε
x ),

where againβg,n,ε
x is, for the moment, a fixed known parameter, but later will be estimated from

data and used as if it were known a priori. In practice we set ˆyg,n+1
x = ŷn+1

x . It is only a modeling
assumption that breaks this equality and assumes independence in its place. This approximation
allows us to recover the estimators derived using other techniques in George et al. (2008).

This probabilistic model for ˆyg,n+1
x in terms ofθg

x induces a posterior onθg
x, whose calculation

is discussed in the next section. This model is summarized in Figure 2.

3.2 Bayesian Inference

We now derive expressions for the posterior belief on the quantities of interest within the model.
We begin by deriving an expression for the posterior belief onθg

x for a giveng.
We defineµg,n

x , (σg,n
x )2, andβg,n

x = (σg,n
x )−2 to be the mean, variance, and precision of the belief

that we would have aboutθg
x if we had a noninformative prior onθg

x and then observed ˆyg,m
xm−1 for only

thosem< n satisfyingGg(xm) = Gg(x) andonly for the given value ofg. These are the observations
from level g pertinent to alternativex. The quantitiesµg,n

x and βg,n
x can be obtained recursively
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θx
θ

g

x

N

x
n

ŷ
g,n+1

xn

|X | |X g| |G||G|

Figure 2: Probabilistic graphical model used by HKG. The dependence of xn upon the past induced
because HKG chooses its measurements adaptively is not pictured.

by considering two cases. WhenGg(xn) 6= Gg(x), we let µg,n+1
x = µg,n

x andβg,n+1
x = βg,n

x . When
Gg(xn) = Gg(x) we let

µg,n+1
x =

[

βg,n
x µg,n

x +βg,n,ε
x ŷn+1

x

]

/βg,n+1
x , (2)

βg,n+1
x = βg,n

x +βg,n,ε
x , (3)

whereβg,0
x = 0 andµg,0

x = 0.
Using these quantities, we may obtain an expression for the posterior belief on θx. We define

µn
x, (σn

x)
2 and βn

x = (σn
x)

−2 to be the mean, variance, and precision of this posterior belief. By
Proposition 4 (Appendix B), the posterior mean and precision are

µn
x =

1
βn

x

[

β0
xµ0

x + ∑
g∈G

(

(σg,n
x )2+νg

x

)−1
µg,n

x

]

, (4)

βn
x = β0

x + ∑
g∈G

(

(σg,n
x )2+νg

x

)−1
. (5)

We generally work with a noninformative prior onθx in whichβ0
x = 0. In this case, the posterior

variance is given by

(σn
x)

2 =

(

∑
g∈G

(

(σg,n
x )2+νg

x

)−1

)−1

, (6)

and the posterior meanµn
x is given by the weighted linear combination

µn
x = ∑

g∈G
wg,n

x µg,n
x , (7)

where the weightswg,n
x are

wg,n
x =

(

(σg,n
x )2+νg

x

)−1
(

∑
g′∈G

(

(

σg′,n
x

)2
+νg′

x

)−1
)−1

. (8)

Now, we assumed that we knewνg
x and βg,n,ε

x as part of our model, while in practice we do
not. We follow the empirical Bayes approach, and estimate these quantities, and then plug in the
estimates as if we knew these values a priori. The resulting estimatorµn

x of θx will be identical to
the estimator ofθx derived using frequentist techniques in George et al. (2008).
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First, we estimateνg
x. Our estimate will be(δg,n

x )2, whereδg,n
x is an estimate of the aggregation

bias that we define here. At the unaggregated level (g=0), the aggregation bias is clearly 0, so we set
δ0,n

x = 0. If we have measured alternativex andg> 0, then we setδg,n
x = max(|µg,n

x −µ0,n
x |,δ), where

δ ≥ 0 is a constant parameter of the inference method. Whenδ > 0, estimates of the aggregation
bias are prevented from falling below some minimum threshold, which preventsthe algorithm from
placing too much weight on a frequently measured aggregate level when estimating the value of
an infrequently measured disaggregate level. The convergence proofassumesδ > 0, although in
practice we find that the algorithm works well even whenδ = 0.

To generalize this estimate to include situations when we have not measured alternativex, we
introduce a base level ˜gn

x for each alternativex, being the lowest levelg for whichmg,n
x > 0. We then

defineδg,n
x as

δg,n
x =

{

0 if g= 0 org< g̃n
x,

max(|µg̃n
x

x −µg,n
x |,δ) if g> 0 andg≥ g̃n

x.
(9)

In addition, we setwg,n
x = 0 for all g< g̃n

x.

Second, we estimateβg,n,ε
x usingβg,n,ε

x =
(

σg,n,ε
x
)−2

where(σg,n,ε
x )2 is the group variance (also

called the population variance). The group variance(σ0,n,ε
x )2 at the disaggregate(g= 0) level equals

λx, and we may use analysis of variance (see, e.g., Snijders and Bosker, 1999) to compute the group
variance atg> 0. The group variance over a number of subgroups equals the variance within each
subgroup plus the variance between the subgroups. The variance withineach subgroup is a weighted
average of the varianceλx′ of measurements of each alternativex′ ∈ X g(x). The variance between
subgroups is given by the sum of squared deviations of the disaggregate estimates and the aggregate
estimates of each alternative. The sum of these variances gives the group variance as

(σg,n,ε
x )

2
=

1
mg,n

x

(

∑
x′∈X g(x)

m0,n
x′ λx′ + ∑

x′∈X g(x)

m0,n
x′

(

µ0,n
x′ −µg,n

x

)2
)

,

wheremg,n
x is the number of measurements from the aggregated alternativeGg(x) at thegth aggre-

gation level, that is, the total number of measurements from alternatives in the set X g(x), aftern

measurements. Forg= 0 we have
(

σg,n,ε
x
)2

= λx.

In the computation of
(

σg,n,ε
x
)2

, the numbersm0,n
x′ can be regarded as weights: the sum of the

bias and measurement variance of the alternative we measured the most contributes the most to
the group variance

(

σg,n,ε
x
)2

. This is because observations of this alternative also have the biggest
impact on the aggregate estimateµg,n

x . The problem, however, is that we are going to use the group
variances

(

σg,n,ε
x
)2

to get an idea about the range of possible values of ˆyn+1
x′ for all x′ ∈ X g(x). By

including the number of measurementsm0,n
x′ , this estimate of the range will heavily depend on the

measurement policy. We propose to put equal weight on each alternativeby settingmg,n
x = |X g(x)|

(som0,n
x = 1). The group variance

(

σg,n,ε
x
)2

is then given by

(σg,n,ε
x )

2
=

1
|X g(x)|

(

∑
x′∈X g(x)

λx′ +
(

µ0,n
x′ −µg,n

x

)2
)

. (10)

A summary of the Bayesian inference procedure can be found in Appendix A. Given this method
of inference, we formally present in the next section the HKG policy for choosing the measurements
xn.
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4. Measurement Decision

Our goal is to maximize the expected rewardµN
xN of the implementation decisionxN = argmaxx∈X µN

x .
During the sequence ofN sampling decisions,x0,x1, . . . ,xN−1 we gain information that increases
our expected final rewardµN

xN . We may formulate an equivalent problem in which the reward is
given in pieces over time, but the total reward given is identical. Then the reward we gain in a
single time unit might be regarded as an increase in knowledge. The knowledge-gradient policy
maximizes this single period reward. In Section 4.1 we provide a brief general introduction of the
knowledge-gradient policy. In Section 4.2 we summarize the knowledge-gradient policy for in-
dependent and correlated multivariate normal beliefs as introduced in Frazier et al. (2008, 2009).
Then, in Section 4.3, we adapt this policy to our hierarchical setting. We endwith an illustration of
how the hierarchical knowledge gradient policy chooses its measurements(Section 4.4).

4.1 The Knowledge-Gradient Policy

The knowledge-gradient policy was first introduced in Gupta and Miescke (1996) under the name
(R1, . . . ,R1), further analyzed in Frazier et al. (2008), and extended in Frazier etal. (2009) to cope
with correlated beliefs. The idea works as follows. LetSn be the knowledge state at timen. In
Frazier et al. (2008, 2009) this is given bySn = (µn,Σn), where the posterior onθ is N (µn,Σn). If
we were to stop measuring now, our final expected reward would be maxx∈X µn

x. Now, suppose we
were allowed to make one more measurementxn. Then, the observation ˆyn+1

xn would result in an
updated knowledge stateSn+1 which might result in a higher expected reward maxx∈X µn+1

x at the
next time unit. The expected incremental value due to measurementx is given by

υKG
x (Sn) = E

[

max
x′∈X

µn+1
x′ |Sn,xn = x

]

−max
x′∈X

µn
x′ . (11)

The knowledge-gradient policyπKG chooses its sampling decisions to maximize this expected
incremental value. That is, it choosesxn as

xn = argmax
x∈X

υKG
x (Sn) .

4.2 Knowledge Gradient For Independent And Correlated Beliefs

In Frazier et al. (2008) it is shown that when all components ofθ are independent under the prior
and under all subsequent posteriors, the knowledge gradient (11) can be written

υKG
x (Sn) = σ̃x (Σn,x) f

(−|µn
x −maxx′ 6=xµn

x′ |
σ̃x (Σn,x)

)

,

whereσ̃x (Σn,x) = Var
(

µn+1
x |Sn,xn = x

)

= Σn
xx/
√

λx+Σn
xx, with Σn

xx the variance of our estimate
µn

x, and wheref (z) = ϕ(z)+ zΦ(z) whereϕ(z) andΦ(z) are, respectively, the normal density and
cumulative distribution functions.

In the case of correlated beliefs, an observation ˆyn+1
x of alternativex may change our estimate

µn
x′ of alternativesx′ 6= x. The knowledge gradient (11) can be written as

υKG,n
x (Sn) = E

[

max
x′∈X

µn
x′ + σ̃x′ (Σn,x)Z|Sn,xn = x

]

−max
x′∈X

µn
x′ , (12)
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whereZ is a standard normal random variable andσ̃x′ (Σn,x) = Σn
x′x/
√

λx+Σn
xx with Σn

x′x the covari-
ance betweenµn

x′ andµn
x.

Solving (12) involves the computation of the expectation over a piecewise linear convex func-
tion, which is given as the maximum of affine functionsµn

x′ + σ̃x′ (Σn,x)Z. To do this, Frazier et al.
(2009) provides an algorithm (Algorithm 2) which solvesh(a,b) = E [maxi ai +biZ]−maxi ai as a
generic function of any vectorsa andb. In Frazier et al. (2009), the vectorsa andb are given by the
elementsµn

x′ andσ̃x′ (Σn,x) for all x′ ∈ X respectively, and the indexi corresponds to a particularx′.
The algorithm works as follows. First it sorts the sequence of pairs(ai ,bi) such that thebi are in non-
decreasing order and ties inb are broken by removing the pair(ai ,bi) whenbi = bi+1 andai ≤ ai+1.
Next, all pairs(ai ,bi) that are dominated by the other pairs, that is,ai +biZ ≤ maxj 6=i a j +b jZ for
all values ofZ, are removed. Throughout the paper, we use ˜a andb̃ to denote the vectors that re-
sult from sortinga andb by bi followed by the dropping of the unnecessary elements, producing a
smallerM̃. The knowledge gradient can now be computed using

υKG
x = ∑

i=1,...,M̃

(

b̃i+1− b̃i
)

f

(

−
∣

∣

∣

∣

ãi − ãi+1

b̃i+1− b̃i

∣

∣

∣

∣

)

.

Note that the knowledge gradient algorithm for correlated beliefs requires that the covariance
matrix Σ0 be provided as an input. These correlations are typically attributed to physical relation-
ships among the alternatives.

4.3 Hierarchical Knowledge Gradient

We start by generalizing the definition (11) of the knowledge-gradient in the following way

υKG
x (Sn) = E

[

max
x′∈X

µn+1
x′ |Sn,xn = x

]

−max
x′∈X

E
[

µn+1
x′ |Sn,xn = x

]

, (13)

where the knowledge state is given bySn =
{

µg,n
x ,βg,n

x : x∈ X ,g∈ G
}

.
When using the Bayesian updating equations from the original knowledge-gradient policy, the

estimatesµn
x form a martingale, in which case the conditional expectation ofµn+1

x′ givenSn is µn
x′ , and

(13) is equivalent to the original definition (11). Because of approximations used in the updating
equations derived in Section 3,µn

x is not a martingale in our case, and the term subtracted in (13)
ensures the non-negativity of the KG factor.

Before working out the knowledge gradient (13), we first focus on the aggregate estimateµg,n+1
x .

We rewrite the updating Equation (2) as

µg,n+1
x =

[

βg,n
x µg,n

x +βg,n,ε
x ŷn+1

x

]

/βg,n+1
x

= µg,n
x +

βg,n,ε
x

βg,n
x +βg,n,ε

x

(

ŷn+1
x −µg,n

x

)

= µg,n
x +

βg,n,ε
x

βg,n
x +βg,n,ε

x

(

ŷn+1
x −µn

x

)

+
βg,n,ε

x

βg,n
x +βg,n,ε

x
(µn

x −µg,n
x ) .

Now, the new estimate is given by the sum of (i) the old estimate, (ii) the deviation ofŷn+1
x

from the weighted estimateµn
x times the relative increase in precision, and (iii) the deviation of the

estimateµg,n
x from the weighted estimateµn

x times the relative increase in precision. This means
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that even if we observe precisely what we expected
(

ŷn+1
x = µn

x

)

, the aggregate estimateµg,n+1
x still

shrinks towards our current weighted estimateµn
x. However, the more observations we have, the less

shrinking will occur because the precision of our belief onµg,n
x will be higher.

The conditional distribution of ˆyn+1
x is N

(

µn
x,(σn

x)
2+λx

)

where the variance of ˆyn+1
x is given

by the measurement noiseλx of the current measurement plus the variance(σn
x)

2 of our belief given
by (6). So,Z =

(

ŷn+1
x −µn

x

)

/
√

(σn
x)

2+λx is a standard normal. Now we can write

µg,n+1
x = µg,n

x +
βg,n,ε

x

βg,n
x +βg,n,ε

x
(µn

x −µg,n
x )+ σ̃g,n

x Z, (14)

where

σ̃g,n
x =

βg,n,ε
x

√

(σn
x)

2+λx

βg,n
x +βg,n,ε

x
. (15)

We are interested in the effect of decisionx on the weighted estimates
{

µn+1
x′ , ∀x′ ∈ X

}

. The
problem here is that the valuesµn

x′ for all alternativesx′ ∈ X are updated whenever they share at least
one aggregation level with alternativex, which is to say for allx′ for whichG (x′,x) is not empty.
To cope with this, we break our expression (7) for the weighted estimateµn+1

x′ into two parts

µn+1
x′ = ∑

g/∈G(x′,x)

wg,n+1
x′ µg,n+1

x′ + ∑
g∈G(x′,x)

wg,n+1
x′ µg,n+1

x .

After substitution of (14) and some rearrangement of terms we get

µn+1
x′ = ∑

g∈G
wg,n+1

x′ µg,n
x′ + ∑

g∈G(x′,x)

wg,n+1
x′

βg,n,ε
x

βg,n
x +βg,n,ε

x
(µn

x −µg,n
x ) (16)

+Z ∑
g∈G(x′,x)

wg,n+1
x′ σ̃g,n

x .

Because the weightswg,n+1
x′ depend on the unknown observation ˆyn+1

x′ , we use an estimate ¯wg,n
x′ (x)

of the updated weights given we are going to samplex. Note that we use the superscriptn instead
of n+1 to denote itsF n measurability.

To compute ¯wg,n
x′ (x), we use the updated precisionβg,n+1

x due to samplingx in the weights (8).

However, we use the current biasesδg,n
x because the updated biasδg,n+1

x depends on theµg,n+1
x which

we aim to estimate. The predictive weights ¯wg,n
x′ (x) are

w̄g,n
x′ (x) =

(

(

βg,n
x′ + Ig

x′,xβg,n,ε
x′

)−1
+
(

δg,n
x′
)2
)−1

∑g′∈G

(

(

βg′,n
x′ + Ig′

x′,xβg′,n,ε
x′

)−1
+
(

δg′,n
x′

)2
)−1 , (17)

where

Ig
x′,x =

{

1 if g∈ G (x′,x)
0 otherwise

.

After combining (13) with (16) and (17), we get the following knowledge gradient

υKG
x (Sn) = E

[

max
x′∈X

an
x′(x)+bn

x′(x)Z|Sn
]

−max
x′∈X

an
x′(x), (18)
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where

an
x′(x) = ∑

g∈G
w̄g,n

x′ (x)µ
g,n
x′ + ∑

g∈G(x′,x)

w̄g,n
x′ (x)

βg,n,ε
x

βg,n
x +βg,n,ε

x
(µn

x −µg,n
x ) , (19)

bn
x′(x) = ∑

g∈G(x′,x)

w̄g,n
x′ (x)σ̃

g,n
x . (20)

Note that these equations for the knowledge gradient are quite differentfrom those presented in
Frazier et al. (2008) for the knowledge gradient for independent beliefs. However, it can be shown
that without aggregation levels they coincide (ifG= 0, thenan

x′(x) = µ0,n
x′ = µn

x′ andbn
x′(x) = σ̃0,n

x ).

Following the approach of Frazier et al. (2009), which was briefly described in Section 4.2, we
definean(x) as the vector

{

an
x′(x), ∀x′ ∈ X

}

andbn(x) as the vector
{

bn
x′(x), ∀x′ ∈ X

}

. From this
we derive the adjusted vectors ˜an(x) andb̃n(x). The knowledge gradient (18) can now be computed
using

υKG,n
x = ∑

i=1,...,M̃−1

(

b̃n
i+1(x)− b̃n

i (x)
)

f

(

−
∣

∣

∣

∣

∣

ãn
i (x)− ãn

i+1(x)

b̃n
i+1(x)− b̃n

i (x)

∣

∣

∣

∣

∣

)

, (21)

whereãn
i (x) andb̃n

i (x) follow from (19) and (20), after the sort and merge operation as described in
Section 4.2.

The form of (21) is quite similar to that of the expression in Frazier et al. (2009) for the cor-
related knowledge-gradient policy, and the computational complexities of theresulting policies are
the same. Thus, like the correlated knowledge-gradient policy, the complexity of the hierarchical
knowledge-gradient policy isO

(

M2 logM
)

. An algorithm outline for the hierarchical knowledge-
gradient measurement decision can be found in Appendix A.

4.4 Remarks

Before presenting the convergence proofs and numerical results, wefirst provide the intuition behind
the hierarchical knowledge gradient (HKG) policy. As illustrated in Powelland Frazier (2008), the
independent KG policy prefers to measure alternatives with a high mean and/or with a low precision.
As an illustration, consider Figure 3, where we use an aggregation structure given by a perfect binary
tree (see Section 6.3) with 128 alternatives at the disaggregate level. At aggregation level 5, there are
four aggregated alternatives. As a result, the first four measurements are chosen such that we have
one observation for each of these alternatives. The fifth measurement will be either in an unexplored
region one aggregation level lower (aggregation level 4 consisting of eight aggregated alternatives)
or at an already explored region that has a high weighted estimate. In this case, HKG chooses to
sample from the unexplored region 48< x ≤ 64 since it has a high weighted estimate and a low
precision. The same holds for the sixth measurements which would be either from one of the three
remaining unexplored aggregated alternatives from level 4, or from analready explored alternative
with high weighted mean. In this case, HKG chooses to sample from the region 32< x≤ 40, which
corresponds with an unexplored alternative at the aggregation level 3.The last panel shows the
results after 20 measurements. From this we see HKG concentrates its measurements around the
optimum and we have a good fit in this area.
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Figure 3: Illustration of the way HKG chooses its measurements.

5. Convergence Results

In this section, we show that the HKG policy measures each alternative infinitely often (Theorem 1).
This implies that the HKG policy learns the true values of every alternative asn→ ∞ (Corollary 2)
and eventually finds a globally optimal alternative (Corollary 3). This final corollary is the main
theoretical result of this paper. The proofs of these results depend onlemmas found in Appendix C.

Although the posterior inference and the derivation of the HKG policy assumed that samples
from alternativex were normal random variables with known varianceλx, the theoretical results
in this section allow general sampling distributions. We assume only that samples from any fixed
alternativex are independent and identically distributed (iid) with finite variance, and thatδ > 0.
These distributions may, of course, differ acrossx. Thus, even if the true sampling distributions do
not meet the assumptions made in deriving the HKG policy, we still enjoy convergence to a globally
optimal alternative. We continue to defineθx to be the true mean of the sampling distribution from
alternativex, but the true variance of this distribution can differ fromλx.

Theorem 1 Assume that samples from any fixed alternative x are iid with finite variance, and that
δ > 0. Then, the HKG policy measures each alternative infinitely often (i.e.,limn→∞ m0,n

x = ∞ for
each x∈ X ) almost surely.

Proof Consider what happens as the number of measurementsn we make under the HKG policy
goes to infinity. LetX∞ be the set of all alternatives measured infinitely often under our HKG policy,
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and note that this is a random set. Suppose for contradiction thatX∞ 6= X with positive probability,
that is, there is an alternative that we measure only a finite number of times. LetN1 be the last time
we measure an alternative outside ofX∞. We compare the KG valuesυKG,n

x of those alternatives
within X∞ to those outsideX∞.

Let x ∈ X∞. We show that limn→∞ υKG,n
x = 0. Since f is an increasing non-negative function,

andb̃n
i+1(x)− b̃n

i (x)≥ 0 by the assumed ordering of the alternatives, we have the bounds

0≤ υKG,n
x ≤ ∑

i=1,...,M̃−1

(

b̃n
i+1(x)− b̃n

i (x)
)

f (0).

Taking limits, limn→∞ υKG,n
x = 0 follows from limn→∞ b̃n

i (x) = 0 for i = 1, . . . ,M̃, which follows
in turn from limn→∞ bn

x′(x) = 0 ∀x′ ∈ X as shown in Lemma 8.

Next, letx /∈ X∞. We show that liminfn→∞ υKG,n
x > 0. LetU = supn,i |an

i (x)|, which is almost
surely finite by Lemma 7. Letx′ ∈ X∞. At least one such alternativex′ must exist since we allocate
an infinite number of measurements andX is finite. Lemma 9 shows

υKG,n
x ≥ 1

2
|bn

x′(x)−bn
x(x)| f

( −4U
|bn

x′(x)−bn
x(x)|

)

.

From Lemma 8, we know that liminfn→∞ bn
x(x) > 0 and limn→∞ bn

x′(x) = 0. Thus,

b∗ = liminfn→∞ |bn
x(x)− bn

x′(x)| > 0. Taking the limit inferior of the bound onυKG,n
x and noting

the continuity and monotonicity off , we obtain

liminf
n→∞

υKG,n
x ≥ 1

2
b∗ f

(−4U
b∗

)

> 0.

Finally, since limn→∞ υKG,n
x = 0 for all x ∈ X∞ and liminfn→∞ υKG,n

x′ > 0 for all x′ /∈ X∞, each

x′ /∈ X∞ has ann> N1 such thatυKG,n
x′ > υKG,n

x ∀x∈ X∞. Hence we choose to measure an alternative
outsideX∞ at a timen> N1. This contradicts the definition ofN1 as the last time we measured out-
sideX∞, contradicting the supposition thatX∞ 6= X . Hence we may conclude thatX∞ = X , meaning
we measure each alternative infinitely often.

Corollary 2 Assume that samples from any fixed alternative x are iid with finite variance, and that
δ > 0. Then, under the HKG policy,limn→∞ µn

x = θx almost surely for each x∈ X .

Proof Fix x. We first considerµ0,n
x , which can be written as

µ0,n
x =

β0,0
x µ0,0

x +m0,n
x (λx)

−1ȳn
x

β0,0
x +m0,n

x (λx)−1
,

where ȳn
x is the average of all observations of alternativex by time n. As n → ∞, m0,n

x → ∞ by
Theorem 1. Thus, limn→∞ µ0,n

x = limn→∞ ȳn
x, which is equal toθx almost surely by the law of large

numbers.
We now consider the weightswg,n

x . Forg 6= 0, (8) shows

wg,n
x ≤

(

(σg,n
x )2+(δg,n

x )2
)−1

(σ0,n
x )−2+

(

(σg,n
x )2+(δg,n

x )2
)−1 .
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When n is large enough that we have measured at least one alternative inX g(x), thenδg,n
x ≥ δ,

implying
(

(σg,n
x )2+(δg,n

x )2
)−1 ≤ δ−2 andwg,n

x ≤ δ−2/((σ0,n
x )−2+ δ−2). As n → ∞, m0,n

x → ∞ by

Theorem 1 and(σ0,n
x )−2 = β0,0+m0,n

x (λx)
−1 → ∞. This implies that limn→∞ wg,n

x = 0. Also observe
thatw0,n

x = 1−∑g6=0wg,n
x implies limn→∞ w0,n

x = 1.
These limits for the weights, the almost sure finiteness of supn |µ

g,n
x | for eachg from Lemma 7,

and the definition (7) ofµn
x together imply limn→∞ µn

x = limn→∞ µ0,n
x , which equalsθx as shown

above.

Finally, Corollary 3 below states that the HKG policy eventually finds a globally optimal alter-
native. This is the main result of this section. In this result, keep in mind that ˆxn = argmaxxµN

x is the
alternative one would estimate to be best at timeN, given all the measurements collected by HKG.
It is this estimate that converges to the globally optimal alternative, and not the HKG measurements
themselves.

Corollary 3 For each n, letx̂n ∈ argmaxxµn
x. Assume that samples from any fixed alternative x are

iid with finite variance, and thatδ > 0. Then, under the HKG policy, there exists an almost surely
finite random variable N′ such thatx̂n ∈ argmaxx θx for all n > N′.

Proof Let θ∗ = maxx θx andε = min{θ∗ − θx : x ∈ X ,θ∗ > θx}, whereε = ∞ if θx = θ∗ for all
x. Corollary 2 states that limn→∞ µn

x = θx almost surely for allx, which implies the existence
of an almost surely finite random variableN′ with maxx |µn

x − θx| < ε/2 for all n > N′. On the
event{ε = ∞} we may takeN′ = 0. Fix n > N′, let x∗ ∈ argmaxx θx, and letx′ /∈ argmaxx θx.
Then µn

x∗ − µn
x′ = (θx∗ − θx′) + (−θx∗ + µn

x∗) + (θx′ − µn
x′) > θx∗ − θx′ − ε ≥ 0. This implies that

x̂n ∈ argmaxx θx.

6. Numerical Experiments

To evaluate the hierarchical knowledge-gradient policy, we perform anumber of experiments. Our
objective is to find the strengths and weaknesses of the HKG policy. To this end, we compare HKG
with some well-known competing policies and study the sensitivity of these policiesto various
problem settings such as the dimensionality and smoothness of the function, and the measurement
noise.

6.1 Competing Policies

We compare the Hierarchical Knowledge Gradient (HKG) algorithm against several ranking and
selection policies: the Interval Estimation (IE) rule from Kaelbling (1993), the Upper Confidence
Bound (UCB) decision rule from Auer et al. (2002), the IndependentKnowledge Gradient (IKG)
policy from Frazier et al. (2008), Boltzmann exploration (BOLTZ), and pure exploration (EXPL).

In addition, we compare with the Knowledge Gradient policy for correlated beliefs (KGCB)
from Frazier et al. (2009) and, from the field of Bayesian global optimization, we select the Se-
quential Kriging Optimization (SKO) policy from Huang et al. (2006). SKO is an extension of the
well known Efficient Global Optimization (EGO) policy (Jones et al., 1998) tothe case with noisy
measurements.
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We also consider an hybrid version of the HKG algorithm (HHKG) in which weonly exploit the
similarity between alternatives in the updating equations and not in the measurement decision. As a
result, this policy uses the measurement decision of IKG and the updating equations of HKG. The
possible advantage of this hybrid policy is that it is able to cope with similarity between alternatives
without the computational complexity of HKG.

Since several of the policies require choosing one or more parameters, we provide a brief de-
scription of the implementation of these policies in Appendix D. For those policies that require it,
we perform tuning using all one-dimensional test functions (see Section 6.2). For the Bayesian
approaches, we always start with a non-informative prior.

6.2 Test Functions

To evaluate the policies numerically, we use various test functions with the goal of finding the
highest point of each function. Measuring the functions is done with normally distributed noise with
varianceλ. The functions are chosen from commonly used test functions for similar procedures.

6.2.1 ONE-DIMENSIONAL FUNCTIONS

First we test our approach on one-dimensional functions. In this case,the alternativesx simply
represent a single value, which we express byi or j. As test functions we use a Gaussian process
with zero mean and power exponential covariance function

Cov(i, j) = σ2exp

{

−
( |i− j|
(M−1)ρ

)η}

,

which results in a stationary process with varianceσ2 and a length scaleρ.
Higher values ofρ result in fewer peaks in the domain and higher values ofη result in smoother

functions. Here we fixη = 2 and varyρ ∈ 0.05,0.1,0.2,0.5. The choice ofσ2 determines the
vertical scale of the function. Here we fixσ2 = 0.5 and we vary the measurement varianceλ.

To generate a truthθi , we take a random draw from the Gaussian process (see, e.g., Rasmussen
and Williams, 2006) evaluated at the discretized pointsi = 1, ..,128. Figure 4 shows one test func-
tion for each value ofρ.

Next, we consider non-stationary covariance functions. We choose to use the Gibbs covariance
function (Gibbs, 1997) as it has a similar structure to the exponential covariance function but is
non-stationary. The Gibbs covariance function is given by

Cov(i, j) = σ2

√

2l(i)l( j)
l(i)2+ l( j)2 exp

(

− (i− j)2

l(i)2+ l( j)2

)

,

wherel(i) is an arbitrary positive function ini. In our experiments we use a horizontally shifted
periodic sine curve forl(i),

l (i) = 1+10

(

1+sin

(

2π
(

i
128

+u

)))

,

whereu is a random number from [0,1] that shifts the curve horizontally across thex-axis. The
function l(i) is chosen so that, roughly speaking, the resulting function has one full period, that is,
one area with relatively low correlations and one area with relatively high correlations. The area
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Figure 4: Illustration of one-dimensional test functions.

with low correlations visually resembles the case of having a stationary function with ρ = 0.05,
whereas the area with high correlations visually resembles the case of having a stationary function
with ρ = 0.5.

The policies KGCB, SKO and HKG all assume the presence of correlations infunction values.
To test the robustness of these policies in the absence of any correlation,we consider one last one-
dimensional test function. This function has an independent truth generated byθi = U [0,1], i =
1, ...,128.

6.2.2 TWO-DIMENSIONAL FUNCTIONS

Next, we consider two-dimensional test functions. First, we consider the Six-hump camel back
(Branin, 1972) given by

f (x) = 4x2
1−2.1x4

1+
1
3

x6
1+x1x2−4x2

2+4x4
2.

Different domains have been proposed for this function. Here we consider the domainx ∈
[−1.6,2.4]× [−0.8,1.2] as also used in Huang et al. (2006) and Frazier et al. (2009), and a slightly
bigger domainx ∈ [−2,3]× [−1,1.5]. The extended part of this domain contains only values far
from the optimum. Hence, the extension does not change the value and location of the optimum.

The second function we consider is the Tilted Branin (Huang et al., 2006) given by

f (x) =

(

x2−
5.1
4π2x2

1+
5
π

x1−6

)2

+10

(

1− 1
8π

)

cos(x1)+10+
1
2

x1,

with x∈ [−5,10]× [0,15].
The Six-hump camel back and Tilted Branin function are relatively smooth functions in the

sense that a Gaussian process can be fitted to the truth relatively well. Obviously, KGCB and SKO
benefit from this. To also study more messy functions, we shuffle these functions by placing a 2×2
grid onto the domain and exchange the function values from the lower left quadrant with those from
the upper right quadrant.
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With the exception of SKO, all policies considered in this paper require problems with a fi-
nite number of alternatives. Therefore, we discretize the set of alternatives and use an 32× 32
equispaced grid onR2. We choose this level of discretization because, although our method is
theoretically capable of handling any finite number of alternatives, computational issues limit the
possible number to the order of thousands. This limit also holds for KGCB, which has the same
computational complexity as HKG. For SKO we still use the continuous functionswhich should
give this policy some advantage.

6.2.3 CASE EXAMPLE

To give an idea about the type of practical problems for which HKG can beused, we consider a
transportation application (see Simao et al., 2009). Here we must decide where to send a driver
described by three attributes: (i) the location to which we are sending him, (ii) his home location
(called his domicile) and (iii) to which of six fleets he belongs. The “fleet” is a categorical attribute
that describes whether the driver works regionally or nationally and whether he works as a single
driver or in a team. The spatial attributes (driver location and domicile) are divided into 100 re-
gions (by the company). However, to reduce computation time, we aggregatethese regions into 25
regions. Our problem is to find which of the 25×25×6= 3750 is best.

To allow replicability of this experiment, we describe the underlying truth using an adaption of
a known function which resembles some of the characteristics of the transportation application. For
this purpose we use the Six-hump camel back function, on the smaller domain, as presented earlier.
We letx1 be the location andx2 be the driver domicile, which are both discretized into 25 pieces to
represent regions. To include the dependence on capacity type, we use the following transformation

g(x1,x2,x3) = p1(x3)− p2(x3)(|x1−2x2|)− f (x1,x2) ,

wherex3 denotes the capacity type. We usep2(x3) to describe the dependence of capacity type on
the distance between the location of the driver and his domicile.

We consider the following capacity types: CAN for Canadian drivers thatonly serve Canadian
loads, WR for western drivers that only serve western loads, USS for United States (US) solo
drivers, UST for US team drivers, USIS for US independent contractor solo drivers, and USIT
for US independent contractor team drivers. The parameter values are shown in Table 2. To cope
with the fact that some drivers (CAN and WR) cannot travel to certain locations, we set the value to
zero for the combinations{x3 = CAN∧x1 < 1.8} and{x3 = WR∧x1 >−0.8}. The maximum of
g(x1,x2,x3) is attained atg(0,0,US S) with value 6.5.

x3 CAN WR US S UST US IS US IT
p1(x3) 7.5 7.5 6.5 5.0 2.0 0.0
p2(x3) 0.5 0.5 2.0 0.0 2.0 0.0

Table 2: Parameter settings.

To provide an indication of the resulting function, we show maxx3 g(x1,x2,x3) in Figure 5. This
function has similar properties to the Six-hump camel back, except for the presence of discontinu-
ities due to the capacity types CAN and WR, and a twist atx1 = x2.

An overview of all test functions can be found in Table 3. Hereσ denotes the standard deviation
of the function measured over the given discretization.
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Figure 5:maxx3g(x1,x2,x3).

Type Function name σ Description
One-dimensional GP1R005 0.32 stationary GP withρ = 0.05

GP1R01 0.49 stationary GP withρ = 0.1
GP1R02 0.57 stationary GP withρ = 0.2
GP1R05 0.67 stationary GP withρ = 0.5
NSGP 0.71 non-stationary GP
IT 0.29 independent truth

Two-dimensional SHCB-DS 2.87 Six-hump camel back on small domain
SHCB-DL 18.83 Six-hump camel back on large domain
TBRANIN 51.34 Tilted Branin
SHCB-DS-SH 2.87 shuffled SHCB-DS
SHCB-DB-SH 18.83 shuffled SHCB-DL
TBRANIN-SH 51.34 shuffled TBRANIN

Case example TA 3.43 transportation application

Table 3: Overview of test functions.

6.3 Experimental Settings

We consider the following experimental factors: the measurement varianceλ, the measurement
budgetN, and for the HKG policy the aggregation structure. Given these factors,together with the
nine policies from Section 6.1 and the 15 test functions from Section 6.2, a full factorial design is
not an option. Instead, we limit the number of combinations as explained in this section.

As mentioned in the introduction, our interest is primarily in problems whereM is larger than
the measurement budgetN. However, for these problems it would not make sense to compare
with the tested versions of IE, UCB and BOLTZ since, in the absence of an informed prior, these
methods typically choose one measurement of each of theM alternatives before measuring any
alternative a second time. Although we do not do so here, one could consider versions of these
policies with informative priors (e.g., the GP-UCB policy of Srinivas et al. (2010), which uses UCB
with a Gaussian process prior), which would perform better on problems with M much larger than
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N. To obtain meaningful results for the tested versions of IE, UCB and BOLTZ, we start with an
experiment with a relatively large measurement budget and relatively largemeasurement noise. We
use all one-dimensional test functions withN = 500 and

√
λ ∈ {0.5,1}. We omit the policy HHKG,

which will be considered later.
In the remaining experiments we omit the policies IE, UCB, and BOLTZ that use non-informative

priors because they would significantly underperform the other policies.This is especially true with
the multi-dimensional problems where the number of alternatives after discretization is much bigger
then the measurement budget. We start with testing the remaining policies, together with the hybrid
policy HHKG, on all one-dimensional test functions using

√
λ ∈ {0.1,0.5,1} andN = 200. Next,

we use the non-stationary function to study (i) the sensitivity of all policies onthe value ofλ, using√
λ ∈ {0.1,0.5,1,1.5,2,2.5} and (ii) the sensitivity of HKG on the aggregation structure. For the

latter, we consider two values for
√

λ, namely 0.5 and 1, and five different aggregation structures as
presented at the end of this subsection.

For the stationary one-dimensional setting, we generate 10 random functions for each value of
ρ. For the non-stationary setting and the random truth setting, we generate 25random functions
each. This gives a total of 90 different functions. We use 50 replications for each experiment and
each generated function.

For the multi-dimensional functions we only consider the policies KGCB, SKO, HKG, and
HHKG. For the two-dimensional functions we useN = 200. For the transportation application we
useN = 500 and also present the results for intermediate values ofn. We set the values forλ by
taking into account the standard deviationσ of the functions (see Table 3). For the Six-hump camel
back we use

√
λ ∈ {1,2,4}, for the Tilted Branin we use

√
λ ∈ {2,4,8}, and for the case example

we use
√

λ ∈ {1,2}. For the multi-dimensional functions we use 100 replications.
During the replications we keep track of the opportunity costs, which we define asOC(n) =

(maxi θi)− θi∗ , with i∗ ∈ argmaxxµn
x, that is, the difference between the true maximum and the

value of the best alternative found by the algorithm aftern measurements. Our key performance
indicator is the mean opportunity costsE[OC(n)] measured over all replications of one or more ex-
periments. For clarity of exposition, we also group experiments and introduce a set GP1 containing
the 40 stationary one-dimensional test functions and a set NS0 containing the 50 non-stationary and
independent truth functions. When presenting theE[OC(n)] in tabular form, we bold and underline
the lowest value, and we also bold those values that are not significantly different from the lowest
one (using Welch’s t test at the 0.05 level).

We end this section with an explanation of the aggregation functions used by HKG. Our default
aggregation structure is given by a binary tree, that is,|X g(x)| = 2g for all x ∈ X g andg∈ G . As
a result, we have 8 (ln(128)/ ln(2)+1) aggregation levels for the one-dimensional problems and 6
(ln(32)/ ln(2)+1) for the two-dimensional problems. For the experiment with varying aggregation
functions, we introduce a variableω to denote the number of alternativesGg(x),g<G that should be
aggregated in a single alternativeGg+1(x) one aggregation level higher. At the end of the domain this
might not be possible, for example, if we have an odd number of (aggregated) alternatives. In this
case, we use the maximum number possible. We consider the valuesω ∈ {2,4,8,16}, whereω = 2
resembles the original situation of using a binary tree. To evaluate the impact of having a difference
in the size of aggregated sets, we introduce a fifth aggregation structure whereω alternately takes
values 2 and 4.

For the transportation application, we consider five levels of aggregation.At aggregation level 0,
we have 25 regions for location and domicile, and 6 capacity types, producing 3750 attribute vectors.
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At aggregation level 1, we represent the driver domicile as one of 5 areas. At aggregation level 2,
we ignore the driver domicile; at aggregation level 3, we ignore capacity type; and at aggregation
level 4, we represent location as one of 5 areas.

An overview of all experiments can be found in Table 4.

Experiment Number of runs
One-dimensional long 90×8×2×1×50= 72,000
One-dimensional normal 90×6×3×1×50= 81,000
One-dimensional varyingλ 25×6×6×1×50= 45,000
One-dimensional varyingω 25×1×2×5×50= 12,500
Two-dimensional 6×3×3×1×100= 27,000
Transportation application 2×3×2×1×100= 6000

Table 4: Overview of experiments. The number of runs is given by #functions× #policies× #λ’s
× #ω’s × #replications. The total number of experiments, defined by the number of unique
combinations of function, policy,λ, andω, is 2696.

7. Numerical Results

In this section we present the results of the experiments described in Section 6. We demonstrate that
HKG performs best when measured by the average performance across all problems. In particular,
it outperforms others on functions for which the use of an aggregation function seems to be a natural
choice, but it also performs well on problems for which the other policies are specifically designed.
In the following subsections we present the policies, the test functions, and the experimental design.

7.1 One-dimensional Functions

In our first experiment, we focus on the comparison with R&S policies using a relatively large
measurement budget. A complete overview of the results, forn = 500 and an intermediate value
n = 250, can be found in Appendix E. To illustrate the sensitivity of the performance of these
policies to the number of measurementsn, we also provide a graphical illustration in Figure 6. To
keep these figures readable, we omit the policies UCB and IKG since their performance is close to
that of IE (see Appendix E).

As expected, the R&S policies perform well with many measurements. IE generally performs
best, closely followed by UCB. BOLTZ only performs well for few measurements (n ≤ M) after
which it underperforms the other policies with the exception of EXPL, which spends an unnecessary
portion of its measurements on less attractive alternatives.

With increasingn, IE eventually outperforms at least one of the advanced policies (KGCB,
SKO, and HKG). However, it seems that the number of measurements required for IE to outperform
KGCB and HKG increases with increasing measurement varianceλ. We further see, from Appendix
E, that IE outperforms IKG on most instances. However, keep in mind that we tuned IE using exactly
the functions on which we test while IKG does not require any form of tuning. The qualitative
change in the performance of IE atn= 128 samples is due to the fact that the version of IE against
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Figure 6: Results for the one-dimensional long experiments.

which we compare uses a non-informative prior, which causes it to measure each alternative exactly
once before it can use the IE logic to decide where to allocate future samples.

With respect to the more advanced policies, we see that HKG outperforms theothers on the
NS0 functions (non-stationary covariance and independent truth) andperforms competitively on
the stationary GPs in the case of relatively largeλ. Obviously, KGCB and SKO are doing well on
the latter case since the truths are drawn from a Gaussian process and these policies fit a Gaussian
process to the evaluated function values. Apart from the given aggregation function, HKG does not
assume any structure and therefore has a slower rate of convergenceon these instances. Further, it is
remarkable to see that SKO is only competitive on GP1 withλ = 0.5 but not withλ = 1. We return
to this issue in the next experiment.

For a more detailed comparison between KGCB, SKO and HKG we now focus on smaller
measurement budgets. A summary of the results can be found in Table 5. More detailed results in
combination with a further analysis can be found in Appendix E. As mentioned before, we bold and
underline the lowest value, and we also bold those values that are not significantly different from
the lowest one.

On the GP1 functions withλ ≤ 0.5, HKG is outperformed by KGCB and SKO. SKO does
particularly well during the early measurements (n=50) after which it is outperformed by KGCB
(n=200). On the GP1 functions withλ = 1, we see HKG becomes more competitive: in almost
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Function
√

λ n EXPL IKG KGCB SKO HKG HHKG
GP1 0.1 50 0.090 0.081 0.0100.008 0.034 0.078

200 0.051 0.006 0.002 0.004 0.008 0.008
0.5 50 0.265 0.252 0.1230.104 0.141 0.175

200 0.214 0.075 0.037 0.041 0.059 0.065
1 50 0.460 0.441 0.286 0.3020.265 0.305

200 0.415 0.182 0.122 0.181 0.121 0.135
NS0 0.1 50 0.111 0.096 0.066 0.0930.051 0.113

200 0.043 0.008 0.017 0.060 0.009 0.014
0.5 50 0.301 0.288 0.189 0.2210.170 0.212

200 0.219 0.086 0.078 0.1360.065 0.081
1 50 0.498 0.468 0.323 0.3750.306 0.335

200 0.446 0.213 0.183 0.2380.141 0.163

Table 5:E[OC(n)] on the one-dimensional normal experiments.

all cases it outperforms SKO, and with a limited measurement budget (n=50) italso outperforms
KGCB.

On the NS0 functions, we see that HKG always outperforms KGCB and SKOwith the only
exception being the independent truth (IT) function withλ = 1 andn= 50 (see Appendix E). We
also see that SKO is always outperformed by KGCB. Especially in the case with low measurement
noise (λ = 0.1) and a large number of measurements (n = 200), SKO performs relatively poorly.
This is exactly the situation in which one would expect to obtain a good fit, but a fitted Gaussian
process prior with zero correlation is of no use. With an increasing numberof measurements, we
see SKO is even outperformed by EXPL.

In general, HKG seems to be relatively robust in the sense that, wheneverit is outperformed by
other policies, it still performs well. This claim is also supported by the opportunity costs measured
over all functions and values ofλ found in Table 6 (note this is not a completely fair comparison
since we have slightly more non-stationary functions, and the average opportunity costs over all
policies is slightly higher in the non-stationary cases). Even though HKG seems to be quite com-
petitive, HKG seems to have convergence problems in the low noise case (λ = 0.1). We analyze this
issue further in Appendix E. The hybrid policy does not perform well, although it outperforms IKG
on most problem instances.

EXPL IKG KGCB SKO HKG HHKG
E[OC(50)] 0.289 0.273 0.169 0.1890.163 0.205
E[OC(200)] 0.232 0.096 0.075 0.1140.068 0.078

Table 6: Aggregate results for the one-dimensional normal experiments.

In the next experiment we vary the measurement varianceλ. Figure 7 shows the relative reduc-
tion in E[OC(50)] compared with the performance of EXPL. For clarity of exposition, we omitted
the results forn = 200 and the performance of IKG. These results confirm our initial conclusions
with respect to the measurement variance: increasingλ gives HKG a competitive advantage whereas
the opposite holds for SKO. On the GP1R02 functions, HKG is outperformedby SKO and KGCB
for λ ≤ 0.5. With λ > 0.5, the performance of KGCB, HKG, and HHKG is close and they all
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outperform SKO. On the NSGP functions, the ordering of policies seem to remain the same for all
values ofλ, with the exception that withλ ≥ 1, SKO is outperformed by all policies. The difference
between KGCB and HKG seems to decline with increasingλ.
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Figure 7: Sensitivity to the measurement noise.

As a final test with one-dimensional functions, we now vary the aggregation structure used
by HKG. The results can be found in Figure 8. Obviously, HKG is sensitiveto the choice of
aggregation structure. The aggregation function withω = 16 is so coarse that, even on the lowest
aggregation level, there exists aggregate alternatives that have local maxima as well as local minima
in their aggregated set. We also see that the performance under theω = 2/4 structure is close to
that ofω = 4, which indicates that having some symmetry in the aggregation function is preferable.
When comparing the two figures, we see that the impact of the aggregation function decreases with
increasingλ. The reason for this is that with higherλ, more weight is given to the more aggregate
levels. As a result, the benefit of having more precise lower aggregation levels decreases.
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Figure 8: Sensitivity of HKG to the aggregation function.
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7.2 Two-dimensional Functions

An overview of results for the two-dimensional functions can be found in Table 7. From these
results we draw the following conclusions:

1. On the standard test functions, SHCB-DS and TBRANIN, HKG is outperformed by KGCB
and SKO. However, with increasingλ, HKG still outperforms SKO.

2. In case of the Six-hump camel back function, just extending the domain a bit (where the
extended part of the domain only contains points with large opportunity costs)has a major
impact on the results. With the exception of one outcome (KGCB withλ= 1), the opportunity
costs increase for all policies. This makes sense because there are simplymore alternatives
with higher opportunity costs. For KGCB and SKO, these extreme values alsoplay a role in
fitting the Gaussian process prior. As a result, we have a less reliable fit atthe area of interest,
something especially SKO suffers from. Obviously, also HKG ‘loses’ measurements on these
extreme values. However, their influence on the fit (via the aggregation function) is limited
since HKG automatically puts a low weight on them. As a result, HKG outperforms the other
policies in almost all cases.

3. Shuffling the Six-hump camel back has a similar influence to extending the domain. In all
cases, HKG outperforms KGCB and SKO. Shuffling the TBRANIN has an especially large
impact on the performance of KGCB and SKO. However, not all performance differences
with the shuffled TBRANIN are significant due to relatively large variances, especially in the
case ofn= 50.

7.3 Example Case

The results for the transportation application can be found in Figure 9. As mentioned in Section
6, the first two dimensions of this problem are described by the Six-hump camel back function on
the small domain. This function is also considered in Huang et al. (2006) andFrazier et al. (2009)
where the policies SKO and KGCB respectively are introduced. Comparedto HKG, these policies
perform relatively well on this standard test function. It is interesting to see that the addition of a
third, categorical, dimension changes the situation.

As can be seen from Figure 9, HKG outperforms SKO and KGCB for both values ofλ and
almost all intermediate values ofn. Measured atn = 100 andn = 200, the differences between
HKG and both KGCB and SKO are significant (again using the 0.05 level). The hybrid policy
HHKG is doing remarkably well; the differences with HKG atn = 200 are not significant, which
is partly due to the fact that the variances with HHKG are higher. The performance of HHKG is
especially remarkable since this policy requires only a fraction of the computation time of the others.
Given, the large number of measurements and alternatives, the running timesof KGCB, SKO, and
HKG take multiple hours per replication whereas HHKG requires around 10 seconds.

8. Conclusions

We have presented an efficient learning strategy to optimize an arbitrary function that depends on
a multi-dimensional vector with numerical and categorical attributes. We do notattempt to fit a
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E[OC(50)] E[OC(100)]
Function

√
λ KGCB SKO HKG HHKG KGCB SKO HKG HHKG

SHCB-DS 1 0.28 0.35 0.37 0.55 0.18 0.30 0.29 0.33
2 0.56 0.53 0.72 0.84 0.38 0.41 0.48 0.54
4 0.95 1.17 1.19 1.08 0.72 0.89 0.92 0.78

SHCB-DB 1 0.53 0.70 0.57 0.58 0.12 0.53 0.41 0.35
2 1.03 1.11 0.73 0.92 0.83 0.95 0.46 0.64
4 1.55 1.50 1.21 1.34 1.33 1.42 0.89 1.05

SHCB-DS-SF 1 0.60 0.63 0.32 0.51 0.35 0.41 0.20 0.31
2 0.90 0.95 0.67 0.81 0.69 0.86 0.42 0.51
4 1.17 1.44 1.13 1.22 1.05 1.23 0.86 0.89

SHCB-DB SF 1 1.19 0.75 0.48 0.65 0.60 0.81 0.29 0.38
2 1.66 1.23 0.69 0.99 1.08 1.07 0.48 0.64
4 1.85 1.41 1.00 1.14 1.36 1.43 0.74 0.86

TBRANIN 2 0.16 0.30 2.33 3.30 0.08 0.23 0.79 1.57
4 0.67 1.21 2.40 4.12 0.33 0.85 1.16 2.27
8 3.64 2.88 3.81 4.99 1.29 2.03 2.12 2.80

TBRANIN-SF 2 21.85 1.42 2.18 3.76 7.59 1.42 0.82 1.68
4 10.61 2.84 2.57 4.55 3.17 1.99 1.25 2.22
8 7.63 5.01 4.07 4.50 6.47 3.46 2.33 2.48

Table 7: Results for the 2-dimensional test functions.
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Figure 9: Results for the transportation application.

function to this surface, but we do require a family of aggregation functions. We produce estimates
of the value of the function using a Bayesian adaptation of the hierarchicalestimation procedure
suggested by George et al. (2008). We then present an adaptation of the knowledge-gradient proce-
dure of Frazier et al. (2009) for problems with correlated beliefs. Thatmethod requires the use of a
known covariance matrix, while in our strategy, we compute covariances from our statistical model.
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The hierarchical knowledge-gradient (HKG) algorithm shares the inherent steepest ascent prop-
erty of the knowledge gradient algorithm, which chooses samples that produce the greatest single-
sample improvement in our ability to maximize the function. We also prove that the algorithm
is guaranteed to produce the optimal solution in the many-sample limit, since the HKG algorithm
measures every alternative infinitely often.

We close with experimental results on a class of one and two dimensional scalar functions
and a multi-attribute problem drawn from a transportation application. In theseexperiments, HKG
performs better than all competing policies tested, when measured by average performance across
all problems. In particular, it outperforms the other policies on functions for which the use of an
aggregation function seems to be a natural choice (e.g., those with categorical dimensions), but it
also performs well on problems for which the other policies are specifically designed.

The limitation of the HKG policy is that it requires a given aggregation structure, which means
that we depend on having some insight into the problem. When this is the case, the ability to
capture this knowledge in an aggregation structure is actually a strength, since we can capture the
most important features in the highest levels of aggregation. If we do not have this insight, designing
the aggregation functions imposes an additional modeling burden.

We mention two other limitations that give rise to further research. First, we observe conver-
gence problems for HKG in the case of low measurement variance where HKG tends to become to
confident about values of alternatives never measured before. We describe this issue in more detail
in Appendix E. Second, the HKG policy requires enumerating all possible choices before deter-
mining the next measurement. This is appropriate for applications where we need to make good
choices with a small number of measurements, typically far smaller than the set ofalternatives.
However, this limits our approach to handling perhaps thousands of choices, but not millions. A so-
lution here would be to create a limited set of choices for the next measurement.As a starting point
we might create this set by running HKG on a higher aggregation level whichhas fewer elements.
Preliminary experiments have shown that this method can drastically reduce computation time with-
out harming the performance too much. Future research could further explore such computational
improvements.

We mention one final direction for future research. While we have presented a proof of con-
vergence for the HKG policy, there are no theoretical results currently available that bound the rate
at which it converges. Future research could derive such bounds,or could create new techniques
appropriate for problems with hierarchical aggregation structures that have bounds on their conver-
gence rates. One approach for creating such techniques would be to begin with an online learning
technique with bounds on cumulative regret, and then to use a batch-to-online conversion technique
to derive a procedure with a bound on the rate at which its terminal regret converges to zero.

Appendix A.

The overall sampling and updating procedure used for HKG is shown in Algorithm 1 and an outline
for the HKG measurement decision is shown in Algorithm 2.

2959



MES, POWELL AND FRAZIER

Algorithm 1 Sampling and updating procedure.
Require: Inputs(Gg)∀g∈ G , (λx)∀x∈ X , andδ

1: Initialize (µ0
x,β0

x, g̃
0
x)∀x∈ X , (µg,0

x ,βg,0
x ,δg,0

x ,βg,0,ε
x )∀g∈ G ,x∈ X

2: for n= 1 toN do
3: Use Algorithm 2 to get measurement decisionx∗

4: Measurex∗ and observe ˆyn
x∗

5: Compute ˜gn
x ∀x∈ X

6: Computeµg,n
x , βg,n

x , andδg,n
x ∀g∈ G ,x∈ X using (2), (3), and (9)

7: Computewg,n
x with (σg,n

x )2 = 1/βg,n
x ∀g∈ G ,x∈ X using (8)

8: Computeβg,n,ε
x = (σg,n,ε

x )−2 ∀g∈ G ,x∈ X using (10)
9: Computeµn

x andβn
x with (σg,n

x )2 = 1/βg,n
x ∀x∈ X using (4) and (5)

10: end for
11: return xN ∈ argmaxx∈X µN

x

Algorithm 2 Hierarchical knowledge-gradient measurement decision.

Require: Inputs(Gg)∀g∈ G , (λx,µn
x,βn

x)∀x∈ X , (µg,n
x ,βg,n

x ,δg,n
x ,βg,n,ε

x )∀g∈ G ,x∈ X
1: for x= 1 toM do
2: Computeσ̃g,n

x ∀g∈ G using (15) with(σn
x)

2 = 1/βn
x

3: for x′ = 1 toM do
4: Compute ¯wg,n

x′ (x) ∀g∈ G using (17)
5: Computean

x′(x) andbn
x′(x) using (19) and (20)

6: end for
7: Sort the sequence of pairs(an

i (x),b
n
i (x))

M
i=1 so that thebn

i (x) are in non-decreasing order and
ties are broken so thatan

i (x)< an
i+1(x) if bn

i (x) = bn
i+1(x).

8: for i = 1 toM−1 do
9: if bn

i (x) = bn
i+1(x) then

10: Remove entryi from the sequence(an
i (x),b

n
i (x))

M
i=1

11: end if
12: end for
13: Use Algorithm 1 from Frazier et al. (2009) to compute ˜an

i (x) andb̃n
i (x)

14: ComputeυKG,n
x using (21)

15: if x= 1 or υKG,n
x ≥ υ∗ then

16: υ∗ = υKG,n
x , x∗ = x

17: end if
18: end for
19: return x∗
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Appendix B.

Proposition 4 The posterior belief onθx given observations up to time n for all aggregation levels
is normally distributed with mean and precision

µn
x =

1
βn

x

[

β0
xµ0

x + ∑
g∈G

(

(σg,n
x )2+νg

x

)−1
µg,n

x

]

,

βn
x = β0

x + ∑
g∈G

(

(σg,n
x )2+νg

x

)−1
.

Proof Let Yg,n
x =

{

ŷg,m
xm−1 : m≤ n,Gg(x) = Gg(xm−1)

}

. This is the set of observations from levelg
pertinent to alternativex.

Let H be a generic subset ofG . We show by induction on the size of the setH that the posterior
on θx givenYg,n

x for all g∈ H is normal with mean and precision

µH,n
x =

1

βH,n
x

[

β0
xµ0

x + ∑
g∈H

(

(σg,n
x )2+νg

x

)−1
µg,n

x

]

,

βH,n
x = β0

x + ∑
g∈H

(

(σg,n
x )2+νg

x

)−1
.

Having shown this statement for allH, the proposition follows by takingH = G .
For the base case, when the size ofH is 0, we haveH = /0 and the posterior onθ is the same as

the prior. In this case the induction statement holds becauseµH,n
x = µ0

x andβH,n
x = β0

x.
Now suppose the induction statement holds for allH of a sizemand consider a setH ′ with m+1

elements. Chooseg∈ H ′ and letH = H ′ \{g}. Then the induction statement holds forH because

it has sizem. LetPH denote the prior conditioned onYg′,n
x for g′ ∈ H, and definePH ′ similarly. We

show that the induction statement holds forH ′ by considering two cases:Yg,n
x empty and non-empty.

If Yg,n
x is empty, then the distribution ofθx is the same under bothPH andPH ′ . Additionally, from

the fact thatσg,n
x = ∞ it follows thatµH,n

x = µH ′,n
x andβH,n

x = βH ′,n
x . Thus, the induction statement

holds forH ′.
Now consider the case thatYg,n

x is non-empty. Letϕ be the normal density, and lety denote the
observed value ofYg,n

x . Then, by the definitions ofH andH ′, and by Bayes rule,

PH ′ {θx ∈ du}= PH {θx ∈ du |Yg,n
x = y} ∝ PH {Yg,n

x ∈ dy | θx = u}PH {θx ∈ du} .
The second term may be rewritten using the induction statement asPH {θx ∈ du} =

ϕ
(

(u−µH,n
x )/σH,n

x

)

. The first term may be rewritten by first noting thatYg,n
x is independent of

Yg′,n
x for g′ ∈ H, and then conditioning onθg

x. This provides

PH {Yg,n
x ∈ dy | θx = u} = P{Yg,n

x ∈ dy | θx = u}
=

∫
R

P{Yg,n
x ∈ dy | θg

x = v}P{θg
x = v | θx = u} dv

∝
∫
R

ϕ
(

µg,n
x −v

σg,n
x

)

ϕ

(

v−u
√

νg
x

)

dv

∝ ϕ

(

µg,n
x −u

√

(σg,n
x )2+νg

x

)

.

2961



MES, POWELL AND FRAZIER

In the third line, we use the fact thatPH
{

Yg,n
x ∈ dy | θg

x = v
}

is proportional (with respect tou)
to ϕ

(

(µg,n
x −v)/σg,n

x
)

, which may be shown by induction onn from the recursive definitions forµg,n
x

andβg,n
x .

Using this, we write

PH ′ {θx ∈ du} ∝ ϕ

(

u−µg,n
x

√

(σg,n
x )2+νg

x

)

ϕ

(

u−µH,n
x

σH,n
x

)

∝ ϕ

(

u−µH ′,n
x

σH ′,n
x

)

,

which follows from an algebraic manipulation that involves completing the square.
This shows that the posterior is normally distributed with meanµH ′,n

x and variance(σH ′,n
x )2,

showing the induction statement.

Appendix C.

This appendix contains all the lemmas required in the proofs of Theorem 1 and Corollaries 2 and 3.

Lemma 5 If z1,z2, . . . is a sequence of non-negative real numbers bounded above by a constant
a< ∞, and sn = ∑k≤nzk, then∑n(zn/sn)

21{sn>0} is finite.

Proof Let n0 = inf {n≥ 0 : sn > 0}, and, for each integerk, let nk = inf {n≥ 0 : sn > ka}. Then,
noting thatsn = 0 for all n< n0 and thatsn > 0 for all n≥ n0, we have

∑
n
(zn/sn)

21{sn>0} =

[

∑
n0≤n<n1

(zn/sn)
2

]

+
∞

∑
k=1

[

∑
nk≤n<nk+1

(zn/sn)
2

]

.

We show that this sum is finite by showing that the two terms are both finite. The first term may
be bounded by

∑
n0≤n<n1

(zn/sn)
2 ≤ ∑

n0≤n<n1

(zn/zn0)
2 ≤

(

∑
n0≤n<n1

zn/zn0

)2

≤ (a/zn0)
2 < ∞.

The second term may be bounded by

∞

∑
k=1

nk+1−1

∑
n=nk

(zn/sn)
2 ≤

∞

∑
k=1

nk+1−1

∑
n=nk

(zn/ka)2 ≤
∞

∑
k=1

(

nk+1−1

∑
n=nk

zn/ka

)2

=
∞

∑
k=1

(

snk+1−1−snk +znk

ka

)2

≤
∞

∑
k=1

(

(k+1)a−ka+a
ka

)2

=
∞

∑
k=1

(2/k)2 =
2
3

π2 < ∞.
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Lemma 6 Assume that samples from any fixed alternative x are iid with finite variance. Fix g∈ G
and x∈ X and let

ȳn
x =

[

∑
m<n

βg,m,ε
x ŷm+1

x 1{xm=x}

]

/

[

∑
m<n

βg,m,ε
x 1{xm=x}

]

for all those n for which the denominator is strictly positive, and letȳn
x = 0 for those n for which the

denominator is zero. Then,supn |ȳn
x| is finite almost surely.

Proof Let αn =
[

βg,n,ε
x 1{xn=x}

]/[

∑m≤n βg,m,ε
x 1{xm=x}

]

, so that

ȳn+1
x = (1−αn)ȳn

x +αnŷn+1
x .

Let vx be the variance of samples from alternativex, which is assumed finite. LetMn = (ȳn
x −

θx)
2+∑∞

m=n1{xm=x}vx(αm)2, and note that Lemma 5 and the upper bound(minx′ λx′)
−1 on βg,m,ε

x

together imply thatM0 is finite. We will show thatMn is a supermartingale with respect to the
filtration generated by(ŷn

x)
∞
n=1. In this proof, we writeEn to indicateE[ · | F n], the conditional

expectation taken with respect toF n.
ConsiderEn[Mn+1]. On the event{xn 6= x} (which isF n measurable), we haveMn+1 = Mn and

E
n
[

Mn+1−Mn
]

= 0. On the event{xn = x} we computeEn
[

Mn+1−Mn
]

by first computing

Mn+1−Mn = (ȳn+1
x −θx)

2− (ȳn
x −θx)

2−vx(αn)2

= ((1−αn)ȳn
x +αnŷn+1

x −θx)
2− (ȳn

x −θx)
2−vx(αn)2

= −(αn)2(ȳn
x −θx)

2+2αn(1−αn)(ȳn
x −θx)(ŷ

n+1
x −θx)

+(αn)2[(ŷn+1
x −θx)

2−vx
]

.

Then, theF n measurability ofαn and ȳn
x, together with the facts thatEn

[

ŷn+1
x −θx

]

= 0 and

E
n
[

(

ŷn+1
x −θx

)2
]

= vx, imply

E
[

Mn+1−Mn]=−(αn)2(ȳn
x −θx)

2 ≤ 0.

SinceMn ≥ 0 andM0 < ∞, the integrability ofMn follows. Thus,(Mn)n is a supermartingale
and has a finite limit almost surely. Then,

lim
n→∞

Mn = lim
n→∞

(ȳn
x −θx)

2+
∞

∑
m=n

1{xm=x}vx(αm)2 = lim
n→∞

(ȳn
x −θx)

2.

The almost sure existence of a finite limit for(ŷn
x −θx)

2 implies the almost sure existence of a
finite limit for |ŷn

x −θx| as well. Finally, the fact that a sequence with a limit has a finite supremum
implies that supn |ȳn

x| ≤ supn |ȳn
x −θx|+ |θx|< ∞ almost surely.

Lemma 7 Assume that samples from any fixed alternative x are iid with finite variance. Let x,x′ ∈
X , g∈ G . Thensupn |µ

g,n
x | andsupn |an

x′(x)| are almost surely finite.
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Proof We first show supn |µ
g,n
x |< ∞ almost surely for fixedx andg. We writeµg,n

x as

µg,n
x =

βg,0
x µg,0

x +∑m<n βg,m,ε
x 1{xm∈X g(x)}ŷ

m+1
xm

βg,0
x +∑m<n βg,m,ε

x 1{xm∈X g(x)}
= pn

0µg,0
x + ∑

x′∈X g(x)

pn
x′ ȳ

n
x′ ,

where the ¯yn
x′ are as defined in Lemma 6 and thepn

x′ are defined forx′ ∈ X g(x) by

pn
0 =

βg,0
x

βg,0
x +∑m<n βg,m,ε

x 1{xm∈X g(x)}
, pn

x′ =
∑m<n βg,m,ε

x 1{xm=x′}

βg,0
x +∑m<n βg,m,ε

x 1{xm∈X g(x)}
.

Note thatpn
0 and each of thepn

x′ are bounded uniformly between 0 and 1. We then have

sup
n
|µg,n

x | ≤ sup
n

[

|µg,0
x |+ ∑

x′∈X g(x)

|ȳn
x′ |
]

≤ |µ0,g
x |+ ∑

x′∈X g(x)

sup
n
|ȳn

x′ |.

By Lemma 6, supn |ȳn
x′ | is almost surely finite, and hence so is supn |µ

g,n
x |.

We now turn our attention toan
x′(x) for fixed x andx′. an

x′(x) is a weighted linear combinations
of the termsµg,n

x′ , g∈G (note thatµn
x′ is itself a linear combination of such terms), where the weights

are uniformly bounded. This, together with the almost sure finiteness of supn |µ
g,n
x′ | for eachg, im-

plies that supn |an
x′(x)| is almost surely finite.

Lemma 8 Assume thatδ > 0 and samples from any fixed alternative x are iid with finite variance.
LetX∞ be the (random) set of alternatives measured infinitely often by HKG. Then, for each x′,x∈X ,
the following statements hold almost surely,

• If x ∈ X∞ thenlimn→∞ bn
x′(x) = 0 and limn→∞ bn

x(x
′) = 0.

• If x /∈ X∞ thenliminfn→∞ bn
x(x)> 0.

Proof Let x′ andx be any pair of alternatives.
First consider the casex ∈ X∞. Let g ∈ G(x′,x) and B = supn(σ

g,n,ε
x )2. Lemma 7 and (10)

imply that B is almost surely finite. Sinceβg,n,ε
x ≥ 1/B for eachn, we haveβg,n

x ≥ mg,n
x B. Then

x ∈ X∞ implies limn→∞ mg,n
x = ∞ and limn→∞ βg,n

x = ∞. Also, x andx′ share aggregation levelg,
soβg,n

x = βg,n
x′ and limn→∞ βg,n

x′ = ∞. Then consider̃σg,n
x for n large enough that we have measured

alternativex at least once. From (10),(σg,n,ε
x )2 ≥ λx/|X g(x)|, which gives a uniform upper bound

βg,n,ε
x ≤ |X g(x)|/λx. Also, the definition (6) implies(σn

x)
2 ≤ (σg,n

x )2 ≤ 1/B. This, the definition (15),
and limn→∞ βg,n

x = ∞ together imply limn→∞ σ̃g,n
x = 0. The limit limn→∞ σ̃g,n

x′ = 0 follows similarly
from the boundsβg,n,ε

x′ ≤ |X g(x)|/λx′ and(σn
x′)

2 ≤ (σn,g
x )2 ≤ 1/B, and limn→∞ βg,n

x′ = ∞. Hence, (20)
and the boundedness of the weights ¯wg,n

x′ andw̄g,n
x imply limn→∞ bn

x′(x) = limn→∞ bn
x (x

′) = 0.
Now consider the casex /∈ X∞. We show that liminfn→∞ bn

x(x)> 0. From (20) and 0∈ G(x,x),

bn
x(x)≥ w̄0,n

x (x)
(λx)

−1

√

(

∑g′∈G βg′,n
x

)−1
+λx

β0,n
x +(λx)

−1 .
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Becausex /∈X∞, there is some random timeN1<∞ after which we do not measurex, andβ0,n
x ≤ βN1,0

x

for all n.

bn
x(x)≥ w̄0,n

x (x)
(λx)

−1√λx

β0,N1
x +(λx)

−1 ,

where the weights are given by

w̄0,n
x (x) =

(

β0,n
x +(λx)

−1
)−1

(

β0,n
x +(λx)

−1
)−1

+∑g∈G\{0} ψg,n
x

,

with

ψg,n
x =

(

(βg,n
x +βg,n,ε

x )
−1

+(δg,n
x )2

)−1
.

We now show limsupn ψg,n
x <∞ for all g∈G \{0}. We consider two cases forg. In the first case,

suppose that an alternative inX g(x) is measured at least once. Then, for alln after this measurement,
mg,n

x > 0 andδg,n
x ≥ δ (by (9)), implyingψg,n

x ≤ δ−2 and limsupn ψg,n
x ≤ δ−2 < ∞. In the second case,

suppose no alternative inX g(x) is ever measured. Then, limsupn ψg,n
x ≤ limsupn βg,n

x +βg,n,ε
x < ∞.

Finally, limsupn ψg,n
x < ∞ and

(

β0,n
x +(λx)

−1
)−1

≥
(

β0,N1
x +(λx)

−1
)−1

> 0 together imply

liminfn→∞ w̄0,n
x (x)> 0. This shows liminfn→∞ bn

x(x)> 0.

Lemma 9 Let a∈ R
d with maxi |ai | ≤ c, b∈ R

d, and let Z be a standard normal random variable.
If x 6= x′, then,

E

[

max
i

ai +biZ

]

−max
i

ai ≥
|bx′ −bx|

2
f

( −4c
|bx′ −bx|

)

,

where this expression is understood to be0 if bx′ = bx.

Proof Let x∗ ∈ argmaxi ai anda∗ = maxi ai . Then adding and subtractingax∗ +bx∗Z = a∗+bx∗Z
and observingE[bx∗Z] = 0 provides

E

[

max
i

ai +biZ

]

−a∗ = E

[(

max
i
(ai −a∗)+(bi −bx∗)Z

)

+a∗+bx∗Z

]

−a∗

= E

[

max
i
(ai −a∗)+(bi −bx∗)Z

]

.

Let j ∈ argmaxi∈{x,x′} |bi −b∗|. Then, by taking the maximum in the previous expression over
only j andx∗, we obtain the lower bound

E

[

max
i

ai +biZ

]

−a∗ ≥ E [max(0,a j −a∗+(b j −bx∗)Z)]

≥ E [max(0,−2c+(b j −bx∗)Z)]

= |b j −bx∗ | f
( −2c
|b j −bx∗ |

)

≥ |bx′ −bx|
2

f

( −4c
|bx′ −bx|

)

.
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The second line follows from the bound maxi |ai | ≤ c. The equality in the third line can be verified
by evaluating the expectation analytically (see, e.g., Frazier et al., 2008), where the expression is
taken to be 0 ifb j = bx∗ . The inequality in the third line then follows from|b j −b∗| ≥ |bx−bx′ |/2
and from f being an increasing non-negative function.

Appendix D.

Here we provide a brief description of the implementation of the policies considered in our numer-
ical experiments.

Interval estimation (IE) The IE decision rule by Kaelbling (1993) is given by

xn = argmax
x∈X

(

µn
x +zα/2 ·σn

x

)

wherezα/2 is a tunable parameter. Kaelbling (1993) suggests that values of 2, 2.5 or 3often
works best. The IE policy is quite sensitive to this parameter. For example, weobserve that
the following cases require higher values forzα/2: more volatile functions (low values forρ,
see Section 6.2), a higher measurement varianceλ, and higher measurement budgetN. To
find a value that works reasonably well on most problem instances, we tested values between
0.5 and 4 with increments of .1 and found thatzα/2 = 2.3 works best on average. Since we

assume the measurement noise is known, we useσn
x =

√

λ
mn

x
, wheremn

x is the number of times

x has been measured up to and including timen.

UCB1-Normal (UCB1) The study by Auer et al. (2002) proposes different variations of the Up-
per Confidence Bound (UCB) decision rule originally proposed by Lai (1987). The UCB1-
Normal policy is proposed for problems with Gaussian rewards and is given by

xn = argmax
x∈X

(

µn
x +4

√

λ logn
Nn

x

)

.

The original presentation of the policy uses a frequentist estimate of the measurement variance
λ, which we replace by the known value. We improve the performance of UCB1 by treating
the coefficient 4 as a tunable parameter. As with IE, we observe that the performance is quite
sensitive to the value of this parameter. Using a setup similar to IE, we found that a value of
0.9 produced the best results on average.

Independent KG (IKG) This is the knowledge-gradient policy as presented in Section 4.1 of this
paper.

Boltzmann exploration (BOLTZ) Boltzmann exploration chooses its measurements by

P(xn = x) =

(

eµn
x/Tn

∑x′∈X eµn
x′/Tn

)

,
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where the policy is parameterized by a decreasing sequence of “temperature” coefficients
(Tn)N−1

n=0 . We tune this temperature sequence within the set of exponentially decreasing se-
quences defined byTn+1 = γTn for some constantγ ∈ (0,1]. The set of all such sequences is
parameterized byγ andTN. We tested combinations ofγ∈ {.1, .2, ...,1} andTN ∈ {.1, .5,1,2}
and found that the combinationγ = 1 andTN = .3 produces the best results on average.

Pure exploration (EXPL) The pure exploration policy measures each alternativex with the same
probability, that is,P(xn = x) = 1/M.

Sequential Kriging Optimization (SKO) This is a blackbox optimization method from Huang
et al. (2006) that fits a Gaussian process onto the observed variables.The hyperparame-
ters of the Gaussian process prior are estimated using an initial Latin hypercube design with
2p+2 measurements, withp being the number of dimensions, as recommended by Huang
et al. (2006). After this initial phase we continue to update the hyperparameters, using maxi-
mum likelihood estimation, during the first 50 measurements. The parameters areupdated at
each iteration.

KG for Correlated Beliefs (KGCB) This is the knowledge-gradient policy for correlated beliefs
as presented in Section 4.1. We estimate the hyperparameters in the same way asdone with
SKO.

Hierarchical KG (HKG) This is the hierarchical knowledge-gradient policy as presented in this
paper. This policy only requires an aggregation function as input. We present these functions
in Section 6.3.

Hybrid HKG (HHKG) In this hybrid policy, we only exploit the similarity between alternatives in
the updating equations and not in the measurement decision. As a result, this policy uses the
measurement decision of IKG and the updating equations of HKG. The possible advantage
of this hybrid policy is that it is able to cope with similarity between alternatives without the
computational complexity of HKG.

Appendix E.

Here we show more detailed results for the experiments on one-dimensional problems. A complete
overview of the results for the one-dimensional experiments withN = 500 can be found in Table 8
and withN = 200 in Table 9.

Besides the conclusions from the main text, we mention a few additional observations based on
the more detailed results.

First, from Table 9 we see that the relative performance of KGCB and SKOdepends on the value
of ρ. On relatively smooth functions withρ ≥ 2, SKO outperforms KGCB, whereas the opposite
holds forρ < 2.

Second, it is remarkable to see that in the independent truth case (IT), thepolicies that exploit
correlation (KGCB and HKG) are doing so well and outperform IKG. Theexplanation is the fol-
lowing. After M measurements, IKG has sampled each alternative once and the implementation
decision is the one with the highest value observed so far. Obviously, this isnot a reliable estimate,
especially withλ ≥ 0.5. The policies KGCB and HKG tend to resample promising alternatives.
So, afterM measurements, they have a more reliable estimate for their implementation decision.
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Function
√

λ N EXPL IKG KGCB SKO HKG IE UCB BOLTZ
GP1R05 0.5 250 0.206 0.090 0.0610.029 0.072 0.077 0.073 0.133

500 0.169 0.044 0.037 0.027 0.053 0.038 0.040 0.075
1 250 0.344 0.170 0.131 0.1420.111 0.174 0.183 0.242

500 0.332 0.108 0.093 0.111 0.092 0.106 0.113 0.155
GP1R02 0.5 250 0.152 0.041 0.024 0.024 0.032 0.046 0.043 0.069

500 0.106 0.022 0.014 0.019 0.017 0.024 0.025 0.048
1 250 0.308 0.103 0.084 0.129 0.077 0.112 0.111 0.151

500 0.298 0.057 0.050 0.120 0.044 0.062 0.061 0.113
GP1R01 0.5 250 0.196 0.057 0.019 0.038 0.043 0.043 0.053 0.088

500 0.158 0.033 0.009 0.024 0.027 0.022 0.024 0.058
1 250 0.424 0.162 0.107 0.218 0.114 0.138 0.166 0.192

500 0.348 0.084 0.064 0.165 0.069 0.069 0.088 0.143
GP1R005 0.5 250 0.253 0.065 0.017 0.047 0.049 0.053 0.058 0.100

500 0.183 0.027 0.008 0.037 0.031 0.019 0.019 0.070
1 250 0.483 0.162 0.093 0.189 0.100 0.145 0.178 0.210

500 0.432 0.084 0.046 0.147 0.061 0.073 0.080 0.143
NSGP 0.5 250 0.249 0.052 0.070 0.1460.049 0.046 0.043 0.122

500 0.186 0.024 0.044 0.121 0.0260.019 0.019 0.076
1 250 0.539 0.193 0.184 0.2400.124 0.150 0.175 0.220

500 0.443 0.092 0.113 0.1940.067 0.068 0.073 0.141
IT 0.5 250 0.182 0.075 0.066 0.1070.060 0.075 0.074 0.113

500 0.153 0.047 0.045 0.0920.040 0.042 0.046 0.093
1 250 0.306 0.155 0.144 0.2070.108 0.151 0.162 0.188

500 0.253 0.097 0.101 0.1880.087 0.094 0.099 0.168
GP1 0.5 250 0.202 0.063 0.030 0.034 0.049 0.055 0.057 0.098

500 0.154 0.032 0.017 0.027 0.032 0.026 0.027 0.063
1 250 0.390 0.149 0.104 0.170 0.101 0.143 0.160 0.198

500 0.352 0.083 0.063 0.136 0.066 0.078 0.086 0.138
NS0 0.5 250 0.215 0.064 0.068 0.1260.055 0.060 0.059 0.118

500 0.169 0.035 0.044 0.1060.033 0.031 0.032 0.085
1 250 0.423 0.174 0.164 0.2240.116 0.150 0.168 0.204

500 0.348 0.094 0.107 0.1910.077 0.081 0.086 0.154

Table 8: Results for the one-dimensional long experiments.
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Function
√

λ N EXPL IKG KGCB SKO HKG HHKG
GP1R05 0.1 50 0.149 0.131 0.0200.001 0.033 0.036

200 0.102 0.008 0.006 0.001 0.008 0.008
0.5 50 0.261 0.231 0.1650.078 0.171 0.169

200 0.216 0.097 0.075 0.036 0.085 0.080
1 50 0.390 0.411 0.277 0.210 0.258 0.278

200 0.359 0.222 0.150 0.1480.129 0.162
GP1R02 0.1 50 0.039 0.038 0.0100.005 0.026 0.050

200 0.025 0.008 0.003 0.002 0.007 0.006
0.5 50 0.203 0.187 0.0790.063 0.092 0.126

200 0.169 0.055 0.029 0.029 0.037 0.044
1 50 0.396 0.389 0.233 0.230 0.224 0.257

200 0.332 0.142 0.096 0.138 0.097 0.087
GP1R01 0.1 50 0.062 0.056 0.007 0.014 0.030 0.083

200 0.036 0.006 0.001 0.008 0.008 0.005
0.5 50 0.254 0.253 0.121 0.117 0.132 0.184

200 0.218 0.065 0.022 0.043 0.055 0.054
1 50 0.477 0.482 0.303 0.358 0.294 0.283

200 0.441 0.182 0.124 0.235 0.136 0.128
GP1R005 0.1 50 0.111 0.099 0.003 0.011 0.047 0.144

200 0.043 0.004 0.000 0.003 0.008 0.011
0.5 50 0.342 0.336 0.127 0.157 0.170 0.222

200 0.254 0.082 0.021 0.054 0.061 0.080
1 50 0.577 0.482 0.329 0.4110.286 0.401

200 0.530 0.182 0.118 0.204 0.123 0.164
NSGP 0.1 50 0.168 0.143 0.087 0.1350.059 0.184

200 0.047 0.003 0.021 0.094 0.005 0.017
0.5 50 0.391 0.373 0.235 0.2650.200 0.294

200 0.263 0.082 0.084 0.1560.066 0.082
1 50 0.692 0.627 0.428 0.4510.381 0.440

200 0.580 0.249 0.208 0.2600.153 0.176
IT 0.1 50 0.053 0.050 0.046 0.052 0.044 0.042

200 0.039 0.013 0.012 0.027 0.013 0.011
0.5 50 0.212 0.203 0.144 0.178 0.141 0.130

200 0.175 0.091 0.072 0.1160.065 0.079
1 50 0.305 0.310 0.218 0.298 0.230 0.231

200 0.312 0.177 0.157 0.2170.128 0.150

Table 9: Results for the one-dimensional normal experiments.

Obviously, there is a probability that KGCB and HKG do not measure the true optimal alternative
afterM measurements. However, given the way we generated this function, thereare multiple al-
ternatives close the the optimal one (we may expect 10% of the alternatives tobe less then 0.1 from
the optimum).
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Finally, even though HKG seems to be quite competitive, there are some results that suggest
future extensions of HKG. Specifically, HKG seems to have convergenceproblems in the low noise
case (λ = 0.1). We see this from (i) the settings withλ = 0.1 andn= 200 where HKG underper-
forms IKG on three cases (two of them with significant differences), (ii) the settings with the one-
dimensional long experiments where HKG is outperformed by IKG in three cases, each of them
having a low value forλ and a large number of measurements, and (iii) the hybrid policy HHKG is
outperformed by IKG on most of theλ= 0.1 cases. We believe that the source of this problem lies in
the use of the base level ˜gn

x, that is, the lowest levelg for which we have at least one observation on
an aggregate alternative that includes alternativex (mg,n

x > 0). We introduced this base level because
we need the posterior meanµn

x and the posterior variance(σn
x)

2 for all alternatives, including those
we have not measured. Whenλ is relatively small, the posterior variance on the aggregate levels
(σg,n

x )2 increases relatively quickly; especially because the squared bias(δg,n
x )2, which we use as an

estimate forνg
x, is small at the base level (equal to the lower boundδ). As a result, we may become

too confident about the value of an alternative we never measured. We may be able to resolve this
by adding a prior on these functions, which obviously requires prior knowledge about the truth or
additional measurements, or by tuningδ.

References

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algo-
rithm for bandit linear optimization. InProceedings of the 21st Annual Conference on Learning
Theory (COLT), pages 263–274, 2008.

Peter Auer, Nicol̀o Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem.Machine Learning, 47(2-3):235–256, 2002.

Peter L. Bartlett, Varsha Dani, Thomas P. Hayes, Sham Kakade, Alexander Rakhlin, and Ambuj
Tewari. High-probability regret bounds for bandit online linear optimization. In Proceedings of
the 21st Annual Conference on Learning Theory (COLT), pages 335–342, 2008.

Russell R. Barton and Martin Meckesheimer. Metamodel-based simulation optimization. In
Shane G. Henderson and Barry L. Nelson, editors,Simulation, volume 13 ofHandbooks in Op-
erations Research and Management Science, pages 535 – 574. Elsevier, 2006.

Robert E. Bechhofer. A single-sample multiple decision procedure for ranking means of normal
populations with known variances.The Annals of Mathematical Statistics, 25(1):16–39, 1954.

Robert E. Bechhofer, Thomas J. Santner, and David M. Goldsman.Design and Analysis of Exper-
iments for Statistical Selection, Screening and Multiple Comparisons. John Wiley & Sons, New
York, NY, 1995.

Dimitri P. Bertsekas and David A. Castanon. Adaptive aggregation methodsfor infinite horizon
dynamic programming.IEEE Transactions on Automatic Control, 34(6):589–598, 1989.

Dimitri P. Bertsekas and John N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

Ronen I. Brafman and Moshe Tennenholtz. R-MAX - a general polynomial time algorithm for
near-optimal reinforcement learning.Journal of Machine Learning Research, 3:213–231, 2003.

2970



HIERARCHICAL KNOWLEDGE GRADIENT FOR SEQUENTIAL SAMPLING

Franklin H. Branin. Widely convergent method for finding multiple solutions ofsimultaneous non-
linear equations.IBM Journal of Reseach and Development, 16(5):504–522, 1972.

Erik Brochu, Mike Cora, and Nando de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learn-
ing. Technical Report TR-2009-023, Department of Computer Science, University of British
Columbia, 2009.
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