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Abstract

This paper discusses sign language recognition using linguistic sub-units. It presents three types
of sub-units for consideration; those learnt from appearance data as well as those inferred from
both 2D or 3D tracking data. These sub-units are then combined using a sign level classi�er; here,
two options are presented. The �rst uses Markov Models to encode the temporal changes between
sub-units. The second makes use of Sequential Pattern Boosting to apply discriminative feature
selection at the same time as encoding temporal information. This approach is more robust to noise
and performs well in signer independent tests, improving results from the 54% achieved by the
Markov Chains to 76%.

Keywords: sign language recognition, sequential pattern boosting, depth cameras, sub-units,
signer independence, data set

1. Introduction

This paper presents several approaches to sub-unit based Sign Language Recognition (SLR) cul-
minating in a real time KinectTMdemonstration system. SLR is a non-trivial task. Sign Lan-
guages (SLs) are made up of thousands of different signs; each differing from the other by minor
changes in motion, handshape, location or Non-Manual Featuress (NMFs). While Gesture Recogni-
tion (GR) solutions often build a classi�er per gesture, this approach soonbecomes intractable when
recognising large lexicons of signs, for even the relatively straightforward task of citation-form, dic-
tionary look-up. Speech recognition was faced with the same problem; the emergent solution was
to recognise the subcomponents (phonemes), then combine them into words using Hidden Markov
Models (HMMs). Sub-unit based SLR uses a similar two stage recognition system, in the �rst stage,
sign linguistic sub-units are identi�ed. In the second stage, these sub-unitsare combined together
to create a sign level classi�er.

Linguists also describe SLs in terms of component sub-units; by using thesesub-units, not only
can larger sign lexicons be handled ef�ciently, allowing demonstration on databases of nearly 1000
signs, but they are also more robust to the natural variations of signs, which occur on both an inter
and an intra signer basis. This makes them suited to real-time signer independent recognition as
described later. This paper will focus on 4 main sub-unit categories based onHandShape, Location,
Motion andHand-Arrangement. There are several methods for labelling these sub-units and this
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COOPER, PUGEAULT, ONG AND BOWDEN

Figure 1: Overview of the 3 types of sub-units extracted and the 2 different sign level classi�ers
used.

work builds on both the Ha, Tab, Sig, Dez system from the BSL dictionary (British Deaf Associa-
tion, 1992) and The Hamburg Notation System (HamNoSys), which has continued to develop over
recent years to allow more detailed description of signs from numerous SLs(Hanke and Schmaling,
2004).

This paper presents a comparison of sub-unit approaches, focussing on the advantages and dis-
advantages of each. Also presented is a newly released Kinect data set,containing multiple users
performing signs in various environments. There are three different types of sub-units considered;
those based on appearance data alone, those which use 2D tracking datawith appearance based
handshapes and those which use 3D tracking data produced by a KinectTMsensor. Each of these
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three sub-unit types is tested with a Markov model approach to combine sub-units into sign level
classi�ers. A further experiment is performed to investigate the discriminative learning power of
Sequential Pattern (SP) Boosting for signer independent recognition. An overview is shown in
Figure 1.

2. Background

The concept of using sub-units for SLR is not novel. Kim and Waldron (1993) were among the
�rst adopters, they worked on a limited vocabulary of 13-16 signs, usingdata gloves to get accurate
input information. Using the work of Stokoe (1960) as a base, and their previous work in telecom-
munications (Waldron and Simon, 1989), they noted the need to break signs into their component
sub-units for ef�ciency. They continued this throughout the remainder of their work, where they
used phonemic recognition modules for hand shape, orientation, position and movement recogni-
tion (Waldron and Kim, 1994). They made note of the dependency of position, orientation and
motion on one another and removed the motion aspect allowing the other sub-units to compensate
(on a small vocabulary, a dynamic representation of position is equivalentto motion) (Waldron and
Kim, 1995).

The early work of Vogler and Metaxas (1997) borrowed heavily from the studies of sign lan-
guage by Liddell and Johnson (1989), splitting signs into motion and pause sections. Their later
work (Vogler and Metaxas, 1999), used parallel HMMs on both hand shape and motion sub-units,
similar to those proposed by the linguist Stokoe (1960). Kadir et al. (2004)took this further by
combining head, hand and torso positions, as well as hand shape, to create a system based on hard
coded sub-unit classi�ers that could be trained on as little as a single example.

Alternative methods have looked at data driven approaches to de�ning sub-units. Yin et al.
(2009) used an accelerometer glove to gather information about a sign, they then applied discrimi-
native feature extraction and `similar state tying' algorithms, to decide sub-unit level segmentation
of the data. Whereas Kong and Ranganath (2008) and Han et al. (2009) looked at automatic seg-
mentation of sign motion into sub-units, using discontinuities in the trajectory and acceleration to
indicate where segments begin and end. These were then clustered into a code book of possible
exemplar trajectories using either Dynamic Time Warping (DTW) distance measures Han et al. or
Principal Component Analysis (PCA) Kong and Ranganath.

Traditional sign recognition systems use tracking and data driven approaches (Han et al., 2009;
Yin et al., 2009). However, there is an increasing body of research that suggests using linguisti-
cally derived features can offer superior performance. Cooper and Bowden (2010) learnt linguistic
sub-units from hand annotated data which they combined with Markov models tocreate sign level
classi�ers, while Pitsikalis et al. (2011) presented a method which incorporated phonetic transcrip-
tions into sub-unit based statistical models. They used HamNoSys annotationscombined with the
Postures, Detentions, Transitions, Steady Shifts (PDTS) phonetic model tobreak the signs and an-
notations into labelled sub-units. These were used to construct statistical sub-unit models which
they combined via HMMs.

The frequent requirement of tracked data means that the KinectTMdevice has offered the sign
recognition community a short-cut to real-time performance. In the relatively short time since its
release, several proof of concept demonstrations have emerged. Ershaed et al. (2011) have focussed
on Arabic sign language and have created a system which recognises isolated signs. They present
a system working for 4 signs and recognise some close up handshape information (Ershaed et al.,
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2011). At ESIEA they have been using Fast Arti�cial Neural Networksto train a system which
recognises two French signs (Wassner, 2011). This small vocabularyis a proof of concept but it is
unlikely to be scalable to larger lexicons. It is for this reason that many sign recognition approaches
use variants of HMMs (Starner and Pentland, 1997; Vogler and Metaxas, 1999; Kadir et al., 2004;
Cooper and Bowden, 2007). One of the �rst videos to be uploaded to theweb came from Zafrulla
et al. (2011) and was an extension of their previous CopyCat game for deaf children (Zafrulla et al.,
2010). The original system uses coloured gloves and accelerometers totrack the hands. By tracking
with a KinectTM , they use solely the upper part of the torso and normalise the skeleton according to
arm length (Zafrulla et al., 2011). They have an internal data set containing 6 signs; 2 subject signs,
2 prepositions and 2 object signs. The signs are used in 4 sentences (subject, preposition, object)
and they have recorded 20 examples of each. Their data set is currentlysingle signer, making
the system signer dependent, while they list under further work that signer independence would
be desirable. By using a cross validated system they train HMMs (Via the Georgia Tech Gesture
Toolkit Lyons et al., 2007) to recognise the signs. They perform 3 typesof tests, those with full
grammar constraints achieving 100%, those where the number of signs is known achieving 99.98%
and those with no restrictions achieving 98.8%.

2.1 Linguistics

Sign language sub-units can be likened to speech phonemes, but while a spoken language such as
English has only 40-50 phonemes (Shoup, 1980), SLs have many more. For example,The Dictio-
nary of British Sign Language/English(British Deaf Association, 1992) lists 57 `Dez' (HandShape),
36 `Tab' (Location), 8 `Ha' (Hand-Arrangement), 28 `Sig' (Motion) (plus 4 modi�ers, for example,
short and repeated) and there are two sets of 6 `ori' (Orientation), one for the �ngers and one for
the palm.

HamNoSys uses a more combinatorial approach to sub-units. For instance,it lists 12 basic
handshapes which can be augmented using �nger bending, thumb position and openeness charac-
teristics to create a singleHandShapesub-unit. These handshapes are then combined with palm
and �nger orientations to describe the �nal hand posture.Motion sub-units can be simple linear
directions, known as `Path Movements' these can also be modi�ed by curves, wiggles or zigzags.
Motion sub-units can also be modi�ed by locations, for example, move from A to B with acurved
motion or move down beside the nose.

In addition, whereas spoken phonemes are broadly sequential, sign sub-units are parallel, with
some sequential elements added where required. This means that each of the 57 British Sign Lan-
guage (BSL)HandShapeoptions can (theoretically) be in any one of the 36 BSLOrientationcombi-
nations. In practice, due to the physical constraints of the human body, only a subset of comfortable
combinations occur, yet this subset is still considerable.

An advantage of the parallel nature of sub-units, is that they can be recognised independently
using different classi�ers, then combined at the word level. The reasonthis is advantageous is that
Locationclassi�ers need to be spatially variant, since they describe where a sign happens.Hand-
Arrangementshould be spatially invariant but not rotationally variant, since they describe positional
relationships between the hands. WhileMotion are a mixture of spatially, temporally, rotationally
and scale variant sub-units since they describe types of motion which can be as generic as `hands
move apart' or more speci�c such as `hand moves left'. Therefore eachtype of sub-unit can be
recognised by classi�ers incorporating the correct combination of invariances. This paper presents
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three methods for extracting sub-units; learnt appearance based (Section 3), hard coded 2D tracking
based (Section 4) and hard coded 3D tracking based (Section 5).

3. Learning Appearance Based Sub-units

The work in this section learns a subset of each type of sub-unit using AdaBoost from hand labelled
data. As has been previously discussed, not all types of sub-units canbe detected using the same
type of classi�er. ForLocationsub-units, there needs to be correlation between where the motion
is happening and where the person is; to this end spatial grid features centred around the face of
the signer are employed. ForMotion sub-units, the salient information is what type of motion is
occurring, often regardless of its position, orientation or size. This is approached by extracting
moment features and using Binary Patterns (BPs) and additive classi�ersbased on their changes
over time. Hand-Arrangementsub-units look at where the hands are in relation to each other, so
these are only relevant for bi-manual signs. This is done using the same moment features as for
Motion but this time over a single frame, as there is no temporal context required. Allof these
sub-unit level classi�ers are learnt using AdaBoost (Freund and Schapire, 1995). The features used
in this section require segmentation of the hands and knowledge of where theface is. The Viola
Jones face detector (Viola and Jones, 2001) is used to locate the face. Skin segmentation could be
used to segment the hands, but since sub-unit labels are required this work uses the data set from the
work of Kadir et al. (2004) for which there is an in-house set of sub-unit labels for a portion of the
data. This data set was created using a gloved signer and as such a colour segmentation algorithm
is used in place of skin segmentation.

(a) The grid applied over the signer

(b) On Right Shoulder (c) Lower Face/Chin

Figure 2: Grid features for two stage classi�cation. (a) shows an exampleof the grid produced from
the face dimensions while (b) and (c) show grid features chosen by boosting for two of
the 18Locationsub-units. The highlighted box shows the face location and the �rst and
second features chosen, are shown in black and grey respectively.
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3.1 LocationFeatures

In order that the sign can be localised in relation to the signer, a grid is appliedto the image,
dependent upon the position and scale of the face detection. Each cell in the grid is a quarter of
the face size and the grid is 10 rectangles wide by 8 deep, as shown in Figure 2a. These values are
based on the signing space of the signer. However, in this case, the grid does not extend beyond
the top of the signers head since the data set does not contain any signs which use that area. The
segmented frame is quantised into this grid and a cell �res if over 50% of its pixels are made up of
glove/skin. This is shown in Equation 1 whereRwc is the weak classi�er response andL skin(x;y) is
the likelihood that a pixel contains skin.f is the face height and all the grid values are relative to
this dimension.

Rwc =

8
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>:

1 if f 2

8 <
x2

å
i= x1

y2

å
j= y1

(L skin(i; j) > 0);

0 otherwise:

Wherex1;y1;x2;y2 are given by

8Gx;8Gy

8
>>>><

>>>>:

x1 = Gx f ;

x2 = ( Gx + 0:5) f ;

y1 = Gy f ;

y2 = ( Gy + 0:5) f ;

givenGx = f� 2:5; � 2; � 1:5: : :2g;

Gy = f� 4; � 3:5; � 3: : :0g: (1)

For each of theLocationsub-units, a classi�er was built via AdaBoost to combine cells which �re
for each particular sub-unit, examples of these classi�ers are shown in Figures 2b and (c). Note
how the �rst cell to be picked by the boosting (shown in black) is the one directly related to the
area indicated by the sub-unit label. The second cell chosen by boostingeither adds to this location
information, as in Figure 2b, or comments on the stationary, non-dominant hand, as in Figure 2c.

Some of the sub-units types contain values which are not mutually exclusive,this needs to
be taken into account when labelling and using sub-unit data. The BSL dictionary (British Deaf
Association, 1992) lists severalLocationsub-units which overlap with each other, such as face and
mouth or nose. Using boosting to train classi�ers requires positive and negative examples. For best
results, examples should not be contaminated, that is, the positive set should not contain negatives
and the negative set should not contain positives. Trying to distinguish between an area and its sub-
areas can prove futile, for example, the mouth is also on the face and therefore there are likely to
be false negatives in the training set when training face against mouth. Thesecond stage, sign-level
classi�cation does not require the sub-unit classi�er responses to be mutually exclusive. As such a
hierarchy can be created ofLocationareas and their sub-areas. This hierarchy is shown in Figure 3;
a classi�er is trained for each node of the tree, using examples which belong to it, or its children,
as positive data. Examples which do not belong to it, its parent or its child nodes provide negative
data.

This eliminates false negatives from the data set and avoids confusion. InFigure 3 the ringed
nodes show the sub-units for which there exist examples. Examples are labelled according to this
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hierarchy, for example, face, facelower or facelower mouth which makes �nding children and
parents easier by using simple string comparisons.

Figure 3: The threeLocationsub-unit trees used for classi�cation. There are three separate trees,
based around areas of the body which do not overlap. Areas on the leaves of the tree are
sub-areas of their parent nodes. The ringed labels indicate that there are exact examples
of that type in the data set.

3.2 Motion and Hand-ArrangementMoment Feature Vectors

ForHand-ArrangementandMotion, information regarding the arrangement and motion of the hands
is required. Moments offer a way of encoding the shapes in an image; if vectors of moment values
per frame are concatenated, then they can encode the change in shape of an image over time.

There are several different types of moments which can be calculated, each of them displaying
different properties. Four types were chosen to form a feature vector, m: spatial,mab, central,µab,
normalised central, ¯µab and the Hu set of invariant moments (Hu, 1962)H1-H7. The order of a
moment is de�ned asa+ b. This work uses all moments, central moments and normalised central
moments up to the 3rd order, 10 per type, (00, 01, 10, 11, 20, 02, 12, 21, 30, 03). Finally, the
Hu set of invariant moments are considered, there are 7 of these moments and they are created by
combining the normalised central moments, see Hu (1962) for full details, theyoffer invariance to
scale, translation, rotation and skew. This gives a 37 dimensional featurevector, with a wide range
of different properties.

Rwc =

(
1 if Twc < M i;t ;

0 otherwise:

(2)

Since spatial moments are not invariant to translation and scale, there needsto be a common point
of origin and similar scale across examples. To this end, the spatial moments aretreated in a similar
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way to the spatial features in Section 3.1, by centring and scaling the image about the face of
the signer before computation. For trainingHand-Arrangement, this vector is used to boost a set
of thresholds for individual moments,mi on a given framet, Equation 2. ForMotion, temporal
information needs to be included. Therefore the video clips are describedby a stack of these vectors,
M, like a series of 2D arrays, as shown in Figure 4(a) where the horizontal vectors of moments are
concatenated vertically, the lighter the colour, the higher the value of the moment on that frame.

(a) BP example (b) Concatenated Moment Vector

Figure 4: Moment vectors and Binary Patterns for two stage classi�cation. (b) A pictorial descrip-
tion of moment vectors (normalised along each moment type for a selection of examples),
the lighter the colour the larger the moment value. (a) BP, working from top to bottom an
increase in gradient is depicted by a 1 and a decrease or no change by a0.

3.3 Motion Binary Patterns and Additive Classi�ers

As has been previously discussed, theMotion classi�ers are looking for changes in the moments
over time. By concatenating feature vectors temporally as shown in Figure 4(b), these spatio-
temporal changes can be found. Component values can either increase, decrease or remain the
same, from one frame to the next. If an increase is described as a 1 and a decrease or no change is
described as a 0 then a BP can be used to encode a series of increases/decreases. A temporal vec-
tor is said to match the given BP if every `1' accompanies an increase between concurrent frames
and every `0' a decrease/`no change'. This is shown in Equation 3 where M i;t is the value of the
component,M i , at timet andbpt is the value of the BP at framet.

Rwc = jj max
8t

(BP(M i;t)) j � 1j;

BP(M i;t) = bpt � d(M i;t ;M i;t+ 1);

d(M i;t ;M i;t+ 1) =

(
0 if M i;t � M i;t+ 1;

1 otherwise:
(3)

See Figure 5 for an example where feature vector A makes the weak classi�er �re, whereas feature
vector B fails, due to the ringed gradients being incompatible.

Discarding all magnitude information would possibly remove salient information.To retain this
information, boosting is also given the option of using additive classi�ers. These look at the average
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magnitude of a component over time. The weak classi�ers are created by applying a threshold,Twc,
to the summation of a given component, over several frames. This thresholdis optimised across the
training data during the boosting phase. For an additive classi�er of sizeT, over componentmi , the
response of the classi�er,Rwc, can be described as in Equation 4.

Rwc =

8
><

>:

1 if Twc �
T

å
t= 0

M i;t ;

0 otherwise:
(4)

Boosting is given all possible combinations of BPs, acting on each of the possible components.
The BPs are limited in size, being between 2 and 5 changes (3 - 6 frames) long. The additive
features are also applied to all the possible components, but the lengths permitted are between 1
and 26 frames, the longest mean length ofMotion sub-units. Both sets of weak classi�ers can be
temporally offset from the beginning of an example, by any distance up to themaximum distance
of 26 frames.

Figure 5: An example of a BP being used to classify two examples. A comparison is made between
the elements of the weak classi�ers BP and the temporal vector of the component being
assessed. If every `1' in the BP aligns with an increase in the component and every `0'
aligns with a decrease or `no change' then the component vector is said to match (e.g.,
case A). However if there are inconsistencies as ringed in case B then theweak classi�er
will not �re.

Examples of the classi�ers learnt are shown in Figure 6, additive classi�ers are shown by boxes,
increasing BPs are shown by pale lines and decreasing ones by dark lines. When looking at a
sub-unit such as `hands move apart' (Figure 6a), the majority of the BP classi�ers show increasing
moments, which is what would be expected, as the eccentricity of the moments is likely to increase
as the hands move apart. Conversely, for `hands move together' (Figure 6b), most of the BPs are
decreasing.

Since someMotion sub-units occur more quickly than others, the boosted classi�ers are notall
constrained to being equal in temporal length. Instead, an optimal length is chosen over the training
set for each individual sub-unit. Several different length classi�ers are boosted starting at 6 frames
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(a) handsmoveapart (b) Handsmove together

Figure 6: Boosted temporal moments BP and additiveMotion classi�ers. The moment vectors are
stacked one frame ahead of another. The boxes show where an additive classi�er has been
chosen, a dark line shows a decreasing moment value and a pale line an increasing value.

long, increasing in steps of 2 and �nishing at 26 frames long. Training classi�cation results are
then found for each sub-unit and the best length chosen to create a �nal set of classi�ers, of various
lengths suited to the sub-units being classi�ed.

4. 2D Tracking Based Sub-Units

Unfortunately, since the learnt, appearance based, sub-units requireexpertly annotated data they are
limited to data sets with this annotation. An alternative to appearance based features is given by
tracking. While tracking errors can propagate to create sub-unit errors, the hand trajectories offer
signi�cant information which can aid recognition. With the advances of tracking systems and the
real-time solution introduced by the KinectTM , tracking is fast becoming an option for real-time,
robust recognition of sign language. This section works with hand and head trajectories, extracted
from videos by the work outlined by Roussos et al. (2010). The trackinginformation is used to
extractMotion andLocationinformation. HandShapeinformation is extracted via Histograms of
Gradients (HOGs) on hand image patches and learnt from labels using random forests. The labels
are taken from the linguistic representations of Sign Gesture Mark-up Language (SiGML) (Elliott
et al., 2001) or HamNoSys (Hanke and Schmaling, 2004).1

4.1 Motion Features

In order to link the x,y co-ordinates obtained from the tracking to the abstract concepts used by sign
linguists, rules are employed to extract HamNoSys based information from thetrajectories. The
approximate size of the head is used as a heuristic to discard ambient motion (that less than 0.25
the head size) and the type of motion occurring is derived directly from deterministic rules on the

1. Note that conversion between the two forms is possible. However while HamNoSys is usually presented as a font for
linguistic use, SiGML is more suited to automatic processing.
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(a) Single handed (b) Bimanual: Synchronous (c) Bimanual: Together/Apart

Figure 7: Motions detected from tracking

x and y co-ordinates of the hand position. The types of motions encoded are shown in Figure 7,
the single handed motions are available for both hands and the dual handedmotions are orientation
independent so as to match linguistic concepts.

4.2 LocationFeatures

Similarly the x and y co-ordinates of the sign location need to be described relative to the signer
rather than in absolute pixel positions. This is achieved via quantisation of thevalues into a code-
book based on the signer's head position and scale in the image. For any given hand position(xh;yh)
the quantised version(x0

h;y0
h) is achieved using the quantisation rules shown in Equation 5, where

(xf ;yf ) is the face position and(wf ;hf ) is the face size.

x0= ( xh � xf )=wf ;

y0= ( yh � yf )=hf : (5)

Due to the limited size of a natural signing space, this gives values in the rangeof y02 f 0::10g and
x02 f 0::8g which can be expressed as a binary feature vector of size 36, where the x and y positions
of the hands are quantised independently.

4.3 HandShapeFeatures

While just the motion and location of the signs can be used for recognition of many examples, it has
been shown that adding the handshape can give signi�cant improvement(Kadir et al., 2004). HOG
descriptors have proven ef�cient for sign language hand shape recognition (Buehler et al., 2009) and
these are employed as the base feature unit. In each frame, the signer's dominant hand is segmented
using the x,y position and a skin model. These image patches are rotated to their principal axis
and scaled to a square, 256 pixels in size. Examples of these image patches are shown in Figure 8
beside the frame from which they have been extracted. HOGs are calculated over these squares at
a cell size of 32 pixels square with 9 orientation bins and with 2x2 overlappingblocks, these are
also shown in Figure 8. This gives a feature vector of 1764 histogram bins which describes the
appearance of a hand.
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Figure 8: Example HOGs extracted from a frame

4.4 HandShapeClassi�ers

This work focusses on just the 12 basic handshapes, building multi-modal classi�ers to account for
the different orientations. A list of these handshapes is shown in Figure 9.

ceeall cee12 cee12open �nger2 �nger23 �nger2345
(153) (200) (107) (4077) (686) (2708)

�nger23- �st �at pinch12 pinch12open pinchall
spread (749) (2445) (4612) (571) (845) (830)

Figure 9: The base handshapes (Number of occurrences in the data set)

Unfortunately, linguists annotating sign do so only at thesignlevel while most sub-units occur
for only part of a sign. Also, not only do handshapes change throughout the sign, they are made
more dif�cult to recognise due to motion blur. Using the motion of the hands, the sign can be split
into its component parts (as in Pitsikalis et al., 2011), that are then aligned with the sign annotations.
These annotations are in HamNoSys and have been prepared by trained experts, they include the
sign breakdown but not the temporal alignment. The frames most likely to contain a static handshape
(i.e., those with limited or no motion) are extracted for training.

Note that, as shown in Figure 10, a single SiGML class (in this case `�nger2') may contain
examples which vary greatly in appearance, making visual classi�cation anextremely dif�cult task.
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Figure 10: A variety of examples for the HamNoSys/SiGML class `�nger2'.

The extracted hand shapes are classi�ed using a multi-class random forest. Random forests were
proposed by Amit and Geman (1997) and Breiman (2001). They have been shown to yield good
performance on a variety of classi�cation and regression problems, andcan be trained ef�ciently
in a parallel manner, allowing training on large feature vectors and data sets. In this system, the
forest is trained from automatically extracted samples of all 12 handshapesin the data set, shown
in Figure 9. Since signs may have multiple handshapes or several instancesof the same handshape,
the total occurrences are greater than the number of signs, however they are not equally distributed
between the handshape classes. The large disparities in the number of examples between classes
(see Figure 9) may bias the learning, therefore the training set is rebalanced before learning by
selecting 1,000 random samples for each class, forming a new balanced data set. The forest used
consists ofN = 100 multi-class decision treesTi , each of which is trained on a random subset of
the training data. Each tree node splits the feature space in two by applying a threshold on one
dimension of the feature vector. This dimension (chosen from a random subset) and the threshold
value are chosen to yield the largest reduction in entropy in the class distribution. This recursive
partitioning of the data set continues until a node contains a subset of examples that belong to one
single class, or if the tree reaches a maximal depth (set to 10). Each leaf is then labelled according
to the mode of the contained samples. As a result, the forest yields a probabilitydistribution over
all classes, where the likelihood for each class is the proportion of trees that voted for this class.
Formally, the con�dence that feature vectorx describes the handshapec is given by:

p[c] =
1
N å

i< N
dc(Ti(x)) ;

whereN is the number of trees in the forest,Ti(x) is the leaf of theith treeTi into whichx falls, and
dc(a) is the Kronecker delta function (dc(a) = 1 iff. c = a, dc(a) = 0 otherwise).

The performance of this hand shape classi�cation on the test set is recorded on Table 1, where
each row corresponds to a shape, and each column corresponds to a predicted class (empty cells
signify zero). Lower performance is achieved for classes that are more frequent in the data set. The
more frequently a handshape occurs in the data set the more orientations it islikely to be used in.
This in turn makes the appearance of the class highly variable; see, for example, Figure 10 for the
case of `�nger2'—the worst performing case. Also noted is the high confusion between `�nger2'
and `�st' most likely due to the similarity of these classes when the signer is pointing to themselves.

The handshape classi�ers are evaluated for the right hand only duringframes when it is not in
motion. The sign recognition system is evaluated using two different encodings for the detected
hand shapes. As will be described in Section 6, the next stage classi�er requires inputs in the
form of binary feature vectors. Two types of 12 bit binary feature vector can be produced from
the classi�er results. The �rst method applies a strict Winner Takes All (WTA) on the multi-class
forest's response: the class with the highest probability is set to one, andthe others to zero. For
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handshape predictions
�at 0.35 0.19 0.09 0.03 0.08 0.06 0.03 0.06 0.06 0.01 0.03 0.01
�st 0.03 0.69 0.02 0.04 0.11 0.05 0.02 0.03 0.02
�nger2345 0.16 0.19 0.36 0.02 0.03 0.05 0.06 0.02 0.03 0.06 0.01
�nger2 0.02 0.33 0.07 0.31 0.11 0.05 0.02 0.03 0.02 0.04
pinchall 0.03 0.09 0.04 0.01 0.65 0.11 0.01 0.01 0.04
pinch12 0.02 0.20 0.01 0.02 0.13 0.56 0.01 0.01 0.01 0.02
�nger23 0.05 0.17 0.04 0.02 0.05 0.04 0.54 0.01 0.07 0.01
pinch12open 0.03 0.12 0.07 0.01 0.15 0.04 0.01 0.56 0.01
cee12 0.01 0.05 0.01 0.03 0.04 0.01 0.82 0.01
cee12open 0.01 0.99
�nger23spread 0.01 0.15 0.02 0.06 0.01 0.05 0.02 0.65
ceeall 0.01 0.08 0.03 0.08 0.01 0.02 0.01 0.01 0.77

Table 1: Confusion matrix of the handshape recognition, for all 12 classes.

every non-motion frame, the vector contains a true value in the highest scoring class. The second
method applies a �xed threshold (t = 0:25) on the con�dences provided by the classi�er for each
of the 12 handshapes classes. Handshapes that have a con�dence above threshold (p[c] > t ) are set
to one, and the others to zero. This soft approach carries the double advantage that a) the feature
vector may encode the ambiguity between handshapes, which may itself carryinformation, and b)
may contain only zeros if con�dences in all classes are small.

5. 3D Tracking Based Sub-Units

With the availability of the KinectTM , real-time tracking in 3D is now a realistic option. Due to this,
this �nal sub-unit section expands on the previous tracking sub-units to work in 3D. The tracking is
obtained using the OpenNI framework (Ope, 2010) with the PrimeSense tracker (Pri, 2010). Two
types of features are extracted, those encoding theMotionandLocationof the sign being performed.

5.1 Motion Features

Again, the focus is on linear motion directions, as with the sub-units describedin Section 4.1, but
this time with the z axis included. Speci�cally, individual hand motions in the x plane(left and
right), the y plane (up and down) and the z plane (towards and away fromthe signer). This is
augmented by the bi-manual classi�ers for `hands move together', `hands move apart' and `hands
move in sync', again, these are all now assessed in 3D. The approximate size of the head is used
as a heuristic to discard ambient motion (that less than 0.25 the head size) and the type of motion
occurring is derived directly from deterministic rules on the x,y,z co-ordinates of the hand position.
The resulting feature vector is a binary representation of the found linguistic values. The list of 17
motion features extracted is shown in Table 2.

5.2 LocationFeatures

Whereas previously, with 2D tracking, a coarse grid is applied, in this section the skeleton returned
by the PrimeSense tracker can now be leveraged. This allows signer related locations to be described
with higher con�dence. As such, the location features are calculated using the distance of the
dominant hand from skeletal joints. A feature will �re if the dominant hand is closer thanHhead=2
of the joint in question. A list of the 9 joints considered is shown in Table 2 and displayed to scale
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Locations
Motions

Right or Left Hand Bi-manual

head left Dx > l in sync
neck right Dx < � l jd(L;R)j < l
torso up Dy > l and
L shoulder down Dy < � l FR = FL

L elbow towards Dz> l together
L hand away Dz< � l D(d(L;R)) < � l
L hip

none
DL < l apart

R shoulder DR< l D(d(L;R)) > l
R hip

Table 2: Table listing the locations and hand motions included in the feature vectors. The conditions
for motion are shown with the label. Wherex;y;z is the position of the hand, either left (L)
or right (R), D indicates a change from one frame to the next andd(L;R) is the Euclidean
distance between the left and right hands.l is the threshold value to reduce noise and
increase generalisation, this is set to be a quarter the head height.FR and FL are the
motion feature vectors relating to the right and left hand respectively.

in Figure 11. While displayed in 2D, the regions surrounding the joints are actually 3D spheres.
When the dominant hand (in this image shown by the smaller red dot) moves into the region around
a joint then that feature will �re. In the example shown, it would be dif�cult for two features to
�re at once. When in motion, the left hand and elbow regions may overlap withother body regions
meaning that more than one feature �res at a time.

Figure 11: Body joints used to extract sign locations

6. Sign Level classi�cation

Each of the different sub-unit classi�er sets is now combined with a sign-level classi�er. The groups
of binary feature vectors are each concatenated to create a single binary feature vectorF = ( fi)D

i= 1
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per frame, wherefi 2 f 0;1g andD is the number of dimensions in the feature vector. This feature
vector is then used as the input to a sign level classi�er for recognition. Byusing a binary approach,
better generalisation is obtained. This requires far less training data than approaches which must
generalise over both a continuous input space as well as the variability between signs (e.g., HMMs).
Two sign level classi�cation methods are investigated. Firstly, Markov models which use the feature
vector as a whole and secondly Sequential Patten Boosting which performsdiscriminative feature
selection.

6.1 Markov Models

HMMs are a proven technology for time series analysis and recognition. While they have been
employed for sign recognition, they have issues due to the large training requirements. Kadir et al.
(2004) overcame these issues by instead using a simpler Markov model when the feature space is
discrete. The symbolic nature of linguistic sub-units means that the discrete time series of events
can be modelled without a hidden layer. To this end a Markov chain is constructed for each sign
in a lexicon. An ergodic model is used and a Look Up Table (LUT) employed tomaintain as little
of the chain as is required. Code entries not contained within the LUT are assigned a nominal
probability. This is done to avoid otherwise correct chains being assignedzero probabilities if noise
corrupts the input signal. The result is a sparse state transition matrix,Pw(Ft jFt� 1), for each wordw
giving a classi�cation bank of Markov chains. During creation of this transition matrix, secondary
transitions can be included, wherePw(Ft jFt� 2). This is similar to adding skip transitions to the left-
right hidden layer of a HMM which allows deletion errors in the incoming signal.While it could
be argued that the linguistic features constitute discrete emission probabilities;the lack of a doubly
stochastic process and the fact that the hidden states are determined directly from the observation
sequence, separates this from traditional HMMs which cannot be used due to their high training
requirements. During classi�cation, the model bank is applied to incoming data ina similar fashion
to HMMs. The objective is to calculate the chain which best describes the incoming data, that is,
has the highest probability that it produced the observationF. Feature vectors are found in the LUT
using an L1 distance on the binary vectors. The probability of a model matching the observation
sequence is calculated as

P(wjs) = uw

l

Õ
t= 1

Pw(Ft jFt� 1);

wherel is the length of the word in the test sequence anduw is the prior probability of a chain
starting in any one of its states. In this work, without grammar,8w;uw = 1.

6.2 SP Boosting

One limitation of Markov models is that they encode exact series of transitions over all features
rather than relying only on discriminative features. This leads to reliance onuser dependant fea-
ture combinations which if not replicated in test data, will result in poor recognition performance.
Sequential Patterns (SPs), on the other hand, compare the input data forrelevant features and ig-
nore the irrelevant features. A SP is a sequence of discriminativeitemsets(i.e., feature subsets) that
occur in positive examples and not negative examples (see Figure 12). We de�ne an itemsetT as
the dimensions of the feature vectorF = ( fi)D

i= 1 that have the value of 1:T � f 1; :::;Dg is a set of
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integers where8t 2 T; ft = 1. Following this, we de�ne a SPT of lengthjTj as:T = ( Ti)
jTj
i= 1, where

Ti is an itemset.
In order to use SPs for classi�cation, we �rst de�ne a method for detecting SPs in an input

sequence of feature vectors. To this end, �rstly letT be a SP we wish to detect. Suppose the given
feature vector input sequence ofjFj frames isF = ( Ft)

jFj
t= 1, whereFt is the binary feature vector

de�ned in Section 6. We �rstly convertF into the SPI = ( It)
jFj
t= 1, whereIt is the itemset of feature

vectorFt . We say that the SPT is present inI if there exists a sequence(bi)
jTj
i= 1, wherebi < b j when

i < j and8i = f 1; :::; jTjg;Ti � Ibi . This relationship is denoted with the� S operator, that is,T � S I .

Conversely, if the sequence(bi)
jTj
i= 1 does not exist, we denote it asT 6�S I .

From this, we can then de�ne a SP weak classi�er as follows: LetT be a given SP andI be an
itemset sequence derived from some input binary vector sequenceF. A SP weak classi�er, hT(I ),
can be constructed as follows:

hT(I ) =

(
1; if T � S I ;

� 1; if T 6�S I :

A strong classi�er can be constructed by linearly combining a number (S) of selected SP weak
classi�ers in the form of:

H(I ) =
S

å
i= 1

a ih
T i
i (I ):

The weak classi�ershi are selected iteratively based on example weights formed during training.
In order to determine the optimal weak classi�er at each Boosting iteration, thecommon approach
is to exhaustively consider the entire set of candidate weak classi�ers and �nally select the best
weak classi�er (i.e., that with the lowest weighted error). However, �ndingSP weak classi�ers
corresponding to optimal SPs this way is not possible due to the immense size of the SP search
space. To this end, the method of SP Boosting is employed (Ong and Bowden,2011). This method
poses the learning of discriminative SPs as a tree based search problem. The search is made ef�cient
by employing a set of pruning criteria to �nd the SPs that provide optimal discrimination between
the positive and negative examples. The resulting tree-search method is integrated into a boosting
framework; resulting in the SP-Boosting algorithm that combines a set of unique and optimal SPs
for a given classi�cation problem. For this work, classi�ers are built in a one-vs-one manner and
the results aggregated for each sign class.

7. Appearance Based Results

This section of work uses the same 164 sign data set as Kadir et al. (2004)and therefore a direct
comparison can be made between their hard coded tracking based system and the learnt sub-unit
approach using detection based sub-units. For this work, extra annotation was required as Kadir
et al. (2004) used only sign boundaries. 7410Locationexamples, 322Hand-Arrangementexamples
and 578Motion were hand labelled for training sub-unit classi�ers. The data set consists of 1640
examples (ten of each sign). Signs were chosen randomly rather than picking speci�c examples
which are known to be easy to separate. The sub-unit classi�ers are built using only data from four of
the ten examples of each sign and the word level classi�er is then trained on �ve examples (including
the four previously seen by the sub-unit classi�ers) leaving �ve completely unseen examples for
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(a) Feature vector (b) SP

Figure 12: Pictorial description of SPs. (a) shows an example feature vector made up of 2D motions
of the hands. In this case the �rst element shows `right hand moves up',the second `right
hand moves down' etc. (b) shows a plausible pattern that might be found for the sign
`bridge'. In this sign the hands move up to meet each other, they move apartand then
curve down as if drawing a hump-back bridge.

testing purposes. The second stage classi�er is trained on the previouslyused four training examples
plus one other, giving �ve training examples per sign. The results are acquired from the �ve unseen
examples of each of the 164 signs. This is done for all six possible combinations of training/test
data. Results are shown in Table 3 alongside the results from Kadir et al. (2004). The �rst three
columns show the results of combining each type of appearance sub-unit with the second stage
sign classi�er. Unsurprisingly, none of the individual types contains suf�cient information to be
able to accurately separate the data. However, when combined, the appearance based classi�ers
learnt from the data are comparable to the hard coded classi�ers used onperfectly tracked data.
The performance drops by only 6.6 Percentage Points (pp), from 79.2%to 72.6% whilst giving the
advantage of not needing the high quality tracking system.

Figure 13, visually demonstrates the sub-unit level classi�ers being usedwith the second stage
classi�er. The output from the sub-unit classi�ers are shown on the right hand side in a vector
format on a frame by frame basis. It shows the repetition of features for the sign `Box'. As can be
seen there is a pattern in the vector which repeats each time the sign is made. It isthis repetition
which the second stage classi�er is using to detect signs.

8. 2D Tracking Results

The data set used for these experiments contains 984 Greek Sign Language (GSL) signs with 5 ex-
amples of each performed by a single signer (for a total of 4920 samples).The handshape classi�ers
are learnt on data from the �rst 4 examples of each sign. The sign level classi�ers are trained on the
same 4 examples, the remaining sign of each type is reserved for testing.
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Minimum (%) 31.6 30.7 28.2 68.7 76.1
Maximum (%) 35.0 32.2 30.5 74.3 82.4
Std Dev 0.9 0.4 0.6 1.5 2.1
Mean (%) 33.2 31.7 29.4 72.6 79.2

Table 3: Classi�cation performance of the appearance based two-stagedetector. Using the appear-
ance based sub-unit classi�ers. Kadir et al. (2004) results are included for comparison
purposes.

Figure 13: Repetition of the appearance based sub-unit classi�er vector. The band down the right
hand side of the frame shows the sub-unit level classi�er �ring patterns for the last 288
frames, the vector for the most recent frame is at the bottom. The previous video during
the 288 frames shows four repetitions of the sign `Box'.

Table 4 shows sign level classi�cation results. It is apparent from theseresults, that out of the
independent vectors, the location information is the strongest. This is due to the strong combination
of a detailed location feature vector and the temporal information encoded bythe Markov chain.

Shown also is the improvement afforded by using the handshape classi�ers with a threshold
vs a WTA implementation. By allowing the classi�ers to return multiple possibilities more of the
data about the handshape is captured. Conversely, when none of the classi�ers is con�dent, a `null'
response is permitted which reduces the amount of noise. Using the non-mutually exclusive version
of the handshapes in combination with the motion and location, the percentage ofsigns correctly
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Motion 25.1%
Location 60.5%
HandShape 3.4%
All: WTA 52.7%
All: Thresh 68.4%
All + Skips (P(Ft jFt� 2)) 71.4%

Table 4: Sign level classi�cation results using 2D tracked features and theMarkov Models. The
�rst three rows show the results when using the features independently with the Markov
chain (The handshapes used are non-mutually exclusive). The next three rows give the
results of using all the different feature vectors. Including the improvement gained by
allowing the handshapes to be non-mutually exclusive (thresh) versus theWTA option.
The �nal method is the combination of the superior handshapes with the location, motion
and the second order skips.

Markov Chains SPs
Top 1 Top 4 Top 1 Top 4

recall 71.4% 82.3% 74.1% 89.2%

Table 5: Comparison of recall results on the 2D tracking data using both Markov chains and SPs

returned is 68.4%. By including the 2nd order transitions whilst building the Markov chain there is
a 3 pp boost to 71.4%.

This work was developed for use as a sign dictionary, within this context, when queried by a
video search, the classi�cation would not return a single response. Instead, like a search engine,
it should return a ranked list of possible signs. Ideally the target sign would be close to the top of
this list. To this end we show results for 2 possibilities; The percentage of signs which are correctly
ranked as the �rst possible sign (Top 1) and the percentage which are ranked in the top 4 possible
signs.

This approach is applied to the best sub-unit features above combined witheither the Markov
Chains or the SP trees. The results of these tests are shown in Table 5. When using the the same
combination of sub-unit features as found to be optimal with the Markov Chains, the SP trees are
able to improve on the results by nearly 3 pp, increasing the recognition rate from 71.4% to 74.1%.
A further improvement is also found when expanding the search results list,within the top 4 signs
the recall rate increases from 82.3% to 89.2%.

9. 3D Tracking Results

While the KinectTMwork is intended for use as a live system, quantitative results can be obtained
by the standard method of splitting pre-recorded data into training and test sets. The split between
test and training data can be done in several ways. This work uses two versions, the �rst to show
results on signer dependent data, as is often used, the second shows performance on unseen signers,
a signer independent test.
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Test
Markov Models SP-Boosting
Top 1 Top 4 Top 1 Top 4

In
de

pe
nd

en
t

1 56% 80% 72% 91%
2 61% 79% 80% 98%
3 30% 45% 67% 89%
4 55% 86% 77% 95%
5 58% 75% 78% 98%
6 63% 83% 80% 98%
Mean 54% 75% 76% 95%
StdDev 12% 15% 5% 4%

Dependent
79% 92% 92% 99.90%

Mean

Table 6: Results across the 20 sign GSL data set.

9.1 Data Sets

Two data sets were captured for training; The �rst is a data set of 20 GSLsigns, randomly chosen and
containing both similar and dissimilar signs. This data includes six people performing each sign an
average of seven times. The signs were all captured in the same environment with the KinectTMand
the signer in approximately the same place for each subject. The second dataset is larger and more
complex. It contains 40 Deutsche Gebärdensprache - German Sign Language (DGS) signs, chosen
to provide a phonetically balanced subset of HamNoSys phonemes. Thereare 15 participants each
performing all the signs 5 times. The data was captured using a mobile system giving varying view
points.

9.2 GSL Results

Two variations of tests were performed; �rstly the signer dependent version, where one example
from each signer was reserved for testing and the remaining examples were used for training. This
variation was cross-validated multiple times by selecting different combinations of train and test
data. Of more interest for this application however, is signer independentperformance. For this
reason the second experiment involves reserving data from a subject for testing, then training on the
remaining signers. This process is repeated across all signers in the dataset. The results of both the
Markov models and the Sequential Patten Boosting applied to the basic 3D features are shown in
Table 6.

As is noted in Section 6.2, while the the Markov models perform well when they have training
data which is close to the test data, they are less able to generalise. This is shown by the dependent
results being high, average 92% within the top 4, compared to the average independent result which
is 17 pp lower at 75%. It is even more noticeable when comparing the highestranked sign only,
which suffers from a drop of 25 pp, going from 79% to 54%. When looking at the individual results
of the independent test it can be seen that there are obvious outliers in thedata, speci�cally signer 3
(the only female in the data set), where the recognition rates are markedly lower. This is re�ected in
statistical analysis which gives high standard deviation across the signersin both the top 1 and top
4 rankings when using the Markov Chains.
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Subject Dependent Subject Independent
Top 1 Top 4 Top 1 Top 4

Min 56.7% 90.5% 39.9% 74.9%

Max 64.5% 94.6% 67.9% 92.4%

StdDev 1.9% 1.0% 8.5% 5.2%

Mean 59.8% 91.9% 49.4% 85.1%

Table 7: Subject Independent (SI) and Subject Dependent (SD) test results across 40 signs in the
DGS data set.

When the SP-Boosting is used, again the dependant case produces higher results, gaining nearly
100% when considering the top 4 ranked signs. However, due to the discriminative feature selection
process employed; the user independent case does not show such marked degradation, dropping just
4.9 pp within the top 4 signs, going from 99.9% to 95%. When considering the topranked sign the
reduction is more signi�cant at 16 pp, from 92% to 76%, but this is still a signi�cant improvement
on the more traditional Markov model. It can also be seen that the variability in results across signers
is greatly reduced using SP-Boosting, whilst signer 3 is still the signer with thelowest percentage
of signs recognised, the standard deviation across all signs has dropped to 5% for the �rst ranked
signs and is again lower for the top 4 ranked signs.

9.3 DGS Results

The DGS data set offers a more challenging task as there is a wider range of signers and environ-
ments. Experiments were run in the same format using the same features as forthe GSL data set.
Table 7 shows the results of both the dependent and independent tests. As can be seen with the
increased number of signs the percentage accuracy for the �rst returned result is lower than that of
the GSL tests at 59.8% for dependent and 49.4% for independent. However the recall rates within
the top 4 ranked signs (now only 10% of the data set) are still high at 91.9% for the dependent tests
and 85.1% for the independent ones. Again the relatively low standard deviation of 5.2% shows that
the SP-Boosting is picking the discriminative features which are able to generalise well to unseen
signers.

As can be seen in the confusion matrix (see Figure 14), while most signs arewell distinguished,
there are some signs which routinely get confused with each other. A goodexample of this is the
three signs `already', `Athens' and `Greece' which share very similarhand motion and location but
are distinguishable by handshape which is not currently modelled on this dataset.

10. Discussion

Three different approaches to sub-unit feature extraction have been compared in this paper. The
�rst based on appearance only, the latter two on tracking. The advantage of the �rst approach is
that it doesn't depend on high quality tracking for good results. However, it would be easily con-
fused via cluttered backgrounds or short sleeves (often a problem withsign language data sets). The
other advantage of the appearance based classi�cation is that it includesinformation not available
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Figure 14: Aggregated confusion matrix of the �rst returned result foreach subject independent
test on the DGS data set.

by trajectories alone, thus encoding information about handshape within themoment based clas-
si�ers. While this may aid classi�cation on small data sets it makes it more dif�cult tode-couple
the handshape from the motion and location sub-units. This affects the generalisation ability of the
classi�ers due to the differences between signers.

Where 2D tracking is available, the results are superior in general to the appearance based
results. This is shown in the work by Kadir et al. (2004), who achieve equivalent results on the
same data using tracking trajectories when compared to the appearance based ones presented here.
Unfortunately, it is not always possible to accurately track video data andthis is why it is still valid
to examine appearance based approaches. The 2D trackingLocationsub-features presented here
are based around a grid, while this is effective in localising the motion it is not as desirable as
the HamNoSys derived features used in the improved 3D tracking features. The grid suffers from
boundary noise as the hands move between cells. This noise causes problems when the features
are used in the second stage of classi�cation. With the 3D features this is lessobvious due to them
being relative to the signer in 3D and therefore the locations are not arbitrarily used by the signer
in the same way as the grid is. For example if a signer puts their hands to their shoulders, this
will cause multiple cells of the grid to �re and it may not be the same one each time. When using
3D, if the signer puts their hands to their shoulders then the shoulder feature �res. This move from
an arbitrary grid to consciously decided body locations reduces boundary effect around signi�cant
areas in the signing space.

This in turn leads to the sign level classi�ers. The Markov chains are verygood at recognising
signer dependent, repetitive motion, in these cases they are almost on a parwith the SPs. However,
they are much less capable of managing signer independent classi�cation as they are unable to
distinguish between the signer accents and the signs themselves and therefore over-�t the data.
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Instead the SPs look for the discriminative features between the examples, ignoring any signer
speci�c features which might confuse the Markov Chains.

11. Conclusions

This work has presented three approaches to sub-unit based sign recognition. Tests were conducted
using boosting to learn three types of sub-units based on appearance features, which are then com-
bined with a second stage classi�er to learn word level signs. These appearance based features offer
an alternative to costly tracking.

The second approach uses a 2D tracking based set of sub-units combined with some appearance
based handshape classi�ers. The results show that a combination of these robust, generalising fea-
tures from tracking and learnt handshape classi�ers overcomes the high ambiguity and variability
in the data set to achieve excellent recognition performance: achieving a recognition rate of 73% on
a large data set of 984 signs.

The third and �nal approach translates these tracking based sub-units into 3D, this offers user
independent, real-time recognition of isolated signs. Using this data a new learning method is
introduced, combining the sub-units with SP-Boosting as a discriminative approach. Results are
shown on two data sets with the recognition rate reaching 99.9% on a 20 sign multi-user data set and
85.1% on a more challenging and realistic subject independent, 40 sign test set. This demonstrates
that true signer independence is possible when more discriminative learningmethods are employed.
In order to strengthen comparisons within the SLR �eld the data sets created within this work have
been released for use within the community.

12. Future Work

The learnt sub-units show promise and, as shown by the work of Pitsikalis et al. (2011), there are
several avenues which can be explored. However, for all of these directions, more linguistically
annotated data is required across multiple signers to allow the classi�ers to discriminate between
the features which are signer speci�c and those which are independent.In addition, handshapes
are a large part of sign, while the work on the multi-signer depth data set hasgiven good results,
handshapes should be included in future work using depth cameras. Finally, the recent creation
of a larger, multi-signer data set has set the ground work in place for better quantitative analysis.
Using this data in the same manner as the DGS40 data set should allow bench-marking of Kinect
sign recognition approaches, both for signer dependent and independent recognition. Appearance
only techniques can also be veri�ed using the Kinect data set where appropriate as the RGB images
are also available though they are not used in this paper. Though it shouldbe noted that this is an
especially challenging data set for appearance techniques due to the manyvarying backgrounds and
subjects.
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