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Abstract

This paper discusses sign language recognition usingifitigisub-units. It presents three types
of sub-units for consideration; those learnt from appezgatata as well as those inferred from
both 2D or 3D tracking data. These sub-units are then cordhisig a sign level classi er; here,
two options are presented. The rst uses Markov Models tmdadhe temporal changes between
sub-units. The second makes use of Sequential PatterniBgpastapply discriminative feature
selection at the same time as encoding temporal informafibis approach is more robust to noise
and performs well in signer independent tests, improvirgylte from the 54% achieved by the
Markov Chains to 76%.

Keywords: sign language recognition, sequential pattern boostiegthdcameras, sub-units,
signer independence, data set

1. Introduction

This paper presents several approaches to sub-unit based SiguagenRecognition (SLR) cul-
minating in a real time Kine¢¥demonstration system. SLR is a non-trivial task. Sign Lan-
guages (SLs) are made up of thousands of different signs; eaehimiffrom the other by minor
changes in motion, handshape, location or Non-Manual FeaturessgNMfile Gesture Recogni-
tion (GR) solutions often build a classi er per gesture, this approach Beocomes intractable when
recognising large lexicons of signs, for even the relatively straightoiuask of citation-form, dic-
tionary look-up. Speech recognition was faced with the same problem; thgemeolution was
to recognise the subcomponents (phonemes), then combine them into wingi$lidden Markov
Models (HMMs). Sub-unit based SLR uses a similar two stage recognitgiarayin the rst stage,
sign linguistic sub-units are identi ed. In the second stage, these subareitsombined together
to create a sign level classi er.

Linguists also describe SLs in terms of component sub-units; by usingsbbsanits, not only
can larger sign lexicons be handled ef ciently, allowing demonstration ¢etb@daes of nearly 1000
signs, but they are also more robust to the natural variations of sigmgh wbcur on both an inter
and an intra signer basis. This makes them suited to real-time signer indapesctggnition as
described later. This paper will focus on 4 main sub-unit categories! lmadeéandShapglocation
Motion and Hand-Arrangement There are several methods for labelling these sub-units and this
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Figure 1: Overview of the 3 types of sub-units extracted and the 2 diffesign level classi ers
used.

work builds on both the Ha, Tab, Sig, Dez system from the BSL dictionaryi¢B Deaf Associa-
tion, 1992) and The Hamburg Notation System (HamNoSys), which has oedtio develop over
recent years to allow more detailed description of signs from numerou@inke and Schmaling,
2004).

This paper presents a comparison of sub-unit approaches, fogussthe advantages and dis-
advantages of each. Also presented is a newly released Kinect datargeining multiple users
performing signs in various environments. There are three differeestgpsub-units considered;
those based on appearance data alone, those which use 2D trackingtbedappearance based
handshapes and those which use 3D tracking data produced by a'Kiseasor. Each of these
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three sub-unit types is tested with a Markov model approach to combinersighinto sign level
classi ers. A further experiment is performed to investigate the discrimiadéarning power of
Sequential Pattern (SP) Boosting for signer independent recognitionovArview is shown in
Figure 1.

2. Background

The concept of using sub-units for SLR is not novel. Kim and Waldr@®8) were among the
rst adopters, they worked on a limited vocabulary of 13-16 signs, udatg gloves to get accurate
input information. Using the work of Stokoe (1960) as a base, and thaitqus work in telecom-
munications (Waldron and Simon, 1989), they noted the need to break sigrthéir component
sub-units for ef ciency. They continued this throughout the remaindeheir work, where they
used phonemic recognition modules for hand shape, orientation, positiomavement recogni-
tion (Waldron and Kim, 1994). They made note of the dependency of pasiitentation and
motion on one another and removed the motion aspect allowing the other gsitoutompensate
(on a small vocabulary, a dynamic representation of position is equivialembtion) (Waldron and
Kim, 1995).

The early work of Vogler and Metaxas (1997) borrowed heavily fromgtudies of sign lan-
guage by Liddell and Johnson (1989), splitting signs into motion and paasierss. Their later
work (Mogler and Metaxas, 1999), used parallel HMMs on both haagealand motion sub-units,
similar to those proposed by the linguist Stokoe (1960). Kadir et al. (2@K) this further by
combining head, hand and torso positions, as well as hand shape, t®a&estem based on hard
coded sub-unit classi ers that could be trained on as little as a single example

Alternative methods have looked at data driven approaches to de ningusits. Yin et al.
(2009) used an accelerometer glove to gather information about a sigrihdreapplied discrimi-
native feature extraction and “similar state tying' algorithms, to decide siilbeual segmentation
of the data. Whereas Kong and Ranganath (2008) and Han et al.) (@d8@d at automatic seg-
mentation of sign motion into sub-units, using discontinuities in the trajectory arelemation to
indicate where segments begin and end. These were then clustered irte boak of possible
exemplar trajectories using either Dynamic Time Warping (DTW) distance mesabklan et al. or
Principal Component Analysis (PCA) Kong and Ranganath.

Traditional sign recognition systems use tracking and data driven agmeéHan et al., 2009;
Yin et al., 2009). However, there is an increasing body of researdtstiygests using linguisti-
cally derived features can offer superior performance. CoopBawden (2010) learnt linguistic
sub-units from hand annotated data which they combined with Markov modeledte sign level
classi ers, while Pitsikalis et al. (2011) presented a method which incatpdmphonetic transcrip-
tions into sub-unit based statistical models. They used HamNoSys annotadiobied with the
Postures, Detentions, Transitions, Steady Shifts (PDTS) phonetic mdolelak the signs and an-
notations into labelled sub-units. These were used to construct statisticahgumodels which
they combined via HMMs.

The frequent requirement of tracked data means that the Kiidevice has offered the sign
recognition community a short-cut to real-time performance. In the relativeyt $§me since its
release, several proof of concept demonstrations have emergdderet al. (2011) have focussed
on Arabic sign language and have created a system which recognilsgedssigns. They present
a system working for 4 signs and recognise some close up handshapwatibn (Ershaed et al.,
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2011). At ESIEA they have been using Fast Arti cial Neural Netwotidrain a system which
recognises two French signs (Wassner, 2011). This small vocahsilanyroof of concept but it is
unlikely to be scalable to larger lexicons. Itis for this reason that many siggnition approaches
use variants of HMMs (Starner and Pentland, 1997; Vogler and Meta289; Kadir et al., 2004,
Cooper and Bowden, 2007). One of the rst videos to be uploaded twéliiecame from Zafrulla
et al. (2011) and was an extension of their previous CopyCat gamed#bictildren (Zafrulla et al.,
2010). The original system uses coloured gloves and accelerometeaskthe hands. By tracking
with a Kinect™, they use solely the upper part of the torso and normalise the skeletauliaccm
arm length (Zafrulla et al., 2011). They have an internal data set camjarsigns; 2 subject signs,
2 prepositions and 2 object signs. The signs are used in 4 sentenbgi(spreposition, object)
and they have recorded 20 examples of each. Their data set is cursamglg signer, making
the system signer dependent, while they list under further work thatrsigdependence would
be desirable. By using a cross validated system they train HMMs (Via theg@etech Gesture
Toolkit Lyons et al., 2007) to recognise the signs. They perform 3 tgpdssts, those with full
grammar constraints achieving 100%, those where the number of signsaa kichieving 99.98%
and those with no restrictions achieving 98.8%.

2.1 Linguistics

Sign language sub-units can be likened to speech phonemes, but whilkem $panguage such as
English has only 40-50 phonemes (Shoup, 1980), SLs have many nwrex&mple The Dictio-
nary of British Sign Language/EngligBritish Deaf Association, 1992) lists 57 "De#landShapg
36 "Tab' (Location), 8 'Ha' (Hand-Arrangement 28 "Sig' (Motion) (plus 4 modi ers, for example,
short and repeated) and there are two sets of 6 "Owiightatior), one for the ngers and one for
the palm.

HamNoSys uses a more combinatorial approach to sub-units. For instalists, 12 basic
handshapes which can be augmented using nger bending, thumb positiaspaneness charac-
teristics to create a singldandShapesub-unit. These handshapes are then combined with palm
and nger orientations to describe the nal hand postulMotion sub-units can be simple linear
directions, known as "Path Movements' these can also be modi ed by sumwggles or zigzags.
Motion sub-units can also be modi ed by locations, for example, move from A to B wittiraed
motion or move down beside the nose.

In addition, whereas spoken phonemes are broadly sequential, sigmisilare parallel, with
some sequential elements added where required. This means that eazld 6Btitish Sign Lan-
guage (BSLHandShapeptions can (theoretically) be in any one of the 36 B3}lientationcombi-
nations. In practice, due to the physical constraints of the human bdsha snbset of comfortable
combinations occur, yet this subset is still considerable.

An advantage of the parallel nature of sub-units, is that they can bgmiseal independently
using different classi ers, then combined at the word level. The re#ssns advantageous is that
Locationclassi ers need to be spatially variant, since they describe where a sgpehs. Hand-
Arrangemenshould be spatially invariant but not rotationally variant, since they despiiitional
relationships between the hands. WH¥etion are a mixture of spatially, temporally, rotationally
and scale variant sub-units since they describe types of motion whichecas ¢eneric as “hands
move apart' or more speci ¢ such as "hand moves left'. Therefore &gmh of sub-unit can be
recognised by classi ers incorporating the correct combination of iamaes. This paper presents
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three methods for extracting sub-units; learnt appearance basdib(S¥¢chard coded 2D tracking
based (Section 4) and hard coded 3D tracking based (Section 5).

3. Learning Appearance Based Sub-units

The work in this section learns a subset of each type of sub-unit usiaBdast from hand labelled
data. As has been previously discussed, not all types of sub-unitsecdetected using the same
type of classi er. ForLocationsub-units, there needs to be correlation between where the motion
is happening and where the person is; to this end spatial grid featureecc@anound the face of
the signer are employed. Fbtotion sub-units, the salient information is what type of motion is
occurring, often regardless of its position, orientation or size. This isoagped by extracting
moment features and using Binary Patterns (BPs) and additive clasbasexd on their changes
over time. Hand-Arrangemensub-units look at where the hands are in relation to each other, so
these are only relevant for bi-manual signs. This is done using the samenihfaatires as for
Motion but this time over a single frame, as there is no temporal context requirecof Aikese
sub-unit level classi ers are learnt using AdaBoost (Freund armfice, 1995). The features used

in this section require segmentation of the hands and knowledge of whefacthés. The Viola
Jones face detector (Viola and Jones, 2001) is used to locate the facese§mentation could be
used to segment the hands, but since sub-unit labels are required thigses the data set from the
work of Kadir et al. (2004) for which there is an in-house set of soibtdabels for a portion of the
data. This data set was created using a gloved signer and as suchraseglmentation algorithm

is used in place of skin segmentation.

§

(b) On Right Shoulder (c) Lower Face/Chin

(a) The grid applied over the signer

Figure 2: Grid features for two stage classi cation. (a) shows an exaofipte grid produced from
the face dimensions while (b) and (c) show grid features chosen byibhgdsr two of
the 18Locationsub-units. The highlighted box shows the face location and the rst and
second features chosen, are shown in black and grey respectively.
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3.1 Location Features

In order that the sign can be localised in relation to the signer, a grid is applidte image,
dependent upon the position and scale of the face detection. Each cedl gmidhis a quarter of
the face size and the grid is 10 rectangles wide by 8 deep, as shown ie Rguifhese values are
based on the signing space of the signer. However, in this case, theogisdhdt extend beyond
the top of the signers head since the data set does not contain any sighsuada that area. The
segmented frame is quantised into this grid and a cell res if over 50% of itdsp@re made up of
glove/skin. This is shown in Equation 1 wheRg. is the weak classi er response ahdin(X;y) is

the likelihood that a pixel contains skir. is the face height and all the grid values are relative to
this dimension.

g . f2 é }o/2 ..
lif g< a a (Lskinli;])> 0);
c= S i=x1j=y1

* 0 otherwise

Wherexi; y1; X2; Y2 are given b)é

%xlz Gy f;
=(Gy+ 0:5)f;
%ylz Gyf,

" Y2=(Gy+ 0:5)f;
givenGy=f 25; 2; 1.5:.::2q;
Gy=f 4 35; 3:::00: QD

For each of thé.ocationsub-units, a classi er was built via AdaBoost to combine cells which re
for each particular sub-unit, examples of these classi ers are showigurds 2b and (c). Note
how the rst cell to be picked by the boosting (shown in black) is the onectlireelated to the
area indicated by the sub-unit label. The second cell chosen by boegtieg adds to this location
information, as in Figure 2b, or comments on the stationary, non-dominad} asim Figure 2c.
Some of the sub-units types contain values which are not mutually exclukigeneeds to
be taken into account when labelling and using sub-unit data. The BSLrcli¢British Deaf
Association, 1992) lists severabcationsub-units which overlap with each other, such as face and
mouth or nose. Using boosting to train classi ers requires positive andtivegexamples. For best
results, examples should not be contaminated, that is, the positive s&t gbbaontain negatives
and the negative set should not contain positives. Trying to distingutgleba an area and its sub-
areas can prove futile, for example, the mouth is also on the face andateetieére are likely to
be false negatives in the training set when training face against moutlsetbad stage, sign-level
classi cation does not require the sub-unit classi er responses to ligaityiexclusive. As such a
hierarchy can be created bbcationareas and their sub-areas. This hierarchy is shown in Figure 3;
a classi er is trained for each node of the tree, using examples which dpédoin, or its children,
as positive data. Examples which do not belong to it, its parent or its childsrrdeide negative
data.
This eliminates false negatives from the data set and avoids confusiéfigure 3 the ringed
nodes show the sub-units for which there exist examples. Examples atiedahccording to this

2210



SIGN LANGUAGE RECOGNITION USINGSUB-UNITS

hierarchy, for example, face, fadewer or facelower_ mouth which makes nding children and
parents easier by using simple string comparisons.

arm

@

Towep @ppep side
Gnderchiny mouth> (nose (&yes)
(cheek> (ear)

Figure 3: The thre¢ocationsub-unit trees used for classi cation. There are three separate trees
based around areas of the body which do not overlap. Areas on treslebthe tree are
sub-areas of their parent nodes. The ringed labels indicate that tleee®act examples
of that type in the data set.

3.2 Motion and Hand-ArrangementMoment Feature Vectors

ForHand-ArrangemeraindMotion, information regarding the arrangement and motion of the hands
is required. Moments offer a way of encoding the shapes in an image;tdrgexf moment values
per frame are concatenated, then they can encode the change in chap@age over time.

There are several different types of moments which can be calculaie oé them displaying
different properties. Four types were chosen to form a feature yeatcpatial,myp,, central,pap,
normalised centrallyy and the Hu set of invariant moments (Hu, 1962)H;. The order of a
moment is de ned ag+ b. This work uses all moments, central moments and normalised central
moments up to the 3rd order, 10 per type, (00, 01, 10, 11, 20, 02, 1B3®D3). Finally, the
Hu set of invariant moments are considered, there are 7 of these momdrntegrare created by
combining the normalised central moments, see Hu (1962) for full details offeyinvariance to
scale, translation, rotation and skew. This gives a 37 dimensional faatcti@r, with a wide range
of different properties.

1if Twe < Miy;
0 otherwise

c=

(2)

Since spatial moments are not invariant to translation and scale, theretadsda common point
of origin and similar scale across examples. To this end, the spatial mometresadee in a similar

2211



COOPER PUGEAULT, ONG AND BOWDEN

way to the spatial features in Section 3.1, by centring and scaling the imageé thieoface of
the signer before computation. For trainiHgnd-Arrangementthis vector is used to boost a set
of thresholds for individual moments); on a given frame, Equation 2. FoMotion, temporal
information needs to be included. Therefore the video clips are desdteedtack of these vectors,
M, like a series of 2D arrays, as shown in Figure 4(a) where the horiagttors of moments are
concatenated vertically, the lighter the colour, the higher the value of the ni@mdimat frame.

(a) BP example (b) Concatenated Moment Vector

Figure 4: Moment vectors and Binary Patterns for two stage classi catirA pictorial descrip-
tion of moment vectors (normalised along each moment type for a selectioarpéss),
the lighter the colour the larger the moment value. (a) BP, working from topttorn an
increase in gradient is depicted by a 1 and a decrease or no chande by a

3.3 Motion Binary Patterns and Additive Classi ers

As has been previously discussed, Metion classi ers are looking for changes in the moments
over time. By concatenating feature vectors temporally as shown in Figbje thése spatio-
temporal changes can be found. Component values can either incdeasease or remain the
same, from one frame to the next. If an increase is described as a 1 aoceask or no change is
described as a 0 then a BP can be used to encode a series of incemsesks. A temporal vec-
tor is said to match the given BP if every "1' accompanies an increase betweeurrent frames
and every "0' a decrease/'no change'. This is shown in Equation Bevihg is the value of the
componentM;j, at timet andbp; is the value of the BP at frante

Ruc = i maxBP(Mix))j  1j;
BP(M;y) = ?pt d(Mit; Mit+1);
0if Mit  Mits1;

d(Mi:t;Mis+1) =
(Mit; i 1) 1 otherwise

3
See Figure 5 for an example where feature vector A makes the weak elassi whereas feature
vector B fails, due to the ringed gradients being incompatible.

Discarding all magnitude information would possibly remove salient informafiometain this
information, boosting is also given the option of using additive classi ehesE look at the average
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magnitude of a component over time. The weak classi ers are createcobyirapa threshold],,
to the summation of a given component, over several frames. This threstogtimised across the
training data during the boosting phase. For an additive classi er oflsibyer component;, the
response of the classi eRy¢, can be described as in Equation 4.

it
1if Mi-;
Rue= 0 G @)
" 0 otherwise

Boosting is given all possible combinations of BPs, acting on each of treh@somponents.
The BPs are limited in size, being between 2 and 5 changes (3 - 6 frames) Toregadditive
features are also applied to all the possible components, but the lengtht@etrare between 1
and 26 frames, the longest mean lengthiMaition sub-units. Both sets of weak classi ers can be
temporally offset from the beginning of an example, by any distance up tm#xémnum distance
of 26 frames.

Figure 5: An example of a BP being used to classify two examples. A compasistade between
the elements of the weak classi ers BP and the temporal vector of the comiposiag
assessed. If every "1'in the BP aligns with an increase in the compondrevary 0’
aligns with a decrease or "'no change' then the component vector is saiddb (eay.,
case A). However if there are inconsistencies as ringed in case B themtheclassi er
will not re.

Examples of the classi ers learnt are shown in Figure 6, additive classaee shown by boxes,
increasing BPs are shown by pale lines and decreasing ones by dark liileen looking at a
sub-unit such as “hands move apart' (Figure 6a), the majority of the BBi @ show increasing
moments, which is what would be expected, as the eccentricity of the momentsyiddikecrease
as the hands move apart. Conversely, for "hands move together' €Fégiir most of the BPs are
decreasing.

Since someMotion sub-units occur more quickly than others, the boosted classi ers aralnot
constrained to being equal in temporal length. Instead, an optimal lengtbssmtlover the training
set for each individual sub-unit. Several different length classiane boosted starting at 6 frames
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(a) handsmove.apart (b) Handsmove together

Figure 6: Boosted temporal moments BP and addMaion classi ers. The moment vectors are
stacked one frame ahead of another. The boxes show where anediisisi er has been
chosen, a dark line shows a decreasing moment value and a pale lineeasingrvalue.

long, increasing in steps of 2 and nishing at 26 frames long. Trainingsctagion results are
then found for each sub-unit and the best length chosen to creaté setnef classi ers, of various
lengths suited to the sub-units being classi ed.

4. 2D Tracking Based Sub-Units

Unfortunately, since the learnt, appearance based, sub-units regpégly annotated data they are
limited to data sets with this annotation. An alternative to appearance basek$eiatgiven by
tracking. While tracking errors can propagate to create sub-unitsettog hand trajectories offer
signi cant information which can aid recognition. With the advances of tragkystems and the
real-time solution introduced by the Kinét, tracking is fast becoming an option for real-time,
robust recognition of sign language. This section works with hand aad tnajectories, extracted
from videos by the work outlined by Roussos et al. (2010). The tradkifaymation is used to
extractMotion and Locationinformation. HandShapenformation is extracted via Histograms of
Gradients (HOGs) on hand image patches and learnt from labels usthgmeorests. The labels
are taken from the linguistic representations of Sign Gesture Mark-uguaaye (SiGML) (Elliott
et al., 2001) or HamNoSys (Hanke and Schmaling, 2604).

4.1 Motion Features

In order to link the x,y co-ordinates obtained from the tracking to the alistoacepts used by sign
linguists, rules are employed to extract HamNoSys based information fromnajleetories. The
approximate size of the head is used as a heuristic to discard ambient motiolegthtnan 0.25
the head size) and the type of motion occurring is derived directly fromrrdetistic rules on the

1. Note that conversion between the two forms is possible. However whiteNdSys is usually presented as a font for
linguistic use, SIGML is more suited to automatic processing.
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(a) Single handed (b) Bimanual: Synchronous (c) Bimanual: Together/Apart

Figure 7: Motions detected from tracking

x and y co-ordinates of the hand position. The types of motions encodeshawn in Figure 7,
the single handed motions are available for both hands and the dual hantleds are orientation
independent so as to match linguistic concepts.

4.2 Location Features

Similarly the x and y co-ordinates of the sign location need to be describdt/edia the signer
rather than in absolute pixel positions. This is achieved via quantisation gathes into a code-
book based on the signer's head position and scale in the image. Fovanyhgind positiofix,; yn)

the quantised versiofx®;y?) is achieved using the quantisation rules shown in Equation 5, where
(Xs;ys) is the face position anfvs; h;) is the face size.

= (% X¢)=wi;

Y= (yn yi)=he: %)

Due to the limited size of a natural signing space, this gives values in the cag82f 0::10g and
x%2 f 0::8g which can be expressed as a binary feature vector of size 36, wieexatit y positions
of the hands are quantised independently.

4.3 HandShapeFeatures

While just the motion and location of the signs can be used for recognition of examples, it has
been shown that adding the handshape can give signi cant improvdiadir et al., 2004). HOG
descriptors have proven ef cient for sign language hand shapgnition (Buehler et al., 2009) and
these are employed as the base feature unit. In each frame, the sigmeirmdt hand is segmented
using the x,y position and a skin model. These image patches are rotated torithapgb axis
and scaled to a square, 256 pixels in size. Examples of these image patckbewan in Figure 8
beside the frame from which they have been extracted. HOGs are cafcoletethese squares at
a cell size of 32 pixels square with 9 orientation bins and with 2x2 overlapgpivgks, these are
also shown in Figure 8. This gives a feature vector of 1764 histogramviich describes the
appearance of a hand.
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Figure 8: Example HOGs extracted from a frame

4.4 HandShapeClassi ers

This work focusses on just the 12 basic handshapes, building multi-miadal ers to account for
the different orientations. A list of these handshapes is shown in Figure 9

ceeall ceel2 ceel2open nger2 nger23 nger2345
(153) (200) (207) (4077) (686) (2708)
nger23- st at pinch12 pinchl2open pinchall
spread (749) (2445) (4612) (571) (845) (830)

Figure 9: The base handshapes (Number of occurrences in the tJata se

Unfortunately, linguists annotating sign do so only at$ign level while most sub-units occur
for only part of a sign. Also, not only do handshapes change throughout the signatbenade
more dif cult to recognise due to motion blur. Using the motion of the hands,itirecan be split
into its component parts (as in Pitsikalis et al., 2011), that are then aligned wisigihannotations.
These annotations are in HamNoSys and have been prepared by trapeets ethey include the
sign breakdown but not the temporal alignment. The frames most likely toin@wgatic handshape
(i.e., those with limited or no motion) are extracted for training.

Note that, as shown in Figure 10, a single SiGML class (in this case " ngendy contain
examples which vary greatly in appearance, making visual classi cati@xtaemely dif cult task.
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Figure 10: A variety of examples for the HamNoSys/SiGML class " nger2'.

The extracted hand shapes are classi ed using a multi-class randosh f@endom forests were
proposed by Amit and Geman (1997) and Breiman (2001). They havedtmevn to yield good
performance on a variety of classi cation and regression problemscande trained ef ciently
in a parallel manner, allowing training on large feature vectors and data lsetisis system, the
forest is trained from automatically extracted samples of all 12 handslrapes data set, shown
in Figure 9. Since signs may have multiple handshapes or several instdrticesame handshape,
the total occurrences are greater than the number of signs, howeyeréheot equally distributed
between the handshape classes. The large disparities in the numbemplexaetween classes
(see Figure 9) may bias the learning, therefore the training set is rebdldmatore learning by
selecting 1,000 random samples for each class, forming a new balaneesketiaThe forest used
consists ofN = 100 multi-class decision treds, each of which is trained on a random subset of
the training data. Each tree node splits the feature space in two by applyimgsadid on one
dimension of the feature vector. This dimension (chosen from a randbseg§uwand the threshold
value are chosen to yield the largest reduction in entropy in the class dismb(his recursive
partitioning of the data set continues until a node contains a subset of sathat belong to one
single class, or if the tree reaches a maximal depth (set to 10). Each leafigbelled according
to the mode of the contained samples. As a result, the forest yields a probdisiitpution over
all classes, where the likelihood for each class is the proportion of treesdted for this class.
Formally, the con dence that feature vectodescribes the handshapées given by:

plol = & de(Ti(9);
i<N
whereN is the number of trees in the fore$i(x) is the leaf of thath treeT; into whichx falls, and
dc(a) is the Kronecker delta functioml{(a) = 1 iff. c= a, d.(a) = 0 otherwise).

The performance of this hand shape classi cation on the test set idexton Table 1, where
each row corresponds to a shape, and each column correspondseididea class (empty cells
signify zero). Lower performance is achieved for classes that are frejuent in the data set. The
more frequently a handshape occurs in the data set the more orientatioliseilyiso be used in.
This in turn makes the appearance of the class highly variable; see dmpéx Figure 10 for the
case of " nger2'—the worst performing case. Also noted is the highfusion between * nger2'
and " st' most likely due to the similarity of these classes when the signer is pgitdithemselves.

The handshape classi ers are evaluated for the right hand only diranges when it is not in
motion. The sign recognition system is evaluated using two different ergedim the detected
hand shapes. As will be described in Section 6, the next stage classgeires inputs in the
form of binary feature vectors. Two types of 12 bit binary featureatecan be produced from
the classi er results. The rst method applies a strict Winner Takes All A)/®n the multi-class
forest's response: the class with the highest probability is set to onethanathers to zero. For
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handshape predictions

at 0.35 0.19 0.09 0.03 0.08 0.06 0.03 0.06 0.06 0.01 0.03 0.01
st 0.03 JOE} 0.02 0.04 0.11 0.05 0.02 0.03 0.02
nger2345 0.16 0.19 0.36 0.02 0.03 0.05 0.06 0.02 0.03 0.06 0.01
nger2 0.02 0.33 0.07 0.31 0.11 0.05 0.02 0.03 0.02 0.04
pinchall 0.03 0.09 0.04 0.01 0.11 0.01 0.01 0.04
pinch12 0.02 020 0.01 0.02 0.13 0.01 0.01 0.01 0.02
nger23 0.05 0.17 0.04 0.02 0.05 0.04 0.01 0.07 0.01
pinch12open 0.03 0.12 0.07 0.01 0.15 0.04 0.01 0.01
ceel2 0.01 0.05 0.01 0.03 0.04 0.01 K 0.01
ceel2open 0.01 0.99
nger23spread 0.01 0.15 0.02 0.06 0.01 0.05 0.02
ceeall 0.01 0.08 0.03 0.08 0.01 0.02 0.01 0.01

Table 1: Confusion matrix of the handshape recognition, for all 12 dasse

every non-motion frame, the vector contains a true value in the highestgabass. The second
method applies a xed threshold € 0:25) on the con dences provided by the classi er for each
of the 12 handshapes classes. Handshapes that have a con tevedlaresholdc] > t) are set

to one, and the others to zero. This soft approach carries the doulzletage that a) the feature
vector may encode the ambiguity between handshapes, which may itselfrdarmation, and b)
may contain only zeros if con dences in all classes are small.

5. 3D Tracking Based Sub-Units

With the availability of the Kinect¥, real-time tracking in 3D is now a realistic option. Due to this,
this nal sub-unit section expands on the previous tracking sub-unitotl im 3D. The tracking is
obtained using the OpenNI framework (Ope, 2010) with the PrimeSendetréeri, 2010). Two
types of features are extracted, those encodindytibi@on andLocationof the sign being performed.

5.1 Motion Features

Again, the focus is on linear motion directions, as with the sub-units desdnifection 4.1, but
this time with the z axis included. Speci cally, individual hand motions in the x pldet and
right), the y plane (up and down) and the z plane (towards and away tliersigner). This is
augmented by the bi-manual classi ers for “hands move together', Shanoye apart' and “hands
move in sync', again, these are all now assessed in 3D. The approxipatef she head is used
as a heuristic to discard ambient motion (that less than 0.25 the head sizegappeiof motion
occurring is derived directly from deterministic rules on the x,y,z co-otdmaf the hand position.
The resulting feature vector is a binary representation of the found litiguéues. The list of 17
motion features extracted is shown in Table 2.

5.2 Location Features

Whereas previously, with 2D tracking, a coarse grid is applied, in this seitteoskeleton returned
by the PrimeSense tracker can now be leveraged. This allows signedielzddons to be described
with higher con dence. As such, the location features are calculated) ubi distance of the
dominant hand from skeletal joints. A feature will re if the dominant handléser tharH "¢a%=2
of the joint in question. A list of the 9 joints considered is shown in Table 2 dasplaled to scale
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Locations : MOtIOI’\S.

Right or Left Hand \ Bi-manual
head left Dx> | in sync
neck right Dx< | jd(L;R)j < |
torso up Dy> | and
L shoulder| down  Dy< | FR=FL
L elbow towards Dz> | together
L hand away Dz< | | D(d(L;R) < |
L hip none DL< | apart
R shoulder DR< | D(d(L;R)) > |
R hip

Table 2: Table listing the locations and hand motions included in the featuregsette conditions
for motion are shown with the label. Whexgy, zis the position of the hand, either left)(
or right (R), Dindicates a change from one frame to the next@ddR) is the Euclidean
distance between the left and right handsis the threshold value to reduce noise and
increase generalisation, this is set to be a quarter the head h&i§hand F- are the
motion feature vectors relating to the right and left hand respectively.

in Figure 11. While displayed in 2D, the regions surrounding the joints arealy 3D spheres.
When the dominant hand (in this image shown by the smaller red dot) moves inegibe around
a joint then that feature will re. In the example shown, it would be dif cuttrftwo features to
re at once. When in motion, the left hand and elbow regions may overlapatfiter body regions
meaning that more than one feature res at a time.

Figure 11: Body joints used to extract sign locations

6. Sign Level classi cation

Each of the different sub-unit classi er sets is now combined with a sigettdassi er. The groups
of binary feature vectors are each concatenated to create a single fieiature vectoF = ( fi)iE; 1

2219



COOPER PUGEAULT, ONG AND BOWDEN

per frame, wherd; 2 f 0; 1g andD is the number of dimensions in the feature vector. This feature
vector is then used as the input to a sign level classi er for recognitiorudyg a binary approach,
better generalisation is obtained. This requires far less training data tpamaapes which must
generalise over both a continuous input space as well as the variabilitgdresigns (e.g., HMMs).
Two sign level classi cation methods are investigated. Firstly, Markov modbismuse the feature
vector as a whole and secondly Sequential Patten Boosting which perdiggonsninative feature
selection.

6.1 Markov Models

HMMs are a proven technology for time series analysis and recognitionileWiey have been
employed for sign recognition, they have issues due to the large trainingestents. Kadir et al.
(2004) overcame these issues by instead using a simpler Markov modelthééature space is
discrete. The symbolic nature of linguistic sub-units means that the discretediiae sf events
can be modelled without a hidden layer. To this end a Markov chain is cotetrfor each sign
in a lexicon. An ergodic model is used and a Look Up Table (LUT) employeddimtain as little
of the chain as is required. Code entries not contained within the LUT aignasl a nominal
probability. This is done to avoid otherwise correct chains being assizgrecprobabilities if noise
corrupts the input signal. The result is a sparse state transition nij(kjF 1), for each wordv
giving a classi cation bank of Markov chains. During creation of this siion matrix, secondary
transitions can be included, whdtg(RjFR 2). This is similar to adding skip transitions to the left-
right hidden layer of a HMM which allows deletion errors in the incoming sigh#hile it could
be argued that the linguistic features constitute discrete emission probahtifigdack of a doubly
stochastic process and the fact that the hidden states are determindlgl tivet the observation
sequence, separates this from traditional HMMs which cannot be usetbdheir high training
requirements. During classi cation, the model bank is applied to incoming daaimilar fashion
to HMMs. The objective is to calculate the chain which best describes theningadata, that is,
has the highest probability that it produced the observatioReature vectors are found in the LUT
using an L1 distance on the binary vectors. The probability of a model mgtthénobservation
sequence is calculated as

L
P(wjs) = UWO Pv(RIR 1);
t=1
wherel is the length of the word in the test sequence apds the prior probability of a chain
starting in any one of its states. In this work, without gramr8ar,u,, = 1.

6.2 SP Boosting

One limitation of Markov models is that they encode exact series of transitimrsatl features
rather than relying only on discriminative features. This leads to relianagsendependant fea-
ture combinations which if not replicated in test data, will result in poor reitiog performance.
Sequential Patterns (SPs), on the other hand, compare the input degéef@nt features and ig-
nore the irrelevant features. A SP is a sequence of discriminigtivesetgi.e., feature subsets) that
occur in positive examples and not negative examples (see Figure BjleWe an itemseT as
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integers wher@t 2 T; f; = 1. Following this, we de ne a SF of lengthjTjas:T =( Ti){I‘l, where
Ti is an itemset.

In order to use SPs for classi cation, we rst de ne a method for detert8Ps in an input
sequence of feature vectors. To this end, rstlyTelbe a SP we wish to detect. Suppose the given

feature vector input sequence j&f frames isF = ( Ft){ijl, whereR is the binary feature vector
de ned in Section 6. We rstly converF into the SP = ( It)JtEJl, wherel; is the itemset of feature
vectork. We say that the SP is present irl if there exists a sequen(:bi)’izjl, wherebj < bj when

i< jand8i=f1;::;jTjg; T lp,. Thisrelationship is denoted with thes operator, thatisT — s|.
Conversely, if the sequenuﬁbi){lll does not exist, we denote it A6 s|.

From this, we can then de ne a SP weak classi er as follows: Léte a given SP andbe an
itemset sequence derived from some input binary vector seqifendeSP weak classi erh' (1),
can be constructed as follows:

1; ifT gl

hT(1) =
() 1, ifT6gl:

A strong classi er can be constructed by linearly combining a numBgof selected SP weak
classi ers in the form of:

s

H()= & aih"(1):

i=1
The weak classi erdy, are selected iteratively based on example weights formed during training.
In order to determine the optimal weak classi er at each Boosting iteratiorgaimmon approach
is to exhaustively consider the entire set of candidate weak classi ersratly select the best
weak classi er (i.e., that with the lowest weighted error). However, ndBig weak classi ers
corresponding to optimal SPs this way is not possible due to the immense size $Pthearch
space. To this end, the method of SP Boosting is employed (Ong and Boadel), This method
poses the learning of discriminative SPs as a tree based search prohkesearch is made ef cient
by employing a set of pruning criteria to nd the SPs that provide optimal ofisnation between
the positive and negative examples. The resulting tree-search methodyigteteinto a boosting
framework; resulting in the SP-Boosting algorithm that combines a set ofierg@gd optimal SPs
for a given classi cation problem. For this work, classi ers are built inreeevs-one manner and
the results aggregated for each sign class.

7. Appearance Based Results

This section of work uses the same 164 sign data set as Kadir et al. @0@4herefore a direct
comparison can be made between their hard coded tracking based systéhe dearnt sub-unit
approach using detection based sub-units. For this work, extra annote® required as Kadir
et al. (2004) used only sign boundaries. 74b@ationexamples, 32Band-Arrangemengxamples
and 578Motion were hand labelled for training sub-unit classi ers. The data set csnsisl640
examples (ten of each sign). Signs were chosen randomly rather thangpggeci c examples
which are known to be easy to separate. The sub-unit classi ers dirasing only data from four of
the ten examples of each sign and the word level classi er is then trainedsoexamples (including
the four previously seen by the sub-unit classi ers) leaving ve compyetmseen examples for
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(a) Feature vector (b) SP

Figure 12: Pictorial description of SPs. (a) shows an example featarerveade up of 2D motions
of the hands. In this case the rst element shows ‘right hand movethgsecond ‘right
hand moves down' etc. (b) shows a plausible pattern that might be fouriddasign
“bridge'. In this sign the hands move up to meet each other, they moveamhthen
curve down as if drawing a hump-back bridge.

testing purposes. The second stage classi er is trained on the previmeglyfour training examples
plus one other, giving ve training examples per sign. The results areiamfrom the ve unseen
examples of each of the 164 signs. This is done for all six possible combisaifaraining/test
data. Results are shown in Table 3 alongside the results from Kadir e084)(2The rst three
columns show the results of combining each type of appearance subitmithe second stage
sign classi er. Unsurprisingly, none of the individual types containfscgnt information to be
able to accurately separate the data. However, when combined, theapmehased classi ers
learnt from the data are comparable to the hard coded classi ers uspdrfattly tracked data.
The performance drops by only 6.6 Percentage Points (pp), from 7A®.Z2%26% whilst giving the
advantage of not needing the high quality tracking system.

Figure 13, visually demonstrates the sub-unit level classi ers being wgbdhe second stage
classi er. The output from the sub-unit classi ers are shown on thétrigand side in a vector
format on a frame by frame basis. It shows the repetition of featuresdaigim "Box'. As can be
seen there is a pattern in the vector which repeats each time the sign is madhisltépetition
which the second stage classi er is using to detect signs.

8. 2D Tracking Results

The data set used for these experiments contains 984 Greek Sign gan@fL) signs with 5 ex-

amples of each performed by a single signer (for a total of 4920 sampleshandshape classi ers
are learnt on data from the rst 4 examples of each sign. The sign le&xsdicers are trained on the
same 4 examples, the remaining sign of each type is reserved for testing.
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Hand-Arrangement
Location

Combined

(Kadir et al., 2004)

Minimum (%) | 31.6 30.7 28.2 68.7 76.1
Maximum (%) | 35.0 32.2 305 743 82.4
Std Dev 09 04 06 15 21
Mean (%) 332 31.7 294 726 792

Table 3: Classi cation performance of the appearance based two-dtégetor. Using the appear-
ance based sub-unit classi ers. Kadir et al. (2004) results are iedlfiokr comparison

purposes.

Figure 13: Repetition of the appearance based sub-unit classi errvéltie band down the right
hand side of the frame shows the sub-unit level classi er ring patteondtfe last 288
frames, the vector for the most recent frame is at the bottom. The prevesduring
the 288 frames shows four repetitions of the sign "Box'.

Table 4 shows sign level classi cation results. It is apparent from thesdts, that out of the
independent vectors, the location information is the strongest. This is dues$tréimg combination
of a detailed location feature vector and the temporal information encodtm yarkov chain.

Shown also is the improvement afforded by using the handshape classiitr a threshold
vs a WTA implementation. By allowing the classi ers to return multiple possibilities métae
data about the handshape is captured. Conversely, when none tedbieecs is con dent, a “null'
response is permitted which reduces the amount of noise. Using the noaHyakgclusive version
of the handshapes in combination with the motion and location, the percentagmefcorrectly
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Motion 25.1%
Location 60.5%
HandShape 3.4%
All: WTA 52.7%
All: Thresh 68.4%
All + Skips (P(RjR 2)) | 71.4%

Table 4: Sign level classi cation results using 2D tracked features antidr&ov Models. The
rst three rows show the results when using the features independeitkiyttve Markov
chain (The handshapes used are non-mutually exclusive). The megtribws give the
results of using all the different feature vectors. Including the improwergained by
allowing the handshapes to be non-mutually exclusive (thresh) vers\W&/ThAeoption.
The nal method is the combination of the superior handshapes with the locatimion
and the second order skips.

Markov Chains SPs
Topl Top4| Topl Top4
recall | 71.4% 82.3% | 74.1% 89.2%

Table 5: Comparison of recall results on the 2D tracking data using botkdMahains and SPs

returned is 68.4%. By including the 2nd order transitions whilst building thekMechain there is
a 3 pp boost to 71.4%.

This work was developed for use as a sign dictionary, within this contexénvgueried by a
video search, the classi cation would not return a single responsé¢eddslike a search engine,
it should return a ranked list of possible signs. Ideally the target sigriddmiclose to the top of
this list. To this end we show results for 2 possibilities; The percentage of gibith are correctly
ranked as the rst possible sign (Top 1) and the percentage whictaaked in the top 4 possible
signs.

This approach is applied to the best sub-unit features above combinedithigh the Markov
Chains or the SP trees. The results of these tests are shown in Table B.udihg the the same
combination of sub-unit features as found to be optimal with the Markov Ghtie SP trees are
able to improve on the results by nearly 3 pp, increasing the recognitiorroaterfl.4% to 74.1%.
A further improvement is also found when expanding the search resultwilisin the top 4 signs
the recall rate increases from 82.3% to 89.2%.

9. 3D Tracking Results

While the KinectMwork is intended for use as a live system, quantitative results can be abtaine
by the standard method of splitting pre-recorded data into training and tesfTée split between
test and training data can be done in several ways. This work uses taiong the rst to show
results on signer dependent data, as is often used, the second shfamspnce on unseen signers,

a signer independent test.
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Markov Models| SP-Boosting

Test Topl Top4 |Topl Top4

1 56% 80% 72% 91%

= 2 61%  79% | 80%  98%
% 3 30% 45% 67% 89%
g 4 55%  86% | 77%  95%
§ 5 58% 75% 78% 98%
£ 6 63% 83% 80% 98%

Mean | 54%  75% | 76% 95%
StdDev | 12% 15% 5% 4%

Dependent
Mean

79%  92% | 92% 99.90%

Table 6: Results across the 20 sign GSL data set.

9.1 Data Sets

Two data sets were captured for training; The rstis a data set of 20sg§is, randomly chosen and
containing both similar and dissimilar signs. This data includes six people penigeach sign an
average of seven times. The signs were all captured in the same envitomithethe KinectMand

the signer in approximately the same place for each subject. The secorstiatéarger and more
complex. It contains 40 Deutsche Gatlensprache - German Sign Language (DGS) signs, chosen
to provide a phonetically balanced subset of HamNoSys phonemes. areet8 participants each
performing all the signs 5 times. The data was captured using a mobile sysiem\girying view
points.

9.2 GSL Results

Two variations of tests were performed; rstly the signer dependerdiomer where one example
from each signer was reserved for testing and the remaining examplesisest for training. This
variation was cross-validated multiple times by selecting different combinatibtraio and test

data. Of more interest for this application however, is signer indepenfdrmance. For this
reason the second experiment involves reserving data from a sulnjéesting, then training on the
remaining signers. This process is repeated across all signers in tteetiakaie results of both the
Markov models and the Sequential Patten Boosting applied to the basic 3Defeate shown in

Table 6.

As is noted in Section 6.2, while the the Markov models perform well when theg training
data which is close to the test data, they are less able to generalise. Thiamstshthe dependent
results being high, average 92% within the top 4, compared to the averagpemtknt result which
is 17 pp lower at 75%. It is even more noticeable when comparing the high@std sign only,
which suffers from a drop of 25 pp, going from 79% to 54%. When logkitithe individual results
of the independent test it can be seen that there are obvious outliergdatthepeci cally signer 3
(the only female in the data set), where the recognition rates are markedly Thigis re ected in
statistical analysis which gives high standard deviation across the sigri@vth the top 1 and top
4 rankings when using the Markov Chains.
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Subject DependeTt Subject Independent
Top1l Top4 | Top1l Top 4
Min 56.7%  90.5% | 39.9% 74.9%
Max 64.5% 94.6% | 67.9% 92.4%
StdDev| 1.9% 1.0% 8.5% 5.2%

Mean | 59.8% 91.9% | 49.4% 85.1%

Table 7: Subject Independent (Sl) and Subject Dependent (SDietadts across 40 signs in the
DGS data set.

When the SP-Boosting is used, again the dependant case producesésgits, gaining nearly
100% when considering the top 4 ranked signs. However, due to théisative feature selection
process employed; the user independent case does not show skel mhegradation, dropping just
4.9 pp within the top 4 signs, going from 99.9% to 95%. When considering theatdqed sign the
reduction is more signi cant at 16 pp, from 92% to 76%, but this is still a sigant improvement
on the more traditional Markov model. It can also be seen that the variabiligéguits across signers
is greatly reduced using SP-Boosting, whilst signer 3 is still the signer witlotiest percentage
of signs recognised, the standard deviation across all signs hasedropp% for the rst ranked
signs and is again lower for the top 4 ranked signs.

9.3 DGS Results

The DGS data set offers a more challenging task as there is a wider rhsig@ers and environ-
ments. Experiments were run in the same format using the same featurestes &BL data set.
Table 7 shows the results of both the dependent and independent tastsain e seen with the
increased number of signs the percentage accuracy for the rshestuesult is lower than that of
the GSL tests at 59.8% for dependent and 49.4% for independent. Eothevrecall rates within
the top 4 ranked signs (now only 10% of the data set) are still high at 91.8#<f@ependent tests
and 85.1% for the independent ones. Again the relatively low standsiatide of 5.2% shows that
the SP-Boosting is picking the discriminative features which are able to @esgewell to unseen
signers.

As can be seen in the confusion matrix (see Figure 14), while most signeHddistinguished,
there are some signs which routinely get confused with each other. Aey@dple of this is the
three signs "already’, ‘Athens' and "Greece' which share very sirhdad motion and location but
are distinguishable by handshape which is not currently modelled on thisetata

10. Discussion

Three different approaches to sub-unit feature extraction have deepared in this paper. The
rst based on appearance only, the latter two on tracking. The advamttpe rst approach is
that it doesn't depend on high quality tracking for good results. Howetverould be easily con-
fused via cluttered backgrounds or short sleeves (often a problensigititanguage data sets). The
other advantage of the appearance based classi cation is that it indghfdesation not available
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Figure 14: Aggregated confusion matrix of the rst returned resultgfach subject independent
test on the DGS data set.

by trajectories alone, thus encoding information about handshape withindheent based clas-
si ers. While this may aid classi cation on small data sets it makes it more dif cultléscouple
the handshape from the motion and location sub-units. This affects theatisatton ability of the
classi ers due to the differences between signers.

Where 2D tracking is available, the results are superior in general to {eaence based
results. This is shown in the work by Kadir et al. (2004), who achievevatgnt results on the
same data using tracking trajectories when compared to the appearaedebas presented here.
Unfortunately, it is not always possible to accurately track video datdtasds why it is still valid
to examine appearance based approaches. The 2D trdobaagion sub-features presented here
are based around a grid, while this is effective in localising the motion it is siaeairable as
the HamNoSys derived features used in the improved 3D tracking feaflinesgrid suffers from
boundary noise as the hands move between cells. This noise causksnareihen the features
are used in the second stage of classi cation. With the 3D features this isbe&sis due to them
being relative to the signer in 3D and therefore the locations are not aillgitrtaed by the signer
in the same way as the grid is. For example if a signer puts their hands to theldeisy this
will cause multiple cells of the grid to re and it may not be the same one each timenwsing
3D, if the signer puts their hands to their shoulders then the shoulderdesgar This move from
an arbitrary grid to consciously decided body locations reduces boueéfact around signi cant
areas in the signing space.

This in turn leads to the sign level classi ers. The Markov chains are geod at recognising
signer dependent, repetitive motion, in these cases they are almost owighythie SPs. However,
they are much less capable of managing signer independent classi catitireya are unable to
distinguish between the signer accents and the signs themselves andréhexefio t the data.

2227



COOPER PUGEAULT, ONG AND BOWDEN

Instead the SPs look for the discriminative features between the exampiesin@any signer
speci ¢ features which might confuse the Markov Chains.

11. Conclusions

This work has presented three approaches to sub-unit based sigmitean. Tests were conducted
using boosting to learn three types of sub-units based on appearatoe$e which are then com-
bined with a second stage classi er to learn word level signs. Theseegpuee based features offer
an alternative to costly tracking.

The second approach uses a 2D tracking based set of sub-units edmiliin some appearance
based handshape classi ers. The results show that a combination efrtimsst, generalising fea-
tures from tracking and learnt handshape classi ers overcomes theahigpiguity and variability
in the data set to achieve excellent recognition performance: achievanggnition rate of 73% on
a large data set of 984 signs.

The third and nal approach translates these tracking based sub-utait30n this offers user
independent, real-time recognition of isolated signs. Using this data a neminiganethod is
introduced, combining the sub-units with SP-Boosting as a discriminativeoagipr Results are
shown on two data sets with the recognition rate reaching 99.9% on a 20 sigruserltiata set and
85.1% on a more challenging and realistic subject independent, 40 sigetteShis demonstrates
that true signer independence is possible when more discriminative leanethgds are employed.
In order to strengthen comparisons within the SLR eld the data sets credttaid this work have
been released for use within the community.

12. Future Work

The learnt sub-units show promise and, as shown by the work of Pitsikalls(@011), there are
several avenues which can be explored. However, for all of thiesetidns, more linguistically
annotated data is required across multiple signers to allow the classi ers toniisate between
the features which are signer speci ¢ and those which are indepentteatddition, handshapes
are a large part of sign, while the work on the multi-signer depth data sejivers good results,
handshapes should be included in future work using depth cameradly,Rin@ recent creation
of a larger, multi-signer data set has set the ground work in place for logisatitative analysis.
Using this data in the same manner as the DGS40 data set should allow behkagréKinect
sign recognition approaches, both for signer dependent and indiepierecognition. Appearance
only techniques can also be veri ed using the Kinect data set whereppate as the RGB images
are also available though they are not used in this paper. Though it db@wuldted that this is an
especially challenging data set for appearance techniques due to theanmging backgrounds and
subjects.
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