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Abstract

We propose a sequential sampling policy for noisy discrébaj optimization and ranking and
selection, in which we aim to efficiently explore a finite sétatternatives before selecting an
alternative as best when exploration stops. Each altematiay be characterized by a multi-
dimensional vector of categorical and numerical attrisited has independent normal rewards.
We use a Bayesian probability model for the unknown rewarehgeh alternative and follow a fully
sequential sampling policy called the knowledge-gradietity. This policy myopically optimizes
the expected increment in the value of sampling informatia@ach time period. We propose a hier-
archical aggregation technique that uses the common é&sasihared by alternatives to learn about
many alternatives from even a single measurement. Thi®appigreatly reduces the measurement
effort required, but it requires some prior knowledge ongim®othness of the function in the form
of an aggregation function and computational issues liétiumber of alternatives that can be
easily considered to the thousands. We prove that our palicgnsistent, finding a globally opti-
mal alternative when given enough measurements, and shiougth simulations that it performs
competitively with or significantly better than other padis.

Keywords: sequential experimental design, ranking and selecticaptace learning, hierarchical
statistics, Bayesian statistics

1. Introduction

We address the problem of maximizing an unknown funclgmwherex = (xi,...,Xp), X € X, is

a discrete multi-dimensional vector of categorical and numerical attributeshaé the ability to
sequentially choose a set of measurements to estidpaddter which we choose the valuexivith

the largest estimated value @f. Our challenge is to design a measurement policy which produces
fast convergence to the optimal solution, evaluated using the expectedivabijeinction after a
specified number of iterations. Many applications in this setting involve maasuts that are
time consuming and/or expensive. This problem is equivalent to the raakithgelection (R&S)
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problem, where the difference is that the number of alternati¥¢ss extremely large relative to
the measurement budget.

We do not make any explicit structural assumptions alfubut we do assume that we are
given an ordered sef and a family of aggregation functiol®® : X — X9, g € G, each of which
maps.X to a regionXx?, which is successively smaller than the original set of alternatives. After
each observatioy} = 64 + ", we update a family of statistical estimates@ft each level of
aggregation. Aften observations, we obtain a family of estimapdg of the function at different
levels of aggregation, and we form an estimaef 6, using

0= 3 wenyg, ®

where the weights4" sum to one over all the levels of aggregation for each poifthe estimates

U™ at more aggregate levels have lower statistical variance since they awkugasn more obser-
vations, but exhibit aggregation bias. The estimaf£sat more disaggregate levels will exhibit
greater variance but lower bias. We design our weights to strike a babeteeen variance and
bias.

Our goal is to create a measurement pofitiiat leads us to find the alternativéhat maximizes
B4. This problem arises in a wide range of problems in stochastic searchimgl@idwhich settings
of several parameters of a simulated system has the largest mean paderrtia which combi-
nation of chemical compounds in a drug would be the most effective to figattecular disease,
and (iii) which set of features to include in a product would maximize profite. al§o consider
problems where is a multi-dimensional set of continuous parameters.

A number of measurement policies have been proposed for the rankingghattion problem
when the number of alternatives is not too large, and where our beliefg #ie value of each
alternative are independent. We build on the work of Frazier et al. {200&h proposes a policy,
the knowledge-gradient policy for correlated beliefs, that exploitetations in the belief structure
but where these correlations are assumed known.

This paper makes the following contributions. First, we propose a versidmedknowledge
gradient policy that exploits aggregation structure and similarity betweematitezs, without re-
quiring that we specify an explicit covariance matrix for our belief. Indtewe develop a belief
structure based on the weighted estimates given in (1). We estimate the weaigigts lBayesian
model adapted from frequentist estimates proposed by George et@8) (20 addition to eliminat-
ing the difficulty of specifying an a priori covariance matrix, this avoids thrputational challenge
of working with large covariance matrices. Second, we show that a leppailicy based on this
method is optimal in the limit, that is, eventually it always discovers the best ait@naOur
method requires that a family of aggregation functions be provided, batwite does not make
any specific assumptions about the structure of the function or set ofatitass.

The remainder of this paper is structured as follows. In Section 2 we diveefoverview of
the relevant literature. In Section 3, we present our model, the aggnegationiques we use, and
the Bayesian updating approach. We present our measurement poliegtiars4 and a proof of
convergence of this policy in Section 5. We present numerical experirimeSesction 6 and 7. We
close with conclusions, remarks on generalizations, and directionsrtbhefuesearch in Section 8.
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2. Literature

There is by now a substantial literature on the general problem of findingntheémum of an

unknown function where we depend on noisy measurements to guide amehseSpall (2003)
provides a thorough review of the literature that traces its roots to stochagtiocximation methods
first introduced by Robbins and Monro (1951). This literature consigeoblems with vector-
valued decisions, but its techniques require many measurements to find magoisely, which is

a problem when measurements are expensive.

Our problem originates from the ranking and selection (R&S) literature, twhagins with
Bechhofer (1954). In the R&S problem, we have a collection of alterratiuese value we can
learn through sampling, and from which we would like to select the one with thedavalue. This
problem has been studied extensively since its origin, with much of this weidwed by Bechhofer
etal. (1995), more recent work reviewed in Kim and Nelson (200&) research continuing actively
today. The R&S problem has also been recently and independently catsidéhin computer
science (Even-Dar et al., 2002; Madani et al., 2004; Bubeck et 219190

There is also a related literature on online learning and multi-armed bandits,i¢ch ah al-
gorithm is faced with a collection of noisy options of unknown value, andth@®pportunity to
engage these options sequentially. In the online learning literature, aittalgds measured ac-
cording to thecumulativevalue of the options engaged, while in the problem that we consider an
algorithm is measured according to its ability to select the best at the endasfreemtation. Rather
than value, researchers often consider the regret, which is the lossuimhtp optimal sequence of
decisions in hindsight. Cumulative value or regret is appropriate in settichsaswdynamic pricing
of a good sold online (learning while doing), while terminal value or regrapfgopriate in settings
such as optimizing a transportation network in simulation before building it in #ileuerld (learn
then do). Strong theoretical bounds on cumulative and average reyeteen developed in the
online setting (see, e.g., Auer et al., 2002; Flaxman et al., 2005; Aberaeghy 2008).

General-purpose online-to-batch conversion techniques have beeloged, starting with Lit-
tlestone (1989), for transforming online-learning methods with boundsuonulative regret into
methods with bounds on terminal regret (for a summary and literature reee8lsalev-Shwartz,
2007, Appendix B). While these techniques are easy to apply and immediatelyog methods
with theoretical bounds on the rate at which terminal regret converge=ro imethods created in
this way may not have the best achievable bounds on terminal regretciBabal. (2009b) shows
that improving the upper bound on the cumulative regret of an online leapnmirthod causes a cor-
responding lower bound on the terminal regret to get worse. This is indiaz a larger difference
between what is required in the two types of problems. Furthermore, asapke of the differ-
ence between cumulative and terminal performance, Bubeck et al.i(pA6ges that with finitely
many unrelated arms, achieving optimal cumulative regret requires sampliogtsnal arms no
more than a logarithmic number of times, while achieving optimal terminal regreirescsampling
every arm a linear number of times.

Despite the difference between cumulative and terminal value, a numbetludasehave been
developed that are often applied to both online learning and R&S problemsatiger, as well
as to more complex problems in reinforcement learning and Markov decistmegses. These
heuristics include Boltzmann exploration, interval estimation, upper confidamend policies, and
hybrid exploration-exploitation policies such as epsilon-greedy. SeelPaid Frazier (2008) for
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a review of these. Other policies include the Explicit Explore or ExpB#) @lgorithm of Kearns
and Singh (2002) and R-MAX of Brafman and Tennenholtz (2003).

Researchers from the online learning and multi-armed bandit communitiesalsavdirectly
considered R&S and other related problems in which one is concerned wittn&trrather than
cumulative value (Even-Dar et al., 2002, 2003; Madani et al., 2004hMnal., 2008; Bubeck
et al., 2009b). Most work that directly considers terminal value assumespriori relationship
between alternatives. One exception is Srinivas et al. (2010), whicsideErs a problem with a
Gaussian process prior on the alternatives, and uses a standardtofiizieh conversion to obtain
bounds on terminal regret. We are aware of no work in the online learmimgninity, however,
whether considering cumulative value or terminal value, that considertypieeof hierarchical
aggregation structures that we consider here. A number of reseatenge considered other types
of dependence between alternatives, such as online convex anddptgaization (Flaxman et al.,
2005; Kleinberg, 2005; Abernethy et al., 2008; Bartlett et al., 2008)egal metric spaces with a
Lipschitz or locally-Lipschitz condition (Kleinberg et al., 2008; BubecklgtzD09a), and Gaussian
process priors (Gmewalder et al., 2010; Srinivas et al., 2010).

A related line of research has focused on finding the alternative whiaohedsured, will have
the greatest impact on the final solution. This idea was originally introdudddakus (1975) for a
one-dimensional continuous domain with a Wiener process prior, and ita@nd Miescke (1996)
in the context of the independent normal R&S problem as also considetieid paper. The latter
policy was further analyzed in Frazier et al. (2008) under the namelkdge-gradient (KG) policy,
where it was shown that the policy is myopically optimal (by construction) aynatotically
optimal. An extension of the KG policy when the variance is unknown is pteden Chick et al.
(2010) under the name L4, referring to the one-step linear loss, an alternative name when we are
minimizing expected opportunity cost. A closely related idea is given in Chickroae (2001)
where samples are allocated to maximize an approximation to the expected valterrogtion.
Related search methods have also been developed within the simulation-optmézatimunity,
which faces the problem of determining the best of a set of parameteese whaluating a set of
parameters involves running what is often an expensive simulation. Oseaflanethods evolved
under the name optimal computing budget allocation (OCBA) (Chen et al.; H#9ét al., 2007).

The work in ranking and selection using ideas of expected incrementa isadimilar to work
on Bayesian global optimization of continuous functions. In Bayesian blofamization, one
would place a Bayesian prior belief on the unknown funciorGenerally the assumption is that
unknown functiorB is a realization from a Gaussian process. Wiener process priorsgialspese
of the Gaussian process prior, were common in early work on Bayesibalgiptimization, being
used by techniques introduced in Kushner (1964) and Mockus (1St&yeys of Bayesian global
optimization may be found in Sasena (2002); Lizotte (2008) and BrocHu(2089).

While algorithms for Bayesian global optimization usually assume noise-frestifim evalu-
ations (e.g., the EGO algorithm of Jones et al., 1998), some algorithms allowraeest noise
(Huang et al., 2006; Frazier et al., 2009; Villemonteix et al., 2009). We epeipe performance of
HKG against two of these: Sequential Kriging Optimization (SKO) from Hueingl. (2006) and
the knowledge-gradient policy for correlated normal beliefs (KGC8ixfFrazier et al. (2009). The
latter policy is an extension of the knowledge-gradient algorithm in the pcesef correlated be-
liefs, where measuring one alternative updates our belief about otheragites. This method was
shown to significantly outperform methods which ignore this covariancetatey but the algorithm
requires the covariance matrix to be known. The policies SKO and KGCRidher explained in
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Section 6. Like the consistency results that we provide for HKG, consigt@sults are known for
some algorithms: consistency of EGO is shown in Vazquez and Bect (22i@d)ower bounds on
the convergence rate of an algorithm called GP-UCB are shown in Sgietwal. (2010).

An approach that is common in optimization of continuous functions, and witichuats for
dependencies, is to fit a continuous function through the observationthelarea of Bayesian
global optimization, this is usually done using Gaussian process priorthénapproaches, like the
Response Surface Methodology (RSM) (Barton and Meckesheim@8) 20ie normally would fit
a linear regression model or polynomials. An exception can be found ichBret al. (2009) where
an algorithm is presented that uses random forests instead, which is @nira$ the hierarchical
prior that we employ in this paper. When we are dealing with nominal categjdincansions, fitting
a continuous function is less appropriate as we will show in this paper. ddergthe presence of
categorical dimensions might give a good indication for the aggregatiattifumto be used. The
inclusion of categorical variables in Bayesian global optimization methodbptierandom forests
and Gaussian processes, as well as a performance comparisonrbtesetwo, is addressed in
Hutter (2009).

There is a separate literature on aggregation and the use of mixtures oftestikggregation,
of course, has a long history as a method of simplifying models (see Ragaks £991). Bert-
sekas and Castanon (1989) describes adaptive aggregation teshirighe context of dynamic
programming, while Bertsekas and Tsitsiklis (1996) provides a good mteg&mn of state aggre-
gation methods used in value iteration. In the machine learning community, thereidemsive
literature on the use of weighted mixtures of estimates, which is the approacetetiise. We refer
the reader to LeBlanc and Tibshirani (1996); Yang (2001) and Haksté €2001). In our work,
we use a particular weighting scheme proposed by George et al. (2008 dts ability to easily
handle state dependent weights, which typically involves estimation of mangahds of weights
since we have a weight for each alternative at each level of aggregatio

3. Model

We consider a finite seX of distinct alternatives where each alternative X might be a multi-
dimensional vectok = (x1,...,Xp). Each alternativex € X is characterized by an independent
normal sampling distribution with unknown me8p and known varianca, > 0. We useM to
denote the number of alternativel| and used to denote the column vector consisting of &l
X€E X.

Consider a sequence Nfsampling decisions®, x, ..., xN~1. The sampling decisiox® selects
an alternative to sample at timdrom the set. The sampling errcel ™1 ~ A’ (0, ) is independent
conditioned orx" = x, and the resulting sample observatioyJs"= 6, + &1, Conditioned or®
andx" = x, the sample has conditional distribution

)A’>r<l+l ~ N (exJ\x) .

Because decisions are made sequentigllys only allowed to depend on the outcomes of the
sampling decisiong®, x*, ..., x"~1. In the remainder of this paper, a random variable indexed by
means it is measurable with respect 6" which is the sigma-algebra generated by

0 gl 1 n—1
Xuyxoaxv"wx » Yyn-1+

In this paper, we derive a method based on Bayesian principles whiets affway of formal-

izing a priori beliefs and of combining them with the available observations tionme statistical
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inference. In this Bayesian approach we begin with a prior distribution @itiknown value$y,

X € X, and then use Bayes’ rule to recursively to derive the posterior distibat timen+ 1 from
the posterior at time and the observed data. Lgt be our estimate ob after n measurements.
This estimate will either be the Bayes estimate, which is the posterior E{@ar# "], or an approx-
imation to this posterior mean as we will use later on. Later, in Sections 3.1 anee&describe
the specific prior and posterior that we use in greater detail. Under nmogliag models and prior
distributions, including the one we treat here, we may intuitively understan@anning that occurs
from sampling as progressive concentration of the posterior distributidh and as the tendency
of U", the mean of this posterior distribution, to move tow@rksn increases.

After takingN measurements, we make an implementation decision, which we assume is given
by the alternativex" that has the highest expected reward under the posterior, that is,
xN ¢ argmaxcx WY. Although we could consider policies making implementation decisions in
other ways, this implementation decision is optimal wpkrs the exact posterior mean and when
performance is evaluated by the expected value under the prior of theattieeof the implemented
alternative. Our goal is to choose a sampling policy that maximizes the expedtedof the im-
plementation decisiorN. Therefore we definél to be the set of sampling policies that satisfies
the requiremenx” € ¥" and introducet € M as a policy that produces a sequence of decisions
(x?,...,xN=1). We further writeE™ to indicate the expectation with respect to the prior over both
the noisy outcomes and the trihwhen the sampling policy is fixed tw Our objective function
can now be written as
SUpE™ [maxE[Bx \ TN]] .

XeX

men
If uN is the exact posterior mean, rather than an approximation, this can be wsitten a

SUpE™ [maxu)’}'} :
mien xeX

As an aid to the reader, the notation defined throughout the next sulmseistisummarized in
Table 1.

3.1 Model Specification

In this section we describe our statistical model, beginning first by desgribéaggregation struc-
ture upon which it relies, and then describing our Bayesian prior on thelsay mean®,. Later,

in Section 3.2, we describe the Bayesian inference procedure. Thoouthese sections we make
the following assumptions: (i) we assume independent beliefs acros®diffevels of aggregation
and (ii) we have two quantities which we assume are fixed parameters of @@l mbereas we
estimate them using the empirical Bayes approach. Even though thesei@ne approximations,
we show that posterior inference from the prior results in the same estimaatpresented in George
et al. (2008) derived using frequestist methods.

Aggregation is performed using a set of aggregation funct@&hsx — x9, wherex? repre-
sents theg" level of aggregation of the original st We denote the set of all aggregation levels
by G ={0,1,...,G}, with g = 0 being the lowest aggregation level (which might be the finest
discretization of a continuous set of alternatives): G being the highest aggregation level, and
G=1gG|-1.

The aggregation functiong? are typically problem specific and involve a certain amount of
domain knowledge, but it is possible to define generic forms of aggreg&tarexample, numeric
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Variable Description

G highest aggregation level
G9(x) aggregated alternative of alternativat levelg
G set of all aggregation levels

G (x,X') setof aggregation levels that alternatixeendx’ have in common
X set of alternatives

X9 set of aggregated alternative8(x) at theg!" aggregation level
X9(x) set of alternatives sharing aggregated altern@R/(e) at aggregation levey
N maximum number of measurements
M number of alternatives, that is] = | X|
Ox unknown true sampling mean of alternatiwe
0y unknown true sampling mean of aggregated altern&@f(e)
Ax measurement variance of alternatwe
X1 n" measurement decision
VR nt" sample observation of alternatixe
& measurement error of the sample observagipn ~
18 estimate 0By aftern measurements
" estimate of aggregated alternat®é(x) on aggregation levej aftern measurements
o contribution (weight) of the aggregate estimp#€ to the overall estimatg] of 6,
my" number of measurements from the aggregated altern@fifse
n precision ofl, with Bf = 1/(a?)?,
on precision ofg", with B¢" = 1/(o%")?
gne measurement precision from alternatives X9(x), with B¢ = 1/(a%"*)?
5" estimate of the aggregation bias
an lowest levelg for whichmg" > 0.
van variance o — 6,
3 lower bound ord¢"

Table 1: Notation used in this paper.

data can be defined over a range, allowing us to define a series ofatigns which divide this
range by a factor of two at each additional level of aggregation. Faiowealued data, we can ag-
gregate by simply ignoring dimensions, although it helps if we are told in agwahich dimensions
are likely to be the most important.

Using aggregation, we create a sequence of{s€¥sg=0,1,...,G}, where each set has fewer
alternatives than the previous set, and wh?equals the original set. We introduce the follow-
ing notation and illustrate its value using the example of Figure 1.

G (x,X') Set of all aggregation levels that the alternatixesdx’ have in common, withg (x,x) C
G. In the example we havg (2,3) = {1,2}.

X9(x) Set of all alternatives that share the same aggregated alter@fixeat theg™" aggregation
level, with X9(x) C X. In the example we hav&! (4) = {4,5,6}.
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g=2 13
g=1 10 11 12
g=0[1[2[3(4[5]6|7]8]9

Figure 1: Example with nine alternatives and three aggregation levels.

Given this aggregation structure, we now define our Bayesian modelneDiatient variables
6%, whereg € G andx € X. These variables satisBf = 8, whenG9(x) = GI(x). Also, 82 = 6,
for all x € X. We have a belief about the€§, and the posterior mean of the belief ab6gtis
ue". We see that, roughly speakirlj, is the best estimate 6 that we can make from aggregation
level g, given perfect knowledge of this aggregation level, and ti{8tmay be understood to be an
estimator of the value & for a particular alternative at a particular aggregation levgl

We begin with a normal prior 06y that is independent across different valueg,afiven by

B~ AL, (03)°).
The way in whiche relates td, is formalized by the probabilistic model
e)% ~ N(6X7Vg)7

wherevy is the variance 08§ — 8, under our prior belief.

The valuesd§ — 8, are independent across different valuegiofind between values afthat
differ at aggregation leved, that is, that have different values g®(x). The valuev{ is currently
a fixed parameter of the model. In practice this parameter is unknown, atelwércould place
a prior on it (e.g., inverse gamma), we later employ an empirical Bayes appiostead, first
estimating it from data and then using the estimated value as if it were giverra prio

When we measure alternatixe = x at timen, we observe a valuyé}“. In reality, this obser-
vation has distributiom\((6x,Ax). But in our model, we make the following approximation. We
suppose that we observe a vajﬁ@*”l for each aggregation levgle G. These values are indepen-
dent and satisfy

P~ (68, 1/B3"),

where agairﬁ%”’s is, for the moment, a fixed known parameter, but later will be estimated from
data and used as if it were known a priori. In practice wey$&t' = ya+l. It is only a modeling
assumption that breaks this equality and assumes independence in its giieapgdroximation
allows us to recover the estimators derived using other techniques in&etoag (2008).

This probabilistic model foy%’wrl in terms of6 induces a posterior 08y, whose calculation
is discussed in the next section. This model is summarized in Figure 2.

3.2 Bayesian Inference

We now derive expressions for the posterior belief on the quantities aksitevithin the model.
We begin by deriving an expression for the posterior beliedpfor a giveng.

We defingug", (o%™)?, andpg" = (o%") 2 to be the mean, variance, and precision of the belief
that we would have abo#®f if we had a noninformative prior o8 and then observe;ﬁ;:f'l for only
thosem < n satisfyingG9(x™) = G¥(x) andonlyfor the given value ofl. These are the observations
from level g pertinent to alternative. The quantitieg" and 3" can be obtained recursively

2938



HIERARCHICAL KNOWLEDGE GRADIENT FOR SEQUENTIAL SAMPLING

@ ’® (ot
) [\ x| 19 G| N

Figure 2: Probabilistic graphical model used by HKG. The dependendeupon the past induced
because HKG chooses its measurements adaptively is not pictured.

by considering two cases. Whe&#(x") # GI(x), we letpd"™ ! = 1@" and p¥""* = B". When
GI(x") = GY(x) we let

W =[BT BEM O /B @)
BT = BB 3)

wherep?? = 0 andpd® = 0.

Using these quantities, we may obtain an expression for the posterior bhebgf dVe define
W, (a9)? and Bl = (a?)~2 to be the mean, variance, and precision of this posterior belief. By
Proposition 4 (Appendix B), the posterior mean and precision are

o= 2u2+z((0%”)2+vg)lu%”], (4)
X geg
B = B+ Y (0377 +vg) ©)
geg

We generally work with a noninformative prior & in which 9 = 0. In this case, the posterior
variance is given by

~1
-1
<@%<EW%HW)>, (6)
geg
and the posterior megy} is given by the weighted linear combination
= wgnen, ©
geg

where the weightag" are

Wg)i,n — ((o'g,n)Z—i—vg)il ( z <<0’§’=”)2+V§/> _1> 71. (8)
geg

Now, we assumed that we knesf and B¢"™ as part of our model, while in practice we do

not. We follow the empirical Bayes approach, and estimate these quantitietheanplug in the
estimates as if we knew these values a priori. The resulting estipgatdrd, will be identical to
the estimator 06, derived using frequentist techniques in George et al. (2008).
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First, we estimat®y. Our estimate will bédy")2, wheredy" is an estimate of the aggregation
bias that we define here. Atthe unaggregated leyel@), the aggregation bias is clearly 0, so we set
3" = 0. If we have measured alternativandg > 0, then we sed¢" = max(|pd" — p"|,3), where
d > 0 is a constant parameter of the inference method. WiherD, estimates of the aggregation
bias are prevented from falling below some minimum threshold, which pretrentdgorithm from
placing too much weight on a frequently measured aggregate level wtigratesg the value of
an infrequently measured disaggregate level. The convergencegsamies > 0, although in
practice we find that the algorithm works well even widea 0.

To generalize this estimate to include situations when we have not measuredtaléet, we
introduce a base leve] Tor each alternative, being the lowest leveg for whichmg" > 0. We then
defined?" as

(9)

50— 0 ifg=0org< @,
|\ max(u¥ —18",8) if g>0andg > 4.

In addition, we set§" = 0 for all g < 5.

Second, we estima@?"™® usingpy™* = (03‘”’5)72 where(0%"%)? is the group variance (also
called the population variance). The group varia(u;%”’s)2 at the disaggregatg = 0) level equals
Ax, and we may use analysis of variance (see, e.g., Snijders and Bag8®) té compute the group
variance ag > 0. The group variance over a number of subgroups equals the varatign each
subgroup plus the variance between the subgroups. The varianceeudttirsubgroup is a weighted
average of the variandg, of measurements of each alternatie= X9(x). The variance between
subgroups is given by the sum of squared deviations of the disaggregianates and the aggregate
estimates of each alternative. The sum of these variances gives tipevgiriance as

n.e 1 N n .n n 2
(0%’)2:n,§,n< Z I'Tlg,')\x/—l— Z mg; (IJS/—U?'>),

X' eX9(x) X'eX9(x)

wheremy" is the number of measurements from the aggregated alter@#ixe at theg™" aggre-
gation level, that is, the total number of measurements from alternatives ieth®(x), aftern

2
measurements. For=0 we have(a?™®)” = A..

In the computation 0(03’”’8)2, the numbersn)" can be regarded as weights: the sum of the

bias and measurement \éariance of the alternative we measured the minikiutes the most to
the group varianceéc%”’s) . This is because observations of this alternative also have the biggest
impact on the aggregate estimaf'. The problem, however, is that we are going to use the group

variances(cr%”"g)2 to get an idea about the range of possible valueg,of for all X € xX9(x). By

including the number of measuremem%”, this estimate of the range will heavily depend on the
measurement policy. We propose to put equal weight on each alterbgitsetingmy™ = |X9(x)|

(som>" = 1). The group variancéo%”7£)2 is then given by

gne 2: 1 }\x"i‘ O;n_ g,n 2 . 10
(%)= [xaw) (&w () 4o

A summary of the Bayesian inference procedure can be found in Appan@iven this method
of inference, we formally present in the next section the HKG policy foiosing the measurements
XN,
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4. Measurement Decision

Our goal is to maximize the expected rewaxﬁd of the implementation decisioft = arg maxcx L&'
During the sequence & sampling decisions{®,x’,...,xN~1 we gain information that increases
our expected final rewar;i’;‘N. We may formulate an equivalent problem in which the reward is
given in pieces over time, but the total reward given is identical. Then tardewe gain in a
single time unit might be regarded as an increase in knowledge. The krgemgedient policy
maximizes this single period reward. In Section 4.1 we provide a brief ganeaduction of the
knowledge-gradient policy. In Section 4.2 we summarize the knowledagdiegt policy for in-
dependent and correlated multivariate normal beliefs as introduced zireFed al. (2008, 2009).
Then, in Section 4.3, we adapt this policy to our hierarchical setting. Wevéhdan illustration of
how the hierarchical knowledge gradient policy chooses its measure(@autson 4.4).

4.1 The Knowledge-Gradient Policy

The knowledge-gradient policy was first introduced in Gupta and M&§t896) under the name
(Rq,...,Ry), further analyzed in Frazier et al. (2008), and extended in Frazadr €2009) to cope
with correlated beliefs. The idea works as follows. [Rtbe the knowledge state at tinme In
Frazier et al. (2008, 2009) this is given By= (", %"), where the posterior 0@ is A (", Z"). If
we were to stop measuring now, our final expected reward would bg-rg& Now, suppose we
were allowed to make one more measuremé&ntThen, the observatioyﬂn*"1 would result in an
updated knowledge staB*! which might result in a higher expected reward max}*! at the
next time unit. The expected incremental value due to measurenggiven by

KG

Uk (") =E [maxli S, x" = x| — maxu}. (12)

XeX XeX

The knowledge-gradient policg® chooses its sampling decisions to maximize this expected
incremental value. That is, it choosésas

X" = argmawXC ().
XeX

4.2 Knowledge Gradient For Independent And Correlated Beliefs

In Frazier et al. (2008) it is shown that when all component8 afe independent under the prior
and under all subsequent posteriors, the knowledge gradientdtBecwritten

. — [ — maxex Ly
OKC(S) = 5x (2" x) f ( '“Xﬁx & ;;X“X ') ,

where &y (£",x) = Var (pi S, x" = x) = 20, //A«+ 2, with =}, the variance of our estimate
K, and wheref (z) = ¢ (z) + zP (z) whered(z) andd(z) are, respectively, the normal density and
cumulative distribution functions.

In the case of correlated beliefs, an observayipit df alternativex may change our estimate
Wy of alternatives< # x. The knowledge gradient (11) can be written as

ukeN(S) =K E(pea}uxnlJréx/ (2"x)Z|S" X" =x| —

X

n 12
naxh, (12)
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whereZ is a standard normal random variable @ydz", x) = Z3, /+/Ax+ 2R with 2, the covari-
ance betweep, andif.

Solving (12) involves the computation of the expectation over a piecewise loeaex func-
tion, which is given as the maximum of affine functiqgs+ 6 (Z",x) Z. To do this, Frazier et al.
(2009) provides an algorithm (Algorithm 2) which solve&, b) = E[max & + bjZ] — max & as a
generic function of any vectoesandb. In Frazier et al. (2009), the vectaasandb are given by the
elementgt; anddy (2", x) for all X' € X respectively, and the indéxcorresponds to a particul#
The algorithm works as follows. First it sorts the sequence of gairb;) such that théy; are in non-
decreasing order and tieslirare broken by removing the pdi, b;) whenb; = b1 anda; < a4 1.
Next, all pairs(a;, bj) that are dominated by the other pairs, thaBJS],L biZ < max; a;j + b;Z for
all values ofZ, are removed. Throughout the paper, we assdb to denote the vectors that re-
sult from sortinga andb by b; followed by the dropping of the unnecessary elements, producing a
smallerM. The knowledge gradient can now be computed using

ukC = > (Bi+1—5i)f<— )

i=1,..M
Note that the knowledge gradient algorithm for correlated beliefs regjthia the covariance
matrix >° be provided as an input. These correlations are typically attributed to physlation-
ships among the alternatives.

& — &1
b|+1 - bl

4.3 Hierarchical Knowledge Gradient

We start by generalizing the definition (11) of the knowledge-gradientaridtiowing way

KE(S)=E ML X = XE [0S, X" = 13
U7 (S7) = B |maxp |87, x = x| —maxE [LS"x" =], (13)
where the knowledge state is given 8= { B ixeX,ge g}

When using the Bayesian updating equatlons from the original knowlgdghent policy, the
estimates form a martingale, in which case the conditional expectatiq,of givenSis |, and
(13) is equivalent to the original definition (11). Because of approximatigsed in the updating
equations derived in Section @] is not a martingale in our case, and the term subtracted in (13)
ensures the non-negativity of the KG factor.

Before working out the knowledge gradient (13), we first focus erafliigregate estimatﬁ’”*l.
We rewrite the updating Equation (2) as

g,nJrl — [Bg, +[_7,gn£yn+l] /Bgn+1
g,n,e
— 9” +1 _,,09.n
K B _|_Bgns(yn )
B B )+ B e ().
BB pe" Bg ¢

Now, the new estimate is given by the sum of (i) the old estimate, (ii) the deviatigfiéf
from the weighted estimai&; times the relative increase in precision, and (iii) the deviation of the
estimatep" from the weighted estimatg] times the relative increase in precision. This means
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that even if we observe precisely what we expedd! = ), the aggregate estimaué™ ™ still
shrinks towards our current weighted estimateHowever, the more observations we have, the less
shrinking will occur because the precision of our beliefgf will be higher.

The conditional distribution off** is AC (15, (07)? +Ax) where the variance off™! is given
by the measurement noiag of the current measurement plus the variaf@®? of our belief given
by (6). S0.Z = (Y31 — 1) /+/(0})2+ A« is a standard normal. Now we can write

g7ns
Gt = 1gn + + gan pgne (M — g™ +6%"Z, (14)
where
N Bg,n,s c)_n 2+)\
sgn _ POV (15)

X Bg7n+l3)§2,n7s

We are interested in the effect of decisioon the weighted estimategly't, vx' € X}. The
problem here is that the valug for all alternativest € X are updated whenever they share at least
one aggregation level with alternatixewhich is to say for alk’ for which G (X, x) is not empty.

To cope with this, we break our expression (7) for the weighted estipﬂéfe’nto two parts

+1 _ n+1 g7n+1 n+1 g,n+1
UXn/ z va UX' Z \N)% g n .
9¢G(X',x) geG (X x)
After substitution of (14) and some rearrangement of terms we get

g,n,€
ZGW%”“M%W gz()mﬂil”“B - gge (W~ H) (16)
ge geG(X X
+Z Y wiTiagn
9eG (X x)

Because the weighte}" " depend on the unknown observatigfi*; we use an estimate(x
of the updated weights given we are going to samplBote that we use the superscrrpmstead
of n+ 1 to denote itsf " measurability.

To computen”(x), we use the updated precisiffi™** due to sampling in the weights (8).
However, we use the current biasdg because the updated b * depends on thgd™* which
we aim to estimate. The predictive weight$"(x) are

o ()’

— 17)
/.n g.ne g',n 2
Zg’eg<(B§f +12 B ) (5x/ ) >
where
9 _ 1 ifge G(X,x)
XX 1 0 otherwise
After combining (13) with (16) and (17), we get the following knowledgedient
UfG(S‘)_E[maan”,(x)Jr Q,(X)Z\S"] maxajy) (), (18)
Xex X ex
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where
gna
n N n )
a;(]/<x) = Wg' (X)ug’ + z va’ ( )B +B)(,ns(“x ugn)v (19)
geG geG (X x)
)=y W (8e" (20)
9eG (X x)

Note that these equations for the knowledge gradient are quite diffeoemthose presented in
Frazier et al. (2008) for the knowledge gradient for independdigfbe However, it can be shown
that without aggregation levels they coincideGit= 0, thena), (x) = u,?;” =l andbj, (x) = aeM.

Following the approach of Frazier et al. (2009), which was briefly |(ilased in Section 4.2, we
definea"(x) as the vectof &} (x), ¥x € X } andb"(x) as the vectog by (x), ¥x' € X }. From this

we derive the adjusted vectm&(x) andb"(x). The knowledge gradlent (18) can now be computed

using
>, (21)

whered(X) andf)i”(x) follow from (19) and (20), after the sort and merge operation as ithestin
Section 4.2.

The form of (21) is quite similar to that of the expression in Frazier et aDg2®or the cor-
related knowledge-gradient policy, and the computational complexities oé#udting policies are
the same. Thus, like the correlated knowledge-gradient policy, the coityptéxhe hierarchical
knowledge-gradient policy i@(MZIogM). An algorithm outline for the hierarchical knowledge-
gradient measurement decision can be found in Appendix A.

&0 — 8,109
By (%) — B ()

OKSN = Y (B30 —B(x >)f<

=1, M1

oo

4.4 Remarks

Before presenting the convergence proofs and numerical resulfissty@ovide the intuition behind
the hierarchical knowledge gradient (HKG) policy. As illustrated in Poardt Frazier (2008), the
independent KG policy prefers to measure alternatives with a high meéor avith a low precision.
As an illustration, consider Figure 3, where we use an aggregation stgiten by a perfect binary
tree (see Section 6.3) with 128 alternatives at the disaggregate levelgrspagion level 5, there are
four aggregated alternatives. As a result, the first four measurenrentb@sen such that we have
one observation for each of these alternatives. The fifth measurentidre @ither in an unexplored
region one aggregation level lower (aggregation level 4 consisting bf aggregated alternatives)
or at an already explored region that has a high weighted estimate. In seislH{G chooses to
sample from the unexplored region 48x < 64 since it has a high weighted estimate and a low
precision. The same holds for the sixth measurements which would be edheofre of the three
remaining unexplored aggregated alternatives from level 4, or froatraady explored alternative
with high weighted mean. In this case, HKG chooses to sample from the regjiox 3 40, which
corresponds with an unexplored alternative at the aggregation levEh8&.last panel shows the
results after 20 measurements. From this we see HKG concentrates its eneasisraround the
optimum and we have a good fit in this area.
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Figure 3: Illustration of the way HKG chooses its measurements.

5. Convergence Results

In this section, we show that the HKG policy measures each alternative ihfioften (Theorem 1).
This implies that the HKG policy learns the true values of every alternative-ase (Corollary 2)
and eventually finds a globally optimal alternative (Corollary 3). This fimmbltary is the main
theoretical result of this paper. The proofs of these results depelednonas found in Appendix C.

Although the posterior inference and the derivation of the HKG policy rassuthat samples
from alternativex were normal random variables with known variange the theoretical results
in this section allow general sampling distributions. We assume only that sammesify fixed
alternativex are independent and identically distributed (iid) with finite variance, and&hab.
These distributions may, of course, differ acrgs3hus, even if the true sampling distributions do
not meet the assumptions made in deriving the HKG policy, we still enjoy cgewmee to a globally
optimal alternative. We continue to defiigto be the true mean of the sampling distribution from
alternativex, but the true variance of this distribution can differ frawn

Theorem 1 Assume that samples from any fixed alternative x are iid with finite variamcktheat
0 > 0. Then, the HKG policy measures each alternative infinitely often [in@,,. me" = oo for
each xe X) almost surely.

Proof Consider what happens as the number of measurememsmake under the HKG policy
goes to infinity. LetX, be the set of all alternatives measured infinitely often under our HKG policy
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and note that this is a random set. Suppose for contradictiotkthgt X with positive probability,
that is, there is an alternative that we measure only a finite number of timel; betthe last time
we measure an alternative outsideXayf. We compare the KG valuass ®" of those alternatives
within X, to those outside,.

Let X € X. We show that limg_,« ukG" = 0. Sincef is an increasing non-negative function,

andB{‘H(x) —b(x) > 0 by the assumed ordering of the alternatives, we have the bounds
0<ufer< Y (B - B() (0).
i=1,...,.M—1
Taking limits, limy Lk&" = 0 follows from limy_e Bi”(x) =0fori=1,...,M, which follows
in turn from limy_,., b (X) = 0 VX' € X as shown in Lemma 8.

Next, letx ¢ X.,. We show that limin_ vk -" > 0. LetU = sup,;|a(x)[, which is almost

surely finite by Lemma 7. Let’ € X,,. At least one such alternatixe must exist since we allocate
an infinite number of measurements atids finite. Lemma 9 shows

KGn < L n —h S
U "> 5 [bR (%) bx(x)|f<\b;‘,(x)—b§2(x)|)'

From Lemma 8, we know that limipf,,bl(x) > 0 and lim b (x) = 0. Thus,

b* = liminf_« [bY(x) — b (x)| > 0. Taking the limit inferior of the bound ook ®" and noting

the continuity and monotonicity df, we obtain

liminf ukCN > Lot <_4U ) > 0.
n—o0 2

b*
Finally, since lim e Uﬁfe’” =0 for all x € X, and liminf,_« UEG’” > 0 for all X ¢ X, each
X ¢ X, has am > Ny such thab,®" > uE®" vx € X... Hence we choose to measure an alternative

outsideX,, at a timen > N;. This contradicts the definition ®; as the last time we measured out-
sideX., contradicting the supposition tha, # X. Hence we may conclude that, = X, meaning
we measure each alternative infinitely often. |

Corollary 2 Assume that samples from any fixed alternative x are iid with finite variancethat
&> 0. Then, under the HKG policyimy_,. 1, = Bx almost surely for each & X.

Proof Fix x. We first considepg’”, which can be written as

o BB "0, 17

B+ me" (M) 2
whereyy is the average of all observations of alternativby timen. As n — oo, me" — o by
Theorem 1. Thus, lif,e ug’” = limp Y, Which is equal t®y almost surely by the law of large

numbers.
We now consider the weightg?". Forg + 0, (8) shows

(02" + (3")?)
(0x") 2+ ((0%M2+(3")?2)

9

1

N
W <

1
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Whenn is large enough that we have measured at least one alternati@(x), thendg" > 5,
implying ((0%")2+ (8%")2) ™" < & % andw§" < 3 2/((0%") 2 +5 ?). Asn— o, m" — o by
Theorem 1 ando?™) 2 = B0+ m"(A,) L — w. This implies that limM_,w" = 0. Also observe
thatwg" = 1— ¥ .oWe" implies limnows" = 1.

These limits for the weights, the almost sure finiteness of lgp| for eachg from Lemma 7,
and the definition (7) ofs} together imply lim_. 1} = liMp e ug’”, which equalsBy, as shown
above. |

Finally, Corollary 3 below states that the HKG policy eventually finds a globadtintal alter-
native. This is the main result of this section. In this result, keep in minckthataig max L is the
alternative one would estimate to be best at tygiven all the measurements collected by HKG.
Itis this estimate that converges to the globally optimal alternative, and noterheasurements
themselves.

Corollary 3 For each n, le®" € argmax 1. Assume that samples from any fixed alternative x are
iid with finite variance, and thad > 0. Then, under the HKG policy, there exists an almost surely
finite random variable Nsuch thatt” € argmax6y for alln > N'.

Proof Let 8% = max0x ande = min{6* — 6y : x € X,0* > 6}, wheree = « if 8, = 6* for all
X. Corollary 2 states that lim,. [, = 8¢ almost surely for allx, which implies the existence
of an almost surely finite random variald¥ with max |} — 6x| < €/2 for alln > N’. On the
event{e = o} we may takeN’ = 0. Fix n> N/, let x* € argmax6y, and letx' ¢ argmax 6.
Then . — 1 = (B — By) + (—Bx + I5.) + (B — ) > By — By —€ > 0. This implies that
X" € argmax 6y. [

6. Numerical Experiments

To evaluate the hierarchical knowledge-gradient policy, we perfonunaber of experiments. Our
objective is to find the strengths and weaknesses of the HKG policy. Torithjsve compare HKG
with some well-known competing policies and study the sensitivity of these polizigarious
problem settings such as the dimensionality and smoothness of the functicimeameasurement
noise.

6.1 Competing Policies

We compare the Hierarchical Knowledge Gradient (HKG) algorithm agamseral ranking and
selection policies: the Interval Estimation (IE) rule from Kaelbling (19933, Wpper Confidence
Bound (UCB) decision rule from Auer et al. (2002), the Independemdwledge Gradient (IKG)
policy from Frazier et al. (2008), Boltzmann exploration (BOLTZ), andepexploration (EXPL).

In addition, we compare with the Knowledge Gradient policy for correlaeitts (KGCB)
from Frazier et al. (2009) and, from the field of Bayesian global optitiimawe select the Se-
guential Kriging Optimization (SKO) policy from Huang et al. (2006). SKOnseatension of the
well known Efficient Global Optimization (EGO) policy (Jones et al., 1998&htcase with noisy
measurements.
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We also consider an hybrid version of the HKG algorithm (HHKG) in whichonly exploit the
similarity between alternatives in the updating equations and not in the meastidgnision. As a
result, this policy uses the measurement decision of IKG and the updatiag@tof HKG. The
possible advantage of this hybrid policy is that it is able to cope with similarity leataéernatives
without the computational complexity of HKG.

Since several of the policies require choosing one or more parameteowide a brief de-
scription of the implementation of these policies in Appendix D. For those policasdhuire it,
we perform tuning using all one-dimensional test functions (see Seci®)n Eor the Bayesian
approaches, we always start with a non-informative prior.

6.2 Test Functions

To evaluate the policies numerically, we use various test functions with theofidading the
highest point of each function. Measuring the functions is done with nibratiatributed noise with
varianceh. The functions are chosen from commonly used test functions for simdaegures.

6.2.1 ONE-DIMENSIONAL FUNCTIONS

First we test our approach on one-dimensional functions. In this daseglternativex simply
represent a single value, which we express by j. As test functions we use a Gaussian process
with zero mean and power exponential covariance function

Cov(i,j) = °2exp{_ <(h|/::i|)p>n}

which results in a stationary process with varianend a length scalg.

Higher values op result in fewer peaks in the domain and higher values @sult in smoother
functions. Here we fix) = 2 and varyp € 0.05,0.1,0.2,0.5. The choice ofo? determines the
vertical scale of the function. Here we fi¥ = 0.5 and we vary the measurement variahce

To generate a trutB;, we take a random draw from the Gaussian process (see, e.g., Rasmuss
and Williams, 2006) evaluated at the discretized pdintsl, .., 128. Figure 4 shows one test func-
tion for each value op.

Next, we consider non-stationary covariance functions. We choossettha Gibbs covariance
function (Gibbs, 1997) as it has a similar structure to the exponential iaoe&r function but is
non-stationary. The Gibbs covariance function is given by

oo 20(i)1(j) (i—)?
cOv<.,J>_ovaexp(_W),

wherel(i) is an arbitrary positive function in In our experiments we use a horizontally shifted

periodic sine curve fok(i),
: . [
[(i)=1+ 10<1+sm <2n<128+ u))) ,

whereu is a random number from [0,1] that shifts the curve horizontally across-tingés. The
functionl (i) is chosen so that, roughly speaking, the resulting function has one fiddpé¢hat is,
one area with relatively low correlations and one area with relatively higreladions. The area
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Figure 4: lllustration of one-dimensional test functions.

with low correlations visually resembles the case of having a stationary faneiitth p = 0.05,
whereas the area with high correlations visually resembles the case of lsesiationary function
with p = 0.5.

The policies KGCB, SKO and HKG all assume the presence of correlatidosation values.
To test the robustness of these policies in the absence of any correleti@onsider one last one-
dimensional test function. This function has an independent truth gedebg6; = U[0,1],i =
1,..,128.

6.2.2 TWO-DIMENSIONAL FUNCTIONS

Next, we consider two-dimensional test functions. First, we consider ithbuBnp camel back
(Branin, 1972) given by

1
f(x) = 4x2 — 2.1 + §x§ + X1Xo — X5 + 4.

Different domains have been proposed for this function. Here weidemthe domairx
[—1.6,2.4] x [-0.8,1.2] as also used in Huang et al. (2006) and Frazier et al. (2009), anch#yslig
bigger domairx € [-2,3] x [-1,1.5]. The extended part of this domain contains only values far
from the optimum. Hence, the extension does not change the value andranfatti@ optimum.

The second function we consider is the Tilted Branin (Huang et al., 200&) oy

2
f(x) = <x2 — j—]_[lzxf + %xl — 6> +10 <1 — 811_[> cogx;) + 10+ %xl,
with x € [-5,10] x [0,15].

The Six-hump camel back and Tilted Branin function are relatively smootttifurs in the
sense that a Gaussian process can be fitted to the truth relatively well.uSlgyi6GCB and SKO
benefit from this. To also study more messy functions, we shuffle thesédus by placing a 2 2
grid onto the domain and exchange the function values from the lower kedirgat with those from
the upper right quadrant.
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With the exception of SKO, all policies considered in this paper requirelgmbwith a fi-
nite number of alternatives. Therefore, we discretize the set of altegsadind use an 32 32
equispaced grid oiR?. We choose this level of discretization because, although our method is
theoretically capable of handling any finite number of alternatives, compudhiiesues limit the
possible number to the order of thousands. This limit also holds for KGCRB:haltas the same
computational complexity as HKG. For SKO we still use the continuous functidmeh should
give this policy some advantage.

6.2.3 (ASE EXAMPLE

To give an idea about the type of practical problems for which HKG candeel, we consider a
transportation application (see Simao et al., 2009). Here we must decide tehgend a driver
described by three attributes: (i) the location to which we are sending himjgijdme location
(called his domicile) and (iii) to which of six fleets he belongs. The “fleet” istagarical attribute
that describes whether the driver works regionally or nationally andhehde works as a single
driver or in a team. The spatial attributes (driver location and domicile) iarded! into 100 re-
gions (by the company). However, to reduce computation time, we aggitbgateregions into 25
regions. Our problem is to find which of the 2325 x 6 = 3750 is best.

To allow replicability of this experiment, we describe the underlying truth usmadaption of
a known function which resembles some of the characteristics of the traaismo application. For
this purpose we use the Six-hump camel back function, on the smaller domairesznted earlier.
We letx; be the location and, be the driver domicile, which are both discretized into 25 pieces to
represent regions. To include the dependence on capacity typeewteeu®llowing transformation

g(X1,X2,X3) = P1(X3) — P2 (X3) (X1 — 2%2|) — f (X1, %2) ,

wherexz denotes the capacity type. We uys€xz) to describe the dependence of capacity type on
the distance between the location of the driver and his domicile.

We consider the following capacity types: CAN for Canadian driversahbt serve Canadian
loads, WR for western drivers that only serve western loadsSU8r United States (US) solo
drivers, UST for US team drivers, USS for US independent contractor solo drivers, and TS
for US independent contractor team drivers. The parameter valaeshawn in Table 2. To cope
with the fact that some drivers (CAN and WR) cannot travel to certairtilmes, we set the value to
zero for the combinationfxz = CAN A x; < 1.8} and{x3 = WRAXx; > —0.8}. The maximum of
g(x1,X2,X3) is attained ag (0,0, US_S) with value 65.

X3 CAN WR USS UST USIS USIT
p(xs) 75 75 65 50 20 00
p2(xs) 05 05 20 00 20 00

Table 2: Parameter settings.

To provide an indication of the resulting function, we show ggxxi, X2, x3) in Figure 5. This
function has similar properties to the Six-hump camel back, except for dsepce of discontinu-
ities due to the capacity types CAN and WR, and a twist at X.

An overview of all test functions can be found in Table 3. Hedenotes the standard deviation
of the function measured over the given discretization.
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Figure 5:max,g (X1, X2, X3).

Type Function name ¢ Description
One-dimensional GP1R005 0.32  stationary GP with 0.05
GP1RO1 0.49 stationary GP with= 0.1
GP1R02 0.57  stationary GP with= 0.2
GP1RO05 0.67  stationary GP with= 0.5
NSGP 0.71  non-stationary GP
IT 0.29 independent truth
Two-dimensional SHCB-DS 2.87  Six-hump camel back on small domain
SHCB-DL 18.83 Six-hump camel back on large domain
TBRANIN 51.34 Tilted Branin
SHCB-DS-SH 2.87  shuffled SHCB-DS
SHCB-DB-SH 18.83 shuffled SHCB-DL
TBRANIN-SH 51.34 shuffled TBRANIN
Case example TA 3.43  transportation application

Table 3: Overview of test functions.

6.3 Experimental Settings

We consider the following experimental factors: the measurement varignitee measurement
budgetN, and for the HKG policy the aggregation structure. Given these fadtmsther with the
nine policies from Section 6.1 and the 15 test functions from Section 6.2, fadtorial design is
not an option. Instead, we limit the number of combinations as explained in ttisrse

As mentioned in the introduction, our interest is primarily in problems whéiie larger than
the measurement budgilt However, for these problems it would not make sense to compare
with the tested versions of IE, UCB and BOLTZ since, in the absence offanmed prior, these
methods typically choose one measurement of each oMttaternatives before measuring any
alternative a second time. Although we do not do so here, one could eongtsions of these
policies with informative priors (e.g., the GP-UCB policy of Srinivas et a01(), which uses UCB
with a Gaussian process prior), which would perform better on problethsMvmuch larger than
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N. To obtain meaningful results for the tested versions of IE, UCB and BDWe start with an
experiment with a relatively large measurement budget and relativelyna@gsurement noise. We
use all one-dimensional test functions wih= 500 andv/A € {0.5, 1}. We omit the policy HHKG,
which will be considered later.

In the remaining experiments we omit the policies IE, UCB, and BOLTZ thatosénformative
priors because they would significantly underperform the other poli€igs.is especially true with
the multi-dimensional problems where the number of alternatives after distietizs much bigger
then the measurement budget. We start with testing the remaining policies, togigthiae hybrid
policy HHKG, on all one-dimensional test functions usivig € {0.1,0.5,1} andN = 200. Next,
we use the non-stationary function to study (i) the sensitivity of all policiethevalue ofA, using
VA € {0.1,0.5,1,1.5,2,2.5} and (ii) the sensitivity of HKG on the aggregation structure. For the
latter, we consider two values fefA, namely 05 and 1, and five different aggregation structures as
presented at the end of this subsection.

For the stationary one-dimensional setting, we generate 10 random fumfdioeach value of
p. For the non-stationary setting and the random truth setting, we generaaad@am functions
each. This gives a total of 90 different functions. We use 50 replicafioneach experiment and
each generated function.

For the multi-dimensional functions we only consider the policies KGCB, SKRGHand
HHKG. For the two-dimensional functions we ude= 200. For the transportation application we
useN = 500 and also present the results for intermediate values e set the values fox by
taking into account the standard deviatmof the functions (see Table 3). For the Six-hump camel
back we use/A € {1,2, 4}, for the Tilted Branin we use/A € {2,4,8}, and for the case example
we usev/A € {1,2}. For the multi-dimensional functions we use 100 replications.

During the replications we keep track of the opportunity costs, which waeleSOC(n) =
(max 6;) — 6;-, with i* € argmax |}, that is, the difference between the true maximum and the
value of the best alternative found by the algorithm afteneasurements. Our key performance
indicator is the mean opportunity co®80C(n)| measured over all replications of one or more ex-
periments. For clarity of exposition, we also group experiments and intecalset GP1 containing
the 40 stationary one-dimensional test functions and a set NSO contaisib tion-stationary and
independent truth functions. When presentingEfi@C(n)]| in tabular form, we bold and underline
the lowest value, and we also bold those values that are not significaritlyedif from the lowest
one (using Welch’s t test at the 0.05 level).

We end this section with an explanation of the aggregation functions used Gy Blur default
aggregation structure is given by a binary tree, thath§(x)| = 29 for all x € X9 andg € G. As
a result, we have 8 ((128)/In(2) + 1) aggregation levels for the one-dimensional problems and 6
(In(32)/In(2) + 1) for the two-dimensional problems. For the experiment with varying agdjcn
functions, we introduce a variabdeto denote the number of alternativ@$(x), g < G that should be
aggregated in a single alternati@*(x) one aggregation level higher. At the end of the domain this
might not be possible, for example, if we have an odd number of (aggdgalternatives. In this
case, we use the maximum number possible. We consider the vali¢8, 4, 8,16}, wherew = 2
resembles the original situation of using a binary tree. To evaluate the infdaoting a difference
in the size of aggregated sets, we introduce a fifth aggregation strudherew alternately takes
values 2 and 4.

For the transportation application, we consider five levels of aggreg#t@ygregation level 0,
we have 25 regions for location and domicile, and 6 capacity types, arap8¢50 attribute vectors.
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At aggregation level 1, we represent the driver domicile as one ofdsarst aggregation level 2,
we ignore the driver domicile; at aggregation level 3, we ignore capagqy, tgnd at aggregation
level 4, we represent location as one of 5 areas.

An overview of all experiments can be found in Table 4.

Experiment Number of runs
One-dimensional long 90 8x2x1x50=72000
One-dimensional normal 906 x 3x 1x50=281,000
One-dimensional varying 25x 6 x 6 x 1x 50= 45000
One-dimensional varying 25x 1x2x5x50= 12500
Two-dimensional 6 3x 3x1x100= 27,000
Transportation application 23 x 2 x 1x 100= 6000

Table 4: Overview of experiments. The number of runs is given by #ilomex #policiesx #\’s
x #w's x #replications. The total number of experiments, defined by the numbeigfain
combinations of function, policy,, andw, is 2696.

7. Numerical Results

In this section we present the results of the experiments described in Seciitnd@monstrate that
HKG performs best when measured by the average performance adirpsoblems. In particular,
it outperforms others on functions for which the use of an aggregatimmtiun seems to be a natural
choice, but it also performs well on problems for which the other policiespecifically designed.
In the following subsections we present the policies, the test functiodgharexperimental design.

7.1 One-dimensional Functions

In our first experiment, we focus on the comparison with R&S policies usingjaively large
measurement budget. A complete overview of the resultsy for500 and an intermediate value
n = 250, can be found in Appendix E. To illustrate the sensitivity of the perfaonmaof these
policies to the number of measurementsve also provide a graphical illustration in Figure 6. To
keep these figures readable, we omit the policies UCB and IKG since thfarmpance is close to
that of IE (see Appendix E).

As expected, the R&S policies perform well with many measurements. |E gbnperforms
best, closely followed by UCB. BOLTZ only performs well for few measuoeats ( < M) after
which it underperforms the other policies with the exception of EXPL, whpeimds an unnecessary
portion of its measurements on less attractive alternatives.

With increasingn, IE eventually outperforms at least one of the advanced policies (KGCB,
SKO, and HKG). However, it seems that the number of measurementsaeduiiE to outperform
KGCB and HKG increases with increasing measurement varianéé further see, from Appendix
E, that IE outperforms IKG on most instances. However, keep in mind thatmed IE using exactly
the functions on which we test while IKG does not require any form of winifhe qualitative
change in the performance of IErat 128 samples is due to the fact that the version of IE against
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Figure 6: Results for the one-dimensional long experiments.

which we compare uses a non-informative prior, which causes it to meeaaah alternative exactly
once before it can use the IE logic to decide where to allocate future samples

With respect to the more advanced policies, we see that HKG outperfornuihiées on the
NSO functions (non-stationary covariance and independent truthparidrms competitively on
the stationary GPs in the case of relatively lakgeDbviously, KGCB and SKO are doing well on
the latter case since the truths are drawn from a Gaussian process sagdlieies fit a Gaussian
process to the evaluated function values. Apart from the given aggiwadunction, HKG does not
assume any structure and therefore has a slower rate of convemyethease instances. Further, itis
remarkable to see that SKO is only competitive on GP1 with0.5 but not withA = 1. We return
to this issue in the next experiment.

For a more detailed comparison between KGCB, SKO and HKG we now fatusnaller
measurement budgets. A summary of the results can be found in Table &.del@iled results in
combination with a further analysis can be found in Appendix E. As mentioafatdy we bold and
underline the lowest value, and we also bold those values that are nificsigtty different from
the lowest one.

On the GP1 functions withh < 0.5, HKG is outperformed by KGCB and SKO. SKO does
particularly well during the early measurements (n=50) after which it is olapred by KGCB
(n=200). On the GP1 functions with= 1, we see HKG becomes more competitive: in almost
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Function A n EXPL [IKG KGCB SKO HKG HHKG
GP1 01 50 0.090 0.081 0.0100.008 0.034 0.078
200 0.051 0.006 0.002 0.004 0.008 0.008

05 50 0.265 0.252 0.1230.104 0.141 0.175

200 0.214 0.075 0.037 0.041 0.059 0.065

1 50 0460 0.441 0.286 0.3020.265 0.305

200 0415 0.182 0.122 0.181 0.121 0.135

NSO 0.1 50 0.111 0.096 0.066 0.09®€.051 0.113
200 0.043 0.008 0.017 0.060 0.009 0.014

05 50 0301 0.288 0.189 0.2210.170 0.212

200 0.219 0.086 0.078 0.1360.065 0.081

1 50 0498 0.468 0.323 0.3750.306 0.335

200 0.446 0.213 0.183 0.2380.141 0.163

Table 5:E[OC(n)| on the one-dimensional normal experiments.

all cases it outperforms SKO, and with a limited measurement budget (n=aBpibutperforms
KGCB.

On the NSO functions, we see that HKG always outperforms KGCB and 8K©the only
exception being the independent truth (IT) function with- 1 andn = 50 (see Appendix E). We
also see that SKO is always outperformed by KGCB. Especially in the ciédséow measurement
noise f = 0.1) and a large number of measurememts=(200), SKO performs relatively poorly.
This is exactly the situation in which one would expect to obtain a good fit, btted {Gaussian
process prior with zero correlation is of no use. With an increasing nuoflbeeasurements, we
see SKO is even outperformed by EXPL.

In general, HKG seems to be relatively robust in the sense that, whehesveutperformed by
other policies, it still performs well. This claim is also supported by the oppiaytgosts measured
over all functions and values &ffound in Table 6 (note this is not a completely fair comparison
since we have slightly more non-stationary functions, and the averagetopity costs over all
policies is slightly higher in the non-stationary cases). Even though HK@sé be quite com-
petitive, HKG seems to have convergence problems in the low noiselcas@ {). We analyze this
issue further in Appendix E. The hybrid policy does not perform well,aalth it outperforms IKG
on most problem instances.

EXPL IKG KGCB SKO HKG HHKG
E[OC(50)] 0289 0.273 0.169 0.1890.163 0.205
E[OC(200)] 0.232 0.096 0.075 0.1140.068 0.078

Table 6: Aggregate results for the one-dimensional normal experiments.

In the next experiment we vary the measurement varianéegure 7 shows the relative reduc-
tion in E[OC(50)] compared with the performance of EXPL. For clarity of exposition, we omitted
the results fom = 200 and the performance of IKG. These results confirm our initial cerahs
with respect to the measurement variance: increasgiges HKG a competitive advantage whereas
the opposite holds for SKO. On the GP1RO02 functions, HKG is outperfoligeskO and KGCB
for A < 0.5. With A > 0.5, the performance of KGCB, HKG, and HHKG is close and they all
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outperform SKO. On the NSGP functions, the ordering of policies seeentain the same for all
values ofA, with the exception that with > 1, SKO is outperformed by all policies. The difference
between KGCB and HKG seems to decline with increading
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Figure 7: Sensitivity to the measurement noise.

As a final test with one-dimensional functions, we now vary the aggregatimcture used
by HKG. The results can be found in Figure 8. Obviously, HKG is sensttivthe choice of
aggregation structure. The aggregation function with: 16 is so coarse that, even on the lowest
aggregation level, there exists aggregate alternatives that have lodedarescwell as local minima
in their aggregated set. We also see that the performance under=th2/4 structure is close to
that ofw = 4, which indicates that having some symmetry in the aggregation function &gl
When comparing the two figures, we see that the impact of the aggregaticiofudecreases with
increasing\. The reason for this is that with highg&r more weight is given to the more aggregate
levels. As a result, the benefit of having more precise lower aggregatiels igecreases.
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2 2
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Figure 8: Sensitivity of HKG to the aggregation function.
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7.2 Two-dimensional Functions

An overview of results for the two-dimensional functions can be foundabld 7. From these
results we draw the following conclusions:

1. On the standard test functions, SHCB-DS and TBRANIN, HKG is otdpmed by KGCB
and SKO. However, with increasing HKG still outperforms SKO.

2. In case of the Six-hump camel back function, just extending the domaiin(aere the
extended part of the domain only contains points with large opportunity dogssq major
impact on the results. With the exception of one outcome (KGCB Avithl), the opportunity
costs increase for all policies. This makes sense because there are sionplglternatives
with higher opportunity costs. For KGCB and SKO, these extreme valuepkaga role in
fitting the Gaussian process prior. As a result, we have a less reliabléit atea of interest,
something especially SKO suffers from. Obviously, also HKG ‘loses’ measents on these
extreme values. However, their influence on the fit (via the aggregatiantidm) is limited
since HKG automatically puts a low weight on them. As a result, HKG outperforengtter
policies in almost all cases.

3. Shuffling the Six-hump camel back has a similar influence to extending thaido In all
cases, HKG outperforms KGCB and SKO. Shuffling the TBRANIN hasspeeially large
impact on the performance of KGCB and SKO. However, not all perfaocealifferences
with the shuffled TBRANIN are significant due to relatively large varianespecially in the
case ofn = 50.

7.3 Example Case

The results for the transportation application can be found in Figure 9. Asioned in Section
6, the first two dimensions of this problem are described by the Six-humpl tecie function on
the small domain. This function is also considered in Huang et al. (2006 mzikr et al. (2009)
where the policies SKO and KGCB respectively are introduced. CompaigdG, these policies
perform relatively well on this standard test function. It is interesting tothat the addition of a
third, categorical, dimension changes the situation.

As can be seen from Figure 9, HKG outperforms SKO and KGCB for bathes ofA and
almost all intermediate values of Measured ah = 100 andn = 200, the differences between
HKG and both KGCB and SKO are significant (again using the 0.05 levele Hyrid policy
HHKG is doing remarkably well; the differences with HKG rat= 200 are not significant, which
is partly due to the fact that the variances with HHKG are higher. The peédiace of HHKG is
especially remarkable since this policy requires only a fraction of the cotiprutame of the others.
Given, the large number of measurements and alternatives, the runningfiké&£B, SKO, and
HKG take multiple hours per replication whereas HHKG requires arouneédénsis.

8. Conclusions

We have presented an efficient learning strategy to optimize an arbitractidn that depends on
a multi-dimensional vector with numerical and categorical attributes. We dattenpt to fit a
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E[OC(50)] E[OC(100)]

Function VA | KGCB SKO HKG HHKG| KGCB SKO HKG HHKG
SHCB-DS 1} 0.28 035 0.37 0.55 0.18 0.30 0.29 0.33
2 0.56 0.53 0.72 0.84) 0.38 0.41 048 0.54
4 095 117 1.19 1.08 0.72 0.89 0.92 0.78
SHCB-DB 1 0.53 0.70 0.57 0.58, 0.12 053 041 0.35
2 1.03 1.11 0.73 0.92 0.83 0.95 0.46 0.64
4 155 150 1.21 1.34 133 1.42 0.89 1.05
SHCB-DS-SF 1 0.60 0.63 0.32 0.51 0.35 041 0.20 0.31
2 0.90 0.95 0.67 0.81 0.69 0.86 0.42 0.51
4 117 144 1.13 1.22 1.05 1.23 0.86 0.89
SHCB-DB.SF 1 1.19 0.75 0.48 0.65 0.60 0.81 0.29 0.38
2 166 1.23 0.69 0.99 1.08 1.07 0.48 0.64
4 185 1.41 1.00 1.14 136 143 0.74 0.86
TBRANIN 2 0.16 0.30 2.33 3.30 0.08 0.23 0.79 1.57
4 0.67 1.21 240 412 0.33 085 1.16 2.27
8 3.64 2.88 381 4.99 129 203 212 2.80
TBRANIN-SF 2| 2185 142 2.18 3.76| 759 142 0.82 1.68
4| 10.61 284 2.57 4.55 3.17 199 1.25 2.22
8 7.63 5.01 4.07 4.50 6.47 3.46 2.33 2.48

Table 7: Results for the 2-dimensional test functions.
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Figure 9: Results for the transportation application.

function to this surface, but we do require a family of aggregation funstigve produce estimates
of the value of the function using a Bayesian adaptation of the hieraradtiahation procedure
suggested by George et al. (2008). We then present an adaptati@nkoiciivledge-gradient proce-
dure of Frazier et al. (2009) for problems with correlated beliefs. Wethod requires the use of a
known covariance matrix, while in our strategy, we compute covariancesdur statistical model.
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The hierarchical knowledge-gradient (HKG) algorithm shares the@meteepest ascent prop-
erty of the knowledge gradient algorithm, which chooses samples thatqedde greatest single-
sample improvement in our ability to maximize the function. We also prove that theitalgo
is guaranteed to produce the optimal solution in the many-sample limit, since the ldkif&ham
measures every alternative infinitely often.

We close with experimental results on a class of one and two dimensionat 8aatéions
and a multi-attribute problem drawn from a transportation application. In #rgseriments, HKG
performs better than all competing policies tested, when measured by eygrdgrmance across
all problems. In particular, it outperforms the other policies on functionsvidch the use of an
aggregation function seems to be a natural choice (e.g., those with caté¢gamensions), but it
also performs well on problems for which the other policies are specificaliigded.

The limitation of the HKG policy is that it requires a given aggregation structuhich means
that we depend on having some insight into the problem. When this is the casahitity to
capture this knowledge in an aggregation structure is actually a strength,vgancan capture the
most important features in the highest levels of aggregation. If we daawetthis insight, designing
the aggregation functions imposes an additional modeling burden.

We mention two other limitations that give rise to further research. First, werebgonver-
gence problems for HKG in the case of low measurement variance whetetetds to become to
confident about values of alternatives never measured beforee¥deilnke this issue in more detail
in Appendix E. Second, the HKG policy requires enumerating all possilbees before deter-
mining the next measurement. This is appropriate for applications where edetoenake good
choices with a small number of measurements, typically far smaller than the akewfatives.
However, this limits our approach to handling perhaps thousands of shbigenot millions. A so-
lution here would be to create a limited set of choices for the next measurefvsemstarting point
we might create this set by running HKG on a higher aggregation level wigistiewer elements.
Preliminary experiments have shown that this method can drastically redugeitagion time with-
out harming the performance too much. Future research could furthErexsuch computational
improvements.

We mention one final direction for future research. While we have ptedemproof of con-
vergence for the HKG policy, there are no theoretical results currevalijable that bound the rate
at which it converges. Future research could derive such boondsuld create new techniques
appropriate for problems with hierarchical aggregation structures &vatlbounds on their conver-
gence rates. One approach for creating such techniques would bgitoAbth an online learning
technique with bounds on cumulative regret, and then to use a batch-te-oatigersion technique
to derive a procedure with a bound on the rate at which its terminal regmeemes to zero.

Appendix A.

The overall sampling and updating procedure used for HKG is shown ioridthgn 1 and an outline
for the HKG measurement decision is shown in Algorithm 2.
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Algorithm 1 Sampling and updating procedure.

Require: Inputs(G9)Vvg € G, (Ax)¥X € X, andd
1: Initialize (12, B2, &@)vx € X, (U$°,B2°,8%° ¢ )vg e G,x e X
2: forn=1toN do

3:  Use Algorithm 2 to get measurement decision

4:  Measurex and observei:

5. Computegy Vx € X

6:  Computeud”, BY", anddy" Vg € G,x € X using (2), (3), and (9)

7. Computeng" with (o%™)2 = 1/B¢" Vg € G,x € X using (8)

8. ComputeBd™® = (0¢"*)"2 Vg€ G,x € X using (10)

9:  Computel] andBh with (o¥™)? = 1/B%" ¥x € X using (4) and (5)
10: end for

11: return xN € argmaxe x I

Algorithm 2 Hierarchical knowledge-gradient measurement decision.

Require: Inputs(G9)Vg € G, (A, W3, BR)vx € X, (", B¢", 88", BL " *)\vg € G, x € X
1: for x=1toM do

2. Computedy" Vg € G using (15) with(af)2 = 1/
3 forxX=1toMdo
4: ComputewZ"(x) Vg € G using (17)
5: Computea, (x) andbj, (x) using (19) and (20)
6: end for
7. Sort the sequence of paifa(x),b(x))M, so that theo'(x) are in non-decreasing order and
ties are broken so thaf'(x) < a, (x) if b'(x) = b, ().
. fori=1toM—-1do
o: if b'(x) = b, ;(x) then
10: Remove entry from the sequencg@(x),b"(x))M,
11: end if
12:  end for
13:  Use Algorithm 1 from Frazier et al. (2009) to compaféx} andb(x)
14:  Computeuk®" using (21)
15 if x=1 oruk®" > u* then
16: 0* = KGN ¥ —x
17:  endif
18: end for

19: return Xx*
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Appendix B.

Proposition 4 The posterior belief 084 given observations up to time n for all aggregation levels
is normally distributed with mean and precision

n _ -
S ¢

B+ S ((o%”>2+v§)1u§””] ,
geG
-1
B = B+ Y (03" +vg)
9cG
Proof LetY¢" = {¥%0 i m<n,G9(x) = G(x™1)}. This is the set of observations from lewel
pertinent to alternative.
LetH be a generic subset of. We show by induction on the size of the skthat the posterior
on 8, givenYy" for all g € H is normal with mean and precision

H,n

1 -1
W = g B+ }H((o%”)zwﬁ) u%]
X ge

-1
oo = po+ EH((G%”)ZHQ) :
ge

Having shown this statement for &ll, the proposition follows by takingl = G.

For the base case, when the sizéHak 0, we haveH = 0 and the posterior 06 is the same as
the prior. In this case the induction statement holds becaii8e= 10 andpy™" = 2.

Now suppose the induction statement holds foHadif a sizemand consider a sét’ with m+1
elements. Choosge H’ and letH = H’\ {g}. Then the induction statement holds férbecause

it has sizem. Let Py denote the prior conditioned off " for g € H, and definéPyy: similarly. We
show that the induction statement holdsHtiby considering two case¥2" empty and non-empty.
If Y,2"is empty, then the distribution 6 is the same under boity, andPy,. Additionally, from
the fact thao$" = w it follows that ™" = pi"" and ™" = p"". Thus, the induction statement
holds forH’.
Now consider the case thgf" is non-empty. Leth be the normal density, and lgtenote the
observed value of¢". Then, by the definitions dl andH’, and by Bayes rule,

Py {6x € du} =Py {6 € du|Y2" =y} OPy {Y2" e dy| Bx = u} Py {6« € du}.

The second term may be rewritten using the induction statemenPyay € du} =
¢ ((u—u!?*”)/o!?’”). The first term may be rewritten by first noting thgt" is independent of

Y& " for ¢ € H, and then conditioning 08g. This provides
Py {2"edy|8c=u} = P{YZ"edy|6=u}
_ /ﬁ%@“emuﬁzvﬂﬁﬁszﬁ:de
R

" —v vV—u
(o5
" —u
¢ ( (oy )2+Vx> '
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In the third line, we use the fact thBt, {¥," € dy| 6f = v} is proportional (with respect to)
to¢ ((p2" —v)/0%"), which may be shown by induction arfrom the recursive definitions fqg"
andpg".

Using this, we write

u—p" u— " u- “X
PH/{GXGdU}D(I)( (O'X’ )2—|—Vx)¢< O";’n )Dd)( )7

which follows from an algebraic manipulation that involves completing the squar

This shows that the posterior is normally distributed with mﬁa/n” and variance(o!ﬁ'/’”)z,
showing the induction statement. |

Appendix C.

This appendix contains all the lemmas required in the proofs of Theorem Camllaries 2 and 3.

Lemmab5 If z1,2,... is a sequence of non-negative real numbers bounded above by @mons
a< o, and $ = Yx<nZ, theny,(z,/s)%Ls -0 is finite.

Proof Letny=inf{n>0:s,> 0}, and, for each integds, letn, = inf{n>0:s, > ka}. Then,
noting thats, = 0 for all n < ny and thats, > 0 for all n > ng, we have

[o0)

(z0/50)?

N<N<Ny1

Z(zn/sq)zl{wm:[ 2 (20/n)?

k=1

We show that this sum is finite by showing that the two terms are both finite. Bhéeiim may
be bounded by

2

Pl (@/)°< Y (/7)< ( > zn/zno> < (/2" < o0
Np<n<ng No<n<ng No<n<ng

The second term may be bounded by

00

Nk+1 Ne1—1 2
z (z,/ka)?> < z< z zn/ka)
n=n 1 N=ny

HM8
HPV18

N

z (z0/5n)?

=Ty K
:i Sne1-1— S+ Zng - % k+1a ka+a
& ka -

=]
i (2/k)? 2 < oo,

=~
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Lemma 6 Assume that samples from any fixed alternative x are iid with finite variance &G
and xe X and let

)_/nx = [z B)g(7m7sy;<n+ll{xm—x}] / [Z B)%m’el{xm—x}]

m<n

for all those n for which the denominator is strictly positive, and/et 0 for those n for which the
denominator is zero. Thesup, |yi| is finite almost surely.

Proof Leta" = [BR™ Lo ] / [SmenBX ™ Lixm_y], SO that

ynx+1 — (1_ Gn))_/Q + GnyQJrl.

Let vx be the variance of samples from alternativavhich is assumed finite. LeM” (YR —
82 + ¥ o Loy Vx(@™)2, and note that Lemma 5 and the upper bogmiin, Ax )~ on BZ™*
together imply thaM? is finite. We will show thatM" is a supermartingale with respect to the
filtration generated byy})y_;. In this proof, we writeE" to indicateE[- | #"], the conditional
expectation taken with respect 9.

Con3|derIE”[M”+1] On the even{x" # x} (which is #" measurable), we hawd"*! = M" and
E" [M™1—M"] = 0. On the evenfx" = x} we computeE" [M""1 — M"| by first computing

VR =807 = (% — 87 — w(a")?

(1 aMyg+ay™ — 807 — (¥ — 8% — w(a")?
= —(aM?(YR — 67 +2a"(1—a") (V- B) ('~ 60)
+(aM) (IR —60)2 — vy -

Then, the# " measurability ofa™ andyy, together with the facts th&" [yf™ —8,] = 0 and
E" [(9{2*1 —6x) 2} = Vy, imply

Mn+l_ Mn

E [Mn+l_ Mn] _ _(an)Z(V;_eX)Z < 0

SinceM" > 0 andM? < o, the integrability ofM" follows. Thus,(M"), is a supermartingale
and has a finite limit almost surely. Then,

lim M" = lim (371 8%+ i Loy V(@™ = lim (Y} — 6,)2.

n—oo n—oo
The almost sure existence of a finite limit fgi} — 8,)? implies the almost sure existence of a

finite limit for |y — 64| as well. Finally, the fact that a sequence with a limit has a finite supremum
implies that sup|yy| < sug, |y — x|+ |68x| < c almost surely. [ |

Lemma 7 Assume that samples from any fixed alternative x are iid with finite variaretex X. €
X, g€ G. Thensup, |1¢"| andsup, [a% (x)| are almost surely finite.
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Proof We first show sup|u¢"| < o almost surely for fixec andg. We writep" as

70 #O 1Ty 7
gn _ 5O +Zm<ntm81{xmexg(x)}Y%+l g0 n
- g,0 g,me - pO X + Z px’y'Q’u
BX"+ S menBx Limexo(x)) X €X9(x)

where theyf, are as defined in Lemma 6 and th are defined fox’ € X9(x) by

~O g7m7£
n_ g n Y m<n BX 1{xm:x'}

Po ’ Px = '
Bg"o + Y m<n B%m’gl{xmexg(x)} " Bgo + > m<n B%m’sl{xr%xg(x)}

Note thatpj and each of th@[;, are bounded uniformly between 0 and 1. We then have

suplz"| < sup
n n

Wy |>?;/\]sm279|+ S supfl

X'eX9(x) X'eX9(x)

By Lemma 6, sup|y%| is almost surely finite, and hence so is siud"

We now turn our attention taf, (x) for fixed x andx’. & (x) is a weighted linear combinations
of the termqﬁ’”, g € G (note that} is itself a linear combination of such terms), where the weights
are uniformly bounded. This, together with the almost sure finiteness Qngtﬂq)for eachg, im-
plies that sup|all (x)| is almost surely finite. [ |

Lemma 8 Assume thad > 0 and samples from any fixed alternative x are iid with finite variance.
Let X, be the (random) set of alternatives measured infinitely often by HKG, Tdrasach X, x € X,
the following statements hold almost surely,

o If X € Xo thenlimp_,e b}, (x) = 0 andlimp_,., b (X') = 0.

o If X & X thenliminf, . bJ(x) > 0.

Proof Letx andx be any pair of alternatives.

First consider the casec X.,. Letge G(xX,x) andB = sup,(0%"¥)2. Lemma 7 and (10)
imply that B is almost surely finite. SincBg™® > 1/B for eachn, we havepy" > nm¢"B. Then
X € X, implies limy_emy" = o and lim_..BY" = . Also, x andx share aggregation leve|
soBY" = BY" and limy . By = . Then consided?" for n large enough that we have measured
alternativex at least once. From (10jg%"™%)2 > A,/|X9(x)|, which gives a uniform upper bound
BY™ < |X9(x)|/Ax. Also, the definition (6) impliesa?)? < (o¥")2 < 1/B. This, the definition (15),
and limy_,« BY" = o together imply lim_, 3¢" = 0. The limit limn_, %" = 0 follows similarly
from the bound$3™ < | X9(x)|/Ax and(a?)? < (ox?)2 < 1/B, and lim . BS" = . Hence, (20)
and the boundedness of the weights' andw" imply limp_,e b (X) = limn_e b (X') = 0.

Now consider the case¢ X.. We show that liminf_,., bj(x) > 0. From (20) and & G(x,X),

()‘X)71 \/(Zg’eg Bg,’n> - + Ax
B+ (A '

bR(x) > We"(x)
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Becaus& ¢ X, there is some random tin < o after which we do not measuxeandﬁg’” < [32'1’0

for all n. L
(A0 VA«

B9 > 00 oy

where the weights are given by

(B +7Y)

1 )
(Bg’n + (Ax)fl) + Ygeg oy UR"

W) =

with
gn g,n g,ney—1 g, 2 -1
X :((Bx7 + B3 ) +(6x7 ) ) :
We now show limsupy?"” < w forallg € G\ {0}. We consider two cases fgr In the first case,
suppose that an alternativedi¥(x) is measured at least once. Then, fonafter this measurement,

my" > 0 anddy" > & (by (9)), implyingy$" < & 2 and limsupy$" < & 2 < e. In the second case,
suppose no alternative ii9(x) is ever measured. Then, limsp" < limsup, BZ" + BE™* < oo.

-1 -1
Finally, limsup 2" < « and ([327”+(>\X)—1) > ( 2’N1+()\x)‘1> > 0 together imply
liminf,_.Wy"(X) > 0. This shows liminf_.. bl(x) > 0. |

Lemma 9 Let ae RY with max laj| <c, be RY, and let Z be a standard normal random variable.

If x £ X, then,
’bx’ - bx‘ _4C
" " _ P>
E [miaxa +b.Z} maxg; > —— f By b )

where this expression is understood tothiéb, = by.

Proof Letx* € argmaxa anda* = maxa. Then adding and subtractirg- + bx-Z = a" +by-Z
and observindt[by-Z] = 0 provides

E [miaxai + biz} —a"=E Kmiax(ai —a’) + (b — bx*)Z> +a + bX*Z] —a'
=E [miax(ai —a’) + (b — bx*)Z} .

Let j € argmax.,xy |bi —b*[. Then, by taking the maximum in the previous expression over
only j andx*, we obtain the lower bound

E [miaxa- + biz} —a" > [E[max(0,a; —a" + (bj — by )Z)]

> E [max(0, —2c+ (b; — by )2)]

—2c |by — by| ( —4c >

= |b; — by | f > f .
0j = b (bjbx*>> 2 by by
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The second line follows from the bound mé| < c. The equality in the third line can be verified
by evaluating the expectation analytically (see, e.g., Frazier et al., 2008yewhe expression is
taken to be 0 ib; = by-. The inequality in the third line then follows frofb; — b*| > |by —by|/2
and fromf being an increasing non-negative function. |

Appendix D.

Here we provide a brief description of the implementation of the policies caesidie our numer-
ical experiments.

Interval estimation (IE) The IE decision rule by Kaelbling (1993) is given by
n_ n AN
X" = argmax(k; + /2 - 0%)

wherez, ; is a tunable parameter. Kaelbling (1993) suggests that values of 2, 2.6ftan3
works best. The IE policy is quite sensitive to this parameter. For examplebserve that
the following cases require higher values fgy,: more volatile functions (low values faq,
see Section 6.2), a higher measurement varian@nd higher measurement buddét To
find a value that works reasonably well on most problem instances, teel teslues between
0.5 and 4 with increments of .1 and found tlgt, = 2.3 works best on average. Since we

assume the measurement noise is known, wefise % wherem} is the number of times

x has been measured up to and including time

UCB1-Normal (UCB1) The study by Auer et al. (2002) proposes different variations of the U
per Confidence Bound (UCB) decision rule originally proposed by 1887). The UCB1-
Normal policy is proposed for problems with Gaussian rewards and ia tiye

Alogn
"=argm L+ 4 :
X =arg xe??(lylX * Np )

The original presentation of the policy uses a frequentist estimate of theireesent variance
A, which we replace by the known value. We improve the performance ofli§§Breating

the coefficient 4 as a tunable parameter. As with IE, we observe thatitfegrpance is quite
sensitive to the value of this parameter. Using a setup similar to IE, we founhd tadue of

0.9 produced the best results on average.

Independent KG (IKG) This is the knowledge-gradient policy as presented in Section 4.1 of this
paper.

Boltzmann exploration (BOLTZ) Boltzmann exploration chooses its measurements by

n/Tn
P =x) = (e““ nm>,
Zx’exeu"/
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where the policy is parameterized by a decreasing sequence of “temperedefficients
(T”)ﬂ;ol. We tune this temperature sequence within the set of exponentially degrasasin
quences defined by = yT" for some constant< (0, 1]. The set of all such sequences is
parameterized byandTN. We tested combinations gt {.1,.2,...,1} andTN € {.1,.5,1,2}
and found that the combinatign= 1 andTN = .3 produces the best results on average.

Pure exploration (EXPL) The pure exploration policy measures each alternatiwith the same
probability, that isP(X" = x) = 1/M.

Sequential Kriging Optimization (SKO) This is a blackbox optimization method from Huang
et al. (2006) that fits a Gaussian process onto the observed varialieshyperparame-
ters of the Gaussian process prior are estimated using an initial Latin knpegedesign with
2p-+ 2 measurements, with being the number of dimensions, as recommended by Huang
et al. (2006). After this initial phase we continue to update the hyperpaeasnesing maxi-
mum likelihood estimation, during the first 50 measurements. The parametensdated at
each iteration.

KG for Correlated Beliefs (KGCB) This is the knowledge-gradient policy for correlated beliefs
as presented in Section 4.1. We estimate the hyperparameters in the samedoag asth
SKO.

Hierarchical KG (HKG) This is the hierarchical knowledge-gradient policy as presented in this
paper. This policy only requires an aggregation function as input. Weepte¢hese functions
in Section 6.3.

Hybrid HKG (HHKG) In this hybrid policy, we only exploit the similarity between alternatives in
the updating equations and not in the measurement decision. As a resulglityuges the
measurement decision of IKG and the updating equations of HKG. Thébpmsslvantage
of this hybrid policy is that it is able to cope with similarity between alternatives witkive
computational complexity of HKG.

Appendix E.

Here we show more detailed results for the experiments on one-dimensiobbdme. A complete
overview of the results for the one-dimensional experiments With 500 can be found in Table 8
and withN = 200 in Table 9.

Besides the conclusions from the main text, we mention a few additional aliesivbased on
the more detailed results.

First, from Table 9 we see that the relative performance of KGCB and@&{@nds on the value
of p. On relatively smooth functions with > 2, SKO outperforms KGCB, whereas the opposite
holds forp < 2.

Second, it is remarkable to see that in the independent truth case (I'Ppltbes that exploit
correlation (KGCB and HKG) are doing so well and outperform IKG. Explanation is the fol-
lowing. After M measurements, IKG has sampled each alternative once and the implementation
decision is the one with the highest value observed so far. Obviously, tini¢ &reliable estimate,
especially withA > 0.5. The policies KGCB and HKG tend to resample promising alternatives.
So, afterM measurements, they have a more reliable estimate for their implementation decision.
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Function VA N EXPL IKG KGCB SKO HKG I[E UCB BOLTZ
GP1RO5 0.5 250 0.206 0.090 0.06D.029 0.072 0.077 0.073 0.133
500 0.169 0.044 0.0370.027 0.053 0.038 0.040 0.075

1 250 0.344 0.170 0.131 0.1420.111 0.174 0.183 0.242

500 0.332 0.108 0.093 0.111 0.092 0.106 0.113 0.155

GP1R02 0.5 250 0.152 0.041 0.024 0.024 0.032 0.046 0.043 0.069
500 0.106 0.022 0.014 0.019 0.017 0.024 0.025 0.048

1 250 0.308 0.103 0.084 0.129 0.077 0.112 0.111 0.151

500 0.298 0.057 0.050 0.120 0.044 0.062 0.061 0.113

GP1RO1 0.5 250 0.196 0.057 0.019 0.038 0.043 0.043 0.053 0.088
500 0.158 0.033 0.009 0.024 0.027 0.022 0.024 0.058

1 250 0.424 0.162 0.107 0.218 0.114 0.138 0.166 0.192

500 0.348 0.084 0.064 0.165 0.069 0.069 0.088 0.143

GP1R0O05 0.5 250 0.253 0.0650.017 0.047 0.049 0.053 0.058 0.100
500 0.183 0.027 0.008 0.037 0.031 0.019 0.019 0.070

1 250 0.483 0.162 0.093 0.189 0.100 0.145 0.178 0.210

500 0.432 0.084 0.046 0.147 0.061 0.073 0.080 0.143

NSGP 0.5 250 0.249 0.052 0.070 0.146.049 0.046 _0.043 0.122
500 0.186 0.024 0.044 0.121 0.02®.019 0.019 0.076

1 250 0.539 0.193 0.184 0.2400.124 0.150 0.175 0.220

500 0.443 0.092 0.113 0.1940.067 0.068 0.073 0.141

IT 05 250 0.182 0.075 0.066 0.10M0.060 0.075 0.074 0.113
500 0.153 0.047 0.045 0.0920.040 0.042 0.046 0.093

1 250 0.306 0.155 0.144 0.2070.108 0.151 0.162 0.188

500 0.253 0.097 0.101 0.1880.087 0.094 0.099 0.168

GP1 05 250 0.202 0.063 0.030 0.034 0.049 0.055 0.057 0.098
500 0.154 0.032 0.017 0.027 0.032 0.026 0.027 0.063

1 250 0.390 0.149 0.104 0.170 0.101 0.143 0.160 0.198

500 0.352 0.083 0.063 0.136 0.066 0.078 0.086 0.138

NSO 0.5 250 0.215 0.064 0.068 0.12®.055 0.060 0.059 0.118
500 0.169 0.035 0.044 0.1060.033 0.031 0.032 0.085

1 250 0.423 0.174 0.164 0.2240.116 0.150 0.168 0.204

500 0.348 0.094 0.107 0.1910.077 0.081 0.086 0.154

Table 8: Results for the one-dimensional long experiments.
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Function VA N EXPL IKG KGCB SKO HKG HHKG
GP1RO5 0.1 50 0.149 0.131 0.02®.001 0.033 0.036
200 0.102 0.008 0.0060.001 0.008 0.008

05 50 0.261 0.231 0.1650.078 0.171  0.169

200 0.216 0.097 0.0750.036 0.085 0.080

1 50 0390 0.411 0.2770.210 0.258 0.278

200 0.359 0.222 0.150 0.1480.129 0.162

GP1R0O2 0.1 50 0.039 0.038 0.01®.005 0.026  0.050
200 0.025 0.008 0.003 0.002 0.007 0.006

05 50 0.203 0.187 0.0790.063 0.092 0.126

200 0.169 0.055 0.029 0.029 0.037 0.044

1 50 0.396 0.389 0.233 0.230 _0.224 0.257

200 0.332 0.142 0.096 0.138 0.097 0.087

GP1RO1 0.1 50 0.062 0.056 0.007 0.014 0.030 0.083
200 0.036 0.006 0.001 0.008 0.008 0.005

05 50 0.254 0.253 0.121 0.117 0.132 0.184

200 0.218 0.065 0.022 0.043 0.055 0.054

1 50 0477 0.482 0.303 0.358 0.294  0.283

200 0.441 0.182 0.124 0.235 0.136 0.128

GP1RO05 0.1 50 0.111 0.099 0.003 0.011 0.047 0.144
200 0.043 0.004 0.000 0.003 0.008 0.011

05 50 0.342 0.336 0.127 0.157 0.170 0.222

200 0.254 0.082 0.021 0.054 0.061 0.080

1 50 0577 0482 0.329 0.4110.286 0.401

200 0.530 0.182 0.118 0.204 0.123 0.164

NSGP 0.1 50 0.168 0.143 0.087 0.139.059 0.184
200 0.047 0.003 0.021 0.094 0.005 0.017

05 50 0391 0.373 0.235 0.2690.200 0.294

200 0.263 0.082 0.084 0.1560.066 0.082

1 50 0.692 0.627 0.428 0.4510.381 0.440

200 0.580 0.249 0.208 0.2600.153 0.176

IT 0.1 50 0.053 0.050 0.046 0.052 0.044 0.042

200 0.039 0.013 0.012 0.027 0.013 0.011

05 50 0.212 0.203 0.144 0.178 0.1410.130

200 0.175 0.091 0.072 0.1160.065 0.079

1 50 0.305 0.310 0.218 0.298 0.230 0.231

200 0.312 0.177 0.157 0.2170.128 0.150

Table 9: Results for the one-dimensional normal experiments.

Obviously, there is a probability that KGCB and HKG do not measure the ptimal alternative

afterM measurements. However, given the way we generated this function ateenaultiple al-

ternatives close the the optimal one (we may expect 10% of the alternativeddss then 0.1 from
the optimum).
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Finally, even though HKG seems to be quite competitive, there are some restiltsitfgest
future extensions of HKG. Specifically, HKG seems to have converganotgems in the low noise
case A = 0.1). We see this from (i) the settings with= 0.1 andn = 200 where HKG underper-
forms IKG on three cases (two of them with significant differences), (@)géttings with the one-
dimensional long experiments where HKG is outperformed by IKG in threesgasach of them
having a low value fohk and a large number of measurements, and (iii) the hybrid policy HHKG is
outperformed by IKG on most of the= 0.1 cases. We believe that the source of this problem lies in
the use of the base levgl], that is, the lowest leve] for which we have at least one observation on
an aggregate alternative that includes alternatire" > 0). We introduced this base level because
we need the posterior meal) and the posterior variande?)? for all alternatives, including those
we have not measured. Wharis relatively small, the posterior variance on the aggregate levels
(o¥™)? increases relatively quickly; especially because the squareddiag, which we use as an
estimate fony, is small at the base level (equal to the lower bodhdAs a result, we may become
too confident about the value of an alternative we never measured. Wbevable to resolve this
by adding a prior on these functions, which obviously requires priomdeage about the truth or
additional measurements, or by tunibg
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